]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/net_namespace.c
netns: add and use net_ns_barrier
[mirror_ubuntu-artful-kernel.git] / net / core / net_namespace.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/sched/task.h>
20
21 #include <net/sock.h>
22 #include <net/netlink.h>
23 #include <net/net_namespace.h>
24 #include <net/netns/generic.h>
25
26 /*
27 * Our network namespace constructor/destructor lists
28 */
29
30 static LIST_HEAD(pernet_list);
31 static struct list_head *first_device = &pernet_list;
32 DEFINE_MUTEX(net_mutex);
33
34 LIST_HEAD(net_namespace_list);
35 EXPORT_SYMBOL_GPL(net_namespace_list);
36
37 struct net init_net = {
38 .count = ATOMIC_INIT(1),
39 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
40 };
41 EXPORT_SYMBOL(init_net);
42
43 static bool init_net_initialized;
44
45 #define MIN_PERNET_OPS_ID \
46 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
47
48 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
49
50 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
51
52 static struct net_generic *net_alloc_generic(void)
53 {
54 struct net_generic *ng;
55 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
56
57 ng = kzalloc(generic_size, GFP_KERNEL);
58 if (ng)
59 ng->s.len = max_gen_ptrs;
60
61 return ng;
62 }
63
64 static int net_assign_generic(struct net *net, unsigned int id, void *data)
65 {
66 struct net_generic *ng, *old_ng;
67
68 BUG_ON(!mutex_is_locked(&net_mutex));
69 BUG_ON(id < MIN_PERNET_OPS_ID);
70
71 old_ng = rcu_dereference_protected(net->gen,
72 lockdep_is_held(&net_mutex));
73 if (old_ng->s.len > id) {
74 old_ng->ptr[id] = data;
75 return 0;
76 }
77
78 ng = net_alloc_generic();
79 if (ng == NULL)
80 return -ENOMEM;
81
82 /*
83 * Some synchronisation notes:
84 *
85 * The net_generic explores the net->gen array inside rcu
86 * read section. Besides once set the net->gen->ptr[x]
87 * pointer never changes (see rules in netns/generic.h).
88 *
89 * That said, we simply duplicate this array and schedule
90 * the old copy for kfree after a grace period.
91 */
92
93 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
94 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
95 ng->ptr[id] = data;
96
97 rcu_assign_pointer(net->gen, ng);
98 kfree_rcu(old_ng, s.rcu);
99 return 0;
100 }
101
102 static int ops_init(const struct pernet_operations *ops, struct net *net)
103 {
104 int err = -ENOMEM;
105 void *data = NULL;
106
107 if (ops->id && ops->size) {
108 data = kzalloc(ops->size, GFP_KERNEL);
109 if (!data)
110 goto out;
111
112 err = net_assign_generic(net, *ops->id, data);
113 if (err)
114 goto cleanup;
115 }
116 err = 0;
117 if (ops->init)
118 err = ops->init(net);
119 if (!err)
120 return 0;
121
122 cleanup:
123 kfree(data);
124
125 out:
126 return err;
127 }
128
129 static void ops_free(const struct pernet_operations *ops, struct net *net)
130 {
131 if (ops->id && ops->size) {
132 kfree(net_generic(net, *ops->id));
133 }
134 }
135
136 static void ops_exit_list(const struct pernet_operations *ops,
137 struct list_head *net_exit_list)
138 {
139 struct net *net;
140 if (ops->exit) {
141 list_for_each_entry(net, net_exit_list, exit_list)
142 ops->exit(net);
143 }
144 if (ops->exit_batch)
145 ops->exit_batch(net_exit_list);
146 }
147
148 static void ops_free_list(const struct pernet_operations *ops,
149 struct list_head *net_exit_list)
150 {
151 struct net *net;
152 if (ops->size && ops->id) {
153 list_for_each_entry(net, net_exit_list, exit_list)
154 ops_free(ops, net);
155 }
156 }
157
158 /* should be called with nsid_lock held */
159 static int alloc_netid(struct net *net, struct net *peer, int reqid)
160 {
161 int min = 0, max = 0;
162
163 if (reqid >= 0) {
164 min = reqid;
165 max = reqid + 1;
166 }
167
168 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
169 }
170
171 /* This function is used by idr_for_each(). If net is equal to peer, the
172 * function returns the id so that idr_for_each() stops. Because we cannot
173 * returns the id 0 (idr_for_each() will not stop), we return the magic value
174 * NET_ID_ZERO (-1) for it.
175 */
176 #define NET_ID_ZERO -1
177 static int net_eq_idr(int id, void *net, void *peer)
178 {
179 if (net_eq(net, peer))
180 return id ? : NET_ID_ZERO;
181 return 0;
182 }
183
184 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
185 * is set to true, thus the caller knows that the new id must be notified via
186 * rtnl.
187 */
188 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
189 {
190 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
191 bool alloc_it = *alloc;
192
193 *alloc = false;
194
195 /* Magic value for id 0. */
196 if (id == NET_ID_ZERO)
197 return 0;
198 if (id > 0)
199 return id;
200
201 if (alloc_it) {
202 id = alloc_netid(net, peer, -1);
203 *alloc = true;
204 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
205 }
206
207 return NETNSA_NSID_NOT_ASSIGNED;
208 }
209
210 /* should be called with nsid_lock held */
211 static int __peernet2id(struct net *net, struct net *peer)
212 {
213 bool no = false;
214
215 return __peernet2id_alloc(net, peer, &no);
216 }
217
218 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
219 /* This function returns the id of a peer netns. If no id is assigned, one will
220 * be allocated and returned.
221 */
222 int peernet2id_alloc(struct net *net, struct net *peer)
223 {
224 bool alloc;
225 int id;
226
227 if (atomic_read(&net->count) == 0)
228 return NETNSA_NSID_NOT_ASSIGNED;
229 spin_lock_bh(&net->nsid_lock);
230 alloc = atomic_read(&peer->count) == 0 ? false : true;
231 id = __peernet2id_alloc(net, peer, &alloc);
232 spin_unlock_bh(&net->nsid_lock);
233 if (alloc && id >= 0)
234 rtnl_net_notifyid(net, RTM_NEWNSID, id);
235 return id;
236 }
237
238 /* This function returns, if assigned, the id of a peer netns. */
239 int peernet2id(struct net *net, struct net *peer)
240 {
241 int id;
242
243 spin_lock_bh(&net->nsid_lock);
244 id = __peernet2id(net, peer);
245 spin_unlock_bh(&net->nsid_lock);
246 return id;
247 }
248 EXPORT_SYMBOL(peernet2id);
249
250 /* This function returns true is the peer netns has an id assigned into the
251 * current netns.
252 */
253 bool peernet_has_id(struct net *net, struct net *peer)
254 {
255 return peernet2id(net, peer) >= 0;
256 }
257
258 struct net *get_net_ns_by_id(struct net *net, int id)
259 {
260 struct net *peer;
261
262 if (id < 0)
263 return NULL;
264
265 rcu_read_lock();
266 spin_lock_bh(&net->nsid_lock);
267 peer = idr_find(&net->netns_ids, id);
268 if (peer)
269 get_net(peer);
270 spin_unlock_bh(&net->nsid_lock);
271 rcu_read_unlock();
272
273 return peer;
274 }
275
276 /*
277 * setup_net runs the initializers for the network namespace object.
278 */
279 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
280 {
281 /* Must be called with net_mutex held */
282 const struct pernet_operations *ops, *saved_ops;
283 int error = 0;
284 LIST_HEAD(net_exit_list);
285
286 atomic_set(&net->count, 1);
287 atomic_set(&net->passive, 1);
288 net->dev_base_seq = 1;
289 net->user_ns = user_ns;
290 idr_init(&net->netns_ids);
291 spin_lock_init(&net->nsid_lock);
292
293 list_for_each_entry(ops, &pernet_list, list) {
294 error = ops_init(ops, net);
295 if (error < 0)
296 goto out_undo;
297 }
298 out:
299 return error;
300
301 out_undo:
302 /* Walk through the list backwards calling the exit functions
303 * for the pernet modules whose init functions did not fail.
304 */
305 list_add(&net->exit_list, &net_exit_list);
306 saved_ops = ops;
307 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
308 ops_exit_list(ops, &net_exit_list);
309
310 ops = saved_ops;
311 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
312 ops_free_list(ops, &net_exit_list);
313
314 rcu_barrier();
315 goto out;
316 }
317
318
319 #ifdef CONFIG_NET_NS
320 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
321 {
322 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
323 }
324
325 static void dec_net_namespaces(struct ucounts *ucounts)
326 {
327 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
328 }
329
330 static struct kmem_cache *net_cachep;
331 static struct workqueue_struct *netns_wq;
332
333 static struct net *net_alloc(void)
334 {
335 struct net *net = NULL;
336 struct net_generic *ng;
337
338 ng = net_alloc_generic();
339 if (!ng)
340 goto out;
341
342 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
343 if (!net)
344 goto out_free;
345
346 rcu_assign_pointer(net->gen, ng);
347 out:
348 return net;
349
350 out_free:
351 kfree(ng);
352 goto out;
353 }
354
355 static void net_free(struct net *net)
356 {
357 kfree(rcu_access_pointer(net->gen));
358 kmem_cache_free(net_cachep, net);
359 }
360
361 void net_drop_ns(void *p)
362 {
363 struct net *ns = p;
364 if (ns && atomic_dec_and_test(&ns->passive))
365 net_free(ns);
366 }
367
368 struct net *copy_net_ns(unsigned long flags,
369 struct user_namespace *user_ns, struct net *old_net)
370 {
371 struct ucounts *ucounts;
372 struct net *net;
373 int rv;
374
375 if (!(flags & CLONE_NEWNET))
376 return get_net(old_net);
377
378 ucounts = inc_net_namespaces(user_ns);
379 if (!ucounts)
380 return ERR_PTR(-ENOSPC);
381
382 net = net_alloc();
383 if (!net) {
384 dec_net_namespaces(ucounts);
385 return ERR_PTR(-ENOMEM);
386 }
387
388 get_user_ns(user_ns);
389
390 rv = mutex_lock_killable(&net_mutex);
391 if (rv < 0) {
392 net_free(net);
393 dec_net_namespaces(ucounts);
394 put_user_ns(user_ns);
395 return ERR_PTR(rv);
396 }
397
398 net->ucounts = ucounts;
399 rv = setup_net(net, user_ns);
400 if (rv == 0) {
401 rtnl_lock();
402 list_add_tail_rcu(&net->list, &net_namespace_list);
403 rtnl_unlock();
404 }
405 mutex_unlock(&net_mutex);
406 if (rv < 0) {
407 dec_net_namespaces(ucounts);
408 put_user_ns(user_ns);
409 net_drop_ns(net);
410 return ERR_PTR(rv);
411 }
412 return net;
413 }
414
415 static DEFINE_SPINLOCK(cleanup_list_lock);
416 static LIST_HEAD(cleanup_list); /* Must hold cleanup_list_lock to touch */
417
418 static void cleanup_net(struct work_struct *work)
419 {
420 const struct pernet_operations *ops;
421 struct net *net, *tmp;
422 struct list_head net_kill_list;
423 LIST_HEAD(net_exit_list);
424
425 /* Atomically snapshot the list of namespaces to cleanup */
426 spin_lock_irq(&cleanup_list_lock);
427 list_replace_init(&cleanup_list, &net_kill_list);
428 spin_unlock_irq(&cleanup_list_lock);
429
430 mutex_lock(&net_mutex);
431
432 /* Don't let anyone else find us. */
433 rtnl_lock();
434 list_for_each_entry(net, &net_kill_list, cleanup_list) {
435 list_del_rcu(&net->list);
436 list_add_tail(&net->exit_list, &net_exit_list);
437 for_each_net(tmp) {
438 int id;
439
440 spin_lock_bh(&tmp->nsid_lock);
441 id = __peernet2id(tmp, net);
442 if (id >= 0)
443 idr_remove(&tmp->netns_ids, id);
444 spin_unlock_bh(&tmp->nsid_lock);
445 if (id >= 0)
446 rtnl_net_notifyid(tmp, RTM_DELNSID, id);
447 }
448 spin_lock_bh(&net->nsid_lock);
449 idr_destroy(&net->netns_ids);
450 spin_unlock_bh(&net->nsid_lock);
451
452 }
453 rtnl_unlock();
454
455 /*
456 * Another CPU might be rcu-iterating the list, wait for it.
457 * This needs to be before calling the exit() notifiers, so
458 * the rcu_barrier() below isn't sufficient alone.
459 */
460 synchronize_rcu();
461
462 /* Run all of the network namespace exit methods */
463 list_for_each_entry_reverse(ops, &pernet_list, list)
464 ops_exit_list(ops, &net_exit_list);
465
466 /* Free the net generic variables */
467 list_for_each_entry_reverse(ops, &pernet_list, list)
468 ops_free_list(ops, &net_exit_list);
469
470 mutex_unlock(&net_mutex);
471
472 /* Ensure there are no outstanding rcu callbacks using this
473 * network namespace.
474 */
475 rcu_barrier();
476
477 /* Finally it is safe to free my network namespace structure */
478 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
479 list_del_init(&net->exit_list);
480 dec_net_namespaces(net->ucounts);
481 put_user_ns(net->user_ns);
482 net_drop_ns(net);
483 }
484 }
485
486 /**
487 * net_ns_barrier - wait until concurrent net_cleanup_work is done
488 *
489 * cleanup_net runs from work queue and will first remove namespaces
490 * from the global list, then run net exit functions.
491 *
492 * Call this in module exit path to make sure that all netns
493 * ->exit ops have been invoked before the function is removed.
494 */
495 void net_ns_barrier(void)
496 {
497 mutex_lock(&net_mutex);
498 mutex_unlock(&net_mutex);
499 }
500 EXPORT_SYMBOL(net_ns_barrier);
501
502 static DECLARE_WORK(net_cleanup_work, cleanup_net);
503
504 void __put_net(struct net *net)
505 {
506 /* Cleanup the network namespace in process context */
507 unsigned long flags;
508
509 spin_lock_irqsave(&cleanup_list_lock, flags);
510 list_add(&net->cleanup_list, &cleanup_list);
511 spin_unlock_irqrestore(&cleanup_list_lock, flags);
512
513 queue_work(netns_wq, &net_cleanup_work);
514 }
515 EXPORT_SYMBOL_GPL(__put_net);
516
517 struct net *get_net_ns_by_fd(int fd)
518 {
519 struct file *file;
520 struct ns_common *ns;
521 struct net *net;
522
523 file = proc_ns_fget(fd);
524 if (IS_ERR(file))
525 return ERR_CAST(file);
526
527 ns = get_proc_ns(file_inode(file));
528 if (ns->ops == &netns_operations)
529 net = get_net(container_of(ns, struct net, ns));
530 else
531 net = ERR_PTR(-EINVAL);
532
533 fput(file);
534 return net;
535 }
536
537 #else
538 struct net *get_net_ns_by_fd(int fd)
539 {
540 return ERR_PTR(-EINVAL);
541 }
542 #endif
543 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
544
545 struct net *get_net_ns_by_pid(pid_t pid)
546 {
547 struct task_struct *tsk;
548 struct net *net;
549
550 /* Lookup the network namespace */
551 net = ERR_PTR(-ESRCH);
552 rcu_read_lock();
553 tsk = find_task_by_vpid(pid);
554 if (tsk) {
555 struct nsproxy *nsproxy;
556 task_lock(tsk);
557 nsproxy = tsk->nsproxy;
558 if (nsproxy)
559 net = get_net(nsproxy->net_ns);
560 task_unlock(tsk);
561 }
562 rcu_read_unlock();
563 return net;
564 }
565 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
566
567 static __net_init int net_ns_net_init(struct net *net)
568 {
569 #ifdef CONFIG_NET_NS
570 net->ns.ops = &netns_operations;
571 #endif
572 return ns_alloc_inum(&net->ns);
573 }
574
575 static __net_exit void net_ns_net_exit(struct net *net)
576 {
577 ns_free_inum(&net->ns);
578 }
579
580 static struct pernet_operations __net_initdata net_ns_ops = {
581 .init = net_ns_net_init,
582 .exit = net_ns_net_exit,
583 };
584
585 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
586 [NETNSA_NONE] = { .type = NLA_UNSPEC },
587 [NETNSA_NSID] = { .type = NLA_S32 },
588 [NETNSA_PID] = { .type = NLA_U32 },
589 [NETNSA_FD] = { .type = NLA_U32 },
590 };
591
592 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
593 struct netlink_ext_ack *extack)
594 {
595 struct net *net = sock_net(skb->sk);
596 struct nlattr *tb[NETNSA_MAX + 1];
597 struct net *peer;
598 int nsid, err;
599
600 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
601 rtnl_net_policy, extack);
602 if (err < 0)
603 return err;
604 if (!tb[NETNSA_NSID])
605 return -EINVAL;
606 nsid = nla_get_s32(tb[NETNSA_NSID]);
607
608 if (tb[NETNSA_PID])
609 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
610 else if (tb[NETNSA_FD])
611 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
612 else
613 return -EINVAL;
614 if (IS_ERR(peer))
615 return PTR_ERR(peer);
616
617 spin_lock_bh(&net->nsid_lock);
618 if (__peernet2id(net, peer) >= 0) {
619 spin_unlock_bh(&net->nsid_lock);
620 err = -EEXIST;
621 goto out;
622 }
623
624 err = alloc_netid(net, peer, nsid);
625 spin_unlock_bh(&net->nsid_lock);
626 if (err >= 0) {
627 rtnl_net_notifyid(net, RTM_NEWNSID, err);
628 err = 0;
629 }
630 out:
631 put_net(peer);
632 return err;
633 }
634
635 static int rtnl_net_get_size(void)
636 {
637 return NLMSG_ALIGN(sizeof(struct rtgenmsg))
638 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
639 ;
640 }
641
642 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
643 int cmd, struct net *net, int nsid)
644 {
645 struct nlmsghdr *nlh;
646 struct rtgenmsg *rth;
647
648 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
649 if (!nlh)
650 return -EMSGSIZE;
651
652 rth = nlmsg_data(nlh);
653 rth->rtgen_family = AF_UNSPEC;
654
655 if (nla_put_s32(skb, NETNSA_NSID, nsid))
656 goto nla_put_failure;
657
658 nlmsg_end(skb, nlh);
659 return 0;
660
661 nla_put_failure:
662 nlmsg_cancel(skb, nlh);
663 return -EMSGSIZE;
664 }
665
666 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
667 struct netlink_ext_ack *extack)
668 {
669 struct net *net = sock_net(skb->sk);
670 struct nlattr *tb[NETNSA_MAX + 1];
671 struct sk_buff *msg;
672 struct net *peer;
673 int err, id;
674
675 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
676 rtnl_net_policy, extack);
677 if (err < 0)
678 return err;
679 if (tb[NETNSA_PID])
680 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
681 else if (tb[NETNSA_FD])
682 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
683 else
684 return -EINVAL;
685
686 if (IS_ERR(peer))
687 return PTR_ERR(peer);
688
689 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
690 if (!msg) {
691 err = -ENOMEM;
692 goto out;
693 }
694
695 id = peernet2id(net, peer);
696 err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
697 RTM_NEWNSID, net, id);
698 if (err < 0)
699 goto err_out;
700
701 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
702 goto out;
703
704 err_out:
705 nlmsg_free(msg);
706 out:
707 put_net(peer);
708 return err;
709 }
710
711 struct rtnl_net_dump_cb {
712 struct net *net;
713 struct sk_buff *skb;
714 struct netlink_callback *cb;
715 int idx;
716 int s_idx;
717 };
718
719 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
720 {
721 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
722 int ret;
723
724 if (net_cb->idx < net_cb->s_idx)
725 goto cont;
726
727 ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
728 net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
729 RTM_NEWNSID, net_cb->net, id);
730 if (ret < 0)
731 return ret;
732
733 cont:
734 net_cb->idx++;
735 return 0;
736 }
737
738 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
739 {
740 struct net *net = sock_net(skb->sk);
741 struct rtnl_net_dump_cb net_cb = {
742 .net = net,
743 .skb = skb,
744 .cb = cb,
745 .idx = 0,
746 .s_idx = cb->args[0],
747 };
748
749 spin_lock_bh(&net->nsid_lock);
750 idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
751 spin_unlock_bh(&net->nsid_lock);
752
753 cb->args[0] = net_cb.idx;
754 return skb->len;
755 }
756
757 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
758 {
759 struct sk_buff *msg;
760 int err = -ENOMEM;
761
762 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
763 if (!msg)
764 goto out;
765
766 err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
767 if (err < 0)
768 goto err_out;
769
770 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
771 return;
772
773 err_out:
774 nlmsg_free(msg);
775 out:
776 rtnl_set_sk_err(net, RTNLGRP_NSID, err);
777 }
778
779 static int __init net_ns_init(void)
780 {
781 struct net_generic *ng;
782
783 #ifdef CONFIG_NET_NS
784 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
785 SMP_CACHE_BYTES,
786 SLAB_PANIC, NULL);
787
788 /* Create workqueue for cleanup */
789 netns_wq = create_singlethread_workqueue("netns");
790 if (!netns_wq)
791 panic("Could not create netns workq");
792 #endif
793
794 ng = net_alloc_generic();
795 if (!ng)
796 panic("Could not allocate generic netns");
797
798 rcu_assign_pointer(init_net.gen, ng);
799
800 mutex_lock(&net_mutex);
801 if (setup_net(&init_net, &init_user_ns))
802 panic("Could not setup the initial network namespace");
803
804 init_net_initialized = true;
805
806 rtnl_lock();
807 list_add_tail_rcu(&init_net.list, &net_namespace_list);
808 rtnl_unlock();
809
810 mutex_unlock(&net_mutex);
811
812 register_pernet_subsys(&net_ns_ops);
813
814 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
815 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
816 NULL);
817
818 return 0;
819 }
820
821 pure_initcall(net_ns_init);
822
823 #ifdef CONFIG_NET_NS
824 static int __register_pernet_operations(struct list_head *list,
825 struct pernet_operations *ops)
826 {
827 struct net *net;
828 int error;
829 LIST_HEAD(net_exit_list);
830
831 list_add_tail(&ops->list, list);
832 if (ops->init || (ops->id && ops->size)) {
833 for_each_net(net) {
834 error = ops_init(ops, net);
835 if (error)
836 goto out_undo;
837 list_add_tail(&net->exit_list, &net_exit_list);
838 }
839 }
840 return 0;
841
842 out_undo:
843 /* If I have an error cleanup all namespaces I initialized */
844 list_del(&ops->list);
845 ops_exit_list(ops, &net_exit_list);
846 ops_free_list(ops, &net_exit_list);
847 return error;
848 }
849
850 static void __unregister_pernet_operations(struct pernet_operations *ops)
851 {
852 struct net *net;
853 LIST_HEAD(net_exit_list);
854
855 list_del(&ops->list);
856 for_each_net(net)
857 list_add_tail(&net->exit_list, &net_exit_list);
858 ops_exit_list(ops, &net_exit_list);
859 ops_free_list(ops, &net_exit_list);
860 }
861
862 #else
863
864 static int __register_pernet_operations(struct list_head *list,
865 struct pernet_operations *ops)
866 {
867 if (!init_net_initialized) {
868 list_add_tail(&ops->list, list);
869 return 0;
870 }
871
872 return ops_init(ops, &init_net);
873 }
874
875 static void __unregister_pernet_operations(struct pernet_operations *ops)
876 {
877 if (!init_net_initialized) {
878 list_del(&ops->list);
879 } else {
880 LIST_HEAD(net_exit_list);
881 list_add(&init_net.exit_list, &net_exit_list);
882 ops_exit_list(ops, &net_exit_list);
883 ops_free_list(ops, &net_exit_list);
884 }
885 }
886
887 #endif /* CONFIG_NET_NS */
888
889 static DEFINE_IDA(net_generic_ids);
890
891 static int register_pernet_operations(struct list_head *list,
892 struct pernet_operations *ops)
893 {
894 int error;
895
896 if (ops->id) {
897 again:
898 error = ida_get_new_above(&net_generic_ids, MIN_PERNET_OPS_ID, ops->id);
899 if (error < 0) {
900 if (error == -EAGAIN) {
901 ida_pre_get(&net_generic_ids, GFP_KERNEL);
902 goto again;
903 }
904 return error;
905 }
906 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
907 }
908 error = __register_pernet_operations(list, ops);
909 if (error) {
910 rcu_barrier();
911 if (ops->id)
912 ida_remove(&net_generic_ids, *ops->id);
913 }
914
915 return error;
916 }
917
918 static void unregister_pernet_operations(struct pernet_operations *ops)
919 {
920
921 __unregister_pernet_operations(ops);
922 rcu_barrier();
923 if (ops->id)
924 ida_remove(&net_generic_ids, *ops->id);
925 }
926
927 /**
928 * register_pernet_subsys - register a network namespace subsystem
929 * @ops: pernet operations structure for the subsystem
930 *
931 * Register a subsystem which has init and exit functions
932 * that are called when network namespaces are created and
933 * destroyed respectively.
934 *
935 * When registered all network namespace init functions are
936 * called for every existing network namespace. Allowing kernel
937 * modules to have a race free view of the set of network namespaces.
938 *
939 * When a new network namespace is created all of the init
940 * methods are called in the order in which they were registered.
941 *
942 * When a network namespace is destroyed all of the exit methods
943 * are called in the reverse of the order with which they were
944 * registered.
945 */
946 int register_pernet_subsys(struct pernet_operations *ops)
947 {
948 int error;
949 mutex_lock(&net_mutex);
950 error = register_pernet_operations(first_device, ops);
951 mutex_unlock(&net_mutex);
952 return error;
953 }
954 EXPORT_SYMBOL_GPL(register_pernet_subsys);
955
956 /**
957 * unregister_pernet_subsys - unregister a network namespace subsystem
958 * @ops: pernet operations structure to manipulate
959 *
960 * Remove the pernet operations structure from the list to be
961 * used when network namespaces are created or destroyed. In
962 * addition run the exit method for all existing network
963 * namespaces.
964 */
965 void unregister_pernet_subsys(struct pernet_operations *ops)
966 {
967 mutex_lock(&net_mutex);
968 unregister_pernet_operations(ops);
969 mutex_unlock(&net_mutex);
970 }
971 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
972
973 /**
974 * register_pernet_device - register a network namespace device
975 * @ops: pernet operations structure for the subsystem
976 *
977 * Register a device which has init and exit functions
978 * that are called when network namespaces are created and
979 * destroyed respectively.
980 *
981 * When registered all network namespace init functions are
982 * called for every existing network namespace. Allowing kernel
983 * modules to have a race free view of the set of network namespaces.
984 *
985 * When a new network namespace is created all of the init
986 * methods are called in the order in which they were registered.
987 *
988 * When a network namespace is destroyed all of the exit methods
989 * are called in the reverse of the order with which they were
990 * registered.
991 */
992 int register_pernet_device(struct pernet_operations *ops)
993 {
994 int error;
995 mutex_lock(&net_mutex);
996 error = register_pernet_operations(&pernet_list, ops);
997 if (!error && (first_device == &pernet_list))
998 first_device = &ops->list;
999 mutex_unlock(&net_mutex);
1000 return error;
1001 }
1002 EXPORT_SYMBOL_GPL(register_pernet_device);
1003
1004 /**
1005 * unregister_pernet_device - unregister a network namespace netdevice
1006 * @ops: pernet operations structure to manipulate
1007 *
1008 * Remove the pernet operations structure from the list to be
1009 * used when network namespaces are created or destroyed. In
1010 * addition run the exit method for all existing network
1011 * namespaces.
1012 */
1013 void unregister_pernet_device(struct pernet_operations *ops)
1014 {
1015 mutex_lock(&net_mutex);
1016 if (&ops->list == first_device)
1017 first_device = first_device->next;
1018 unregister_pernet_operations(ops);
1019 mutex_unlock(&net_mutex);
1020 }
1021 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1022
1023 #ifdef CONFIG_NET_NS
1024 static struct ns_common *netns_get(struct task_struct *task)
1025 {
1026 struct net *net = NULL;
1027 struct nsproxy *nsproxy;
1028
1029 task_lock(task);
1030 nsproxy = task->nsproxy;
1031 if (nsproxy)
1032 net = get_net(nsproxy->net_ns);
1033 task_unlock(task);
1034
1035 return net ? &net->ns : NULL;
1036 }
1037
1038 static inline struct net *to_net_ns(struct ns_common *ns)
1039 {
1040 return container_of(ns, struct net, ns);
1041 }
1042
1043 static void netns_put(struct ns_common *ns)
1044 {
1045 put_net(to_net_ns(ns));
1046 }
1047
1048 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1049 {
1050 struct net *net = to_net_ns(ns);
1051
1052 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1053 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1054 return -EPERM;
1055
1056 put_net(nsproxy->net_ns);
1057 nsproxy->net_ns = get_net(net);
1058 return 0;
1059 }
1060
1061 static struct user_namespace *netns_owner(struct ns_common *ns)
1062 {
1063 return to_net_ns(ns)->user_ns;
1064 }
1065
1066 const struct proc_ns_operations netns_operations = {
1067 .name = "net",
1068 .type = CLONE_NEWNET,
1069 .get = netns_get,
1070 .put = netns_put,
1071 .install = netns_install,
1072 .owner = netns_owner,
1073 };
1074 #endif