]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/net_namespace.c
audit: use proper refcount locking on audit_sock
[mirror_ubuntu-bionic-kernel.git] / net / core / net_namespace.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <net/sock.h>
20 #include <net/netlink.h>
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23
24 /*
25 * Our network namespace constructor/destructor lists
26 */
27
28 static LIST_HEAD(pernet_list);
29 static struct list_head *first_device = &pernet_list;
30 DEFINE_MUTEX(net_mutex);
31
32 LIST_HEAD(net_namespace_list);
33 EXPORT_SYMBOL_GPL(net_namespace_list);
34
35 struct net init_net = {
36 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
37 };
38 EXPORT_SYMBOL(init_net);
39
40 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
41
42 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
43
44 static struct net_generic *net_alloc_generic(void)
45 {
46 struct net_generic *ng;
47 size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
48
49 ng = kzalloc(generic_size, GFP_KERNEL);
50 if (ng)
51 ng->len = max_gen_ptrs;
52
53 return ng;
54 }
55
56 static int net_assign_generic(struct net *net, int id, void *data)
57 {
58 struct net_generic *ng, *old_ng;
59
60 BUG_ON(!mutex_is_locked(&net_mutex));
61 BUG_ON(id == 0);
62
63 old_ng = rcu_dereference_protected(net->gen,
64 lockdep_is_held(&net_mutex));
65 ng = old_ng;
66 if (old_ng->len >= id)
67 goto assign;
68
69 ng = net_alloc_generic();
70 if (ng == NULL)
71 return -ENOMEM;
72
73 /*
74 * Some synchronisation notes:
75 *
76 * The net_generic explores the net->gen array inside rcu
77 * read section. Besides once set the net->gen->ptr[x]
78 * pointer never changes (see rules in netns/generic.h).
79 *
80 * That said, we simply duplicate this array and schedule
81 * the old copy for kfree after a grace period.
82 */
83
84 memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
85
86 rcu_assign_pointer(net->gen, ng);
87 kfree_rcu(old_ng, rcu);
88 assign:
89 ng->ptr[id - 1] = data;
90 return 0;
91 }
92
93 static int ops_init(const struct pernet_operations *ops, struct net *net)
94 {
95 int err = -ENOMEM;
96 void *data = NULL;
97
98 if (ops->id && ops->size) {
99 data = kzalloc(ops->size, GFP_KERNEL);
100 if (!data)
101 goto out;
102
103 err = net_assign_generic(net, *ops->id, data);
104 if (err)
105 goto cleanup;
106 }
107 err = 0;
108 if (ops->init)
109 err = ops->init(net);
110 if (!err)
111 return 0;
112
113 cleanup:
114 kfree(data);
115
116 out:
117 return err;
118 }
119
120 static void ops_free(const struct pernet_operations *ops, struct net *net)
121 {
122 if (ops->id && ops->size) {
123 int id = *ops->id;
124 kfree(net_generic(net, id));
125 }
126 }
127
128 static void ops_exit_list(const struct pernet_operations *ops,
129 struct list_head *net_exit_list)
130 {
131 struct net *net;
132 if (ops->exit) {
133 list_for_each_entry(net, net_exit_list, exit_list)
134 ops->exit(net);
135 }
136 if (ops->exit_batch)
137 ops->exit_batch(net_exit_list);
138 }
139
140 static void ops_free_list(const struct pernet_operations *ops,
141 struct list_head *net_exit_list)
142 {
143 struct net *net;
144 if (ops->size && ops->id) {
145 list_for_each_entry(net, net_exit_list, exit_list)
146 ops_free(ops, net);
147 }
148 }
149
150 /* should be called with nsid_lock held */
151 static int alloc_netid(struct net *net, struct net *peer, int reqid)
152 {
153 int min = 0, max = 0;
154
155 if (reqid >= 0) {
156 min = reqid;
157 max = reqid + 1;
158 }
159
160 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
161 }
162
163 /* This function is used by idr_for_each(). If net is equal to peer, the
164 * function returns the id so that idr_for_each() stops. Because we cannot
165 * returns the id 0 (idr_for_each() will not stop), we return the magic value
166 * NET_ID_ZERO (-1) for it.
167 */
168 #define NET_ID_ZERO -1
169 static int net_eq_idr(int id, void *net, void *peer)
170 {
171 if (net_eq(net, peer))
172 return id ? : NET_ID_ZERO;
173 return 0;
174 }
175
176 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
177 * is set to true, thus the caller knows that the new id must be notified via
178 * rtnl.
179 */
180 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
181 {
182 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
183 bool alloc_it = *alloc;
184
185 *alloc = false;
186
187 /* Magic value for id 0. */
188 if (id == NET_ID_ZERO)
189 return 0;
190 if (id > 0)
191 return id;
192
193 if (alloc_it) {
194 id = alloc_netid(net, peer, -1);
195 *alloc = true;
196 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
197 }
198
199 return NETNSA_NSID_NOT_ASSIGNED;
200 }
201
202 /* should be called with nsid_lock held */
203 static int __peernet2id(struct net *net, struct net *peer)
204 {
205 bool no = false;
206
207 return __peernet2id_alloc(net, peer, &no);
208 }
209
210 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
211 /* This function returns the id of a peer netns. If no id is assigned, one will
212 * be allocated and returned.
213 */
214 int peernet2id_alloc(struct net *net, struct net *peer)
215 {
216 bool alloc;
217 int id;
218
219 spin_lock_bh(&net->nsid_lock);
220 alloc = atomic_read(&peer->count) == 0 ? false : true;
221 id = __peernet2id_alloc(net, peer, &alloc);
222 spin_unlock_bh(&net->nsid_lock);
223 if (alloc && id >= 0)
224 rtnl_net_notifyid(net, RTM_NEWNSID, id);
225 return id;
226 }
227 EXPORT_SYMBOL(peernet2id_alloc);
228
229 /* This function returns, if assigned, the id of a peer netns. */
230 int peernet2id(struct net *net, struct net *peer)
231 {
232 int id;
233
234 spin_lock_bh(&net->nsid_lock);
235 id = __peernet2id(net, peer);
236 spin_unlock_bh(&net->nsid_lock);
237 return id;
238 }
239
240 /* This function returns true is the peer netns has an id assigned into the
241 * current netns.
242 */
243 bool peernet_has_id(struct net *net, struct net *peer)
244 {
245 return peernet2id(net, peer) >= 0;
246 }
247
248 struct net *get_net_ns_by_id(struct net *net, int id)
249 {
250 struct net *peer;
251
252 if (id < 0)
253 return NULL;
254
255 rcu_read_lock();
256 spin_lock_bh(&net->nsid_lock);
257 peer = idr_find(&net->netns_ids, id);
258 if (peer)
259 get_net(peer);
260 spin_unlock_bh(&net->nsid_lock);
261 rcu_read_unlock();
262
263 return peer;
264 }
265
266 /*
267 * setup_net runs the initializers for the network namespace object.
268 */
269 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
270 {
271 /* Must be called with net_mutex held */
272 const struct pernet_operations *ops, *saved_ops;
273 int error = 0;
274 LIST_HEAD(net_exit_list);
275
276 atomic_set(&net->count, 1);
277 atomic_set(&net->passive, 1);
278 net->dev_base_seq = 1;
279 net->user_ns = user_ns;
280 idr_init(&net->netns_ids);
281 spin_lock_init(&net->nsid_lock);
282
283 list_for_each_entry(ops, &pernet_list, list) {
284 error = ops_init(ops, net);
285 if (error < 0)
286 goto out_undo;
287 }
288 out:
289 return error;
290
291 out_undo:
292 /* Walk through the list backwards calling the exit functions
293 * for the pernet modules whose init functions did not fail.
294 */
295 list_add(&net->exit_list, &net_exit_list);
296 saved_ops = ops;
297 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
298 ops_exit_list(ops, &net_exit_list);
299
300 ops = saved_ops;
301 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
302 ops_free_list(ops, &net_exit_list);
303
304 rcu_barrier();
305 goto out;
306 }
307
308
309 #ifdef CONFIG_NET_NS
310 static struct kmem_cache *net_cachep;
311 static struct workqueue_struct *netns_wq;
312
313 static struct net *net_alloc(void)
314 {
315 struct net *net = NULL;
316 struct net_generic *ng;
317
318 ng = net_alloc_generic();
319 if (!ng)
320 goto out;
321
322 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
323 if (!net)
324 goto out_free;
325
326 rcu_assign_pointer(net->gen, ng);
327 out:
328 return net;
329
330 out_free:
331 kfree(ng);
332 goto out;
333 }
334
335 static void net_free(struct net *net)
336 {
337 kfree(rcu_access_pointer(net->gen));
338 kmem_cache_free(net_cachep, net);
339 }
340
341 void net_drop_ns(void *p)
342 {
343 struct net *ns = p;
344 if (ns && atomic_dec_and_test(&ns->passive))
345 net_free(ns);
346 }
347
348 struct net *copy_net_ns(unsigned long flags,
349 struct user_namespace *user_ns, struct net *old_net)
350 {
351 struct net *net;
352 int rv;
353
354 if (!(flags & CLONE_NEWNET))
355 return get_net(old_net);
356
357 net = net_alloc();
358 if (!net)
359 return ERR_PTR(-ENOMEM);
360
361 get_user_ns(user_ns);
362
363 mutex_lock(&net_mutex);
364 rv = setup_net(net, user_ns);
365 if (rv == 0) {
366 rtnl_lock();
367 list_add_tail_rcu(&net->list, &net_namespace_list);
368 rtnl_unlock();
369 }
370 mutex_unlock(&net_mutex);
371 if (rv < 0) {
372 put_user_ns(user_ns);
373 net_drop_ns(net);
374 return ERR_PTR(rv);
375 }
376 return net;
377 }
378
379 static DEFINE_SPINLOCK(cleanup_list_lock);
380 static LIST_HEAD(cleanup_list); /* Must hold cleanup_list_lock to touch */
381
382 static void cleanup_net(struct work_struct *work)
383 {
384 const struct pernet_operations *ops;
385 struct net *net, *tmp;
386 struct list_head net_kill_list;
387 LIST_HEAD(net_exit_list);
388
389 /* Atomically snapshot the list of namespaces to cleanup */
390 spin_lock_irq(&cleanup_list_lock);
391 list_replace_init(&cleanup_list, &net_kill_list);
392 spin_unlock_irq(&cleanup_list_lock);
393
394 mutex_lock(&net_mutex);
395
396 /* Don't let anyone else find us. */
397 rtnl_lock();
398 list_for_each_entry(net, &net_kill_list, cleanup_list) {
399 list_del_rcu(&net->list);
400 list_add_tail(&net->exit_list, &net_exit_list);
401 for_each_net(tmp) {
402 int id;
403
404 spin_lock_bh(&tmp->nsid_lock);
405 id = __peernet2id(tmp, net);
406 if (id >= 0)
407 idr_remove(&tmp->netns_ids, id);
408 spin_unlock_bh(&tmp->nsid_lock);
409 if (id >= 0)
410 rtnl_net_notifyid(tmp, RTM_DELNSID, id);
411 }
412 spin_lock_bh(&net->nsid_lock);
413 idr_destroy(&net->netns_ids);
414 spin_unlock_bh(&net->nsid_lock);
415
416 }
417 rtnl_unlock();
418
419 /*
420 * Another CPU might be rcu-iterating the list, wait for it.
421 * This needs to be before calling the exit() notifiers, so
422 * the rcu_barrier() below isn't sufficient alone.
423 */
424 synchronize_rcu();
425
426 /* Run all of the network namespace exit methods */
427 list_for_each_entry_reverse(ops, &pernet_list, list)
428 ops_exit_list(ops, &net_exit_list);
429
430 /* Free the net generic variables */
431 list_for_each_entry_reverse(ops, &pernet_list, list)
432 ops_free_list(ops, &net_exit_list);
433
434 mutex_unlock(&net_mutex);
435
436 /* Ensure there are no outstanding rcu callbacks using this
437 * network namespace.
438 */
439 rcu_barrier();
440
441 /* Finally it is safe to free my network namespace structure */
442 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
443 list_del_init(&net->exit_list);
444 put_user_ns(net->user_ns);
445 net_drop_ns(net);
446 }
447 }
448 static DECLARE_WORK(net_cleanup_work, cleanup_net);
449
450 void __put_net(struct net *net)
451 {
452 /* Cleanup the network namespace in process context */
453 unsigned long flags;
454
455 spin_lock_irqsave(&cleanup_list_lock, flags);
456 list_add(&net->cleanup_list, &cleanup_list);
457 spin_unlock_irqrestore(&cleanup_list_lock, flags);
458
459 queue_work(netns_wq, &net_cleanup_work);
460 }
461 EXPORT_SYMBOL_GPL(__put_net);
462
463 struct net *get_net_ns_by_fd(int fd)
464 {
465 struct file *file;
466 struct ns_common *ns;
467 struct net *net;
468
469 file = proc_ns_fget(fd);
470 if (IS_ERR(file))
471 return ERR_CAST(file);
472
473 ns = get_proc_ns(file_inode(file));
474 if (ns->ops == &netns_operations)
475 net = get_net(container_of(ns, struct net, ns));
476 else
477 net = ERR_PTR(-EINVAL);
478
479 fput(file);
480 return net;
481 }
482
483 #else
484 struct net *get_net_ns_by_fd(int fd)
485 {
486 return ERR_PTR(-EINVAL);
487 }
488 #endif
489 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
490
491 struct net *get_net_ns_by_pid(pid_t pid)
492 {
493 struct task_struct *tsk;
494 struct net *net;
495
496 /* Lookup the network namespace */
497 net = ERR_PTR(-ESRCH);
498 rcu_read_lock();
499 tsk = find_task_by_vpid(pid);
500 if (tsk) {
501 struct nsproxy *nsproxy;
502 task_lock(tsk);
503 nsproxy = tsk->nsproxy;
504 if (nsproxy)
505 net = get_net(nsproxy->net_ns);
506 task_unlock(tsk);
507 }
508 rcu_read_unlock();
509 return net;
510 }
511 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
512
513 static __net_init int net_ns_net_init(struct net *net)
514 {
515 #ifdef CONFIG_NET_NS
516 net->ns.ops = &netns_operations;
517 #endif
518 return ns_alloc_inum(&net->ns);
519 }
520
521 static __net_exit void net_ns_net_exit(struct net *net)
522 {
523 ns_free_inum(&net->ns);
524 }
525
526 static struct pernet_operations __net_initdata net_ns_ops = {
527 .init = net_ns_net_init,
528 .exit = net_ns_net_exit,
529 };
530
531 static struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
532 [NETNSA_NONE] = { .type = NLA_UNSPEC },
533 [NETNSA_NSID] = { .type = NLA_S32 },
534 [NETNSA_PID] = { .type = NLA_U32 },
535 [NETNSA_FD] = { .type = NLA_U32 },
536 };
537
538 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
539 {
540 struct net *net = sock_net(skb->sk);
541 struct nlattr *tb[NETNSA_MAX + 1];
542 struct net *peer;
543 int nsid, err;
544
545 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
546 rtnl_net_policy);
547 if (err < 0)
548 return err;
549 if (!tb[NETNSA_NSID])
550 return -EINVAL;
551 nsid = nla_get_s32(tb[NETNSA_NSID]);
552
553 if (tb[NETNSA_PID])
554 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
555 else if (tb[NETNSA_FD])
556 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
557 else
558 return -EINVAL;
559 if (IS_ERR(peer))
560 return PTR_ERR(peer);
561
562 spin_lock_bh(&net->nsid_lock);
563 if (__peernet2id(net, peer) >= 0) {
564 spin_unlock_bh(&net->nsid_lock);
565 err = -EEXIST;
566 goto out;
567 }
568
569 err = alloc_netid(net, peer, nsid);
570 spin_unlock_bh(&net->nsid_lock);
571 if (err >= 0) {
572 rtnl_net_notifyid(net, RTM_NEWNSID, err);
573 err = 0;
574 }
575 out:
576 put_net(peer);
577 return err;
578 }
579
580 static int rtnl_net_get_size(void)
581 {
582 return NLMSG_ALIGN(sizeof(struct rtgenmsg))
583 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
584 ;
585 }
586
587 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
588 int cmd, struct net *net, int nsid)
589 {
590 struct nlmsghdr *nlh;
591 struct rtgenmsg *rth;
592
593 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
594 if (!nlh)
595 return -EMSGSIZE;
596
597 rth = nlmsg_data(nlh);
598 rth->rtgen_family = AF_UNSPEC;
599
600 if (nla_put_s32(skb, NETNSA_NSID, nsid))
601 goto nla_put_failure;
602
603 nlmsg_end(skb, nlh);
604 return 0;
605
606 nla_put_failure:
607 nlmsg_cancel(skb, nlh);
608 return -EMSGSIZE;
609 }
610
611 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
612 {
613 struct net *net = sock_net(skb->sk);
614 struct nlattr *tb[NETNSA_MAX + 1];
615 struct sk_buff *msg;
616 struct net *peer;
617 int err, id;
618
619 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
620 rtnl_net_policy);
621 if (err < 0)
622 return err;
623 if (tb[NETNSA_PID])
624 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
625 else if (tb[NETNSA_FD])
626 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
627 else
628 return -EINVAL;
629
630 if (IS_ERR(peer))
631 return PTR_ERR(peer);
632
633 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
634 if (!msg) {
635 err = -ENOMEM;
636 goto out;
637 }
638
639 id = peernet2id(net, peer);
640 err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
641 RTM_NEWNSID, net, id);
642 if (err < 0)
643 goto err_out;
644
645 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
646 goto out;
647
648 err_out:
649 nlmsg_free(msg);
650 out:
651 put_net(peer);
652 return err;
653 }
654
655 struct rtnl_net_dump_cb {
656 struct net *net;
657 struct sk_buff *skb;
658 struct netlink_callback *cb;
659 int idx;
660 int s_idx;
661 };
662
663 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
664 {
665 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
666 int ret;
667
668 if (net_cb->idx < net_cb->s_idx)
669 goto cont;
670
671 ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
672 net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
673 RTM_NEWNSID, net_cb->net, id);
674 if (ret < 0)
675 return ret;
676
677 cont:
678 net_cb->idx++;
679 return 0;
680 }
681
682 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
683 {
684 struct net *net = sock_net(skb->sk);
685 struct rtnl_net_dump_cb net_cb = {
686 .net = net,
687 .skb = skb,
688 .cb = cb,
689 .idx = 0,
690 .s_idx = cb->args[0],
691 };
692
693 spin_lock_bh(&net->nsid_lock);
694 idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
695 spin_unlock_bh(&net->nsid_lock);
696
697 cb->args[0] = net_cb.idx;
698 return skb->len;
699 }
700
701 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
702 {
703 struct sk_buff *msg;
704 int err = -ENOMEM;
705
706 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
707 if (!msg)
708 goto out;
709
710 err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
711 if (err < 0)
712 goto err_out;
713
714 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
715 return;
716
717 err_out:
718 nlmsg_free(msg);
719 out:
720 rtnl_set_sk_err(net, RTNLGRP_NSID, err);
721 }
722
723 static int __init net_ns_init(void)
724 {
725 struct net_generic *ng;
726
727 #ifdef CONFIG_NET_NS
728 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
729 SMP_CACHE_BYTES,
730 SLAB_PANIC, NULL);
731
732 /* Create workqueue for cleanup */
733 netns_wq = create_singlethread_workqueue("netns");
734 if (!netns_wq)
735 panic("Could not create netns workq");
736 #endif
737
738 ng = net_alloc_generic();
739 if (!ng)
740 panic("Could not allocate generic netns");
741
742 rcu_assign_pointer(init_net.gen, ng);
743
744 mutex_lock(&net_mutex);
745 if (setup_net(&init_net, &init_user_ns))
746 panic("Could not setup the initial network namespace");
747
748 rtnl_lock();
749 list_add_tail_rcu(&init_net.list, &net_namespace_list);
750 rtnl_unlock();
751
752 mutex_unlock(&net_mutex);
753
754 register_pernet_subsys(&net_ns_ops);
755
756 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
757 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
758 NULL);
759
760 return 0;
761 }
762
763 pure_initcall(net_ns_init);
764
765 #ifdef CONFIG_NET_NS
766 static int __register_pernet_operations(struct list_head *list,
767 struct pernet_operations *ops)
768 {
769 struct net *net;
770 int error;
771 LIST_HEAD(net_exit_list);
772
773 list_add_tail(&ops->list, list);
774 if (ops->init || (ops->id && ops->size)) {
775 for_each_net(net) {
776 error = ops_init(ops, net);
777 if (error)
778 goto out_undo;
779 list_add_tail(&net->exit_list, &net_exit_list);
780 }
781 }
782 return 0;
783
784 out_undo:
785 /* If I have an error cleanup all namespaces I initialized */
786 list_del(&ops->list);
787 ops_exit_list(ops, &net_exit_list);
788 ops_free_list(ops, &net_exit_list);
789 return error;
790 }
791
792 static void __unregister_pernet_operations(struct pernet_operations *ops)
793 {
794 struct net *net;
795 LIST_HEAD(net_exit_list);
796
797 list_del(&ops->list);
798 for_each_net(net)
799 list_add_tail(&net->exit_list, &net_exit_list);
800 ops_exit_list(ops, &net_exit_list);
801 ops_free_list(ops, &net_exit_list);
802 }
803
804 #else
805
806 static int __register_pernet_operations(struct list_head *list,
807 struct pernet_operations *ops)
808 {
809 return ops_init(ops, &init_net);
810 }
811
812 static void __unregister_pernet_operations(struct pernet_operations *ops)
813 {
814 LIST_HEAD(net_exit_list);
815 list_add(&init_net.exit_list, &net_exit_list);
816 ops_exit_list(ops, &net_exit_list);
817 ops_free_list(ops, &net_exit_list);
818 }
819
820 #endif /* CONFIG_NET_NS */
821
822 static DEFINE_IDA(net_generic_ids);
823
824 static int register_pernet_operations(struct list_head *list,
825 struct pernet_operations *ops)
826 {
827 int error;
828
829 if (ops->id) {
830 again:
831 error = ida_get_new_above(&net_generic_ids, 1, ops->id);
832 if (error < 0) {
833 if (error == -EAGAIN) {
834 ida_pre_get(&net_generic_ids, GFP_KERNEL);
835 goto again;
836 }
837 return error;
838 }
839 max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
840 }
841 error = __register_pernet_operations(list, ops);
842 if (error) {
843 rcu_barrier();
844 if (ops->id)
845 ida_remove(&net_generic_ids, *ops->id);
846 }
847
848 return error;
849 }
850
851 static void unregister_pernet_operations(struct pernet_operations *ops)
852 {
853
854 __unregister_pernet_operations(ops);
855 rcu_barrier();
856 if (ops->id)
857 ida_remove(&net_generic_ids, *ops->id);
858 }
859
860 /**
861 * register_pernet_subsys - register a network namespace subsystem
862 * @ops: pernet operations structure for the subsystem
863 *
864 * Register a subsystem which has init and exit functions
865 * that are called when network namespaces are created and
866 * destroyed respectively.
867 *
868 * When registered all network namespace init functions are
869 * called for every existing network namespace. Allowing kernel
870 * modules to have a race free view of the set of network namespaces.
871 *
872 * When a new network namespace is created all of the init
873 * methods are called in the order in which they were registered.
874 *
875 * When a network namespace is destroyed all of the exit methods
876 * are called in the reverse of the order with which they were
877 * registered.
878 */
879 int register_pernet_subsys(struct pernet_operations *ops)
880 {
881 int error;
882 mutex_lock(&net_mutex);
883 error = register_pernet_operations(first_device, ops);
884 mutex_unlock(&net_mutex);
885 return error;
886 }
887 EXPORT_SYMBOL_GPL(register_pernet_subsys);
888
889 /**
890 * unregister_pernet_subsys - unregister a network namespace subsystem
891 * @ops: pernet operations structure to manipulate
892 *
893 * Remove the pernet operations structure from the list to be
894 * used when network namespaces are created or destroyed. In
895 * addition run the exit method for all existing network
896 * namespaces.
897 */
898 void unregister_pernet_subsys(struct pernet_operations *ops)
899 {
900 mutex_lock(&net_mutex);
901 unregister_pernet_operations(ops);
902 mutex_unlock(&net_mutex);
903 }
904 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
905
906 /**
907 * register_pernet_device - register a network namespace device
908 * @ops: pernet operations structure for the subsystem
909 *
910 * Register a device which has init and exit functions
911 * that are called when network namespaces are created and
912 * destroyed respectively.
913 *
914 * When registered all network namespace init functions are
915 * called for every existing network namespace. Allowing kernel
916 * modules to have a race free view of the set of network namespaces.
917 *
918 * When a new network namespace is created all of the init
919 * methods are called in the order in which they were registered.
920 *
921 * When a network namespace is destroyed all of the exit methods
922 * are called in the reverse of the order with which they were
923 * registered.
924 */
925 int register_pernet_device(struct pernet_operations *ops)
926 {
927 int error;
928 mutex_lock(&net_mutex);
929 error = register_pernet_operations(&pernet_list, ops);
930 if (!error && (first_device == &pernet_list))
931 first_device = &ops->list;
932 mutex_unlock(&net_mutex);
933 return error;
934 }
935 EXPORT_SYMBOL_GPL(register_pernet_device);
936
937 /**
938 * unregister_pernet_device - unregister a network namespace netdevice
939 * @ops: pernet operations structure to manipulate
940 *
941 * Remove the pernet operations structure from the list to be
942 * used when network namespaces are created or destroyed. In
943 * addition run the exit method for all existing network
944 * namespaces.
945 */
946 void unregister_pernet_device(struct pernet_operations *ops)
947 {
948 mutex_lock(&net_mutex);
949 if (&ops->list == first_device)
950 first_device = first_device->next;
951 unregister_pernet_operations(ops);
952 mutex_unlock(&net_mutex);
953 }
954 EXPORT_SYMBOL_GPL(unregister_pernet_device);
955
956 #ifdef CONFIG_NET_NS
957 static struct ns_common *netns_get(struct task_struct *task)
958 {
959 struct net *net = NULL;
960 struct nsproxy *nsproxy;
961
962 task_lock(task);
963 nsproxy = task->nsproxy;
964 if (nsproxy)
965 net = get_net(nsproxy->net_ns);
966 task_unlock(task);
967
968 return net ? &net->ns : NULL;
969 }
970
971 static inline struct net *to_net_ns(struct ns_common *ns)
972 {
973 return container_of(ns, struct net, ns);
974 }
975
976 static void netns_put(struct ns_common *ns)
977 {
978 put_net(to_net_ns(ns));
979 }
980
981 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
982 {
983 struct net *net = to_net_ns(ns);
984
985 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
986 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
987 return -EPERM;
988
989 put_net(nsproxy->net_ns);
990 nsproxy->net_ns = get_net(net);
991 return 0;
992 }
993
994 const struct proc_ns_operations netns_operations = {
995 .name = "net",
996 .type = CLONE_NEWNET,
997 .get = netns_get,
998 .put = netns_put,
999 .install = netns_install,
1000 };
1001 #endif