]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - net/core/net_namespace.c
Merge branch 'Introduce-net_rwsem-to-protect-net_namespace_list'
[mirror_ubuntu-eoan-kernel.git] / net / core / net_namespace.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/sched/task.h>
20
21 #include <net/sock.h>
22 #include <net/netlink.h>
23 #include <net/net_namespace.h>
24 #include <net/netns/generic.h>
25
26 /*
27 * Our network namespace constructor/destructor lists
28 */
29
30 static LIST_HEAD(pernet_list);
31 static struct list_head *first_device = &pernet_list;
32
33 LIST_HEAD(net_namespace_list);
34 EXPORT_SYMBOL_GPL(net_namespace_list);
35
36 /* Protects net_namespace_list. Nests iside rtnl_lock() */
37 DECLARE_RWSEM(net_rwsem);
38 EXPORT_SYMBOL_GPL(net_rwsem);
39
40 struct net init_net = {
41 .count = REFCOUNT_INIT(1),
42 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
43 };
44 EXPORT_SYMBOL(init_net);
45
46 static bool init_net_initialized;
47 /*
48 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
49 * init_net_initialized and first_device pointer.
50 * This is internal net namespace object. Please, don't use it
51 * outside.
52 */
53 DECLARE_RWSEM(pernet_ops_rwsem);
54
55 #define MIN_PERNET_OPS_ID \
56 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
57
58 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
59
60 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
61
62 static struct net_generic *net_alloc_generic(void)
63 {
64 struct net_generic *ng;
65 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
66
67 ng = kzalloc(generic_size, GFP_KERNEL);
68 if (ng)
69 ng->s.len = max_gen_ptrs;
70
71 return ng;
72 }
73
74 static int net_assign_generic(struct net *net, unsigned int id, void *data)
75 {
76 struct net_generic *ng, *old_ng;
77
78 BUG_ON(id < MIN_PERNET_OPS_ID);
79
80 old_ng = rcu_dereference_protected(net->gen,
81 lockdep_is_held(&pernet_ops_rwsem));
82 if (old_ng->s.len > id) {
83 old_ng->ptr[id] = data;
84 return 0;
85 }
86
87 ng = net_alloc_generic();
88 if (ng == NULL)
89 return -ENOMEM;
90
91 /*
92 * Some synchronisation notes:
93 *
94 * The net_generic explores the net->gen array inside rcu
95 * read section. Besides once set the net->gen->ptr[x]
96 * pointer never changes (see rules in netns/generic.h).
97 *
98 * That said, we simply duplicate this array and schedule
99 * the old copy for kfree after a grace period.
100 */
101
102 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
103 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
104 ng->ptr[id] = data;
105
106 rcu_assign_pointer(net->gen, ng);
107 kfree_rcu(old_ng, s.rcu);
108 return 0;
109 }
110
111 static int ops_init(const struct pernet_operations *ops, struct net *net)
112 {
113 int err = -ENOMEM;
114 void *data = NULL;
115
116 if (ops->id && ops->size) {
117 data = kzalloc(ops->size, GFP_KERNEL);
118 if (!data)
119 goto out;
120
121 err = net_assign_generic(net, *ops->id, data);
122 if (err)
123 goto cleanup;
124 }
125 err = 0;
126 if (ops->init)
127 err = ops->init(net);
128 if (!err)
129 return 0;
130
131 cleanup:
132 kfree(data);
133
134 out:
135 return err;
136 }
137
138 static void ops_free(const struct pernet_operations *ops, struct net *net)
139 {
140 if (ops->id && ops->size) {
141 kfree(net_generic(net, *ops->id));
142 }
143 }
144
145 static void ops_exit_list(const struct pernet_operations *ops,
146 struct list_head *net_exit_list)
147 {
148 struct net *net;
149 if (ops->exit) {
150 list_for_each_entry(net, net_exit_list, exit_list)
151 ops->exit(net);
152 }
153 if (ops->exit_batch)
154 ops->exit_batch(net_exit_list);
155 }
156
157 static void ops_free_list(const struct pernet_operations *ops,
158 struct list_head *net_exit_list)
159 {
160 struct net *net;
161 if (ops->size && ops->id) {
162 list_for_each_entry(net, net_exit_list, exit_list)
163 ops_free(ops, net);
164 }
165 }
166
167 /* should be called with nsid_lock held */
168 static int alloc_netid(struct net *net, struct net *peer, int reqid)
169 {
170 int min = 0, max = 0;
171
172 if (reqid >= 0) {
173 min = reqid;
174 max = reqid + 1;
175 }
176
177 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
178 }
179
180 /* This function is used by idr_for_each(). If net is equal to peer, the
181 * function returns the id so that idr_for_each() stops. Because we cannot
182 * returns the id 0 (idr_for_each() will not stop), we return the magic value
183 * NET_ID_ZERO (-1) for it.
184 */
185 #define NET_ID_ZERO -1
186 static int net_eq_idr(int id, void *net, void *peer)
187 {
188 if (net_eq(net, peer))
189 return id ? : NET_ID_ZERO;
190 return 0;
191 }
192
193 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
194 * is set to true, thus the caller knows that the new id must be notified via
195 * rtnl.
196 */
197 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
198 {
199 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
200 bool alloc_it = *alloc;
201
202 *alloc = false;
203
204 /* Magic value for id 0. */
205 if (id == NET_ID_ZERO)
206 return 0;
207 if (id > 0)
208 return id;
209
210 if (alloc_it) {
211 id = alloc_netid(net, peer, -1);
212 *alloc = true;
213 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
214 }
215
216 return NETNSA_NSID_NOT_ASSIGNED;
217 }
218
219 /* should be called with nsid_lock held */
220 static int __peernet2id(struct net *net, struct net *peer)
221 {
222 bool no = false;
223
224 return __peernet2id_alloc(net, peer, &no);
225 }
226
227 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
228 /* This function returns the id of a peer netns. If no id is assigned, one will
229 * be allocated and returned.
230 */
231 int peernet2id_alloc(struct net *net, struct net *peer)
232 {
233 bool alloc = false, alive = false;
234 int id;
235
236 if (refcount_read(&net->count) == 0)
237 return NETNSA_NSID_NOT_ASSIGNED;
238 spin_lock_bh(&net->nsid_lock);
239 /*
240 * When peer is obtained from RCU lists, we may race with
241 * its cleanup. Check whether it's alive, and this guarantees
242 * we never hash a peer back to net->netns_ids, after it has
243 * just been idr_remove()'d from there in cleanup_net().
244 */
245 if (maybe_get_net(peer))
246 alive = alloc = true;
247 id = __peernet2id_alloc(net, peer, &alloc);
248 spin_unlock_bh(&net->nsid_lock);
249 if (alloc && id >= 0)
250 rtnl_net_notifyid(net, RTM_NEWNSID, id);
251 if (alive)
252 put_net(peer);
253 return id;
254 }
255 EXPORT_SYMBOL_GPL(peernet2id_alloc);
256
257 /* This function returns, if assigned, the id of a peer netns. */
258 int peernet2id(struct net *net, struct net *peer)
259 {
260 int id;
261
262 spin_lock_bh(&net->nsid_lock);
263 id = __peernet2id(net, peer);
264 spin_unlock_bh(&net->nsid_lock);
265 return id;
266 }
267 EXPORT_SYMBOL(peernet2id);
268
269 /* This function returns true is the peer netns has an id assigned into the
270 * current netns.
271 */
272 bool peernet_has_id(struct net *net, struct net *peer)
273 {
274 return peernet2id(net, peer) >= 0;
275 }
276
277 struct net *get_net_ns_by_id(struct net *net, int id)
278 {
279 struct net *peer;
280
281 if (id < 0)
282 return NULL;
283
284 rcu_read_lock();
285 peer = idr_find(&net->netns_ids, id);
286 if (peer)
287 peer = maybe_get_net(peer);
288 rcu_read_unlock();
289
290 return peer;
291 }
292
293 /*
294 * setup_net runs the initializers for the network namespace object.
295 */
296 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
297 {
298 /* Must be called with pernet_ops_rwsem held */
299 const struct pernet_operations *ops, *saved_ops;
300 int error = 0;
301 LIST_HEAD(net_exit_list);
302
303 refcount_set(&net->count, 1);
304 refcount_set(&net->passive, 1);
305 net->dev_base_seq = 1;
306 net->user_ns = user_ns;
307 idr_init(&net->netns_ids);
308 spin_lock_init(&net->nsid_lock);
309 mutex_init(&net->ipv4.ra_mutex);
310
311 list_for_each_entry(ops, &pernet_list, list) {
312 error = ops_init(ops, net);
313 if (error < 0)
314 goto out_undo;
315 }
316 down_write(&net_rwsem);
317 list_add_tail_rcu(&net->list, &net_namespace_list);
318 up_write(&net_rwsem);
319 out:
320 return error;
321
322 out_undo:
323 /* Walk through the list backwards calling the exit functions
324 * for the pernet modules whose init functions did not fail.
325 */
326 list_add(&net->exit_list, &net_exit_list);
327 saved_ops = ops;
328 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
329 ops_exit_list(ops, &net_exit_list);
330
331 ops = saved_ops;
332 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
333 ops_free_list(ops, &net_exit_list);
334
335 rcu_barrier();
336 goto out;
337 }
338
339 static int __net_init net_defaults_init_net(struct net *net)
340 {
341 net->core.sysctl_somaxconn = SOMAXCONN;
342 return 0;
343 }
344
345 static struct pernet_operations net_defaults_ops = {
346 .init = net_defaults_init_net,
347 };
348
349 static __init int net_defaults_init(void)
350 {
351 if (register_pernet_subsys(&net_defaults_ops))
352 panic("Cannot initialize net default settings");
353
354 return 0;
355 }
356
357 core_initcall(net_defaults_init);
358
359 #ifdef CONFIG_NET_NS
360 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
361 {
362 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
363 }
364
365 static void dec_net_namespaces(struct ucounts *ucounts)
366 {
367 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
368 }
369
370 static struct kmem_cache *net_cachep __ro_after_init;
371 static struct workqueue_struct *netns_wq;
372
373 static struct net *net_alloc(void)
374 {
375 struct net *net = NULL;
376 struct net_generic *ng;
377
378 ng = net_alloc_generic();
379 if (!ng)
380 goto out;
381
382 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
383 if (!net)
384 goto out_free;
385
386 rcu_assign_pointer(net->gen, ng);
387 out:
388 return net;
389
390 out_free:
391 kfree(ng);
392 goto out;
393 }
394
395 static void net_free(struct net *net)
396 {
397 kfree(rcu_access_pointer(net->gen));
398 kmem_cache_free(net_cachep, net);
399 }
400
401 void net_drop_ns(void *p)
402 {
403 struct net *ns = p;
404 if (ns && refcount_dec_and_test(&ns->passive))
405 net_free(ns);
406 }
407
408 struct net *copy_net_ns(unsigned long flags,
409 struct user_namespace *user_ns, struct net *old_net)
410 {
411 struct ucounts *ucounts;
412 struct net *net;
413 int rv;
414
415 if (!(flags & CLONE_NEWNET))
416 return get_net(old_net);
417
418 ucounts = inc_net_namespaces(user_ns);
419 if (!ucounts)
420 return ERR_PTR(-ENOSPC);
421
422 net = net_alloc();
423 if (!net) {
424 rv = -ENOMEM;
425 goto dec_ucounts;
426 }
427 refcount_set(&net->passive, 1);
428 net->ucounts = ucounts;
429 get_user_ns(user_ns);
430
431 rv = down_read_killable(&pernet_ops_rwsem);
432 if (rv < 0)
433 goto put_userns;
434
435 rv = setup_net(net, user_ns);
436
437 up_read(&pernet_ops_rwsem);
438
439 if (rv < 0) {
440 put_userns:
441 put_user_ns(user_ns);
442 net_drop_ns(net);
443 dec_ucounts:
444 dec_net_namespaces(ucounts);
445 return ERR_PTR(rv);
446 }
447 return net;
448 }
449
450 static void unhash_nsid(struct net *net, struct net *last)
451 {
452 struct net *tmp;
453 /* This function is only called from cleanup_net() work,
454 * and this work is the only process, that may delete
455 * a net from net_namespace_list. So, when the below
456 * is executing, the list may only grow. Thus, we do not
457 * use for_each_net_rcu() or net_rwsem.
458 */
459 for_each_net(tmp) {
460 int id;
461
462 spin_lock_bh(&tmp->nsid_lock);
463 id = __peernet2id(tmp, net);
464 if (id >= 0)
465 idr_remove(&tmp->netns_ids, id);
466 spin_unlock_bh(&tmp->nsid_lock);
467 if (id >= 0)
468 rtnl_net_notifyid(tmp, RTM_DELNSID, id);
469 if (tmp == last)
470 break;
471 }
472 spin_lock_bh(&net->nsid_lock);
473 idr_destroy(&net->netns_ids);
474 spin_unlock_bh(&net->nsid_lock);
475 }
476
477 static LLIST_HEAD(cleanup_list);
478
479 static void cleanup_net(struct work_struct *work)
480 {
481 const struct pernet_operations *ops;
482 struct net *net, *tmp, *last;
483 struct llist_node *net_kill_list;
484 LIST_HEAD(net_exit_list);
485
486 /* Atomically snapshot the list of namespaces to cleanup */
487 net_kill_list = llist_del_all(&cleanup_list);
488
489 down_read(&pernet_ops_rwsem);
490
491 /* Don't let anyone else find us. */
492 down_write(&net_rwsem);
493 llist_for_each_entry(net, net_kill_list, cleanup_list)
494 list_del_rcu(&net->list);
495 /* Cache last net. After we unlock rtnl, no one new net
496 * added to net_namespace_list can assign nsid pointer
497 * to a net from net_kill_list (see peernet2id_alloc()).
498 * So, we skip them in unhash_nsid().
499 *
500 * Note, that unhash_nsid() does not delete nsid links
501 * between net_kill_list's nets, as they've already
502 * deleted from net_namespace_list. But, this would be
503 * useless anyway, as netns_ids are destroyed there.
504 */
505 last = list_last_entry(&net_namespace_list, struct net, list);
506 up_write(&net_rwsem);
507
508 llist_for_each_entry(net, net_kill_list, cleanup_list) {
509 unhash_nsid(net, last);
510 list_add_tail(&net->exit_list, &net_exit_list);
511 }
512
513 /*
514 * Another CPU might be rcu-iterating the list, wait for it.
515 * This needs to be before calling the exit() notifiers, so
516 * the rcu_barrier() below isn't sufficient alone.
517 */
518 synchronize_rcu();
519
520 /* Run all of the network namespace exit methods */
521 list_for_each_entry_reverse(ops, &pernet_list, list)
522 ops_exit_list(ops, &net_exit_list);
523
524 /* Free the net generic variables */
525 list_for_each_entry_reverse(ops, &pernet_list, list)
526 ops_free_list(ops, &net_exit_list);
527
528 up_read(&pernet_ops_rwsem);
529
530 /* Ensure there are no outstanding rcu callbacks using this
531 * network namespace.
532 */
533 rcu_barrier();
534
535 /* Finally it is safe to free my network namespace structure */
536 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
537 list_del_init(&net->exit_list);
538 dec_net_namespaces(net->ucounts);
539 put_user_ns(net->user_ns);
540 net_drop_ns(net);
541 }
542 }
543
544 /**
545 * net_ns_barrier - wait until concurrent net_cleanup_work is done
546 *
547 * cleanup_net runs from work queue and will first remove namespaces
548 * from the global list, then run net exit functions.
549 *
550 * Call this in module exit path to make sure that all netns
551 * ->exit ops have been invoked before the function is removed.
552 */
553 void net_ns_barrier(void)
554 {
555 down_write(&pernet_ops_rwsem);
556 up_write(&pernet_ops_rwsem);
557 }
558 EXPORT_SYMBOL(net_ns_barrier);
559
560 static DECLARE_WORK(net_cleanup_work, cleanup_net);
561
562 void __put_net(struct net *net)
563 {
564 /* Cleanup the network namespace in process context */
565 if (llist_add(&net->cleanup_list, &cleanup_list))
566 queue_work(netns_wq, &net_cleanup_work);
567 }
568 EXPORT_SYMBOL_GPL(__put_net);
569
570 struct net *get_net_ns_by_fd(int fd)
571 {
572 struct file *file;
573 struct ns_common *ns;
574 struct net *net;
575
576 file = proc_ns_fget(fd);
577 if (IS_ERR(file))
578 return ERR_CAST(file);
579
580 ns = get_proc_ns(file_inode(file));
581 if (ns->ops == &netns_operations)
582 net = get_net(container_of(ns, struct net, ns));
583 else
584 net = ERR_PTR(-EINVAL);
585
586 fput(file);
587 return net;
588 }
589
590 #else
591 struct net *get_net_ns_by_fd(int fd)
592 {
593 return ERR_PTR(-EINVAL);
594 }
595 #endif
596 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
597
598 struct net *get_net_ns_by_pid(pid_t pid)
599 {
600 struct task_struct *tsk;
601 struct net *net;
602
603 /* Lookup the network namespace */
604 net = ERR_PTR(-ESRCH);
605 rcu_read_lock();
606 tsk = find_task_by_vpid(pid);
607 if (tsk) {
608 struct nsproxy *nsproxy;
609 task_lock(tsk);
610 nsproxy = tsk->nsproxy;
611 if (nsproxy)
612 net = get_net(nsproxy->net_ns);
613 task_unlock(tsk);
614 }
615 rcu_read_unlock();
616 return net;
617 }
618 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
619
620 static __net_init int net_ns_net_init(struct net *net)
621 {
622 #ifdef CONFIG_NET_NS
623 net->ns.ops = &netns_operations;
624 #endif
625 return ns_alloc_inum(&net->ns);
626 }
627
628 static __net_exit void net_ns_net_exit(struct net *net)
629 {
630 ns_free_inum(&net->ns);
631 }
632
633 static struct pernet_operations __net_initdata net_ns_ops = {
634 .init = net_ns_net_init,
635 .exit = net_ns_net_exit,
636 };
637
638 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
639 [NETNSA_NONE] = { .type = NLA_UNSPEC },
640 [NETNSA_NSID] = { .type = NLA_S32 },
641 [NETNSA_PID] = { .type = NLA_U32 },
642 [NETNSA_FD] = { .type = NLA_U32 },
643 };
644
645 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
646 struct netlink_ext_ack *extack)
647 {
648 struct net *net = sock_net(skb->sk);
649 struct nlattr *tb[NETNSA_MAX + 1];
650 struct nlattr *nla;
651 struct net *peer;
652 int nsid, err;
653
654 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
655 rtnl_net_policy, extack);
656 if (err < 0)
657 return err;
658 if (!tb[NETNSA_NSID]) {
659 NL_SET_ERR_MSG(extack, "nsid is missing");
660 return -EINVAL;
661 }
662 nsid = nla_get_s32(tb[NETNSA_NSID]);
663
664 if (tb[NETNSA_PID]) {
665 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
666 nla = tb[NETNSA_PID];
667 } else if (tb[NETNSA_FD]) {
668 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
669 nla = tb[NETNSA_FD];
670 } else {
671 NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
672 return -EINVAL;
673 }
674 if (IS_ERR(peer)) {
675 NL_SET_BAD_ATTR(extack, nla);
676 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
677 return PTR_ERR(peer);
678 }
679
680 spin_lock_bh(&net->nsid_lock);
681 if (__peernet2id(net, peer) >= 0) {
682 spin_unlock_bh(&net->nsid_lock);
683 err = -EEXIST;
684 NL_SET_BAD_ATTR(extack, nla);
685 NL_SET_ERR_MSG(extack,
686 "Peer netns already has a nsid assigned");
687 goto out;
688 }
689
690 err = alloc_netid(net, peer, nsid);
691 spin_unlock_bh(&net->nsid_lock);
692 if (err >= 0) {
693 rtnl_net_notifyid(net, RTM_NEWNSID, err);
694 err = 0;
695 } else if (err == -ENOSPC && nsid >= 0) {
696 err = -EEXIST;
697 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
698 NL_SET_ERR_MSG(extack, "The specified nsid is already used");
699 }
700 out:
701 put_net(peer);
702 return err;
703 }
704
705 static int rtnl_net_get_size(void)
706 {
707 return NLMSG_ALIGN(sizeof(struct rtgenmsg))
708 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
709 ;
710 }
711
712 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
713 int cmd, struct net *net, int nsid)
714 {
715 struct nlmsghdr *nlh;
716 struct rtgenmsg *rth;
717
718 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
719 if (!nlh)
720 return -EMSGSIZE;
721
722 rth = nlmsg_data(nlh);
723 rth->rtgen_family = AF_UNSPEC;
724
725 if (nla_put_s32(skb, NETNSA_NSID, nsid))
726 goto nla_put_failure;
727
728 nlmsg_end(skb, nlh);
729 return 0;
730
731 nla_put_failure:
732 nlmsg_cancel(skb, nlh);
733 return -EMSGSIZE;
734 }
735
736 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
737 struct netlink_ext_ack *extack)
738 {
739 struct net *net = sock_net(skb->sk);
740 struct nlattr *tb[NETNSA_MAX + 1];
741 struct nlattr *nla;
742 struct sk_buff *msg;
743 struct net *peer;
744 int err, id;
745
746 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
747 rtnl_net_policy, extack);
748 if (err < 0)
749 return err;
750 if (tb[NETNSA_PID]) {
751 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
752 nla = tb[NETNSA_PID];
753 } else if (tb[NETNSA_FD]) {
754 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
755 nla = tb[NETNSA_FD];
756 } else {
757 NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
758 return -EINVAL;
759 }
760
761 if (IS_ERR(peer)) {
762 NL_SET_BAD_ATTR(extack, nla);
763 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
764 return PTR_ERR(peer);
765 }
766
767 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
768 if (!msg) {
769 err = -ENOMEM;
770 goto out;
771 }
772
773 id = peernet2id(net, peer);
774 err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
775 RTM_NEWNSID, net, id);
776 if (err < 0)
777 goto err_out;
778
779 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
780 goto out;
781
782 err_out:
783 nlmsg_free(msg);
784 out:
785 put_net(peer);
786 return err;
787 }
788
789 struct rtnl_net_dump_cb {
790 struct net *net;
791 struct sk_buff *skb;
792 struct netlink_callback *cb;
793 int idx;
794 int s_idx;
795 };
796
797 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
798 {
799 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
800 int ret;
801
802 if (net_cb->idx < net_cb->s_idx)
803 goto cont;
804
805 ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
806 net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
807 RTM_NEWNSID, net_cb->net, id);
808 if (ret < 0)
809 return ret;
810
811 cont:
812 net_cb->idx++;
813 return 0;
814 }
815
816 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
817 {
818 struct net *net = sock_net(skb->sk);
819 struct rtnl_net_dump_cb net_cb = {
820 .net = net,
821 .skb = skb,
822 .cb = cb,
823 .idx = 0,
824 .s_idx = cb->args[0],
825 };
826
827 spin_lock_bh(&net->nsid_lock);
828 idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
829 spin_unlock_bh(&net->nsid_lock);
830
831 cb->args[0] = net_cb.idx;
832 return skb->len;
833 }
834
835 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
836 {
837 struct sk_buff *msg;
838 int err = -ENOMEM;
839
840 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
841 if (!msg)
842 goto out;
843
844 err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
845 if (err < 0)
846 goto err_out;
847
848 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
849 return;
850
851 err_out:
852 nlmsg_free(msg);
853 out:
854 rtnl_set_sk_err(net, RTNLGRP_NSID, err);
855 }
856
857 static int __init net_ns_init(void)
858 {
859 struct net_generic *ng;
860
861 #ifdef CONFIG_NET_NS
862 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
863 SMP_CACHE_BYTES,
864 SLAB_PANIC|SLAB_ACCOUNT, NULL);
865
866 /* Create workqueue for cleanup */
867 netns_wq = create_singlethread_workqueue("netns");
868 if (!netns_wq)
869 panic("Could not create netns workq");
870 #endif
871
872 ng = net_alloc_generic();
873 if (!ng)
874 panic("Could not allocate generic netns");
875
876 rcu_assign_pointer(init_net.gen, ng);
877
878 down_write(&pernet_ops_rwsem);
879 if (setup_net(&init_net, &init_user_ns))
880 panic("Could not setup the initial network namespace");
881
882 init_net_initialized = true;
883 up_write(&pernet_ops_rwsem);
884
885 register_pernet_subsys(&net_ns_ops);
886
887 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
888 RTNL_FLAG_DOIT_UNLOCKED);
889 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
890 RTNL_FLAG_DOIT_UNLOCKED);
891
892 return 0;
893 }
894
895 pure_initcall(net_ns_init);
896
897 #ifdef CONFIG_NET_NS
898 static int __register_pernet_operations(struct list_head *list,
899 struct pernet_operations *ops)
900 {
901 struct net *net;
902 int error;
903 LIST_HEAD(net_exit_list);
904
905 list_add_tail(&ops->list, list);
906 if (ops->init || (ops->id && ops->size)) {
907 /* We held write locked pernet_ops_rwsem, and parallel
908 * setup_net() and cleanup_net() are not possible.
909 */
910 for_each_net(net) {
911 error = ops_init(ops, net);
912 if (error)
913 goto out_undo;
914 list_add_tail(&net->exit_list, &net_exit_list);
915 }
916 }
917 return 0;
918
919 out_undo:
920 /* If I have an error cleanup all namespaces I initialized */
921 list_del(&ops->list);
922 ops_exit_list(ops, &net_exit_list);
923 ops_free_list(ops, &net_exit_list);
924 return error;
925 }
926
927 static void __unregister_pernet_operations(struct pernet_operations *ops)
928 {
929 struct net *net;
930 LIST_HEAD(net_exit_list);
931
932 list_del(&ops->list);
933 /* See comment in __register_pernet_operations() */
934 for_each_net(net)
935 list_add_tail(&net->exit_list, &net_exit_list);
936 ops_exit_list(ops, &net_exit_list);
937 ops_free_list(ops, &net_exit_list);
938 }
939
940 #else
941
942 static int __register_pernet_operations(struct list_head *list,
943 struct pernet_operations *ops)
944 {
945 if (!init_net_initialized) {
946 list_add_tail(&ops->list, list);
947 return 0;
948 }
949
950 return ops_init(ops, &init_net);
951 }
952
953 static void __unregister_pernet_operations(struct pernet_operations *ops)
954 {
955 if (!init_net_initialized) {
956 list_del(&ops->list);
957 } else {
958 LIST_HEAD(net_exit_list);
959 list_add(&init_net.exit_list, &net_exit_list);
960 ops_exit_list(ops, &net_exit_list);
961 ops_free_list(ops, &net_exit_list);
962 }
963 }
964
965 #endif /* CONFIG_NET_NS */
966
967 static DEFINE_IDA(net_generic_ids);
968
969 static int register_pernet_operations(struct list_head *list,
970 struct pernet_operations *ops)
971 {
972 int error;
973
974 if (ops->id) {
975 again:
976 error = ida_get_new_above(&net_generic_ids, MIN_PERNET_OPS_ID, ops->id);
977 if (error < 0) {
978 if (error == -EAGAIN) {
979 ida_pre_get(&net_generic_ids, GFP_KERNEL);
980 goto again;
981 }
982 return error;
983 }
984 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
985 }
986 error = __register_pernet_operations(list, ops);
987 if (error) {
988 rcu_barrier();
989 if (ops->id)
990 ida_remove(&net_generic_ids, *ops->id);
991 }
992
993 return error;
994 }
995
996 static void unregister_pernet_operations(struct pernet_operations *ops)
997 {
998 __unregister_pernet_operations(ops);
999 rcu_barrier();
1000 if (ops->id)
1001 ida_remove(&net_generic_ids, *ops->id);
1002 }
1003
1004 /**
1005 * register_pernet_subsys - register a network namespace subsystem
1006 * @ops: pernet operations structure for the subsystem
1007 *
1008 * Register a subsystem which has init and exit functions
1009 * that are called when network namespaces are created and
1010 * destroyed respectively.
1011 *
1012 * When registered all network namespace init functions are
1013 * called for every existing network namespace. Allowing kernel
1014 * modules to have a race free view of the set of network namespaces.
1015 *
1016 * When a new network namespace is created all of the init
1017 * methods are called in the order in which they were registered.
1018 *
1019 * When a network namespace is destroyed all of the exit methods
1020 * are called in the reverse of the order with which they were
1021 * registered.
1022 */
1023 int register_pernet_subsys(struct pernet_operations *ops)
1024 {
1025 int error;
1026 down_write(&pernet_ops_rwsem);
1027 error = register_pernet_operations(first_device, ops);
1028 up_write(&pernet_ops_rwsem);
1029 return error;
1030 }
1031 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1032
1033 /**
1034 * unregister_pernet_subsys - unregister a network namespace subsystem
1035 * @ops: pernet operations structure to manipulate
1036 *
1037 * Remove the pernet operations structure from the list to be
1038 * used when network namespaces are created or destroyed. In
1039 * addition run the exit method for all existing network
1040 * namespaces.
1041 */
1042 void unregister_pernet_subsys(struct pernet_operations *ops)
1043 {
1044 down_write(&pernet_ops_rwsem);
1045 unregister_pernet_operations(ops);
1046 up_write(&pernet_ops_rwsem);
1047 }
1048 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1049
1050 /**
1051 * register_pernet_device - register a network namespace device
1052 * @ops: pernet operations structure for the subsystem
1053 *
1054 * Register a device which has init and exit functions
1055 * that are called when network namespaces are created and
1056 * destroyed respectively.
1057 *
1058 * When registered all network namespace init functions are
1059 * called for every existing network namespace. Allowing kernel
1060 * modules to have a race free view of the set of network namespaces.
1061 *
1062 * When a new network namespace is created all of the init
1063 * methods are called in the order in which they were registered.
1064 *
1065 * When a network namespace is destroyed all of the exit methods
1066 * are called in the reverse of the order with which they were
1067 * registered.
1068 */
1069 int register_pernet_device(struct pernet_operations *ops)
1070 {
1071 int error;
1072 down_write(&pernet_ops_rwsem);
1073 error = register_pernet_operations(&pernet_list, ops);
1074 if (!error && (first_device == &pernet_list))
1075 first_device = &ops->list;
1076 up_write(&pernet_ops_rwsem);
1077 return error;
1078 }
1079 EXPORT_SYMBOL_GPL(register_pernet_device);
1080
1081 /**
1082 * unregister_pernet_device - unregister a network namespace netdevice
1083 * @ops: pernet operations structure to manipulate
1084 *
1085 * Remove the pernet operations structure from the list to be
1086 * used when network namespaces are created or destroyed. In
1087 * addition run the exit method for all existing network
1088 * namespaces.
1089 */
1090 void unregister_pernet_device(struct pernet_operations *ops)
1091 {
1092 down_write(&pernet_ops_rwsem);
1093 if (&ops->list == first_device)
1094 first_device = first_device->next;
1095 unregister_pernet_operations(ops);
1096 up_write(&pernet_ops_rwsem);
1097 }
1098 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1099
1100 #ifdef CONFIG_NET_NS
1101 static struct ns_common *netns_get(struct task_struct *task)
1102 {
1103 struct net *net = NULL;
1104 struct nsproxy *nsproxy;
1105
1106 task_lock(task);
1107 nsproxy = task->nsproxy;
1108 if (nsproxy)
1109 net = get_net(nsproxy->net_ns);
1110 task_unlock(task);
1111
1112 return net ? &net->ns : NULL;
1113 }
1114
1115 static inline struct net *to_net_ns(struct ns_common *ns)
1116 {
1117 return container_of(ns, struct net, ns);
1118 }
1119
1120 static void netns_put(struct ns_common *ns)
1121 {
1122 put_net(to_net_ns(ns));
1123 }
1124
1125 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1126 {
1127 struct net *net = to_net_ns(ns);
1128
1129 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1130 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1131 return -EPERM;
1132
1133 put_net(nsproxy->net_ns);
1134 nsproxy->net_ns = get_net(net);
1135 return 0;
1136 }
1137
1138 static struct user_namespace *netns_owner(struct ns_common *ns)
1139 {
1140 return to_net_ns(ns)->user_ns;
1141 }
1142
1143 const struct proc_ns_operations netns_operations = {
1144 .name = "net",
1145 .type = CLONE_NEWNET,
1146 .get = netns_get,
1147 .put = netns_put,
1148 .install = netns_install,
1149 .owner = netns_owner,
1150 };
1151 #endif