]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - net/core/net_namespace.c
net: Allow pernet_operations to be executed in parallel
[mirror_ubuntu-eoan-kernel.git] / net / core / net_namespace.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/sched/task.h>
20
21 #include <net/sock.h>
22 #include <net/netlink.h>
23 #include <net/net_namespace.h>
24 #include <net/netns/generic.h>
25
26 /*
27 * Our network namespace constructor/destructor lists
28 */
29
30 static LIST_HEAD(pernet_list);
31 static struct list_head *first_device = &pernet_list;
32 /* Used only if there are !async pernet_operations registered */
33 DEFINE_MUTEX(net_mutex);
34
35 LIST_HEAD(net_namespace_list);
36 EXPORT_SYMBOL_GPL(net_namespace_list);
37
38 struct net init_net = {
39 .count = REFCOUNT_INIT(1),
40 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
41 };
42 EXPORT_SYMBOL(init_net);
43
44 static bool init_net_initialized;
45 static unsigned nr_sync_pernet_ops;
46 /*
47 * net_sem: protects: pernet_list, net_generic_ids, nr_sync_pernet_ops,
48 * init_net_initialized and first_device pointer.
49 */
50 DECLARE_RWSEM(net_sem);
51
52 #define MIN_PERNET_OPS_ID \
53 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
54
55 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
56
57 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
58
59 static struct net_generic *net_alloc_generic(void)
60 {
61 struct net_generic *ng;
62 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
63
64 ng = kzalloc(generic_size, GFP_KERNEL);
65 if (ng)
66 ng->s.len = max_gen_ptrs;
67
68 return ng;
69 }
70
71 static int net_assign_generic(struct net *net, unsigned int id, void *data)
72 {
73 struct net_generic *ng, *old_ng;
74
75 BUG_ON(id < MIN_PERNET_OPS_ID);
76
77 old_ng = rcu_dereference_protected(net->gen,
78 lockdep_is_held(&net_sem));
79 if (old_ng->s.len > id) {
80 old_ng->ptr[id] = data;
81 return 0;
82 }
83
84 ng = net_alloc_generic();
85 if (ng == NULL)
86 return -ENOMEM;
87
88 /*
89 * Some synchronisation notes:
90 *
91 * The net_generic explores the net->gen array inside rcu
92 * read section. Besides once set the net->gen->ptr[x]
93 * pointer never changes (see rules in netns/generic.h).
94 *
95 * That said, we simply duplicate this array and schedule
96 * the old copy for kfree after a grace period.
97 */
98
99 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
100 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
101 ng->ptr[id] = data;
102
103 rcu_assign_pointer(net->gen, ng);
104 kfree_rcu(old_ng, s.rcu);
105 return 0;
106 }
107
108 static int ops_init(const struct pernet_operations *ops, struct net *net)
109 {
110 int err = -ENOMEM;
111 void *data = NULL;
112
113 if (ops->id && ops->size) {
114 data = kzalloc(ops->size, GFP_KERNEL);
115 if (!data)
116 goto out;
117
118 err = net_assign_generic(net, *ops->id, data);
119 if (err)
120 goto cleanup;
121 }
122 err = 0;
123 if (ops->init)
124 err = ops->init(net);
125 if (!err)
126 return 0;
127
128 cleanup:
129 kfree(data);
130
131 out:
132 return err;
133 }
134
135 static void ops_free(const struct pernet_operations *ops, struct net *net)
136 {
137 if (ops->id && ops->size) {
138 kfree(net_generic(net, *ops->id));
139 }
140 }
141
142 static void ops_exit_list(const struct pernet_operations *ops,
143 struct list_head *net_exit_list)
144 {
145 struct net *net;
146 if (ops->exit) {
147 list_for_each_entry(net, net_exit_list, exit_list)
148 ops->exit(net);
149 }
150 if (ops->exit_batch)
151 ops->exit_batch(net_exit_list);
152 }
153
154 static void ops_free_list(const struct pernet_operations *ops,
155 struct list_head *net_exit_list)
156 {
157 struct net *net;
158 if (ops->size && ops->id) {
159 list_for_each_entry(net, net_exit_list, exit_list)
160 ops_free(ops, net);
161 }
162 }
163
164 /* should be called with nsid_lock held */
165 static int alloc_netid(struct net *net, struct net *peer, int reqid)
166 {
167 int min = 0, max = 0;
168
169 if (reqid >= 0) {
170 min = reqid;
171 max = reqid + 1;
172 }
173
174 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
175 }
176
177 /* This function is used by idr_for_each(). If net is equal to peer, the
178 * function returns the id so that idr_for_each() stops. Because we cannot
179 * returns the id 0 (idr_for_each() will not stop), we return the magic value
180 * NET_ID_ZERO (-1) for it.
181 */
182 #define NET_ID_ZERO -1
183 static int net_eq_idr(int id, void *net, void *peer)
184 {
185 if (net_eq(net, peer))
186 return id ? : NET_ID_ZERO;
187 return 0;
188 }
189
190 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
191 * is set to true, thus the caller knows that the new id must be notified via
192 * rtnl.
193 */
194 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
195 {
196 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
197 bool alloc_it = *alloc;
198
199 *alloc = false;
200
201 /* Magic value for id 0. */
202 if (id == NET_ID_ZERO)
203 return 0;
204 if (id > 0)
205 return id;
206
207 if (alloc_it) {
208 id = alloc_netid(net, peer, -1);
209 *alloc = true;
210 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
211 }
212
213 return NETNSA_NSID_NOT_ASSIGNED;
214 }
215
216 /* should be called with nsid_lock held */
217 static int __peernet2id(struct net *net, struct net *peer)
218 {
219 bool no = false;
220
221 return __peernet2id_alloc(net, peer, &no);
222 }
223
224 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
225 /* This function returns the id of a peer netns. If no id is assigned, one will
226 * be allocated and returned.
227 */
228 int peernet2id_alloc(struct net *net, struct net *peer)
229 {
230 bool alloc = false, alive = false;
231 int id;
232
233 if (refcount_read(&net->count) == 0)
234 return NETNSA_NSID_NOT_ASSIGNED;
235 spin_lock_bh(&net->nsid_lock);
236 /*
237 * When peer is obtained from RCU lists, we may race with
238 * its cleanup. Check whether it's alive, and this guarantees
239 * we never hash a peer back to net->netns_ids, after it has
240 * just been idr_remove()'d from there in cleanup_net().
241 */
242 if (maybe_get_net(peer))
243 alive = alloc = true;
244 id = __peernet2id_alloc(net, peer, &alloc);
245 spin_unlock_bh(&net->nsid_lock);
246 if (alloc && id >= 0)
247 rtnl_net_notifyid(net, RTM_NEWNSID, id);
248 if (alive)
249 put_net(peer);
250 return id;
251 }
252 EXPORT_SYMBOL_GPL(peernet2id_alloc);
253
254 /* This function returns, if assigned, the id of a peer netns. */
255 int peernet2id(struct net *net, struct net *peer)
256 {
257 int id;
258
259 spin_lock_bh(&net->nsid_lock);
260 id = __peernet2id(net, peer);
261 spin_unlock_bh(&net->nsid_lock);
262 return id;
263 }
264 EXPORT_SYMBOL(peernet2id);
265
266 /* This function returns true is the peer netns has an id assigned into the
267 * current netns.
268 */
269 bool peernet_has_id(struct net *net, struct net *peer)
270 {
271 return peernet2id(net, peer) >= 0;
272 }
273
274 struct net *get_net_ns_by_id(struct net *net, int id)
275 {
276 struct net *peer;
277
278 if (id < 0)
279 return NULL;
280
281 rcu_read_lock();
282 peer = idr_find(&net->netns_ids, id);
283 if (peer)
284 peer = maybe_get_net(peer);
285 rcu_read_unlock();
286
287 return peer;
288 }
289
290 /*
291 * setup_net runs the initializers for the network namespace object.
292 */
293 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
294 {
295 /* Must be called with net_sem held */
296 const struct pernet_operations *ops, *saved_ops;
297 int error = 0;
298 LIST_HEAD(net_exit_list);
299
300 refcount_set(&net->count, 1);
301 refcount_set(&net->passive, 1);
302 net->dev_base_seq = 1;
303 net->user_ns = user_ns;
304 idr_init(&net->netns_ids);
305 spin_lock_init(&net->nsid_lock);
306
307 list_for_each_entry(ops, &pernet_list, list) {
308 error = ops_init(ops, net);
309 if (error < 0)
310 goto out_undo;
311 }
312 rtnl_lock();
313 list_add_tail_rcu(&net->list, &net_namespace_list);
314 rtnl_unlock();
315 out:
316 return error;
317
318 out_undo:
319 /* Walk through the list backwards calling the exit functions
320 * for the pernet modules whose init functions did not fail.
321 */
322 list_add(&net->exit_list, &net_exit_list);
323 saved_ops = ops;
324 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
325 ops_exit_list(ops, &net_exit_list);
326
327 ops = saved_ops;
328 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
329 ops_free_list(ops, &net_exit_list);
330
331 rcu_barrier();
332 goto out;
333 }
334
335 static int __net_init net_defaults_init_net(struct net *net)
336 {
337 net->core.sysctl_somaxconn = SOMAXCONN;
338 return 0;
339 }
340
341 static struct pernet_operations net_defaults_ops = {
342 .init = net_defaults_init_net,
343 };
344
345 static __init int net_defaults_init(void)
346 {
347 if (register_pernet_subsys(&net_defaults_ops))
348 panic("Cannot initialize net default settings");
349
350 return 0;
351 }
352
353 core_initcall(net_defaults_init);
354
355 #ifdef CONFIG_NET_NS
356 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
357 {
358 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
359 }
360
361 static void dec_net_namespaces(struct ucounts *ucounts)
362 {
363 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
364 }
365
366 static struct kmem_cache *net_cachep;
367 static struct workqueue_struct *netns_wq;
368
369 static struct net *net_alloc(void)
370 {
371 struct net *net = NULL;
372 struct net_generic *ng;
373
374 ng = net_alloc_generic();
375 if (!ng)
376 goto out;
377
378 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
379 if (!net)
380 goto out_free;
381
382 rcu_assign_pointer(net->gen, ng);
383 out:
384 return net;
385
386 out_free:
387 kfree(ng);
388 goto out;
389 }
390
391 static void net_free(struct net *net)
392 {
393 kfree(rcu_access_pointer(net->gen));
394 kmem_cache_free(net_cachep, net);
395 }
396
397 void net_drop_ns(void *p)
398 {
399 struct net *ns = p;
400 if (ns && refcount_dec_and_test(&ns->passive))
401 net_free(ns);
402 }
403
404 struct net *copy_net_ns(unsigned long flags,
405 struct user_namespace *user_ns, struct net *old_net)
406 {
407 struct ucounts *ucounts;
408 struct net *net;
409 int rv;
410
411 if (!(flags & CLONE_NEWNET))
412 return get_net(old_net);
413
414 ucounts = inc_net_namespaces(user_ns);
415 if (!ucounts)
416 return ERR_PTR(-ENOSPC);
417
418 net = net_alloc();
419 if (!net) {
420 rv = -ENOMEM;
421 goto dec_ucounts;
422 }
423 refcount_set(&net->passive, 1);
424 net->ucounts = ucounts;
425 get_user_ns(user_ns);
426
427 rv = down_read_killable(&net_sem);
428 if (rv < 0)
429 goto put_userns;
430 if (nr_sync_pernet_ops) {
431 rv = mutex_lock_killable(&net_mutex);
432 if (rv < 0)
433 goto up_read;
434 }
435 rv = setup_net(net, user_ns);
436 if (nr_sync_pernet_ops)
437 mutex_unlock(&net_mutex);
438 up_read:
439 up_read(&net_sem);
440 if (rv < 0) {
441 put_userns:
442 put_user_ns(user_ns);
443 net_drop_ns(net);
444 dec_ucounts:
445 dec_net_namespaces(ucounts);
446 return ERR_PTR(rv);
447 }
448 return net;
449 }
450
451 static void unhash_nsid(struct net *net, struct net *last)
452 {
453 struct net *tmp;
454 /* This function is only called from cleanup_net() work,
455 * and this work is the only process, that may delete
456 * a net from net_namespace_list. So, when the below
457 * is executing, the list may only grow. Thus, we do not
458 * use for_each_net_rcu() or rtnl_lock().
459 */
460 for_each_net(tmp) {
461 int id;
462
463 spin_lock_bh(&tmp->nsid_lock);
464 id = __peernet2id(tmp, net);
465 if (id >= 0)
466 idr_remove(&tmp->netns_ids, id);
467 spin_unlock_bh(&tmp->nsid_lock);
468 if (id >= 0)
469 rtnl_net_notifyid(tmp, RTM_DELNSID, id);
470 if (tmp == last)
471 break;
472 }
473 spin_lock_bh(&net->nsid_lock);
474 idr_destroy(&net->netns_ids);
475 spin_unlock_bh(&net->nsid_lock);
476 }
477
478 static DEFINE_SPINLOCK(cleanup_list_lock);
479 static LIST_HEAD(cleanup_list); /* Must hold cleanup_list_lock to touch */
480
481 static void cleanup_net(struct work_struct *work)
482 {
483 const struct pernet_operations *ops;
484 struct net *net, *tmp, *last;
485 struct list_head net_kill_list;
486 LIST_HEAD(net_exit_list);
487
488 /* Atomically snapshot the list of namespaces to cleanup */
489 spin_lock_irq(&cleanup_list_lock);
490 list_replace_init(&cleanup_list, &net_kill_list);
491 spin_unlock_irq(&cleanup_list_lock);
492
493 down_read(&net_sem);
494 if (nr_sync_pernet_ops)
495 mutex_lock(&net_mutex);
496
497 /* Don't let anyone else find us. */
498 rtnl_lock();
499 list_for_each_entry(net, &net_kill_list, cleanup_list)
500 list_del_rcu(&net->list);
501 /* Cache last net. After we unlock rtnl, no one new net
502 * added to net_namespace_list can assign nsid pointer
503 * to a net from net_kill_list (see peernet2id_alloc()).
504 * So, we skip them in unhash_nsid().
505 *
506 * Note, that unhash_nsid() does not delete nsid links
507 * between net_kill_list's nets, as they've already
508 * deleted from net_namespace_list. But, this would be
509 * useless anyway, as netns_ids are destroyed there.
510 */
511 last = list_last_entry(&net_namespace_list, struct net, list);
512 rtnl_unlock();
513
514 list_for_each_entry(net, &net_kill_list, cleanup_list) {
515 unhash_nsid(net, last);
516 list_add_tail(&net->exit_list, &net_exit_list);
517 }
518
519 /*
520 * Another CPU might be rcu-iterating the list, wait for it.
521 * This needs to be before calling the exit() notifiers, so
522 * the rcu_barrier() below isn't sufficient alone.
523 */
524 synchronize_rcu();
525
526 /* Run all of the network namespace exit methods */
527 list_for_each_entry_reverse(ops, &pernet_list, list)
528 ops_exit_list(ops, &net_exit_list);
529
530 if (nr_sync_pernet_ops)
531 mutex_unlock(&net_mutex);
532
533 /* Free the net generic variables */
534 list_for_each_entry_reverse(ops, &pernet_list, list)
535 ops_free_list(ops, &net_exit_list);
536
537 up_read(&net_sem);
538
539 /* Ensure there are no outstanding rcu callbacks using this
540 * network namespace.
541 */
542 rcu_barrier();
543
544 /* Finally it is safe to free my network namespace structure */
545 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
546 list_del_init(&net->exit_list);
547 dec_net_namespaces(net->ucounts);
548 put_user_ns(net->user_ns);
549 net_drop_ns(net);
550 }
551 }
552
553 /**
554 * net_ns_barrier - wait until concurrent net_cleanup_work is done
555 *
556 * cleanup_net runs from work queue and will first remove namespaces
557 * from the global list, then run net exit functions.
558 *
559 * Call this in module exit path to make sure that all netns
560 * ->exit ops have been invoked before the function is removed.
561 */
562 void net_ns_barrier(void)
563 {
564 down_write(&net_sem);
565 mutex_lock(&net_mutex);
566 mutex_unlock(&net_mutex);
567 up_write(&net_sem);
568 }
569 EXPORT_SYMBOL(net_ns_barrier);
570
571 static DECLARE_WORK(net_cleanup_work, cleanup_net);
572
573 void __put_net(struct net *net)
574 {
575 /* Cleanup the network namespace in process context */
576 unsigned long flags;
577
578 spin_lock_irqsave(&cleanup_list_lock, flags);
579 list_add(&net->cleanup_list, &cleanup_list);
580 spin_unlock_irqrestore(&cleanup_list_lock, flags);
581
582 queue_work(netns_wq, &net_cleanup_work);
583 }
584 EXPORT_SYMBOL_GPL(__put_net);
585
586 struct net *get_net_ns_by_fd(int fd)
587 {
588 struct file *file;
589 struct ns_common *ns;
590 struct net *net;
591
592 file = proc_ns_fget(fd);
593 if (IS_ERR(file))
594 return ERR_CAST(file);
595
596 ns = get_proc_ns(file_inode(file));
597 if (ns->ops == &netns_operations)
598 net = get_net(container_of(ns, struct net, ns));
599 else
600 net = ERR_PTR(-EINVAL);
601
602 fput(file);
603 return net;
604 }
605
606 #else
607 struct net *get_net_ns_by_fd(int fd)
608 {
609 return ERR_PTR(-EINVAL);
610 }
611 #endif
612 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
613
614 struct net *get_net_ns_by_pid(pid_t pid)
615 {
616 struct task_struct *tsk;
617 struct net *net;
618
619 /* Lookup the network namespace */
620 net = ERR_PTR(-ESRCH);
621 rcu_read_lock();
622 tsk = find_task_by_vpid(pid);
623 if (tsk) {
624 struct nsproxy *nsproxy;
625 task_lock(tsk);
626 nsproxy = tsk->nsproxy;
627 if (nsproxy)
628 net = get_net(nsproxy->net_ns);
629 task_unlock(tsk);
630 }
631 rcu_read_unlock();
632 return net;
633 }
634 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
635
636 static __net_init int net_ns_net_init(struct net *net)
637 {
638 #ifdef CONFIG_NET_NS
639 net->ns.ops = &netns_operations;
640 #endif
641 return ns_alloc_inum(&net->ns);
642 }
643
644 static __net_exit void net_ns_net_exit(struct net *net)
645 {
646 ns_free_inum(&net->ns);
647 }
648
649 static struct pernet_operations __net_initdata net_ns_ops = {
650 .init = net_ns_net_init,
651 .exit = net_ns_net_exit,
652 };
653
654 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
655 [NETNSA_NONE] = { .type = NLA_UNSPEC },
656 [NETNSA_NSID] = { .type = NLA_S32 },
657 [NETNSA_PID] = { .type = NLA_U32 },
658 [NETNSA_FD] = { .type = NLA_U32 },
659 };
660
661 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
662 struct netlink_ext_ack *extack)
663 {
664 struct net *net = sock_net(skb->sk);
665 struct nlattr *tb[NETNSA_MAX + 1];
666 struct nlattr *nla;
667 struct net *peer;
668 int nsid, err;
669
670 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
671 rtnl_net_policy, extack);
672 if (err < 0)
673 return err;
674 if (!tb[NETNSA_NSID]) {
675 NL_SET_ERR_MSG(extack, "nsid is missing");
676 return -EINVAL;
677 }
678 nsid = nla_get_s32(tb[NETNSA_NSID]);
679
680 if (tb[NETNSA_PID]) {
681 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
682 nla = tb[NETNSA_PID];
683 } else if (tb[NETNSA_FD]) {
684 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
685 nla = tb[NETNSA_FD];
686 } else {
687 NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
688 return -EINVAL;
689 }
690 if (IS_ERR(peer)) {
691 NL_SET_BAD_ATTR(extack, nla);
692 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
693 return PTR_ERR(peer);
694 }
695
696 spin_lock_bh(&net->nsid_lock);
697 if (__peernet2id(net, peer) >= 0) {
698 spin_unlock_bh(&net->nsid_lock);
699 err = -EEXIST;
700 NL_SET_BAD_ATTR(extack, nla);
701 NL_SET_ERR_MSG(extack,
702 "Peer netns already has a nsid assigned");
703 goto out;
704 }
705
706 err = alloc_netid(net, peer, nsid);
707 spin_unlock_bh(&net->nsid_lock);
708 if (err >= 0) {
709 rtnl_net_notifyid(net, RTM_NEWNSID, err);
710 err = 0;
711 } else if (err == -ENOSPC && nsid >= 0) {
712 err = -EEXIST;
713 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
714 NL_SET_ERR_MSG(extack, "The specified nsid is already used");
715 }
716 out:
717 put_net(peer);
718 return err;
719 }
720
721 static int rtnl_net_get_size(void)
722 {
723 return NLMSG_ALIGN(sizeof(struct rtgenmsg))
724 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
725 ;
726 }
727
728 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
729 int cmd, struct net *net, int nsid)
730 {
731 struct nlmsghdr *nlh;
732 struct rtgenmsg *rth;
733
734 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
735 if (!nlh)
736 return -EMSGSIZE;
737
738 rth = nlmsg_data(nlh);
739 rth->rtgen_family = AF_UNSPEC;
740
741 if (nla_put_s32(skb, NETNSA_NSID, nsid))
742 goto nla_put_failure;
743
744 nlmsg_end(skb, nlh);
745 return 0;
746
747 nla_put_failure:
748 nlmsg_cancel(skb, nlh);
749 return -EMSGSIZE;
750 }
751
752 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
753 struct netlink_ext_ack *extack)
754 {
755 struct net *net = sock_net(skb->sk);
756 struct nlattr *tb[NETNSA_MAX + 1];
757 struct nlattr *nla;
758 struct sk_buff *msg;
759 struct net *peer;
760 int err, id;
761
762 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
763 rtnl_net_policy, extack);
764 if (err < 0)
765 return err;
766 if (tb[NETNSA_PID]) {
767 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
768 nla = tb[NETNSA_PID];
769 } else if (tb[NETNSA_FD]) {
770 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
771 nla = tb[NETNSA_FD];
772 } else {
773 NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
774 return -EINVAL;
775 }
776
777 if (IS_ERR(peer)) {
778 NL_SET_BAD_ATTR(extack, nla);
779 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
780 return PTR_ERR(peer);
781 }
782
783 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
784 if (!msg) {
785 err = -ENOMEM;
786 goto out;
787 }
788
789 id = peernet2id(net, peer);
790 err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
791 RTM_NEWNSID, net, id);
792 if (err < 0)
793 goto err_out;
794
795 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
796 goto out;
797
798 err_out:
799 nlmsg_free(msg);
800 out:
801 put_net(peer);
802 return err;
803 }
804
805 struct rtnl_net_dump_cb {
806 struct net *net;
807 struct sk_buff *skb;
808 struct netlink_callback *cb;
809 int idx;
810 int s_idx;
811 };
812
813 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
814 {
815 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
816 int ret;
817
818 if (net_cb->idx < net_cb->s_idx)
819 goto cont;
820
821 ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
822 net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
823 RTM_NEWNSID, net_cb->net, id);
824 if (ret < 0)
825 return ret;
826
827 cont:
828 net_cb->idx++;
829 return 0;
830 }
831
832 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
833 {
834 struct net *net = sock_net(skb->sk);
835 struct rtnl_net_dump_cb net_cb = {
836 .net = net,
837 .skb = skb,
838 .cb = cb,
839 .idx = 0,
840 .s_idx = cb->args[0],
841 };
842
843 spin_lock_bh(&net->nsid_lock);
844 idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
845 spin_unlock_bh(&net->nsid_lock);
846
847 cb->args[0] = net_cb.idx;
848 return skb->len;
849 }
850
851 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
852 {
853 struct sk_buff *msg;
854 int err = -ENOMEM;
855
856 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
857 if (!msg)
858 goto out;
859
860 err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
861 if (err < 0)
862 goto err_out;
863
864 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
865 return;
866
867 err_out:
868 nlmsg_free(msg);
869 out:
870 rtnl_set_sk_err(net, RTNLGRP_NSID, err);
871 }
872
873 static int __init net_ns_init(void)
874 {
875 struct net_generic *ng;
876
877 #ifdef CONFIG_NET_NS
878 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
879 SMP_CACHE_BYTES,
880 SLAB_PANIC, NULL);
881
882 /* Create workqueue for cleanup */
883 netns_wq = create_singlethread_workqueue("netns");
884 if (!netns_wq)
885 panic("Could not create netns workq");
886 #endif
887
888 ng = net_alloc_generic();
889 if (!ng)
890 panic("Could not allocate generic netns");
891
892 rcu_assign_pointer(init_net.gen, ng);
893
894 down_write(&net_sem);
895 if (setup_net(&init_net, &init_user_ns))
896 panic("Could not setup the initial network namespace");
897
898 init_net_initialized = true;
899 up_write(&net_sem);
900
901 register_pernet_subsys(&net_ns_ops);
902
903 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
904 RTNL_FLAG_DOIT_UNLOCKED);
905 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
906 RTNL_FLAG_DOIT_UNLOCKED);
907
908 return 0;
909 }
910
911 pure_initcall(net_ns_init);
912
913 #ifdef CONFIG_NET_NS
914 static int __register_pernet_operations(struct list_head *list,
915 struct pernet_operations *ops)
916 {
917 struct net *net;
918 int error;
919 LIST_HEAD(net_exit_list);
920
921 list_add_tail(&ops->list, list);
922 if (ops->init || (ops->id && ops->size)) {
923 for_each_net(net) {
924 error = ops_init(ops, net);
925 if (error)
926 goto out_undo;
927 list_add_tail(&net->exit_list, &net_exit_list);
928 }
929 }
930 return 0;
931
932 out_undo:
933 /* If I have an error cleanup all namespaces I initialized */
934 list_del(&ops->list);
935 ops_exit_list(ops, &net_exit_list);
936 ops_free_list(ops, &net_exit_list);
937 return error;
938 }
939
940 static void __unregister_pernet_operations(struct pernet_operations *ops)
941 {
942 struct net *net;
943 LIST_HEAD(net_exit_list);
944
945 list_del(&ops->list);
946 for_each_net(net)
947 list_add_tail(&net->exit_list, &net_exit_list);
948 ops_exit_list(ops, &net_exit_list);
949 ops_free_list(ops, &net_exit_list);
950 }
951
952 #else
953
954 static int __register_pernet_operations(struct list_head *list,
955 struct pernet_operations *ops)
956 {
957 if (!init_net_initialized) {
958 list_add_tail(&ops->list, list);
959 return 0;
960 }
961
962 return ops_init(ops, &init_net);
963 }
964
965 static void __unregister_pernet_operations(struct pernet_operations *ops)
966 {
967 if (!init_net_initialized) {
968 list_del(&ops->list);
969 } else {
970 LIST_HEAD(net_exit_list);
971 list_add(&init_net.exit_list, &net_exit_list);
972 ops_exit_list(ops, &net_exit_list);
973 ops_free_list(ops, &net_exit_list);
974 }
975 }
976
977 #endif /* CONFIG_NET_NS */
978
979 static DEFINE_IDA(net_generic_ids);
980
981 static int register_pernet_operations(struct list_head *list,
982 struct pernet_operations *ops)
983 {
984 int error;
985
986 if (ops->id) {
987 again:
988 error = ida_get_new_above(&net_generic_ids, MIN_PERNET_OPS_ID, ops->id);
989 if (error < 0) {
990 if (error == -EAGAIN) {
991 ida_pre_get(&net_generic_ids, GFP_KERNEL);
992 goto again;
993 }
994 return error;
995 }
996 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
997 }
998 error = __register_pernet_operations(list, ops);
999 if (error) {
1000 rcu_barrier();
1001 if (ops->id)
1002 ida_remove(&net_generic_ids, *ops->id);
1003 } else if (!ops->async) {
1004 pr_info_once("Pernet operations %ps are sync.\n", ops);
1005 nr_sync_pernet_ops++;
1006 }
1007
1008 return error;
1009 }
1010
1011 static void unregister_pernet_operations(struct pernet_operations *ops)
1012 {
1013 if (!ops->async)
1014 BUG_ON(nr_sync_pernet_ops-- == 0);
1015 __unregister_pernet_operations(ops);
1016 rcu_barrier();
1017 if (ops->id)
1018 ida_remove(&net_generic_ids, *ops->id);
1019 }
1020
1021 /**
1022 * register_pernet_subsys - register a network namespace subsystem
1023 * @ops: pernet operations structure for the subsystem
1024 *
1025 * Register a subsystem which has init and exit functions
1026 * that are called when network namespaces are created and
1027 * destroyed respectively.
1028 *
1029 * When registered all network namespace init functions are
1030 * called for every existing network namespace. Allowing kernel
1031 * modules to have a race free view of the set of network namespaces.
1032 *
1033 * When a new network namespace is created all of the init
1034 * methods are called in the order in which they were registered.
1035 *
1036 * When a network namespace is destroyed all of the exit methods
1037 * are called in the reverse of the order with which they were
1038 * registered.
1039 */
1040 int register_pernet_subsys(struct pernet_operations *ops)
1041 {
1042 int error;
1043 down_write(&net_sem);
1044 error = register_pernet_operations(first_device, ops);
1045 up_write(&net_sem);
1046 return error;
1047 }
1048 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1049
1050 /**
1051 * unregister_pernet_subsys - unregister a network namespace subsystem
1052 * @ops: pernet operations structure to manipulate
1053 *
1054 * Remove the pernet operations structure from the list to be
1055 * used when network namespaces are created or destroyed. In
1056 * addition run the exit method for all existing network
1057 * namespaces.
1058 */
1059 void unregister_pernet_subsys(struct pernet_operations *ops)
1060 {
1061 down_write(&net_sem);
1062 unregister_pernet_operations(ops);
1063 up_write(&net_sem);
1064 }
1065 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1066
1067 /**
1068 * register_pernet_device - register a network namespace device
1069 * @ops: pernet operations structure for the subsystem
1070 *
1071 * Register a device which has init and exit functions
1072 * that are called when network namespaces are created and
1073 * destroyed respectively.
1074 *
1075 * When registered all network namespace init functions are
1076 * called for every existing network namespace. Allowing kernel
1077 * modules to have a race free view of the set of network namespaces.
1078 *
1079 * When a new network namespace is created all of the init
1080 * methods are called in the order in which they were registered.
1081 *
1082 * When a network namespace is destroyed all of the exit methods
1083 * are called in the reverse of the order with which they were
1084 * registered.
1085 */
1086 int register_pernet_device(struct pernet_operations *ops)
1087 {
1088 int error;
1089 down_write(&net_sem);
1090 error = register_pernet_operations(&pernet_list, ops);
1091 if (!error && (first_device == &pernet_list))
1092 first_device = &ops->list;
1093 up_write(&net_sem);
1094 return error;
1095 }
1096 EXPORT_SYMBOL_GPL(register_pernet_device);
1097
1098 /**
1099 * unregister_pernet_device - unregister a network namespace netdevice
1100 * @ops: pernet operations structure to manipulate
1101 *
1102 * Remove the pernet operations structure from the list to be
1103 * used when network namespaces are created or destroyed. In
1104 * addition run the exit method for all existing network
1105 * namespaces.
1106 */
1107 void unregister_pernet_device(struct pernet_operations *ops)
1108 {
1109 down_write(&net_sem);
1110 if (&ops->list == first_device)
1111 first_device = first_device->next;
1112 unregister_pernet_operations(ops);
1113 up_write(&net_sem);
1114 }
1115 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1116
1117 #ifdef CONFIG_NET_NS
1118 static struct ns_common *netns_get(struct task_struct *task)
1119 {
1120 struct net *net = NULL;
1121 struct nsproxy *nsproxy;
1122
1123 task_lock(task);
1124 nsproxy = task->nsproxy;
1125 if (nsproxy)
1126 net = get_net(nsproxy->net_ns);
1127 task_unlock(task);
1128
1129 return net ? &net->ns : NULL;
1130 }
1131
1132 static inline struct net *to_net_ns(struct ns_common *ns)
1133 {
1134 return container_of(ns, struct net, ns);
1135 }
1136
1137 static void netns_put(struct ns_common *ns)
1138 {
1139 put_net(to_net_ns(ns));
1140 }
1141
1142 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1143 {
1144 struct net *net = to_net_ns(ns);
1145
1146 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1147 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1148 return -EPERM;
1149
1150 put_net(nsproxy->net_ns);
1151 nsproxy->net_ns = get_net(net);
1152 return 0;
1153 }
1154
1155 static struct user_namespace *netns_owner(struct ns_common *ns)
1156 {
1157 return to_net_ns(ns)->user_ns;
1158 }
1159
1160 const struct proc_ns_operations netns_operations = {
1161 .name = "net",
1162 .type = CLONE_NEWNET,
1163 .get = netns_get,
1164 .put = netns_put,
1165 .install = netns_install,
1166 .owner = netns_owner,
1167 };
1168 #endif