]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - net/core/net_namespace.c
f8453c438798992dec134ea18be17f0b70a04674
[mirror_ubuntu-eoan-kernel.git] / net / core / net_namespace.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/sched/task.h>
20
21 #include <net/sock.h>
22 #include <net/netlink.h>
23 #include <net/net_namespace.h>
24 #include <net/netns/generic.h>
25
26 /*
27 * Our network namespace constructor/destructor lists
28 */
29
30 static LIST_HEAD(pernet_list);
31 static struct list_head *first_device = &pernet_list;
32 DEFINE_MUTEX(net_mutex);
33
34 LIST_HEAD(net_namespace_list);
35 EXPORT_SYMBOL_GPL(net_namespace_list);
36
37 struct net init_net = {
38 .count = REFCOUNT_INIT(1),
39 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
40 };
41 EXPORT_SYMBOL(init_net);
42
43 static bool init_net_initialized;
44 /*
45 * net_sem: protects: pernet_list, net_generic_ids,
46 * init_net_initialized and first_device pointer.
47 */
48 DECLARE_RWSEM(net_sem);
49
50 #define MIN_PERNET_OPS_ID \
51 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
52
53 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
54
55 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
56
57 static struct net_generic *net_alloc_generic(void)
58 {
59 struct net_generic *ng;
60 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
61
62 ng = kzalloc(generic_size, GFP_KERNEL);
63 if (ng)
64 ng->s.len = max_gen_ptrs;
65
66 return ng;
67 }
68
69 static int net_assign_generic(struct net *net, unsigned int id, void *data)
70 {
71 struct net_generic *ng, *old_ng;
72
73 BUG_ON(!mutex_is_locked(&net_mutex));
74 BUG_ON(id < MIN_PERNET_OPS_ID);
75
76 old_ng = rcu_dereference_protected(net->gen,
77 lockdep_is_held(&net_mutex));
78 if (old_ng->s.len > id) {
79 old_ng->ptr[id] = data;
80 return 0;
81 }
82
83 ng = net_alloc_generic();
84 if (ng == NULL)
85 return -ENOMEM;
86
87 /*
88 * Some synchronisation notes:
89 *
90 * The net_generic explores the net->gen array inside rcu
91 * read section. Besides once set the net->gen->ptr[x]
92 * pointer never changes (see rules in netns/generic.h).
93 *
94 * That said, we simply duplicate this array and schedule
95 * the old copy for kfree after a grace period.
96 */
97
98 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
99 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
100 ng->ptr[id] = data;
101
102 rcu_assign_pointer(net->gen, ng);
103 kfree_rcu(old_ng, s.rcu);
104 return 0;
105 }
106
107 static int ops_init(const struct pernet_operations *ops, struct net *net)
108 {
109 int err = -ENOMEM;
110 void *data = NULL;
111
112 if (ops->id && ops->size) {
113 data = kzalloc(ops->size, GFP_KERNEL);
114 if (!data)
115 goto out;
116
117 err = net_assign_generic(net, *ops->id, data);
118 if (err)
119 goto cleanup;
120 }
121 err = 0;
122 if (ops->init)
123 err = ops->init(net);
124 if (!err)
125 return 0;
126
127 cleanup:
128 kfree(data);
129
130 out:
131 return err;
132 }
133
134 static void ops_free(const struct pernet_operations *ops, struct net *net)
135 {
136 if (ops->id && ops->size) {
137 kfree(net_generic(net, *ops->id));
138 }
139 }
140
141 static void ops_exit_list(const struct pernet_operations *ops,
142 struct list_head *net_exit_list)
143 {
144 struct net *net;
145 if (ops->exit) {
146 list_for_each_entry(net, net_exit_list, exit_list)
147 ops->exit(net);
148 }
149 if (ops->exit_batch)
150 ops->exit_batch(net_exit_list);
151 }
152
153 static void ops_free_list(const struct pernet_operations *ops,
154 struct list_head *net_exit_list)
155 {
156 struct net *net;
157 if (ops->size && ops->id) {
158 list_for_each_entry(net, net_exit_list, exit_list)
159 ops_free(ops, net);
160 }
161 }
162
163 /* should be called with nsid_lock held */
164 static int alloc_netid(struct net *net, struct net *peer, int reqid)
165 {
166 int min = 0, max = 0;
167
168 if (reqid >= 0) {
169 min = reqid;
170 max = reqid + 1;
171 }
172
173 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
174 }
175
176 /* This function is used by idr_for_each(). If net is equal to peer, the
177 * function returns the id so that idr_for_each() stops. Because we cannot
178 * returns the id 0 (idr_for_each() will not stop), we return the magic value
179 * NET_ID_ZERO (-1) for it.
180 */
181 #define NET_ID_ZERO -1
182 static int net_eq_idr(int id, void *net, void *peer)
183 {
184 if (net_eq(net, peer))
185 return id ? : NET_ID_ZERO;
186 return 0;
187 }
188
189 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
190 * is set to true, thus the caller knows that the new id must be notified via
191 * rtnl.
192 */
193 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
194 {
195 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
196 bool alloc_it = *alloc;
197
198 *alloc = false;
199
200 /* Magic value for id 0. */
201 if (id == NET_ID_ZERO)
202 return 0;
203 if (id > 0)
204 return id;
205
206 if (alloc_it) {
207 id = alloc_netid(net, peer, -1);
208 *alloc = true;
209 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
210 }
211
212 return NETNSA_NSID_NOT_ASSIGNED;
213 }
214
215 /* should be called with nsid_lock held */
216 static int __peernet2id(struct net *net, struct net *peer)
217 {
218 bool no = false;
219
220 return __peernet2id_alloc(net, peer, &no);
221 }
222
223 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
224 /* This function returns the id of a peer netns. If no id is assigned, one will
225 * be allocated and returned.
226 */
227 int peernet2id_alloc(struct net *net, struct net *peer)
228 {
229 bool alloc = false, alive = false;
230 int id;
231
232 if (refcount_read(&net->count) == 0)
233 return NETNSA_NSID_NOT_ASSIGNED;
234 spin_lock_bh(&net->nsid_lock);
235 /*
236 * When peer is obtained from RCU lists, we may race with
237 * its cleanup. Check whether it's alive, and this guarantees
238 * we never hash a peer back to net->netns_ids, after it has
239 * just been idr_remove()'d from there in cleanup_net().
240 */
241 if (maybe_get_net(peer))
242 alive = alloc = true;
243 id = __peernet2id_alloc(net, peer, &alloc);
244 spin_unlock_bh(&net->nsid_lock);
245 if (alloc && id >= 0)
246 rtnl_net_notifyid(net, RTM_NEWNSID, id);
247 if (alive)
248 put_net(peer);
249 return id;
250 }
251 EXPORT_SYMBOL_GPL(peernet2id_alloc);
252
253 /* This function returns, if assigned, the id of a peer netns. */
254 int peernet2id(struct net *net, struct net *peer)
255 {
256 int id;
257
258 spin_lock_bh(&net->nsid_lock);
259 id = __peernet2id(net, peer);
260 spin_unlock_bh(&net->nsid_lock);
261 return id;
262 }
263 EXPORT_SYMBOL(peernet2id);
264
265 /* This function returns true is the peer netns has an id assigned into the
266 * current netns.
267 */
268 bool peernet_has_id(struct net *net, struct net *peer)
269 {
270 return peernet2id(net, peer) >= 0;
271 }
272
273 struct net *get_net_ns_by_id(struct net *net, int id)
274 {
275 struct net *peer;
276
277 if (id < 0)
278 return NULL;
279
280 rcu_read_lock();
281 peer = idr_find(&net->netns_ids, id);
282 if (peer)
283 peer = maybe_get_net(peer);
284 rcu_read_unlock();
285
286 return peer;
287 }
288
289 /*
290 * setup_net runs the initializers for the network namespace object.
291 */
292 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
293 {
294 /* Must be called with net_sem held */
295 const struct pernet_operations *ops, *saved_ops;
296 int error = 0;
297 LIST_HEAD(net_exit_list);
298
299 refcount_set(&net->count, 1);
300 refcount_set(&net->passive, 1);
301 net->dev_base_seq = 1;
302 net->user_ns = user_ns;
303 idr_init(&net->netns_ids);
304 spin_lock_init(&net->nsid_lock);
305
306 list_for_each_entry(ops, &pernet_list, list) {
307 error = ops_init(ops, net);
308 if (error < 0)
309 goto out_undo;
310 }
311 rtnl_lock();
312 list_add_tail_rcu(&net->list, &net_namespace_list);
313 rtnl_unlock();
314 out:
315 return error;
316
317 out_undo:
318 /* Walk through the list backwards calling the exit functions
319 * for the pernet modules whose init functions did not fail.
320 */
321 list_add(&net->exit_list, &net_exit_list);
322 saved_ops = ops;
323 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
324 ops_exit_list(ops, &net_exit_list);
325
326 ops = saved_ops;
327 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
328 ops_free_list(ops, &net_exit_list);
329
330 rcu_barrier();
331 goto out;
332 }
333
334 static int __net_init net_defaults_init_net(struct net *net)
335 {
336 net->core.sysctl_somaxconn = SOMAXCONN;
337 return 0;
338 }
339
340 static struct pernet_operations net_defaults_ops = {
341 .init = net_defaults_init_net,
342 };
343
344 static __init int net_defaults_init(void)
345 {
346 if (register_pernet_subsys(&net_defaults_ops))
347 panic("Cannot initialize net default settings");
348
349 return 0;
350 }
351
352 core_initcall(net_defaults_init);
353
354 #ifdef CONFIG_NET_NS
355 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
356 {
357 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
358 }
359
360 static void dec_net_namespaces(struct ucounts *ucounts)
361 {
362 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
363 }
364
365 static struct kmem_cache *net_cachep;
366 static struct workqueue_struct *netns_wq;
367
368 static struct net *net_alloc(void)
369 {
370 struct net *net = NULL;
371 struct net_generic *ng;
372
373 ng = net_alloc_generic();
374 if (!ng)
375 goto out;
376
377 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
378 if (!net)
379 goto out_free;
380
381 rcu_assign_pointer(net->gen, ng);
382 out:
383 return net;
384
385 out_free:
386 kfree(ng);
387 goto out;
388 }
389
390 static void net_free(struct net *net)
391 {
392 kfree(rcu_access_pointer(net->gen));
393 kmem_cache_free(net_cachep, net);
394 }
395
396 void net_drop_ns(void *p)
397 {
398 struct net *ns = p;
399 if (ns && refcount_dec_and_test(&ns->passive))
400 net_free(ns);
401 }
402
403 struct net *copy_net_ns(unsigned long flags,
404 struct user_namespace *user_ns, struct net *old_net)
405 {
406 struct ucounts *ucounts;
407 struct net *net;
408 int rv;
409
410 if (!(flags & CLONE_NEWNET))
411 return get_net(old_net);
412
413 ucounts = inc_net_namespaces(user_ns);
414 if (!ucounts)
415 return ERR_PTR(-ENOSPC);
416
417 net = net_alloc();
418 if (!net) {
419 rv = -ENOMEM;
420 goto dec_ucounts;
421 }
422 refcount_set(&net->passive, 1);
423 net->ucounts = ucounts;
424 get_user_ns(user_ns);
425
426 rv = down_read_killable(&net_sem);
427 if (rv < 0)
428 goto put_userns;
429 rv = mutex_lock_killable(&net_mutex);
430 if (rv < 0)
431 goto up_read;
432 rv = setup_net(net, user_ns);
433 mutex_unlock(&net_mutex);
434 up_read:
435 up_read(&net_sem);
436 if (rv < 0) {
437 put_userns:
438 put_user_ns(user_ns);
439 net_drop_ns(net);
440 dec_ucounts:
441 dec_net_namespaces(ucounts);
442 return ERR_PTR(rv);
443 }
444 return net;
445 }
446
447 static void unhash_nsid(struct net *net, struct net *last)
448 {
449 struct net *tmp;
450 /* This function is only called from cleanup_net() work,
451 * and this work is the only process, that may delete
452 * a net from net_namespace_list. So, when the below
453 * is executing, the list may only grow. Thus, we do not
454 * use for_each_net_rcu() or rtnl_lock().
455 */
456 for_each_net(tmp) {
457 int id;
458
459 spin_lock_bh(&tmp->nsid_lock);
460 id = __peernet2id(tmp, net);
461 if (id >= 0)
462 idr_remove(&tmp->netns_ids, id);
463 spin_unlock_bh(&tmp->nsid_lock);
464 if (id >= 0)
465 rtnl_net_notifyid(tmp, RTM_DELNSID, id);
466 if (tmp == last)
467 break;
468 }
469 spin_lock_bh(&net->nsid_lock);
470 idr_destroy(&net->netns_ids);
471 spin_unlock_bh(&net->nsid_lock);
472 }
473
474 static DEFINE_SPINLOCK(cleanup_list_lock);
475 static LIST_HEAD(cleanup_list); /* Must hold cleanup_list_lock to touch */
476
477 static void cleanup_net(struct work_struct *work)
478 {
479 const struct pernet_operations *ops;
480 struct net *net, *tmp, *last;
481 struct list_head net_kill_list;
482 LIST_HEAD(net_exit_list);
483
484 /* Atomically snapshot the list of namespaces to cleanup */
485 spin_lock_irq(&cleanup_list_lock);
486 list_replace_init(&cleanup_list, &net_kill_list);
487 spin_unlock_irq(&cleanup_list_lock);
488
489 down_read(&net_sem);
490 mutex_lock(&net_mutex);
491
492 /* Don't let anyone else find us. */
493 rtnl_lock();
494 list_for_each_entry(net, &net_kill_list, cleanup_list)
495 list_del_rcu(&net->list);
496 /* Cache last net. After we unlock rtnl, no one new net
497 * added to net_namespace_list can assign nsid pointer
498 * to a net from net_kill_list (see peernet2id_alloc()).
499 * So, we skip them in unhash_nsid().
500 *
501 * Note, that unhash_nsid() does not delete nsid links
502 * between net_kill_list's nets, as they've already
503 * deleted from net_namespace_list. But, this would be
504 * useless anyway, as netns_ids are destroyed there.
505 */
506 last = list_last_entry(&net_namespace_list, struct net, list);
507 rtnl_unlock();
508
509 list_for_each_entry(net, &net_kill_list, cleanup_list) {
510 unhash_nsid(net, last);
511 list_add_tail(&net->exit_list, &net_exit_list);
512 }
513
514 /*
515 * Another CPU might be rcu-iterating the list, wait for it.
516 * This needs to be before calling the exit() notifiers, so
517 * the rcu_barrier() below isn't sufficient alone.
518 */
519 synchronize_rcu();
520
521 /* Run all of the network namespace exit methods */
522 list_for_each_entry_reverse(ops, &pernet_list, list)
523 ops_exit_list(ops, &net_exit_list);
524
525 mutex_unlock(&net_mutex);
526
527 /* Free the net generic variables */
528 list_for_each_entry_reverse(ops, &pernet_list, list)
529 ops_free_list(ops, &net_exit_list);
530
531 up_read(&net_sem);
532
533 /* Ensure there are no outstanding rcu callbacks using this
534 * network namespace.
535 */
536 rcu_barrier();
537
538 /* Finally it is safe to free my network namespace structure */
539 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
540 list_del_init(&net->exit_list);
541 dec_net_namespaces(net->ucounts);
542 put_user_ns(net->user_ns);
543 net_drop_ns(net);
544 }
545 }
546
547 /**
548 * net_ns_barrier - wait until concurrent net_cleanup_work is done
549 *
550 * cleanup_net runs from work queue and will first remove namespaces
551 * from the global list, then run net exit functions.
552 *
553 * Call this in module exit path to make sure that all netns
554 * ->exit ops have been invoked before the function is removed.
555 */
556 void net_ns_barrier(void)
557 {
558 down_write(&net_sem);
559 mutex_lock(&net_mutex);
560 mutex_unlock(&net_mutex);
561 up_write(&net_sem);
562 }
563 EXPORT_SYMBOL(net_ns_barrier);
564
565 static DECLARE_WORK(net_cleanup_work, cleanup_net);
566
567 void __put_net(struct net *net)
568 {
569 /* Cleanup the network namespace in process context */
570 unsigned long flags;
571
572 spin_lock_irqsave(&cleanup_list_lock, flags);
573 list_add(&net->cleanup_list, &cleanup_list);
574 spin_unlock_irqrestore(&cleanup_list_lock, flags);
575
576 queue_work(netns_wq, &net_cleanup_work);
577 }
578 EXPORT_SYMBOL_GPL(__put_net);
579
580 struct net *get_net_ns_by_fd(int fd)
581 {
582 struct file *file;
583 struct ns_common *ns;
584 struct net *net;
585
586 file = proc_ns_fget(fd);
587 if (IS_ERR(file))
588 return ERR_CAST(file);
589
590 ns = get_proc_ns(file_inode(file));
591 if (ns->ops == &netns_operations)
592 net = get_net(container_of(ns, struct net, ns));
593 else
594 net = ERR_PTR(-EINVAL);
595
596 fput(file);
597 return net;
598 }
599
600 #else
601 struct net *get_net_ns_by_fd(int fd)
602 {
603 return ERR_PTR(-EINVAL);
604 }
605 #endif
606 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
607
608 struct net *get_net_ns_by_pid(pid_t pid)
609 {
610 struct task_struct *tsk;
611 struct net *net;
612
613 /* Lookup the network namespace */
614 net = ERR_PTR(-ESRCH);
615 rcu_read_lock();
616 tsk = find_task_by_vpid(pid);
617 if (tsk) {
618 struct nsproxy *nsproxy;
619 task_lock(tsk);
620 nsproxy = tsk->nsproxy;
621 if (nsproxy)
622 net = get_net(nsproxy->net_ns);
623 task_unlock(tsk);
624 }
625 rcu_read_unlock();
626 return net;
627 }
628 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
629
630 static __net_init int net_ns_net_init(struct net *net)
631 {
632 #ifdef CONFIG_NET_NS
633 net->ns.ops = &netns_operations;
634 #endif
635 return ns_alloc_inum(&net->ns);
636 }
637
638 static __net_exit void net_ns_net_exit(struct net *net)
639 {
640 ns_free_inum(&net->ns);
641 }
642
643 static struct pernet_operations __net_initdata net_ns_ops = {
644 .init = net_ns_net_init,
645 .exit = net_ns_net_exit,
646 };
647
648 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
649 [NETNSA_NONE] = { .type = NLA_UNSPEC },
650 [NETNSA_NSID] = { .type = NLA_S32 },
651 [NETNSA_PID] = { .type = NLA_U32 },
652 [NETNSA_FD] = { .type = NLA_U32 },
653 };
654
655 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
656 struct netlink_ext_ack *extack)
657 {
658 struct net *net = sock_net(skb->sk);
659 struct nlattr *tb[NETNSA_MAX + 1];
660 struct nlattr *nla;
661 struct net *peer;
662 int nsid, err;
663
664 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
665 rtnl_net_policy, extack);
666 if (err < 0)
667 return err;
668 if (!tb[NETNSA_NSID]) {
669 NL_SET_ERR_MSG(extack, "nsid is missing");
670 return -EINVAL;
671 }
672 nsid = nla_get_s32(tb[NETNSA_NSID]);
673
674 if (tb[NETNSA_PID]) {
675 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
676 nla = tb[NETNSA_PID];
677 } else if (tb[NETNSA_FD]) {
678 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
679 nla = tb[NETNSA_FD];
680 } else {
681 NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
682 return -EINVAL;
683 }
684 if (IS_ERR(peer)) {
685 NL_SET_BAD_ATTR(extack, nla);
686 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
687 return PTR_ERR(peer);
688 }
689
690 spin_lock_bh(&net->nsid_lock);
691 if (__peernet2id(net, peer) >= 0) {
692 spin_unlock_bh(&net->nsid_lock);
693 err = -EEXIST;
694 NL_SET_BAD_ATTR(extack, nla);
695 NL_SET_ERR_MSG(extack,
696 "Peer netns already has a nsid assigned");
697 goto out;
698 }
699
700 err = alloc_netid(net, peer, nsid);
701 spin_unlock_bh(&net->nsid_lock);
702 if (err >= 0) {
703 rtnl_net_notifyid(net, RTM_NEWNSID, err);
704 err = 0;
705 } else if (err == -ENOSPC && nsid >= 0) {
706 err = -EEXIST;
707 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
708 NL_SET_ERR_MSG(extack, "The specified nsid is already used");
709 }
710 out:
711 put_net(peer);
712 return err;
713 }
714
715 static int rtnl_net_get_size(void)
716 {
717 return NLMSG_ALIGN(sizeof(struct rtgenmsg))
718 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
719 ;
720 }
721
722 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
723 int cmd, struct net *net, int nsid)
724 {
725 struct nlmsghdr *nlh;
726 struct rtgenmsg *rth;
727
728 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
729 if (!nlh)
730 return -EMSGSIZE;
731
732 rth = nlmsg_data(nlh);
733 rth->rtgen_family = AF_UNSPEC;
734
735 if (nla_put_s32(skb, NETNSA_NSID, nsid))
736 goto nla_put_failure;
737
738 nlmsg_end(skb, nlh);
739 return 0;
740
741 nla_put_failure:
742 nlmsg_cancel(skb, nlh);
743 return -EMSGSIZE;
744 }
745
746 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
747 struct netlink_ext_ack *extack)
748 {
749 struct net *net = sock_net(skb->sk);
750 struct nlattr *tb[NETNSA_MAX + 1];
751 struct nlattr *nla;
752 struct sk_buff *msg;
753 struct net *peer;
754 int err, id;
755
756 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
757 rtnl_net_policy, extack);
758 if (err < 0)
759 return err;
760 if (tb[NETNSA_PID]) {
761 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
762 nla = tb[NETNSA_PID];
763 } else if (tb[NETNSA_FD]) {
764 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
765 nla = tb[NETNSA_FD];
766 } else {
767 NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
768 return -EINVAL;
769 }
770
771 if (IS_ERR(peer)) {
772 NL_SET_BAD_ATTR(extack, nla);
773 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
774 return PTR_ERR(peer);
775 }
776
777 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
778 if (!msg) {
779 err = -ENOMEM;
780 goto out;
781 }
782
783 id = peernet2id(net, peer);
784 err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
785 RTM_NEWNSID, net, id);
786 if (err < 0)
787 goto err_out;
788
789 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
790 goto out;
791
792 err_out:
793 nlmsg_free(msg);
794 out:
795 put_net(peer);
796 return err;
797 }
798
799 struct rtnl_net_dump_cb {
800 struct net *net;
801 struct sk_buff *skb;
802 struct netlink_callback *cb;
803 int idx;
804 int s_idx;
805 };
806
807 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
808 {
809 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
810 int ret;
811
812 if (net_cb->idx < net_cb->s_idx)
813 goto cont;
814
815 ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
816 net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
817 RTM_NEWNSID, net_cb->net, id);
818 if (ret < 0)
819 return ret;
820
821 cont:
822 net_cb->idx++;
823 return 0;
824 }
825
826 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
827 {
828 struct net *net = sock_net(skb->sk);
829 struct rtnl_net_dump_cb net_cb = {
830 .net = net,
831 .skb = skb,
832 .cb = cb,
833 .idx = 0,
834 .s_idx = cb->args[0],
835 };
836
837 spin_lock_bh(&net->nsid_lock);
838 idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
839 spin_unlock_bh(&net->nsid_lock);
840
841 cb->args[0] = net_cb.idx;
842 return skb->len;
843 }
844
845 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
846 {
847 struct sk_buff *msg;
848 int err = -ENOMEM;
849
850 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
851 if (!msg)
852 goto out;
853
854 err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
855 if (err < 0)
856 goto err_out;
857
858 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
859 return;
860
861 err_out:
862 nlmsg_free(msg);
863 out:
864 rtnl_set_sk_err(net, RTNLGRP_NSID, err);
865 }
866
867 static int __init net_ns_init(void)
868 {
869 struct net_generic *ng;
870
871 #ifdef CONFIG_NET_NS
872 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
873 SMP_CACHE_BYTES,
874 SLAB_PANIC, NULL);
875
876 /* Create workqueue for cleanup */
877 netns_wq = create_singlethread_workqueue("netns");
878 if (!netns_wq)
879 panic("Could not create netns workq");
880 #endif
881
882 ng = net_alloc_generic();
883 if (!ng)
884 panic("Could not allocate generic netns");
885
886 rcu_assign_pointer(init_net.gen, ng);
887
888 down_write(&net_sem);
889 if (setup_net(&init_net, &init_user_ns))
890 panic("Could not setup the initial network namespace");
891
892 init_net_initialized = true;
893 up_write(&net_sem);
894
895 register_pernet_subsys(&net_ns_ops);
896
897 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
898 RTNL_FLAG_DOIT_UNLOCKED);
899 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
900 RTNL_FLAG_DOIT_UNLOCKED);
901
902 return 0;
903 }
904
905 pure_initcall(net_ns_init);
906
907 #ifdef CONFIG_NET_NS
908 static int __register_pernet_operations(struct list_head *list,
909 struct pernet_operations *ops)
910 {
911 struct net *net;
912 int error;
913 LIST_HEAD(net_exit_list);
914
915 list_add_tail(&ops->list, list);
916 if (ops->init || (ops->id && ops->size)) {
917 for_each_net(net) {
918 error = ops_init(ops, net);
919 if (error)
920 goto out_undo;
921 list_add_tail(&net->exit_list, &net_exit_list);
922 }
923 }
924 return 0;
925
926 out_undo:
927 /* If I have an error cleanup all namespaces I initialized */
928 list_del(&ops->list);
929 ops_exit_list(ops, &net_exit_list);
930 ops_free_list(ops, &net_exit_list);
931 return error;
932 }
933
934 static void __unregister_pernet_operations(struct pernet_operations *ops)
935 {
936 struct net *net;
937 LIST_HEAD(net_exit_list);
938
939 list_del(&ops->list);
940 for_each_net(net)
941 list_add_tail(&net->exit_list, &net_exit_list);
942 ops_exit_list(ops, &net_exit_list);
943 ops_free_list(ops, &net_exit_list);
944 }
945
946 #else
947
948 static int __register_pernet_operations(struct list_head *list,
949 struct pernet_operations *ops)
950 {
951 if (!init_net_initialized) {
952 list_add_tail(&ops->list, list);
953 return 0;
954 }
955
956 return ops_init(ops, &init_net);
957 }
958
959 static void __unregister_pernet_operations(struct pernet_operations *ops)
960 {
961 if (!init_net_initialized) {
962 list_del(&ops->list);
963 } else {
964 LIST_HEAD(net_exit_list);
965 list_add(&init_net.exit_list, &net_exit_list);
966 ops_exit_list(ops, &net_exit_list);
967 ops_free_list(ops, &net_exit_list);
968 }
969 }
970
971 #endif /* CONFIG_NET_NS */
972
973 static DEFINE_IDA(net_generic_ids);
974
975 static int register_pernet_operations(struct list_head *list,
976 struct pernet_operations *ops)
977 {
978 int error;
979
980 if (ops->id) {
981 again:
982 error = ida_get_new_above(&net_generic_ids, MIN_PERNET_OPS_ID, ops->id);
983 if (error < 0) {
984 if (error == -EAGAIN) {
985 ida_pre_get(&net_generic_ids, GFP_KERNEL);
986 goto again;
987 }
988 return error;
989 }
990 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
991 }
992 error = __register_pernet_operations(list, ops);
993 if (error) {
994 rcu_barrier();
995 if (ops->id)
996 ida_remove(&net_generic_ids, *ops->id);
997 }
998
999 return error;
1000 }
1001
1002 static void unregister_pernet_operations(struct pernet_operations *ops)
1003 {
1004
1005 __unregister_pernet_operations(ops);
1006 rcu_barrier();
1007 if (ops->id)
1008 ida_remove(&net_generic_ids, *ops->id);
1009 }
1010
1011 /**
1012 * register_pernet_subsys - register a network namespace subsystem
1013 * @ops: pernet operations structure for the subsystem
1014 *
1015 * Register a subsystem which has init and exit functions
1016 * that are called when network namespaces are created and
1017 * destroyed respectively.
1018 *
1019 * When registered all network namespace init functions are
1020 * called for every existing network namespace. Allowing kernel
1021 * modules to have a race free view of the set of network namespaces.
1022 *
1023 * When a new network namespace is created all of the init
1024 * methods are called in the order in which they were registered.
1025 *
1026 * When a network namespace is destroyed all of the exit methods
1027 * are called in the reverse of the order with which they were
1028 * registered.
1029 */
1030 int register_pernet_subsys(struct pernet_operations *ops)
1031 {
1032 int error;
1033 down_write(&net_sem);
1034 error = register_pernet_operations(first_device, ops);
1035 up_write(&net_sem);
1036 return error;
1037 }
1038 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1039
1040 /**
1041 * unregister_pernet_subsys - unregister a network namespace subsystem
1042 * @ops: pernet operations structure to manipulate
1043 *
1044 * Remove the pernet operations structure from the list to be
1045 * used when network namespaces are created or destroyed. In
1046 * addition run the exit method for all existing network
1047 * namespaces.
1048 */
1049 void unregister_pernet_subsys(struct pernet_operations *ops)
1050 {
1051 down_write(&net_sem);
1052 unregister_pernet_operations(ops);
1053 up_write(&net_sem);
1054 }
1055 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1056
1057 /**
1058 * register_pernet_device - register a network namespace device
1059 * @ops: pernet operations structure for the subsystem
1060 *
1061 * Register a device which has init and exit functions
1062 * that are called when network namespaces are created and
1063 * destroyed respectively.
1064 *
1065 * When registered all network namespace init functions are
1066 * called for every existing network namespace. Allowing kernel
1067 * modules to have a race free view of the set of network namespaces.
1068 *
1069 * When a new network namespace is created all of the init
1070 * methods are called in the order in which they were registered.
1071 *
1072 * When a network namespace is destroyed all of the exit methods
1073 * are called in the reverse of the order with which they were
1074 * registered.
1075 */
1076 int register_pernet_device(struct pernet_operations *ops)
1077 {
1078 int error;
1079 down_write(&net_sem);
1080 error = register_pernet_operations(&pernet_list, ops);
1081 if (!error && (first_device == &pernet_list))
1082 first_device = &ops->list;
1083 up_write(&net_sem);
1084 return error;
1085 }
1086 EXPORT_SYMBOL_GPL(register_pernet_device);
1087
1088 /**
1089 * unregister_pernet_device - unregister a network namespace netdevice
1090 * @ops: pernet operations structure to manipulate
1091 *
1092 * Remove the pernet operations structure from the list to be
1093 * used when network namespaces are created or destroyed. In
1094 * addition run the exit method for all existing network
1095 * namespaces.
1096 */
1097 void unregister_pernet_device(struct pernet_operations *ops)
1098 {
1099 down_write(&net_sem);
1100 if (&ops->list == first_device)
1101 first_device = first_device->next;
1102 unregister_pernet_operations(ops);
1103 up_write(&net_sem);
1104 }
1105 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1106
1107 #ifdef CONFIG_NET_NS
1108 static struct ns_common *netns_get(struct task_struct *task)
1109 {
1110 struct net *net = NULL;
1111 struct nsproxy *nsproxy;
1112
1113 task_lock(task);
1114 nsproxy = task->nsproxy;
1115 if (nsproxy)
1116 net = get_net(nsproxy->net_ns);
1117 task_unlock(task);
1118
1119 return net ? &net->ns : NULL;
1120 }
1121
1122 static inline struct net *to_net_ns(struct ns_common *ns)
1123 {
1124 return container_of(ns, struct net, ns);
1125 }
1126
1127 static void netns_put(struct ns_common *ns)
1128 {
1129 put_net(to_net_ns(ns));
1130 }
1131
1132 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1133 {
1134 struct net *net = to_net_ns(ns);
1135
1136 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1137 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1138 return -EPERM;
1139
1140 put_net(nsproxy->net_ns);
1141 nsproxy->net_ns = get_net(net);
1142 return 0;
1143 }
1144
1145 static struct user_namespace *netns_owner(struct ns_common *ns)
1146 {
1147 return to_net_ns(ns)->user_ns;
1148 }
1149
1150 const struct proc_ns_operations netns_operations = {
1151 .name = "net",
1152 .type = CLONE_NEWNET,
1153 .get = netns_get,
1154 .put = netns_put,
1155 .install = netns_install,
1156 .owner = netns_owner,
1157 };
1158 #endif