]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/net_namespace.c
netns: publish net_generic correctly
[mirror_ubuntu-bionic-kernel.git] / net / core / net_namespace.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <net/sock.h>
20 #include <net/netlink.h>
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23
24 /*
25 * Our network namespace constructor/destructor lists
26 */
27
28 static LIST_HEAD(pernet_list);
29 static struct list_head *first_device = &pernet_list;
30 DEFINE_MUTEX(net_mutex);
31
32 LIST_HEAD(net_namespace_list);
33 EXPORT_SYMBOL_GPL(net_namespace_list);
34
35 struct net init_net = {
36 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
37 };
38 EXPORT_SYMBOL(init_net);
39
40 static bool init_net_initialized;
41
42 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
43
44 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
45
46 static struct net_generic *net_alloc_generic(void)
47 {
48 struct net_generic *ng;
49 size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
50
51 ng = kzalloc(generic_size, GFP_KERNEL);
52 if (ng)
53 ng->len = max_gen_ptrs;
54
55 return ng;
56 }
57
58 static int net_assign_generic(struct net *net, unsigned int id, void *data)
59 {
60 struct net_generic *ng, *old_ng;
61
62 BUG_ON(!mutex_is_locked(&net_mutex));
63 BUG_ON(id == 0);
64
65 old_ng = rcu_dereference_protected(net->gen,
66 lockdep_is_held(&net_mutex));
67 if (old_ng->len >= id) {
68 old_ng->ptr[id - 1] = data;
69 return 0;
70 }
71
72 ng = net_alloc_generic();
73 if (ng == NULL)
74 return -ENOMEM;
75
76 /*
77 * Some synchronisation notes:
78 *
79 * The net_generic explores the net->gen array inside rcu
80 * read section. Besides once set the net->gen->ptr[x]
81 * pointer never changes (see rules in netns/generic.h).
82 *
83 * That said, we simply duplicate this array and schedule
84 * the old copy for kfree after a grace period.
85 */
86
87 memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
88 ng->ptr[id - 1] = data;
89
90 rcu_assign_pointer(net->gen, ng);
91 kfree_rcu(old_ng, rcu);
92 return 0;
93 }
94
95 static int ops_init(const struct pernet_operations *ops, struct net *net)
96 {
97 int err = -ENOMEM;
98 void *data = NULL;
99
100 if (ops->id && ops->size) {
101 data = kzalloc(ops->size, GFP_KERNEL);
102 if (!data)
103 goto out;
104
105 err = net_assign_generic(net, *ops->id, data);
106 if (err)
107 goto cleanup;
108 }
109 err = 0;
110 if (ops->init)
111 err = ops->init(net);
112 if (!err)
113 return 0;
114
115 cleanup:
116 kfree(data);
117
118 out:
119 return err;
120 }
121
122 static void ops_free(const struct pernet_operations *ops, struct net *net)
123 {
124 if (ops->id && ops->size) {
125 kfree(net_generic(net, *ops->id));
126 }
127 }
128
129 static void ops_exit_list(const struct pernet_operations *ops,
130 struct list_head *net_exit_list)
131 {
132 struct net *net;
133 if (ops->exit) {
134 list_for_each_entry(net, net_exit_list, exit_list)
135 ops->exit(net);
136 }
137 if (ops->exit_batch)
138 ops->exit_batch(net_exit_list);
139 }
140
141 static void ops_free_list(const struct pernet_operations *ops,
142 struct list_head *net_exit_list)
143 {
144 struct net *net;
145 if (ops->size && ops->id) {
146 list_for_each_entry(net, net_exit_list, exit_list)
147 ops_free(ops, net);
148 }
149 }
150
151 /* should be called with nsid_lock held */
152 static int alloc_netid(struct net *net, struct net *peer, int reqid)
153 {
154 int min = 0, max = 0;
155
156 if (reqid >= 0) {
157 min = reqid;
158 max = reqid + 1;
159 }
160
161 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
162 }
163
164 /* This function is used by idr_for_each(). If net is equal to peer, the
165 * function returns the id so that idr_for_each() stops. Because we cannot
166 * returns the id 0 (idr_for_each() will not stop), we return the magic value
167 * NET_ID_ZERO (-1) for it.
168 */
169 #define NET_ID_ZERO -1
170 static int net_eq_idr(int id, void *net, void *peer)
171 {
172 if (net_eq(net, peer))
173 return id ? : NET_ID_ZERO;
174 return 0;
175 }
176
177 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
178 * is set to true, thus the caller knows that the new id must be notified via
179 * rtnl.
180 */
181 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
182 {
183 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
184 bool alloc_it = *alloc;
185
186 *alloc = false;
187
188 /* Magic value for id 0. */
189 if (id == NET_ID_ZERO)
190 return 0;
191 if (id > 0)
192 return id;
193
194 if (alloc_it) {
195 id = alloc_netid(net, peer, -1);
196 *alloc = true;
197 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
198 }
199
200 return NETNSA_NSID_NOT_ASSIGNED;
201 }
202
203 /* should be called with nsid_lock held */
204 static int __peernet2id(struct net *net, struct net *peer)
205 {
206 bool no = false;
207
208 return __peernet2id_alloc(net, peer, &no);
209 }
210
211 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
212 /* This function returns the id of a peer netns. If no id is assigned, one will
213 * be allocated and returned.
214 */
215 int peernet2id_alloc(struct net *net, struct net *peer)
216 {
217 unsigned long flags;
218 bool alloc;
219 int id;
220
221 if (atomic_read(&net->count) == 0)
222 return NETNSA_NSID_NOT_ASSIGNED;
223 spin_lock_irqsave(&net->nsid_lock, flags);
224 alloc = atomic_read(&peer->count) == 0 ? false : true;
225 id = __peernet2id_alloc(net, peer, &alloc);
226 spin_unlock_irqrestore(&net->nsid_lock, flags);
227 if (alloc && id >= 0)
228 rtnl_net_notifyid(net, RTM_NEWNSID, id);
229 return id;
230 }
231
232 /* This function returns, if assigned, the id of a peer netns. */
233 int peernet2id(struct net *net, struct net *peer)
234 {
235 unsigned long flags;
236 int id;
237
238 spin_lock_irqsave(&net->nsid_lock, flags);
239 id = __peernet2id(net, peer);
240 spin_unlock_irqrestore(&net->nsid_lock, flags);
241 return id;
242 }
243 EXPORT_SYMBOL(peernet2id);
244
245 /* This function returns true is the peer netns has an id assigned into the
246 * current netns.
247 */
248 bool peernet_has_id(struct net *net, struct net *peer)
249 {
250 return peernet2id(net, peer) >= 0;
251 }
252
253 struct net *get_net_ns_by_id(struct net *net, int id)
254 {
255 unsigned long flags;
256 struct net *peer;
257
258 if (id < 0)
259 return NULL;
260
261 rcu_read_lock();
262 spin_lock_irqsave(&net->nsid_lock, flags);
263 peer = idr_find(&net->netns_ids, id);
264 if (peer)
265 get_net(peer);
266 spin_unlock_irqrestore(&net->nsid_lock, flags);
267 rcu_read_unlock();
268
269 return peer;
270 }
271
272 /*
273 * setup_net runs the initializers for the network namespace object.
274 */
275 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
276 {
277 /* Must be called with net_mutex held */
278 const struct pernet_operations *ops, *saved_ops;
279 int error = 0;
280 LIST_HEAD(net_exit_list);
281
282 atomic_set(&net->count, 1);
283 atomic_set(&net->passive, 1);
284 net->dev_base_seq = 1;
285 net->user_ns = user_ns;
286 idr_init(&net->netns_ids);
287 spin_lock_init(&net->nsid_lock);
288
289 list_for_each_entry(ops, &pernet_list, list) {
290 error = ops_init(ops, net);
291 if (error < 0)
292 goto out_undo;
293 }
294 out:
295 return error;
296
297 out_undo:
298 /* Walk through the list backwards calling the exit functions
299 * for the pernet modules whose init functions did not fail.
300 */
301 list_add(&net->exit_list, &net_exit_list);
302 saved_ops = ops;
303 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
304 ops_exit_list(ops, &net_exit_list);
305
306 ops = saved_ops;
307 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
308 ops_free_list(ops, &net_exit_list);
309
310 rcu_barrier();
311 goto out;
312 }
313
314
315 #ifdef CONFIG_NET_NS
316 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
317 {
318 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
319 }
320
321 static void dec_net_namespaces(struct ucounts *ucounts)
322 {
323 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
324 }
325
326 static struct kmem_cache *net_cachep;
327 static struct workqueue_struct *netns_wq;
328
329 static struct net *net_alloc(void)
330 {
331 struct net *net = NULL;
332 struct net_generic *ng;
333
334 ng = net_alloc_generic();
335 if (!ng)
336 goto out;
337
338 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
339 if (!net)
340 goto out_free;
341
342 rcu_assign_pointer(net->gen, ng);
343 out:
344 return net;
345
346 out_free:
347 kfree(ng);
348 goto out;
349 }
350
351 static void net_free(struct net *net)
352 {
353 kfree(rcu_access_pointer(net->gen));
354 kmem_cache_free(net_cachep, net);
355 }
356
357 void net_drop_ns(void *p)
358 {
359 struct net *ns = p;
360 if (ns && atomic_dec_and_test(&ns->passive))
361 net_free(ns);
362 }
363
364 struct net *copy_net_ns(unsigned long flags,
365 struct user_namespace *user_ns, struct net *old_net)
366 {
367 struct ucounts *ucounts;
368 struct net *net;
369 int rv;
370
371 if (!(flags & CLONE_NEWNET))
372 return get_net(old_net);
373
374 ucounts = inc_net_namespaces(user_ns);
375 if (!ucounts)
376 return ERR_PTR(-ENOSPC);
377
378 net = net_alloc();
379 if (!net) {
380 dec_net_namespaces(ucounts);
381 return ERR_PTR(-ENOMEM);
382 }
383
384 get_user_ns(user_ns);
385
386 rv = mutex_lock_killable(&net_mutex);
387 if (rv < 0) {
388 net_free(net);
389 dec_net_namespaces(ucounts);
390 put_user_ns(user_ns);
391 return ERR_PTR(rv);
392 }
393
394 net->ucounts = ucounts;
395 rv = setup_net(net, user_ns);
396 if (rv == 0) {
397 rtnl_lock();
398 list_add_tail_rcu(&net->list, &net_namespace_list);
399 rtnl_unlock();
400 }
401 mutex_unlock(&net_mutex);
402 if (rv < 0) {
403 dec_net_namespaces(ucounts);
404 put_user_ns(user_ns);
405 net_drop_ns(net);
406 return ERR_PTR(rv);
407 }
408 return net;
409 }
410
411 static DEFINE_SPINLOCK(cleanup_list_lock);
412 static LIST_HEAD(cleanup_list); /* Must hold cleanup_list_lock to touch */
413
414 static void cleanup_net(struct work_struct *work)
415 {
416 const struct pernet_operations *ops;
417 struct net *net, *tmp;
418 struct list_head net_kill_list;
419 LIST_HEAD(net_exit_list);
420
421 /* Atomically snapshot the list of namespaces to cleanup */
422 spin_lock_irq(&cleanup_list_lock);
423 list_replace_init(&cleanup_list, &net_kill_list);
424 spin_unlock_irq(&cleanup_list_lock);
425
426 mutex_lock(&net_mutex);
427
428 /* Don't let anyone else find us. */
429 rtnl_lock();
430 list_for_each_entry(net, &net_kill_list, cleanup_list) {
431 list_del_rcu(&net->list);
432 list_add_tail(&net->exit_list, &net_exit_list);
433 for_each_net(tmp) {
434 int id;
435
436 spin_lock_irq(&tmp->nsid_lock);
437 id = __peernet2id(tmp, net);
438 if (id >= 0)
439 idr_remove(&tmp->netns_ids, id);
440 spin_unlock_irq(&tmp->nsid_lock);
441 if (id >= 0)
442 rtnl_net_notifyid(tmp, RTM_DELNSID, id);
443 }
444 spin_lock_irq(&net->nsid_lock);
445 idr_destroy(&net->netns_ids);
446 spin_unlock_irq(&net->nsid_lock);
447
448 }
449 rtnl_unlock();
450
451 /*
452 * Another CPU might be rcu-iterating the list, wait for it.
453 * This needs to be before calling the exit() notifiers, so
454 * the rcu_barrier() below isn't sufficient alone.
455 */
456 synchronize_rcu();
457
458 /* Run all of the network namespace exit methods */
459 list_for_each_entry_reverse(ops, &pernet_list, list)
460 ops_exit_list(ops, &net_exit_list);
461
462 /* Free the net generic variables */
463 list_for_each_entry_reverse(ops, &pernet_list, list)
464 ops_free_list(ops, &net_exit_list);
465
466 mutex_unlock(&net_mutex);
467
468 /* Ensure there are no outstanding rcu callbacks using this
469 * network namespace.
470 */
471 rcu_barrier();
472
473 /* Finally it is safe to free my network namespace structure */
474 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
475 list_del_init(&net->exit_list);
476 dec_net_namespaces(net->ucounts);
477 put_user_ns(net->user_ns);
478 net_drop_ns(net);
479 }
480 }
481 static DECLARE_WORK(net_cleanup_work, cleanup_net);
482
483 void __put_net(struct net *net)
484 {
485 /* Cleanup the network namespace in process context */
486 unsigned long flags;
487
488 spin_lock_irqsave(&cleanup_list_lock, flags);
489 list_add(&net->cleanup_list, &cleanup_list);
490 spin_unlock_irqrestore(&cleanup_list_lock, flags);
491
492 queue_work(netns_wq, &net_cleanup_work);
493 }
494 EXPORT_SYMBOL_GPL(__put_net);
495
496 struct net *get_net_ns_by_fd(int fd)
497 {
498 struct file *file;
499 struct ns_common *ns;
500 struct net *net;
501
502 file = proc_ns_fget(fd);
503 if (IS_ERR(file))
504 return ERR_CAST(file);
505
506 ns = get_proc_ns(file_inode(file));
507 if (ns->ops == &netns_operations)
508 net = get_net(container_of(ns, struct net, ns));
509 else
510 net = ERR_PTR(-EINVAL);
511
512 fput(file);
513 return net;
514 }
515
516 #else
517 struct net *get_net_ns_by_fd(int fd)
518 {
519 return ERR_PTR(-EINVAL);
520 }
521 #endif
522 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
523
524 struct net *get_net_ns_by_pid(pid_t pid)
525 {
526 struct task_struct *tsk;
527 struct net *net;
528
529 /* Lookup the network namespace */
530 net = ERR_PTR(-ESRCH);
531 rcu_read_lock();
532 tsk = find_task_by_vpid(pid);
533 if (tsk) {
534 struct nsproxy *nsproxy;
535 task_lock(tsk);
536 nsproxy = tsk->nsproxy;
537 if (nsproxy)
538 net = get_net(nsproxy->net_ns);
539 task_unlock(tsk);
540 }
541 rcu_read_unlock();
542 return net;
543 }
544 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
545
546 static __net_init int net_ns_net_init(struct net *net)
547 {
548 #ifdef CONFIG_NET_NS
549 net->ns.ops = &netns_operations;
550 #endif
551 return ns_alloc_inum(&net->ns);
552 }
553
554 static __net_exit void net_ns_net_exit(struct net *net)
555 {
556 ns_free_inum(&net->ns);
557 }
558
559 static struct pernet_operations __net_initdata net_ns_ops = {
560 .init = net_ns_net_init,
561 .exit = net_ns_net_exit,
562 };
563
564 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
565 [NETNSA_NONE] = { .type = NLA_UNSPEC },
566 [NETNSA_NSID] = { .type = NLA_S32 },
567 [NETNSA_PID] = { .type = NLA_U32 },
568 [NETNSA_FD] = { .type = NLA_U32 },
569 };
570
571 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
572 {
573 struct net *net = sock_net(skb->sk);
574 struct nlattr *tb[NETNSA_MAX + 1];
575 unsigned long flags;
576 struct net *peer;
577 int nsid, err;
578
579 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
580 rtnl_net_policy);
581 if (err < 0)
582 return err;
583 if (!tb[NETNSA_NSID])
584 return -EINVAL;
585 nsid = nla_get_s32(tb[NETNSA_NSID]);
586
587 if (tb[NETNSA_PID])
588 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
589 else if (tb[NETNSA_FD])
590 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
591 else
592 return -EINVAL;
593 if (IS_ERR(peer))
594 return PTR_ERR(peer);
595
596 spin_lock_irqsave(&net->nsid_lock, flags);
597 if (__peernet2id(net, peer) >= 0) {
598 spin_unlock_irqrestore(&net->nsid_lock, flags);
599 err = -EEXIST;
600 goto out;
601 }
602
603 err = alloc_netid(net, peer, nsid);
604 spin_unlock_irqrestore(&net->nsid_lock, flags);
605 if (err >= 0) {
606 rtnl_net_notifyid(net, RTM_NEWNSID, err);
607 err = 0;
608 }
609 out:
610 put_net(peer);
611 return err;
612 }
613
614 static int rtnl_net_get_size(void)
615 {
616 return NLMSG_ALIGN(sizeof(struct rtgenmsg))
617 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
618 ;
619 }
620
621 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
622 int cmd, struct net *net, int nsid)
623 {
624 struct nlmsghdr *nlh;
625 struct rtgenmsg *rth;
626
627 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
628 if (!nlh)
629 return -EMSGSIZE;
630
631 rth = nlmsg_data(nlh);
632 rth->rtgen_family = AF_UNSPEC;
633
634 if (nla_put_s32(skb, NETNSA_NSID, nsid))
635 goto nla_put_failure;
636
637 nlmsg_end(skb, nlh);
638 return 0;
639
640 nla_put_failure:
641 nlmsg_cancel(skb, nlh);
642 return -EMSGSIZE;
643 }
644
645 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
646 {
647 struct net *net = sock_net(skb->sk);
648 struct nlattr *tb[NETNSA_MAX + 1];
649 struct sk_buff *msg;
650 struct net *peer;
651 int err, id;
652
653 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
654 rtnl_net_policy);
655 if (err < 0)
656 return err;
657 if (tb[NETNSA_PID])
658 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
659 else if (tb[NETNSA_FD])
660 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
661 else
662 return -EINVAL;
663
664 if (IS_ERR(peer))
665 return PTR_ERR(peer);
666
667 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
668 if (!msg) {
669 err = -ENOMEM;
670 goto out;
671 }
672
673 id = peernet2id(net, peer);
674 err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
675 RTM_NEWNSID, net, id);
676 if (err < 0)
677 goto err_out;
678
679 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
680 goto out;
681
682 err_out:
683 nlmsg_free(msg);
684 out:
685 put_net(peer);
686 return err;
687 }
688
689 struct rtnl_net_dump_cb {
690 struct net *net;
691 struct sk_buff *skb;
692 struct netlink_callback *cb;
693 int idx;
694 int s_idx;
695 };
696
697 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
698 {
699 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
700 int ret;
701
702 if (net_cb->idx < net_cb->s_idx)
703 goto cont;
704
705 ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
706 net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
707 RTM_NEWNSID, net_cb->net, id);
708 if (ret < 0)
709 return ret;
710
711 cont:
712 net_cb->idx++;
713 return 0;
714 }
715
716 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
717 {
718 struct net *net = sock_net(skb->sk);
719 struct rtnl_net_dump_cb net_cb = {
720 .net = net,
721 .skb = skb,
722 .cb = cb,
723 .idx = 0,
724 .s_idx = cb->args[0],
725 };
726 unsigned long flags;
727
728 spin_lock_irqsave(&net->nsid_lock, flags);
729 idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
730 spin_unlock_irqrestore(&net->nsid_lock, flags);
731
732 cb->args[0] = net_cb.idx;
733 return skb->len;
734 }
735
736 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
737 {
738 struct sk_buff *msg;
739 int err = -ENOMEM;
740
741 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
742 if (!msg)
743 goto out;
744
745 err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
746 if (err < 0)
747 goto err_out;
748
749 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
750 return;
751
752 err_out:
753 nlmsg_free(msg);
754 out:
755 rtnl_set_sk_err(net, RTNLGRP_NSID, err);
756 }
757
758 static int __init net_ns_init(void)
759 {
760 struct net_generic *ng;
761
762 #ifdef CONFIG_NET_NS
763 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
764 SMP_CACHE_BYTES,
765 SLAB_PANIC, NULL);
766
767 /* Create workqueue for cleanup */
768 netns_wq = create_singlethread_workqueue("netns");
769 if (!netns_wq)
770 panic("Could not create netns workq");
771 #endif
772
773 ng = net_alloc_generic();
774 if (!ng)
775 panic("Could not allocate generic netns");
776
777 rcu_assign_pointer(init_net.gen, ng);
778
779 mutex_lock(&net_mutex);
780 if (setup_net(&init_net, &init_user_ns))
781 panic("Could not setup the initial network namespace");
782
783 init_net_initialized = true;
784
785 rtnl_lock();
786 list_add_tail_rcu(&init_net.list, &net_namespace_list);
787 rtnl_unlock();
788
789 mutex_unlock(&net_mutex);
790
791 register_pernet_subsys(&net_ns_ops);
792
793 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
794 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
795 NULL);
796
797 return 0;
798 }
799
800 pure_initcall(net_ns_init);
801
802 #ifdef CONFIG_NET_NS
803 static int __register_pernet_operations(struct list_head *list,
804 struct pernet_operations *ops)
805 {
806 struct net *net;
807 int error;
808 LIST_HEAD(net_exit_list);
809
810 list_add_tail(&ops->list, list);
811 if (ops->init || (ops->id && ops->size)) {
812 for_each_net(net) {
813 error = ops_init(ops, net);
814 if (error)
815 goto out_undo;
816 list_add_tail(&net->exit_list, &net_exit_list);
817 }
818 }
819 return 0;
820
821 out_undo:
822 /* If I have an error cleanup all namespaces I initialized */
823 list_del(&ops->list);
824 ops_exit_list(ops, &net_exit_list);
825 ops_free_list(ops, &net_exit_list);
826 return error;
827 }
828
829 static void __unregister_pernet_operations(struct pernet_operations *ops)
830 {
831 struct net *net;
832 LIST_HEAD(net_exit_list);
833
834 list_del(&ops->list);
835 for_each_net(net)
836 list_add_tail(&net->exit_list, &net_exit_list);
837 ops_exit_list(ops, &net_exit_list);
838 ops_free_list(ops, &net_exit_list);
839 }
840
841 #else
842
843 static int __register_pernet_operations(struct list_head *list,
844 struct pernet_operations *ops)
845 {
846 if (!init_net_initialized) {
847 list_add_tail(&ops->list, list);
848 return 0;
849 }
850
851 return ops_init(ops, &init_net);
852 }
853
854 static void __unregister_pernet_operations(struct pernet_operations *ops)
855 {
856 if (!init_net_initialized) {
857 list_del(&ops->list);
858 } else {
859 LIST_HEAD(net_exit_list);
860 list_add(&init_net.exit_list, &net_exit_list);
861 ops_exit_list(ops, &net_exit_list);
862 ops_free_list(ops, &net_exit_list);
863 }
864 }
865
866 #endif /* CONFIG_NET_NS */
867
868 static DEFINE_IDA(net_generic_ids);
869
870 static int register_pernet_operations(struct list_head *list,
871 struct pernet_operations *ops)
872 {
873 int error;
874
875 if (ops->id) {
876 again:
877 error = ida_get_new_above(&net_generic_ids, 1, ops->id);
878 if (error < 0) {
879 if (error == -EAGAIN) {
880 ida_pre_get(&net_generic_ids, GFP_KERNEL);
881 goto again;
882 }
883 return error;
884 }
885 max_gen_ptrs = max(max_gen_ptrs, *ops->id);
886 }
887 error = __register_pernet_operations(list, ops);
888 if (error) {
889 rcu_barrier();
890 if (ops->id)
891 ida_remove(&net_generic_ids, *ops->id);
892 }
893
894 return error;
895 }
896
897 static void unregister_pernet_operations(struct pernet_operations *ops)
898 {
899
900 __unregister_pernet_operations(ops);
901 rcu_barrier();
902 if (ops->id)
903 ida_remove(&net_generic_ids, *ops->id);
904 }
905
906 /**
907 * register_pernet_subsys - register a network namespace subsystem
908 * @ops: pernet operations structure for the subsystem
909 *
910 * Register a subsystem which has init and exit functions
911 * that are called when network namespaces are created and
912 * destroyed respectively.
913 *
914 * When registered all network namespace init functions are
915 * called for every existing network namespace. Allowing kernel
916 * modules to have a race free view of the set of network namespaces.
917 *
918 * When a new network namespace is created all of the init
919 * methods are called in the order in which they were registered.
920 *
921 * When a network namespace is destroyed all of the exit methods
922 * are called in the reverse of the order with which they were
923 * registered.
924 */
925 int register_pernet_subsys(struct pernet_operations *ops)
926 {
927 int error;
928 mutex_lock(&net_mutex);
929 error = register_pernet_operations(first_device, ops);
930 mutex_unlock(&net_mutex);
931 return error;
932 }
933 EXPORT_SYMBOL_GPL(register_pernet_subsys);
934
935 /**
936 * unregister_pernet_subsys - unregister a network namespace subsystem
937 * @ops: pernet operations structure to manipulate
938 *
939 * Remove the pernet operations structure from the list to be
940 * used when network namespaces are created or destroyed. In
941 * addition run the exit method for all existing network
942 * namespaces.
943 */
944 void unregister_pernet_subsys(struct pernet_operations *ops)
945 {
946 mutex_lock(&net_mutex);
947 unregister_pernet_operations(ops);
948 mutex_unlock(&net_mutex);
949 }
950 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
951
952 /**
953 * register_pernet_device - register a network namespace device
954 * @ops: pernet operations structure for the subsystem
955 *
956 * Register a device which has init and exit functions
957 * that are called when network namespaces are created and
958 * destroyed respectively.
959 *
960 * When registered all network namespace init functions are
961 * called for every existing network namespace. Allowing kernel
962 * modules to have a race free view of the set of network namespaces.
963 *
964 * When a new network namespace is created all of the init
965 * methods are called in the order in which they were registered.
966 *
967 * When a network namespace is destroyed all of the exit methods
968 * are called in the reverse of the order with which they were
969 * registered.
970 */
971 int register_pernet_device(struct pernet_operations *ops)
972 {
973 int error;
974 mutex_lock(&net_mutex);
975 error = register_pernet_operations(&pernet_list, ops);
976 if (!error && (first_device == &pernet_list))
977 first_device = &ops->list;
978 mutex_unlock(&net_mutex);
979 return error;
980 }
981 EXPORT_SYMBOL_GPL(register_pernet_device);
982
983 /**
984 * unregister_pernet_device - unregister a network namespace netdevice
985 * @ops: pernet operations structure to manipulate
986 *
987 * Remove the pernet operations structure from the list to be
988 * used when network namespaces are created or destroyed. In
989 * addition run the exit method for all existing network
990 * namespaces.
991 */
992 void unregister_pernet_device(struct pernet_operations *ops)
993 {
994 mutex_lock(&net_mutex);
995 if (&ops->list == first_device)
996 first_device = first_device->next;
997 unregister_pernet_operations(ops);
998 mutex_unlock(&net_mutex);
999 }
1000 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1001
1002 #ifdef CONFIG_NET_NS
1003 static struct ns_common *netns_get(struct task_struct *task)
1004 {
1005 struct net *net = NULL;
1006 struct nsproxy *nsproxy;
1007
1008 task_lock(task);
1009 nsproxy = task->nsproxy;
1010 if (nsproxy)
1011 net = get_net(nsproxy->net_ns);
1012 task_unlock(task);
1013
1014 return net ? &net->ns : NULL;
1015 }
1016
1017 static inline struct net *to_net_ns(struct ns_common *ns)
1018 {
1019 return container_of(ns, struct net, ns);
1020 }
1021
1022 static void netns_put(struct ns_common *ns)
1023 {
1024 put_net(to_net_ns(ns));
1025 }
1026
1027 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1028 {
1029 struct net *net = to_net_ns(ns);
1030
1031 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1032 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1033 return -EPERM;
1034
1035 put_net(nsproxy->net_ns);
1036 nsproxy->net_ns = get_net(net);
1037 return 0;
1038 }
1039
1040 static struct user_namespace *netns_owner(struct ns_common *ns)
1041 {
1042 return to_net_ns(ns)->user_ns;
1043 }
1044
1045 const struct proc_ns_operations netns_operations = {
1046 .name = "net",
1047 .type = CLONE_NEWNET,
1048 .get = netns_get,
1049 .put = netns_put,
1050 .install = netns_install,
1051 .owner = netns_owner,
1052 };
1053 #endif