]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/net_namespace.c
Merge branch 'xtensa-sim-params' into xtensa-fixes
[mirror_ubuntu-artful-kernel.git] / net / core / net_namespace.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/sched/task.h>
20
21 #include <net/sock.h>
22 #include <net/netlink.h>
23 #include <net/net_namespace.h>
24 #include <net/netns/generic.h>
25
26 /*
27 * Our network namespace constructor/destructor lists
28 */
29
30 static LIST_HEAD(pernet_list);
31 static struct list_head *first_device = &pernet_list;
32 DEFINE_MUTEX(net_mutex);
33
34 LIST_HEAD(net_namespace_list);
35 EXPORT_SYMBOL_GPL(net_namespace_list);
36
37 struct net init_net = {
38 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
39 };
40 EXPORT_SYMBOL(init_net);
41
42 static bool init_net_initialized;
43
44 #define MIN_PERNET_OPS_ID \
45 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
46
47 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
48
49 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
50
51 static struct net_generic *net_alloc_generic(void)
52 {
53 struct net_generic *ng;
54 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
55
56 ng = kzalloc(generic_size, GFP_KERNEL);
57 if (ng)
58 ng->s.len = max_gen_ptrs;
59
60 return ng;
61 }
62
63 static int net_assign_generic(struct net *net, unsigned int id, void *data)
64 {
65 struct net_generic *ng, *old_ng;
66
67 BUG_ON(!mutex_is_locked(&net_mutex));
68 BUG_ON(id < MIN_PERNET_OPS_ID);
69
70 old_ng = rcu_dereference_protected(net->gen,
71 lockdep_is_held(&net_mutex));
72 if (old_ng->s.len > id) {
73 old_ng->ptr[id] = data;
74 return 0;
75 }
76
77 ng = net_alloc_generic();
78 if (ng == NULL)
79 return -ENOMEM;
80
81 /*
82 * Some synchronisation notes:
83 *
84 * The net_generic explores the net->gen array inside rcu
85 * read section. Besides once set the net->gen->ptr[x]
86 * pointer never changes (see rules in netns/generic.h).
87 *
88 * That said, we simply duplicate this array and schedule
89 * the old copy for kfree after a grace period.
90 */
91
92 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
93 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
94 ng->ptr[id] = data;
95
96 rcu_assign_pointer(net->gen, ng);
97 kfree_rcu(old_ng, s.rcu);
98 return 0;
99 }
100
101 static int ops_init(const struct pernet_operations *ops, struct net *net)
102 {
103 int err = -ENOMEM;
104 void *data = NULL;
105
106 if (ops->id && ops->size) {
107 data = kzalloc(ops->size, GFP_KERNEL);
108 if (!data)
109 goto out;
110
111 err = net_assign_generic(net, *ops->id, data);
112 if (err)
113 goto cleanup;
114 }
115 err = 0;
116 if (ops->init)
117 err = ops->init(net);
118 if (!err)
119 return 0;
120
121 cleanup:
122 kfree(data);
123
124 out:
125 return err;
126 }
127
128 static void ops_free(const struct pernet_operations *ops, struct net *net)
129 {
130 if (ops->id && ops->size) {
131 kfree(net_generic(net, *ops->id));
132 }
133 }
134
135 static void ops_exit_list(const struct pernet_operations *ops,
136 struct list_head *net_exit_list)
137 {
138 struct net *net;
139 if (ops->exit) {
140 list_for_each_entry(net, net_exit_list, exit_list)
141 ops->exit(net);
142 }
143 if (ops->exit_batch)
144 ops->exit_batch(net_exit_list);
145 }
146
147 static void ops_free_list(const struct pernet_operations *ops,
148 struct list_head *net_exit_list)
149 {
150 struct net *net;
151 if (ops->size && ops->id) {
152 list_for_each_entry(net, net_exit_list, exit_list)
153 ops_free(ops, net);
154 }
155 }
156
157 /* should be called with nsid_lock held */
158 static int alloc_netid(struct net *net, struct net *peer, int reqid)
159 {
160 int min = 0, max = 0;
161
162 if (reqid >= 0) {
163 min = reqid;
164 max = reqid + 1;
165 }
166
167 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
168 }
169
170 /* This function is used by idr_for_each(). If net is equal to peer, the
171 * function returns the id so that idr_for_each() stops. Because we cannot
172 * returns the id 0 (idr_for_each() will not stop), we return the magic value
173 * NET_ID_ZERO (-1) for it.
174 */
175 #define NET_ID_ZERO -1
176 static int net_eq_idr(int id, void *net, void *peer)
177 {
178 if (net_eq(net, peer))
179 return id ? : NET_ID_ZERO;
180 return 0;
181 }
182
183 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
184 * is set to true, thus the caller knows that the new id must be notified via
185 * rtnl.
186 */
187 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
188 {
189 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
190 bool alloc_it = *alloc;
191
192 *alloc = false;
193
194 /* Magic value for id 0. */
195 if (id == NET_ID_ZERO)
196 return 0;
197 if (id > 0)
198 return id;
199
200 if (alloc_it) {
201 id = alloc_netid(net, peer, -1);
202 *alloc = true;
203 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
204 }
205
206 return NETNSA_NSID_NOT_ASSIGNED;
207 }
208
209 /* should be called with nsid_lock held */
210 static int __peernet2id(struct net *net, struct net *peer)
211 {
212 bool no = false;
213
214 return __peernet2id_alloc(net, peer, &no);
215 }
216
217 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
218 /* This function returns the id of a peer netns. If no id is assigned, one will
219 * be allocated and returned.
220 */
221 int peernet2id_alloc(struct net *net, struct net *peer)
222 {
223 bool alloc;
224 int id;
225
226 if (atomic_read(&net->count) == 0)
227 return NETNSA_NSID_NOT_ASSIGNED;
228 spin_lock_bh(&net->nsid_lock);
229 alloc = atomic_read(&peer->count) == 0 ? false : true;
230 id = __peernet2id_alloc(net, peer, &alloc);
231 spin_unlock_bh(&net->nsid_lock);
232 if (alloc && id >= 0)
233 rtnl_net_notifyid(net, RTM_NEWNSID, id);
234 return id;
235 }
236
237 /* This function returns, if assigned, the id of a peer netns. */
238 int peernet2id(struct net *net, struct net *peer)
239 {
240 int id;
241
242 spin_lock_bh(&net->nsid_lock);
243 id = __peernet2id(net, peer);
244 spin_unlock_bh(&net->nsid_lock);
245 return id;
246 }
247 EXPORT_SYMBOL(peernet2id);
248
249 /* This function returns true is the peer netns has an id assigned into the
250 * current netns.
251 */
252 bool peernet_has_id(struct net *net, struct net *peer)
253 {
254 return peernet2id(net, peer) >= 0;
255 }
256
257 struct net *get_net_ns_by_id(struct net *net, int id)
258 {
259 struct net *peer;
260
261 if (id < 0)
262 return NULL;
263
264 rcu_read_lock();
265 spin_lock_bh(&net->nsid_lock);
266 peer = idr_find(&net->netns_ids, id);
267 if (peer)
268 get_net(peer);
269 spin_unlock_bh(&net->nsid_lock);
270 rcu_read_unlock();
271
272 return peer;
273 }
274
275 /*
276 * setup_net runs the initializers for the network namespace object.
277 */
278 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
279 {
280 /* Must be called with net_mutex held */
281 const struct pernet_operations *ops, *saved_ops;
282 int error = 0;
283 LIST_HEAD(net_exit_list);
284
285 atomic_set(&net->count, 1);
286 atomic_set(&net->passive, 1);
287 net->dev_base_seq = 1;
288 net->user_ns = user_ns;
289 idr_init(&net->netns_ids);
290 spin_lock_init(&net->nsid_lock);
291
292 list_for_each_entry(ops, &pernet_list, list) {
293 error = ops_init(ops, net);
294 if (error < 0)
295 goto out_undo;
296 }
297 out:
298 return error;
299
300 out_undo:
301 /* Walk through the list backwards calling the exit functions
302 * for the pernet modules whose init functions did not fail.
303 */
304 list_add(&net->exit_list, &net_exit_list);
305 saved_ops = ops;
306 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
307 ops_exit_list(ops, &net_exit_list);
308
309 ops = saved_ops;
310 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
311 ops_free_list(ops, &net_exit_list);
312
313 rcu_barrier();
314 goto out;
315 }
316
317
318 #ifdef CONFIG_NET_NS
319 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
320 {
321 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
322 }
323
324 static void dec_net_namespaces(struct ucounts *ucounts)
325 {
326 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
327 }
328
329 static struct kmem_cache *net_cachep;
330 static struct workqueue_struct *netns_wq;
331
332 static struct net *net_alloc(void)
333 {
334 struct net *net = NULL;
335 struct net_generic *ng;
336
337 ng = net_alloc_generic();
338 if (!ng)
339 goto out;
340
341 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
342 if (!net)
343 goto out_free;
344
345 rcu_assign_pointer(net->gen, ng);
346 out:
347 return net;
348
349 out_free:
350 kfree(ng);
351 goto out;
352 }
353
354 static void net_free(struct net *net)
355 {
356 kfree(rcu_access_pointer(net->gen));
357 kmem_cache_free(net_cachep, net);
358 }
359
360 void net_drop_ns(void *p)
361 {
362 struct net *ns = p;
363 if (ns && atomic_dec_and_test(&ns->passive))
364 net_free(ns);
365 }
366
367 struct net *copy_net_ns(unsigned long flags,
368 struct user_namespace *user_ns, struct net *old_net)
369 {
370 struct ucounts *ucounts;
371 struct net *net;
372 int rv;
373
374 if (!(flags & CLONE_NEWNET))
375 return get_net(old_net);
376
377 ucounts = inc_net_namespaces(user_ns);
378 if (!ucounts)
379 return ERR_PTR(-ENOSPC);
380
381 net = net_alloc();
382 if (!net) {
383 dec_net_namespaces(ucounts);
384 return ERR_PTR(-ENOMEM);
385 }
386
387 get_user_ns(user_ns);
388
389 rv = mutex_lock_killable(&net_mutex);
390 if (rv < 0) {
391 net_free(net);
392 dec_net_namespaces(ucounts);
393 put_user_ns(user_ns);
394 return ERR_PTR(rv);
395 }
396
397 net->ucounts = ucounts;
398 rv = setup_net(net, user_ns);
399 if (rv == 0) {
400 rtnl_lock();
401 list_add_tail_rcu(&net->list, &net_namespace_list);
402 rtnl_unlock();
403 }
404 mutex_unlock(&net_mutex);
405 if (rv < 0) {
406 dec_net_namespaces(ucounts);
407 put_user_ns(user_ns);
408 net_drop_ns(net);
409 return ERR_PTR(rv);
410 }
411 return net;
412 }
413
414 static DEFINE_SPINLOCK(cleanup_list_lock);
415 static LIST_HEAD(cleanup_list); /* Must hold cleanup_list_lock to touch */
416
417 static void cleanup_net(struct work_struct *work)
418 {
419 const struct pernet_operations *ops;
420 struct net *net, *tmp;
421 struct list_head net_kill_list;
422 LIST_HEAD(net_exit_list);
423
424 /* Atomically snapshot the list of namespaces to cleanup */
425 spin_lock_irq(&cleanup_list_lock);
426 list_replace_init(&cleanup_list, &net_kill_list);
427 spin_unlock_irq(&cleanup_list_lock);
428
429 mutex_lock(&net_mutex);
430
431 /* Don't let anyone else find us. */
432 rtnl_lock();
433 list_for_each_entry(net, &net_kill_list, cleanup_list) {
434 list_del_rcu(&net->list);
435 list_add_tail(&net->exit_list, &net_exit_list);
436 for_each_net(tmp) {
437 int id;
438
439 spin_lock_bh(&tmp->nsid_lock);
440 id = __peernet2id(tmp, net);
441 if (id >= 0)
442 idr_remove(&tmp->netns_ids, id);
443 spin_unlock_bh(&tmp->nsid_lock);
444 if (id >= 0)
445 rtnl_net_notifyid(tmp, RTM_DELNSID, id);
446 }
447 spin_lock_bh(&net->nsid_lock);
448 idr_destroy(&net->netns_ids);
449 spin_unlock_bh(&net->nsid_lock);
450
451 }
452 rtnl_unlock();
453
454 /*
455 * Another CPU might be rcu-iterating the list, wait for it.
456 * This needs to be before calling the exit() notifiers, so
457 * the rcu_barrier() below isn't sufficient alone.
458 */
459 synchronize_rcu();
460
461 /* Run all of the network namespace exit methods */
462 list_for_each_entry_reverse(ops, &pernet_list, list)
463 ops_exit_list(ops, &net_exit_list);
464
465 /* Free the net generic variables */
466 list_for_each_entry_reverse(ops, &pernet_list, list)
467 ops_free_list(ops, &net_exit_list);
468
469 mutex_unlock(&net_mutex);
470
471 /* Ensure there are no outstanding rcu callbacks using this
472 * network namespace.
473 */
474 rcu_barrier();
475
476 /* Finally it is safe to free my network namespace structure */
477 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
478 list_del_init(&net->exit_list);
479 dec_net_namespaces(net->ucounts);
480 put_user_ns(net->user_ns);
481 net_drop_ns(net);
482 }
483 }
484 static DECLARE_WORK(net_cleanup_work, cleanup_net);
485
486 void __put_net(struct net *net)
487 {
488 /* Cleanup the network namespace in process context */
489 unsigned long flags;
490
491 spin_lock_irqsave(&cleanup_list_lock, flags);
492 list_add(&net->cleanup_list, &cleanup_list);
493 spin_unlock_irqrestore(&cleanup_list_lock, flags);
494
495 queue_work(netns_wq, &net_cleanup_work);
496 }
497 EXPORT_SYMBOL_GPL(__put_net);
498
499 struct net *get_net_ns_by_fd(int fd)
500 {
501 struct file *file;
502 struct ns_common *ns;
503 struct net *net;
504
505 file = proc_ns_fget(fd);
506 if (IS_ERR(file))
507 return ERR_CAST(file);
508
509 ns = get_proc_ns(file_inode(file));
510 if (ns->ops == &netns_operations)
511 net = get_net(container_of(ns, struct net, ns));
512 else
513 net = ERR_PTR(-EINVAL);
514
515 fput(file);
516 return net;
517 }
518
519 #else
520 struct net *get_net_ns_by_fd(int fd)
521 {
522 return ERR_PTR(-EINVAL);
523 }
524 #endif
525 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
526
527 struct net *get_net_ns_by_pid(pid_t pid)
528 {
529 struct task_struct *tsk;
530 struct net *net;
531
532 /* Lookup the network namespace */
533 net = ERR_PTR(-ESRCH);
534 rcu_read_lock();
535 tsk = find_task_by_vpid(pid);
536 if (tsk) {
537 struct nsproxy *nsproxy;
538 task_lock(tsk);
539 nsproxy = tsk->nsproxy;
540 if (nsproxy)
541 net = get_net(nsproxy->net_ns);
542 task_unlock(tsk);
543 }
544 rcu_read_unlock();
545 return net;
546 }
547 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
548
549 static __net_init int net_ns_net_init(struct net *net)
550 {
551 #ifdef CONFIG_NET_NS
552 net->ns.ops = &netns_operations;
553 #endif
554 return ns_alloc_inum(&net->ns);
555 }
556
557 static __net_exit void net_ns_net_exit(struct net *net)
558 {
559 ns_free_inum(&net->ns);
560 }
561
562 static struct pernet_operations __net_initdata net_ns_ops = {
563 .init = net_ns_net_init,
564 .exit = net_ns_net_exit,
565 };
566
567 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
568 [NETNSA_NONE] = { .type = NLA_UNSPEC },
569 [NETNSA_NSID] = { .type = NLA_S32 },
570 [NETNSA_PID] = { .type = NLA_U32 },
571 [NETNSA_FD] = { .type = NLA_U32 },
572 };
573
574 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
575 {
576 struct net *net = sock_net(skb->sk);
577 struct nlattr *tb[NETNSA_MAX + 1];
578 struct net *peer;
579 int nsid, err;
580
581 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
582 rtnl_net_policy);
583 if (err < 0)
584 return err;
585 if (!tb[NETNSA_NSID])
586 return -EINVAL;
587 nsid = nla_get_s32(tb[NETNSA_NSID]);
588
589 if (tb[NETNSA_PID])
590 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
591 else if (tb[NETNSA_FD])
592 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
593 else
594 return -EINVAL;
595 if (IS_ERR(peer))
596 return PTR_ERR(peer);
597
598 spin_lock_bh(&net->nsid_lock);
599 if (__peernet2id(net, peer) >= 0) {
600 spin_unlock_bh(&net->nsid_lock);
601 err = -EEXIST;
602 goto out;
603 }
604
605 err = alloc_netid(net, peer, nsid);
606 spin_unlock_bh(&net->nsid_lock);
607 if (err >= 0) {
608 rtnl_net_notifyid(net, RTM_NEWNSID, err);
609 err = 0;
610 }
611 out:
612 put_net(peer);
613 return err;
614 }
615
616 static int rtnl_net_get_size(void)
617 {
618 return NLMSG_ALIGN(sizeof(struct rtgenmsg))
619 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
620 ;
621 }
622
623 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
624 int cmd, struct net *net, int nsid)
625 {
626 struct nlmsghdr *nlh;
627 struct rtgenmsg *rth;
628
629 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
630 if (!nlh)
631 return -EMSGSIZE;
632
633 rth = nlmsg_data(nlh);
634 rth->rtgen_family = AF_UNSPEC;
635
636 if (nla_put_s32(skb, NETNSA_NSID, nsid))
637 goto nla_put_failure;
638
639 nlmsg_end(skb, nlh);
640 return 0;
641
642 nla_put_failure:
643 nlmsg_cancel(skb, nlh);
644 return -EMSGSIZE;
645 }
646
647 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
648 {
649 struct net *net = sock_net(skb->sk);
650 struct nlattr *tb[NETNSA_MAX + 1];
651 struct sk_buff *msg;
652 struct net *peer;
653 int err, id;
654
655 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
656 rtnl_net_policy);
657 if (err < 0)
658 return err;
659 if (tb[NETNSA_PID])
660 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
661 else if (tb[NETNSA_FD])
662 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
663 else
664 return -EINVAL;
665
666 if (IS_ERR(peer))
667 return PTR_ERR(peer);
668
669 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
670 if (!msg) {
671 err = -ENOMEM;
672 goto out;
673 }
674
675 id = peernet2id(net, peer);
676 err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
677 RTM_NEWNSID, net, id);
678 if (err < 0)
679 goto err_out;
680
681 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
682 goto out;
683
684 err_out:
685 nlmsg_free(msg);
686 out:
687 put_net(peer);
688 return err;
689 }
690
691 struct rtnl_net_dump_cb {
692 struct net *net;
693 struct sk_buff *skb;
694 struct netlink_callback *cb;
695 int idx;
696 int s_idx;
697 };
698
699 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
700 {
701 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
702 int ret;
703
704 if (net_cb->idx < net_cb->s_idx)
705 goto cont;
706
707 ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
708 net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
709 RTM_NEWNSID, net_cb->net, id);
710 if (ret < 0)
711 return ret;
712
713 cont:
714 net_cb->idx++;
715 return 0;
716 }
717
718 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
719 {
720 struct net *net = sock_net(skb->sk);
721 struct rtnl_net_dump_cb net_cb = {
722 .net = net,
723 .skb = skb,
724 .cb = cb,
725 .idx = 0,
726 .s_idx = cb->args[0],
727 };
728
729 spin_lock_bh(&net->nsid_lock);
730 idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
731 spin_unlock_bh(&net->nsid_lock);
732
733 cb->args[0] = net_cb.idx;
734 return skb->len;
735 }
736
737 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
738 {
739 struct sk_buff *msg;
740 int err = -ENOMEM;
741
742 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
743 if (!msg)
744 goto out;
745
746 err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
747 if (err < 0)
748 goto err_out;
749
750 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
751 return;
752
753 err_out:
754 nlmsg_free(msg);
755 out:
756 rtnl_set_sk_err(net, RTNLGRP_NSID, err);
757 }
758
759 static int __init net_ns_init(void)
760 {
761 struct net_generic *ng;
762
763 #ifdef CONFIG_NET_NS
764 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
765 SMP_CACHE_BYTES,
766 SLAB_PANIC, NULL);
767
768 /* Create workqueue for cleanup */
769 netns_wq = create_singlethread_workqueue("netns");
770 if (!netns_wq)
771 panic("Could not create netns workq");
772 #endif
773
774 ng = net_alloc_generic();
775 if (!ng)
776 panic("Could not allocate generic netns");
777
778 rcu_assign_pointer(init_net.gen, ng);
779
780 mutex_lock(&net_mutex);
781 if (setup_net(&init_net, &init_user_ns))
782 panic("Could not setup the initial network namespace");
783
784 init_net_initialized = true;
785
786 rtnl_lock();
787 list_add_tail_rcu(&init_net.list, &net_namespace_list);
788 rtnl_unlock();
789
790 mutex_unlock(&net_mutex);
791
792 register_pernet_subsys(&net_ns_ops);
793
794 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
795 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
796 NULL);
797
798 return 0;
799 }
800
801 pure_initcall(net_ns_init);
802
803 #ifdef CONFIG_NET_NS
804 static int __register_pernet_operations(struct list_head *list,
805 struct pernet_operations *ops)
806 {
807 struct net *net;
808 int error;
809 LIST_HEAD(net_exit_list);
810
811 list_add_tail(&ops->list, list);
812 if (ops->init || (ops->id && ops->size)) {
813 for_each_net(net) {
814 error = ops_init(ops, net);
815 if (error)
816 goto out_undo;
817 list_add_tail(&net->exit_list, &net_exit_list);
818 }
819 }
820 return 0;
821
822 out_undo:
823 /* If I have an error cleanup all namespaces I initialized */
824 list_del(&ops->list);
825 ops_exit_list(ops, &net_exit_list);
826 ops_free_list(ops, &net_exit_list);
827 return error;
828 }
829
830 static void __unregister_pernet_operations(struct pernet_operations *ops)
831 {
832 struct net *net;
833 LIST_HEAD(net_exit_list);
834
835 list_del(&ops->list);
836 for_each_net(net)
837 list_add_tail(&net->exit_list, &net_exit_list);
838 ops_exit_list(ops, &net_exit_list);
839 ops_free_list(ops, &net_exit_list);
840 }
841
842 #else
843
844 static int __register_pernet_operations(struct list_head *list,
845 struct pernet_operations *ops)
846 {
847 if (!init_net_initialized) {
848 list_add_tail(&ops->list, list);
849 return 0;
850 }
851
852 return ops_init(ops, &init_net);
853 }
854
855 static void __unregister_pernet_operations(struct pernet_operations *ops)
856 {
857 if (!init_net_initialized) {
858 list_del(&ops->list);
859 } else {
860 LIST_HEAD(net_exit_list);
861 list_add(&init_net.exit_list, &net_exit_list);
862 ops_exit_list(ops, &net_exit_list);
863 ops_free_list(ops, &net_exit_list);
864 }
865 }
866
867 #endif /* CONFIG_NET_NS */
868
869 static DEFINE_IDA(net_generic_ids);
870
871 static int register_pernet_operations(struct list_head *list,
872 struct pernet_operations *ops)
873 {
874 int error;
875
876 if (ops->id) {
877 again:
878 error = ida_get_new_above(&net_generic_ids, MIN_PERNET_OPS_ID, ops->id);
879 if (error < 0) {
880 if (error == -EAGAIN) {
881 ida_pre_get(&net_generic_ids, GFP_KERNEL);
882 goto again;
883 }
884 return error;
885 }
886 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
887 }
888 error = __register_pernet_operations(list, ops);
889 if (error) {
890 rcu_barrier();
891 if (ops->id)
892 ida_remove(&net_generic_ids, *ops->id);
893 }
894
895 return error;
896 }
897
898 static void unregister_pernet_operations(struct pernet_operations *ops)
899 {
900
901 __unregister_pernet_operations(ops);
902 rcu_barrier();
903 if (ops->id)
904 ida_remove(&net_generic_ids, *ops->id);
905 }
906
907 /**
908 * register_pernet_subsys - register a network namespace subsystem
909 * @ops: pernet operations structure for the subsystem
910 *
911 * Register a subsystem which has init and exit functions
912 * that are called when network namespaces are created and
913 * destroyed respectively.
914 *
915 * When registered all network namespace init functions are
916 * called for every existing network namespace. Allowing kernel
917 * modules to have a race free view of the set of network namespaces.
918 *
919 * When a new network namespace is created all of the init
920 * methods are called in the order in which they were registered.
921 *
922 * When a network namespace is destroyed all of the exit methods
923 * are called in the reverse of the order with which they were
924 * registered.
925 */
926 int register_pernet_subsys(struct pernet_operations *ops)
927 {
928 int error;
929 mutex_lock(&net_mutex);
930 error = register_pernet_operations(first_device, ops);
931 mutex_unlock(&net_mutex);
932 return error;
933 }
934 EXPORT_SYMBOL_GPL(register_pernet_subsys);
935
936 /**
937 * unregister_pernet_subsys - unregister a network namespace subsystem
938 * @ops: pernet operations structure to manipulate
939 *
940 * Remove the pernet operations structure from the list to be
941 * used when network namespaces are created or destroyed. In
942 * addition run the exit method for all existing network
943 * namespaces.
944 */
945 void unregister_pernet_subsys(struct pernet_operations *ops)
946 {
947 mutex_lock(&net_mutex);
948 unregister_pernet_operations(ops);
949 mutex_unlock(&net_mutex);
950 }
951 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
952
953 /**
954 * register_pernet_device - register a network namespace device
955 * @ops: pernet operations structure for the subsystem
956 *
957 * Register a device which has init and exit functions
958 * that are called when network namespaces are created and
959 * destroyed respectively.
960 *
961 * When registered all network namespace init functions are
962 * called for every existing network namespace. Allowing kernel
963 * modules to have a race free view of the set of network namespaces.
964 *
965 * When a new network namespace is created all of the init
966 * methods are called in the order in which they were registered.
967 *
968 * When a network namespace is destroyed all of the exit methods
969 * are called in the reverse of the order with which they were
970 * registered.
971 */
972 int register_pernet_device(struct pernet_operations *ops)
973 {
974 int error;
975 mutex_lock(&net_mutex);
976 error = register_pernet_operations(&pernet_list, ops);
977 if (!error && (first_device == &pernet_list))
978 first_device = &ops->list;
979 mutex_unlock(&net_mutex);
980 return error;
981 }
982 EXPORT_SYMBOL_GPL(register_pernet_device);
983
984 /**
985 * unregister_pernet_device - unregister a network namespace netdevice
986 * @ops: pernet operations structure to manipulate
987 *
988 * Remove the pernet operations structure from the list to be
989 * used when network namespaces are created or destroyed. In
990 * addition run the exit method for all existing network
991 * namespaces.
992 */
993 void unregister_pernet_device(struct pernet_operations *ops)
994 {
995 mutex_lock(&net_mutex);
996 if (&ops->list == first_device)
997 first_device = first_device->next;
998 unregister_pernet_operations(ops);
999 mutex_unlock(&net_mutex);
1000 }
1001 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1002
1003 #ifdef CONFIG_NET_NS
1004 static struct ns_common *netns_get(struct task_struct *task)
1005 {
1006 struct net *net = NULL;
1007 struct nsproxy *nsproxy;
1008
1009 task_lock(task);
1010 nsproxy = task->nsproxy;
1011 if (nsproxy)
1012 net = get_net(nsproxy->net_ns);
1013 task_unlock(task);
1014
1015 return net ? &net->ns : NULL;
1016 }
1017
1018 static inline struct net *to_net_ns(struct ns_common *ns)
1019 {
1020 return container_of(ns, struct net, ns);
1021 }
1022
1023 static void netns_put(struct ns_common *ns)
1024 {
1025 put_net(to_net_ns(ns));
1026 }
1027
1028 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1029 {
1030 struct net *net = to_net_ns(ns);
1031
1032 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1033 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1034 return -EPERM;
1035
1036 put_net(nsproxy->net_ns);
1037 nsproxy->net_ns = get_net(net);
1038 return 0;
1039 }
1040
1041 static struct user_namespace *netns_owner(struct ns_common *ns)
1042 {
1043 return to_net_ns(ns)->user_ns;
1044 }
1045
1046 const struct proc_ns_operations netns_operations = {
1047 .name = "net",
1048 .type = CLONE_NEWNET,
1049 .get = netns_get,
1050 .put = netns_put,
1051 .install = netns_install,
1052 .owner = netns_owner,
1053 };
1054 #endif