]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/core/net_namespace.c
Merge branch 'spi-5.3' into spi-5.4
[mirror_ubuntu-hirsute-kernel.git] / net / core / net_namespace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/workqueue.h>
5 #include <linux/rtnetlink.h>
6 #include <linux/cache.h>
7 #include <linux/slab.h>
8 #include <linux/list.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/idr.h>
12 #include <linux/rculist.h>
13 #include <linux/nsproxy.h>
14 #include <linux/fs.h>
15 #include <linux/proc_ns.h>
16 #include <linux/file.h>
17 #include <linux/export.h>
18 #include <linux/user_namespace.h>
19 #include <linux/net_namespace.h>
20 #include <linux/sched/task.h>
21 #include <linux/uidgid.h>
22
23 #include <net/sock.h>
24 #include <net/netlink.h>
25 #include <net/net_namespace.h>
26 #include <net/netns/generic.h>
27
28 /*
29 * Our network namespace constructor/destructor lists
30 */
31
32 static LIST_HEAD(pernet_list);
33 static struct list_head *first_device = &pernet_list;
34
35 LIST_HEAD(net_namespace_list);
36 EXPORT_SYMBOL_GPL(net_namespace_list);
37
38 /* Protects net_namespace_list. Nests iside rtnl_lock() */
39 DECLARE_RWSEM(net_rwsem);
40 EXPORT_SYMBOL_GPL(net_rwsem);
41
42 #ifdef CONFIG_KEYS
43 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) };
44 #endif
45
46 struct net init_net = {
47 .count = REFCOUNT_INIT(1),
48 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
49 #ifdef CONFIG_KEYS
50 .key_domain = &init_net_key_domain,
51 #endif
52 };
53 EXPORT_SYMBOL(init_net);
54
55 static bool init_net_initialized;
56 /*
57 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
58 * init_net_initialized and first_device pointer.
59 * This is internal net namespace object. Please, don't use it
60 * outside.
61 */
62 DECLARE_RWSEM(pernet_ops_rwsem);
63 EXPORT_SYMBOL_GPL(pernet_ops_rwsem);
64
65 #define MIN_PERNET_OPS_ID \
66 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
67
68 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
69
70 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
71
72 static struct net_generic *net_alloc_generic(void)
73 {
74 struct net_generic *ng;
75 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
76
77 ng = kzalloc(generic_size, GFP_KERNEL);
78 if (ng)
79 ng->s.len = max_gen_ptrs;
80
81 return ng;
82 }
83
84 static int net_assign_generic(struct net *net, unsigned int id, void *data)
85 {
86 struct net_generic *ng, *old_ng;
87
88 BUG_ON(id < MIN_PERNET_OPS_ID);
89
90 old_ng = rcu_dereference_protected(net->gen,
91 lockdep_is_held(&pernet_ops_rwsem));
92 if (old_ng->s.len > id) {
93 old_ng->ptr[id] = data;
94 return 0;
95 }
96
97 ng = net_alloc_generic();
98 if (ng == NULL)
99 return -ENOMEM;
100
101 /*
102 * Some synchronisation notes:
103 *
104 * The net_generic explores the net->gen array inside rcu
105 * read section. Besides once set the net->gen->ptr[x]
106 * pointer never changes (see rules in netns/generic.h).
107 *
108 * That said, we simply duplicate this array and schedule
109 * the old copy for kfree after a grace period.
110 */
111
112 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
113 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
114 ng->ptr[id] = data;
115
116 rcu_assign_pointer(net->gen, ng);
117 kfree_rcu(old_ng, s.rcu);
118 return 0;
119 }
120
121 static int ops_init(const struct pernet_operations *ops, struct net *net)
122 {
123 int err = -ENOMEM;
124 void *data = NULL;
125
126 if (ops->id && ops->size) {
127 data = kzalloc(ops->size, GFP_KERNEL);
128 if (!data)
129 goto out;
130
131 err = net_assign_generic(net, *ops->id, data);
132 if (err)
133 goto cleanup;
134 }
135 err = 0;
136 if (ops->init)
137 err = ops->init(net);
138 if (!err)
139 return 0;
140
141 cleanup:
142 kfree(data);
143
144 out:
145 return err;
146 }
147
148 static void ops_free(const struct pernet_operations *ops, struct net *net)
149 {
150 if (ops->id && ops->size) {
151 kfree(net_generic(net, *ops->id));
152 }
153 }
154
155 static void ops_pre_exit_list(const struct pernet_operations *ops,
156 struct list_head *net_exit_list)
157 {
158 struct net *net;
159
160 if (ops->pre_exit) {
161 list_for_each_entry(net, net_exit_list, exit_list)
162 ops->pre_exit(net);
163 }
164 }
165
166 static void ops_exit_list(const struct pernet_operations *ops,
167 struct list_head *net_exit_list)
168 {
169 struct net *net;
170 if (ops->exit) {
171 list_for_each_entry(net, net_exit_list, exit_list)
172 ops->exit(net);
173 }
174 if (ops->exit_batch)
175 ops->exit_batch(net_exit_list);
176 }
177
178 static void ops_free_list(const struct pernet_operations *ops,
179 struct list_head *net_exit_list)
180 {
181 struct net *net;
182 if (ops->size && ops->id) {
183 list_for_each_entry(net, net_exit_list, exit_list)
184 ops_free(ops, net);
185 }
186 }
187
188 /* should be called with nsid_lock held */
189 static int alloc_netid(struct net *net, struct net *peer, int reqid)
190 {
191 int min = 0, max = 0;
192
193 if (reqid >= 0) {
194 min = reqid;
195 max = reqid + 1;
196 }
197
198 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
199 }
200
201 /* This function is used by idr_for_each(). If net is equal to peer, the
202 * function returns the id so that idr_for_each() stops. Because we cannot
203 * returns the id 0 (idr_for_each() will not stop), we return the magic value
204 * NET_ID_ZERO (-1) for it.
205 */
206 #define NET_ID_ZERO -1
207 static int net_eq_idr(int id, void *net, void *peer)
208 {
209 if (net_eq(net, peer))
210 return id ? : NET_ID_ZERO;
211 return 0;
212 }
213
214 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
215 * is set to true, thus the caller knows that the new id must be notified via
216 * rtnl.
217 */
218 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
219 {
220 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
221 bool alloc_it = *alloc;
222
223 *alloc = false;
224
225 /* Magic value for id 0. */
226 if (id == NET_ID_ZERO)
227 return 0;
228 if (id > 0)
229 return id;
230
231 if (alloc_it) {
232 id = alloc_netid(net, peer, -1);
233 *alloc = true;
234 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
235 }
236
237 return NETNSA_NSID_NOT_ASSIGNED;
238 }
239
240 /* should be called with nsid_lock held */
241 static int __peernet2id(struct net *net, struct net *peer)
242 {
243 bool no = false;
244
245 return __peernet2id_alloc(net, peer, &no);
246 }
247
248 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
249 /* This function returns the id of a peer netns. If no id is assigned, one will
250 * be allocated and returned.
251 */
252 int peernet2id_alloc(struct net *net, struct net *peer)
253 {
254 bool alloc = false, alive = false;
255 int id;
256
257 if (refcount_read(&net->count) == 0)
258 return NETNSA_NSID_NOT_ASSIGNED;
259 spin_lock_bh(&net->nsid_lock);
260 /*
261 * When peer is obtained from RCU lists, we may race with
262 * its cleanup. Check whether it's alive, and this guarantees
263 * we never hash a peer back to net->netns_ids, after it has
264 * just been idr_remove()'d from there in cleanup_net().
265 */
266 if (maybe_get_net(peer))
267 alive = alloc = true;
268 id = __peernet2id_alloc(net, peer, &alloc);
269 spin_unlock_bh(&net->nsid_lock);
270 if (alloc && id >= 0)
271 rtnl_net_notifyid(net, RTM_NEWNSID, id);
272 if (alive)
273 put_net(peer);
274 return id;
275 }
276 EXPORT_SYMBOL_GPL(peernet2id_alloc);
277
278 /* This function returns, if assigned, the id of a peer netns. */
279 int peernet2id(struct net *net, struct net *peer)
280 {
281 int id;
282
283 spin_lock_bh(&net->nsid_lock);
284 id = __peernet2id(net, peer);
285 spin_unlock_bh(&net->nsid_lock);
286 return id;
287 }
288 EXPORT_SYMBOL(peernet2id);
289
290 /* This function returns true is the peer netns has an id assigned into the
291 * current netns.
292 */
293 bool peernet_has_id(struct net *net, struct net *peer)
294 {
295 return peernet2id(net, peer) >= 0;
296 }
297
298 struct net *get_net_ns_by_id(struct net *net, int id)
299 {
300 struct net *peer;
301
302 if (id < 0)
303 return NULL;
304
305 rcu_read_lock();
306 peer = idr_find(&net->netns_ids, id);
307 if (peer)
308 peer = maybe_get_net(peer);
309 rcu_read_unlock();
310
311 return peer;
312 }
313
314 /*
315 * setup_net runs the initializers for the network namespace object.
316 */
317 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
318 {
319 /* Must be called with pernet_ops_rwsem held */
320 const struct pernet_operations *ops, *saved_ops;
321 int error = 0;
322 LIST_HEAD(net_exit_list);
323
324 refcount_set(&net->count, 1);
325 refcount_set(&net->passive, 1);
326 get_random_bytes(&net->hash_mix, sizeof(u32));
327 net->dev_base_seq = 1;
328 net->user_ns = user_ns;
329 idr_init(&net->netns_ids);
330 spin_lock_init(&net->nsid_lock);
331 mutex_init(&net->ipv4.ra_mutex);
332
333 list_for_each_entry(ops, &pernet_list, list) {
334 error = ops_init(ops, net);
335 if (error < 0)
336 goto out_undo;
337 }
338 down_write(&net_rwsem);
339 list_add_tail_rcu(&net->list, &net_namespace_list);
340 up_write(&net_rwsem);
341 out:
342 return error;
343
344 out_undo:
345 /* Walk through the list backwards calling the exit functions
346 * for the pernet modules whose init functions did not fail.
347 */
348 list_add(&net->exit_list, &net_exit_list);
349 saved_ops = ops;
350 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
351 ops_pre_exit_list(ops, &net_exit_list);
352
353 synchronize_rcu();
354
355 ops = saved_ops;
356 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
357 ops_exit_list(ops, &net_exit_list);
358
359 ops = saved_ops;
360 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
361 ops_free_list(ops, &net_exit_list);
362
363 rcu_barrier();
364 goto out;
365 }
366
367 static int __net_init net_defaults_init_net(struct net *net)
368 {
369 net->core.sysctl_somaxconn = SOMAXCONN;
370 return 0;
371 }
372
373 static struct pernet_operations net_defaults_ops = {
374 .init = net_defaults_init_net,
375 };
376
377 static __init int net_defaults_init(void)
378 {
379 if (register_pernet_subsys(&net_defaults_ops))
380 panic("Cannot initialize net default settings");
381
382 return 0;
383 }
384
385 core_initcall(net_defaults_init);
386
387 #ifdef CONFIG_NET_NS
388 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
389 {
390 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
391 }
392
393 static void dec_net_namespaces(struct ucounts *ucounts)
394 {
395 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
396 }
397
398 static struct kmem_cache *net_cachep __ro_after_init;
399 static struct workqueue_struct *netns_wq;
400
401 static struct net *net_alloc(void)
402 {
403 struct net *net = NULL;
404 struct net_generic *ng;
405
406 ng = net_alloc_generic();
407 if (!ng)
408 goto out;
409
410 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
411 if (!net)
412 goto out_free;
413
414 #ifdef CONFIG_KEYS
415 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL);
416 if (!net->key_domain)
417 goto out_free_2;
418 refcount_set(&net->key_domain->usage, 1);
419 #endif
420
421 rcu_assign_pointer(net->gen, ng);
422 out:
423 return net;
424
425 #ifdef CONFIG_KEYS
426 out_free_2:
427 kmem_cache_free(net_cachep, net);
428 net = NULL;
429 #endif
430 out_free:
431 kfree(ng);
432 goto out;
433 }
434
435 static void net_free(struct net *net)
436 {
437 kfree(rcu_access_pointer(net->gen));
438 kmem_cache_free(net_cachep, net);
439 }
440
441 void net_drop_ns(void *p)
442 {
443 struct net *ns = p;
444 if (ns && refcount_dec_and_test(&ns->passive))
445 net_free(ns);
446 }
447
448 struct net *copy_net_ns(unsigned long flags,
449 struct user_namespace *user_ns, struct net *old_net)
450 {
451 struct ucounts *ucounts;
452 struct net *net;
453 int rv;
454
455 if (!(flags & CLONE_NEWNET))
456 return get_net(old_net);
457
458 ucounts = inc_net_namespaces(user_ns);
459 if (!ucounts)
460 return ERR_PTR(-ENOSPC);
461
462 net = net_alloc();
463 if (!net) {
464 rv = -ENOMEM;
465 goto dec_ucounts;
466 }
467 refcount_set(&net->passive, 1);
468 net->ucounts = ucounts;
469 get_user_ns(user_ns);
470
471 rv = down_read_killable(&pernet_ops_rwsem);
472 if (rv < 0)
473 goto put_userns;
474
475 rv = setup_net(net, user_ns);
476
477 up_read(&pernet_ops_rwsem);
478
479 if (rv < 0) {
480 put_userns:
481 put_user_ns(user_ns);
482 net_drop_ns(net);
483 dec_ucounts:
484 dec_net_namespaces(ucounts);
485 return ERR_PTR(rv);
486 }
487 return net;
488 }
489
490 /**
491 * net_ns_get_ownership - get sysfs ownership data for @net
492 * @net: network namespace in question (can be NULL)
493 * @uid: kernel user ID for sysfs objects
494 * @gid: kernel group ID for sysfs objects
495 *
496 * Returns the uid/gid pair of root in the user namespace associated with the
497 * given network namespace.
498 */
499 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
500 {
501 if (net) {
502 kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
503 kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
504
505 if (uid_valid(ns_root_uid))
506 *uid = ns_root_uid;
507
508 if (gid_valid(ns_root_gid))
509 *gid = ns_root_gid;
510 } else {
511 *uid = GLOBAL_ROOT_UID;
512 *gid = GLOBAL_ROOT_GID;
513 }
514 }
515 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
516
517 static void unhash_nsid(struct net *net, struct net *last)
518 {
519 struct net *tmp;
520 /* This function is only called from cleanup_net() work,
521 * and this work is the only process, that may delete
522 * a net from net_namespace_list. So, when the below
523 * is executing, the list may only grow. Thus, we do not
524 * use for_each_net_rcu() or net_rwsem.
525 */
526 for_each_net(tmp) {
527 int id;
528
529 spin_lock_bh(&tmp->nsid_lock);
530 id = __peernet2id(tmp, net);
531 if (id >= 0)
532 idr_remove(&tmp->netns_ids, id);
533 spin_unlock_bh(&tmp->nsid_lock);
534 if (id >= 0)
535 rtnl_net_notifyid(tmp, RTM_DELNSID, id);
536 if (tmp == last)
537 break;
538 }
539 spin_lock_bh(&net->nsid_lock);
540 idr_destroy(&net->netns_ids);
541 spin_unlock_bh(&net->nsid_lock);
542 }
543
544 static LLIST_HEAD(cleanup_list);
545
546 static void cleanup_net(struct work_struct *work)
547 {
548 const struct pernet_operations *ops;
549 struct net *net, *tmp, *last;
550 struct llist_node *net_kill_list;
551 LIST_HEAD(net_exit_list);
552
553 /* Atomically snapshot the list of namespaces to cleanup */
554 net_kill_list = llist_del_all(&cleanup_list);
555
556 down_read(&pernet_ops_rwsem);
557
558 /* Don't let anyone else find us. */
559 down_write(&net_rwsem);
560 llist_for_each_entry(net, net_kill_list, cleanup_list)
561 list_del_rcu(&net->list);
562 /* Cache last net. After we unlock rtnl, no one new net
563 * added to net_namespace_list can assign nsid pointer
564 * to a net from net_kill_list (see peernet2id_alloc()).
565 * So, we skip them in unhash_nsid().
566 *
567 * Note, that unhash_nsid() does not delete nsid links
568 * between net_kill_list's nets, as they've already
569 * deleted from net_namespace_list. But, this would be
570 * useless anyway, as netns_ids are destroyed there.
571 */
572 last = list_last_entry(&net_namespace_list, struct net, list);
573 up_write(&net_rwsem);
574
575 llist_for_each_entry(net, net_kill_list, cleanup_list) {
576 unhash_nsid(net, last);
577 list_add_tail(&net->exit_list, &net_exit_list);
578 }
579
580 /* Run all of the network namespace pre_exit methods */
581 list_for_each_entry_reverse(ops, &pernet_list, list)
582 ops_pre_exit_list(ops, &net_exit_list);
583
584 /*
585 * Another CPU might be rcu-iterating the list, wait for it.
586 * This needs to be before calling the exit() notifiers, so
587 * the rcu_barrier() below isn't sufficient alone.
588 * Also the pre_exit() and exit() methods need this barrier.
589 */
590 synchronize_rcu();
591
592 /* Run all of the network namespace exit methods */
593 list_for_each_entry_reverse(ops, &pernet_list, list)
594 ops_exit_list(ops, &net_exit_list);
595
596 /* Free the net generic variables */
597 list_for_each_entry_reverse(ops, &pernet_list, list)
598 ops_free_list(ops, &net_exit_list);
599
600 up_read(&pernet_ops_rwsem);
601
602 /* Ensure there are no outstanding rcu callbacks using this
603 * network namespace.
604 */
605 rcu_barrier();
606
607 /* Finally it is safe to free my network namespace structure */
608 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
609 list_del_init(&net->exit_list);
610 dec_net_namespaces(net->ucounts);
611 key_remove_domain(net->key_domain);
612 put_user_ns(net->user_ns);
613 net_drop_ns(net);
614 }
615 }
616
617 /**
618 * net_ns_barrier - wait until concurrent net_cleanup_work is done
619 *
620 * cleanup_net runs from work queue and will first remove namespaces
621 * from the global list, then run net exit functions.
622 *
623 * Call this in module exit path to make sure that all netns
624 * ->exit ops have been invoked before the function is removed.
625 */
626 void net_ns_barrier(void)
627 {
628 down_write(&pernet_ops_rwsem);
629 up_write(&pernet_ops_rwsem);
630 }
631 EXPORT_SYMBOL(net_ns_barrier);
632
633 static DECLARE_WORK(net_cleanup_work, cleanup_net);
634
635 void __put_net(struct net *net)
636 {
637 /* Cleanup the network namespace in process context */
638 if (llist_add(&net->cleanup_list, &cleanup_list))
639 queue_work(netns_wq, &net_cleanup_work);
640 }
641 EXPORT_SYMBOL_GPL(__put_net);
642
643 struct net *get_net_ns_by_fd(int fd)
644 {
645 struct file *file;
646 struct ns_common *ns;
647 struct net *net;
648
649 file = proc_ns_fget(fd);
650 if (IS_ERR(file))
651 return ERR_CAST(file);
652
653 ns = get_proc_ns(file_inode(file));
654 if (ns->ops == &netns_operations)
655 net = get_net(container_of(ns, struct net, ns));
656 else
657 net = ERR_PTR(-EINVAL);
658
659 fput(file);
660 return net;
661 }
662
663 #else
664 struct net *get_net_ns_by_fd(int fd)
665 {
666 return ERR_PTR(-EINVAL);
667 }
668 #endif
669 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
670
671 struct net *get_net_ns_by_pid(pid_t pid)
672 {
673 struct task_struct *tsk;
674 struct net *net;
675
676 /* Lookup the network namespace */
677 net = ERR_PTR(-ESRCH);
678 rcu_read_lock();
679 tsk = find_task_by_vpid(pid);
680 if (tsk) {
681 struct nsproxy *nsproxy;
682 task_lock(tsk);
683 nsproxy = tsk->nsproxy;
684 if (nsproxy)
685 net = get_net(nsproxy->net_ns);
686 task_unlock(tsk);
687 }
688 rcu_read_unlock();
689 return net;
690 }
691 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
692
693 static __net_init int net_ns_net_init(struct net *net)
694 {
695 #ifdef CONFIG_NET_NS
696 net->ns.ops = &netns_operations;
697 #endif
698 return ns_alloc_inum(&net->ns);
699 }
700
701 static __net_exit void net_ns_net_exit(struct net *net)
702 {
703 ns_free_inum(&net->ns);
704 }
705
706 static struct pernet_operations __net_initdata net_ns_ops = {
707 .init = net_ns_net_init,
708 .exit = net_ns_net_exit,
709 };
710
711 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
712 [NETNSA_NONE] = { .type = NLA_UNSPEC },
713 [NETNSA_NSID] = { .type = NLA_S32 },
714 [NETNSA_PID] = { .type = NLA_U32 },
715 [NETNSA_FD] = { .type = NLA_U32 },
716 [NETNSA_TARGET_NSID] = { .type = NLA_S32 },
717 };
718
719 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
720 struct netlink_ext_ack *extack)
721 {
722 struct net *net = sock_net(skb->sk);
723 struct nlattr *tb[NETNSA_MAX + 1];
724 struct nlattr *nla;
725 struct net *peer;
726 int nsid, err;
727
728 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb,
729 NETNSA_MAX, rtnl_net_policy, extack);
730 if (err < 0)
731 return err;
732 if (!tb[NETNSA_NSID]) {
733 NL_SET_ERR_MSG(extack, "nsid is missing");
734 return -EINVAL;
735 }
736 nsid = nla_get_s32(tb[NETNSA_NSID]);
737
738 if (tb[NETNSA_PID]) {
739 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
740 nla = tb[NETNSA_PID];
741 } else if (tb[NETNSA_FD]) {
742 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
743 nla = tb[NETNSA_FD];
744 } else {
745 NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
746 return -EINVAL;
747 }
748 if (IS_ERR(peer)) {
749 NL_SET_BAD_ATTR(extack, nla);
750 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
751 return PTR_ERR(peer);
752 }
753
754 spin_lock_bh(&net->nsid_lock);
755 if (__peernet2id(net, peer) >= 0) {
756 spin_unlock_bh(&net->nsid_lock);
757 err = -EEXIST;
758 NL_SET_BAD_ATTR(extack, nla);
759 NL_SET_ERR_MSG(extack,
760 "Peer netns already has a nsid assigned");
761 goto out;
762 }
763
764 err = alloc_netid(net, peer, nsid);
765 spin_unlock_bh(&net->nsid_lock);
766 if (err >= 0) {
767 rtnl_net_notifyid(net, RTM_NEWNSID, err);
768 err = 0;
769 } else if (err == -ENOSPC && nsid >= 0) {
770 err = -EEXIST;
771 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
772 NL_SET_ERR_MSG(extack, "The specified nsid is already used");
773 }
774 out:
775 put_net(peer);
776 return err;
777 }
778
779 static int rtnl_net_get_size(void)
780 {
781 return NLMSG_ALIGN(sizeof(struct rtgenmsg))
782 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
783 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
784 ;
785 }
786
787 struct net_fill_args {
788 u32 portid;
789 u32 seq;
790 int flags;
791 int cmd;
792 int nsid;
793 bool add_ref;
794 int ref_nsid;
795 };
796
797 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
798 {
799 struct nlmsghdr *nlh;
800 struct rtgenmsg *rth;
801
802 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
803 args->flags);
804 if (!nlh)
805 return -EMSGSIZE;
806
807 rth = nlmsg_data(nlh);
808 rth->rtgen_family = AF_UNSPEC;
809
810 if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
811 goto nla_put_failure;
812
813 if (args->add_ref &&
814 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
815 goto nla_put_failure;
816
817 nlmsg_end(skb, nlh);
818 return 0;
819
820 nla_put_failure:
821 nlmsg_cancel(skb, nlh);
822 return -EMSGSIZE;
823 }
824
825 static int rtnl_net_valid_getid_req(struct sk_buff *skb,
826 const struct nlmsghdr *nlh,
827 struct nlattr **tb,
828 struct netlink_ext_ack *extack)
829 {
830 int i, err;
831
832 if (!netlink_strict_get_check(skb))
833 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg),
834 tb, NETNSA_MAX, rtnl_net_policy,
835 extack);
836
837 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
838 NETNSA_MAX, rtnl_net_policy,
839 extack);
840 if (err)
841 return err;
842
843 for (i = 0; i <= NETNSA_MAX; i++) {
844 if (!tb[i])
845 continue;
846
847 switch (i) {
848 case NETNSA_PID:
849 case NETNSA_FD:
850 case NETNSA_NSID:
851 case NETNSA_TARGET_NSID:
852 break;
853 default:
854 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
855 return -EINVAL;
856 }
857 }
858
859 return 0;
860 }
861
862 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
863 struct netlink_ext_ack *extack)
864 {
865 struct net *net = sock_net(skb->sk);
866 struct nlattr *tb[NETNSA_MAX + 1];
867 struct net_fill_args fillargs = {
868 .portid = NETLINK_CB(skb).portid,
869 .seq = nlh->nlmsg_seq,
870 .cmd = RTM_NEWNSID,
871 };
872 struct net *peer, *target = net;
873 struct nlattr *nla;
874 struct sk_buff *msg;
875 int err;
876
877 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
878 if (err < 0)
879 return err;
880 if (tb[NETNSA_PID]) {
881 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
882 nla = tb[NETNSA_PID];
883 } else if (tb[NETNSA_FD]) {
884 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
885 nla = tb[NETNSA_FD];
886 } else if (tb[NETNSA_NSID]) {
887 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID]));
888 if (!peer)
889 peer = ERR_PTR(-ENOENT);
890 nla = tb[NETNSA_NSID];
891 } else {
892 NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
893 return -EINVAL;
894 }
895
896 if (IS_ERR(peer)) {
897 NL_SET_BAD_ATTR(extack, nla);
898 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
899 return PTR_ERR(peer);
900 }
901
902 if (tb[NETNSA_TARGET_NSID]) {
903 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
904
905 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
906 if (IS_ERR(target)) {
907 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
908 NL_SET_ERR_MSG(extack,
909 "Target netns reference is invalid");
910 err = PTR_ERR(target);
911 goto out;
912 }
913 fillargs.add_ref = true;
914 fillargs.ref_nsid = peernet2id(net, peer);
915 }
916
917 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
918 if (!msg) {
919 err = -ENOMEM;
920 goto out;
921 }
922
923 fillargs.nsid = peernet2id(target, peer);
924 err = rtnl_net_fill(msg, &fillargs);
925 if (err < 0)
926 goto err_out;
927
928 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
929 goto out;
930
931 err_out:
932 nlmsg_free(msg);
933 out:
934 if (fillargs.add_ref)
935 put_net(target);
936 put_net(peer);
937 return err;
938 }
939
940 struct rtnl_net_dump_cb {
941 struct net *tgt_net;
942 struct net *ref_net;
943 struct sk_buff *skb;
944 struct net_fill_args fillargs;
945 int idx;
946 int s_idx;
947 };
948
949 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
950 {
951 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
952 int ret;
953
954 if (net_cb->idx < net_cb->s_idx)
955 goto cont;
956
957 net_cb->fillargs.nsid = id;
958 if (net_cb->fillargs.add_ref)
959 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
960 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
961 if (ret < 0)
962 return ret;
963
964 cont:
965 net_cb->idx++;
966 return 0;
967 }
968
969 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
970 struct rtnl_net_dump_cb *net_cb,
971 struct netlink_callback *cb)
972 {
973 struct netlink_ext_ack *extack = cb->extack;
974 struct nlattr *tb[NETNSA_MAX + 1];
975 int err, i;
976
977 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
978 NETNSA_MAX, rtnl_net_policy,
979 extack);
980 if (err < 0)
981 return err;
982
983 for (i = 0; i <= NETNSA_MAX; i++) {
984 if (!tb[i])
985 continue;
986
987 if (i == NETNSA_TARGET_NSID) {
988 struct net *net;
989
990 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
991 if (IS_ERR(net)) {
992 NL_SET_BAD_ATTR(extack, tb[i]);
993 NL_SET_ERR_MSG(extack,
994 "Invalid target network namespace id");
995 return PTR_ERR(net);
996 }
997 net_cb->fillargs.add_ref = true;
998 net_cb->ref_net = net_cb->tgt_net;
999 net_cb->tgt_net = net;
1000 } else {
1001 NL_SET_BAD_ATTR(extack, tb[i]);
1002 NL_SET_ERR_MSG(extack,
1003 "Unsupported attribute in dump request");
1004 return -EINVAL;
1005 }
1006 }
1007
1008 return 0;
1009 }
1010
1011 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
1012 {
1013 struct rtnl_net_dump_cb net_cb = {
1014 .tgt_net = sock_net(skb->sk),
1015 .skb = skb,
1016 .fillargs = {
1017 .portid = NETLINK_CB(cb->skb).portid,
1018 .seq = cb->nlh->nlmsg_seq,
1019 .flags = NLM_F_MULTI,
1020 .cmd = RTM_NEWNSID,
1021 },
1022 .idx = 0,
1023 .s_idx = cb->args[0],
1024 };
1025 int err = 0;
1026
1027 if (cb->strict_check) {
1028 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
1029 if (err < 0)
1030 goto end;
1031 }
1032
1033 spin_lock_bh(&net_cb.tgt_net->nsid_lock);
1034 if (net_cb.fillargs.add_ref &&
1035 !net_eq(net_cb.ref_net, net_cb.tgt_net) &&
1036 !spin_trylock_bh(&net_cb.ref_net->nsid_lock)) {
1037 spin_unlock_bh(&net_cb.tgt_net->nsid_lock);
1038 err = -EAGAIN;
1039 goto end;
1040 }
1041 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
1042 if (net_cb.fillargs.add_ref &&
1043 !net_eq(net_cb.ref_net, net_cb.tgt_net))
1044 spin_unlock_bh(&net_cb.ref_net->nsid_lock);
1045 spin_unlock_bh(&net_cb.tgt_net->nsid_lock);
1046
1047 cb->args[0] = net_cb.idx;
1048 end:
1049 if (net_cb.fillargs.add_ref)
1050 put_net(net_cb.tgt_net);
1051 return err < 0 ? err : skb->len;
1052 }
1053
1054 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
1055 {
1056 struct net_fill_args fillargs = {
1057 .cmd = cmd,
1058 .nsid = id,
1059 };
1060 struct sk_buff *msg;
1061 int err = -ENOMEM;
1062
1063 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
1064 if (!msg)
1065 goto out;
1066
1067 err = rtnl_net_fill(msg, &fillargs);
1068 if (err < 0)
1069 goto err_out;
1070
1071 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
1072 return;
1073
1074 err_out:
1075 nlmsg_free(msg);
1076 out:
1077 rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1078 }
1079
1080 static int __init net_ns_init(void)
1081 {
1082 struct net_generic *ng;
1083
1084 #ifdef CONFIG_NET_NS
1085 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1086 SMP_CACHE_BYTES,
1087 SLAB_PANIC|SLAB_ACCOUNT, NULL);
1088
1089 /* Create workqueue for cleanup */
1090 netns_wq = create_singlethread_workqueue("netns");
1091 if (!netns_wq)
1092 panic("Could not create netns workq");
1093 #endif
1094
1095 ng = net_alloc_generic();
1096 if (!ng)
1097 panic("Could not allocate generic netns");
1098
1099 rcu_assign_pointer(init_net.gen, ng);
1100
1101 down_write(&pernet_ops_rwsem);
1102 if (setup_net(&init_net, &init_user_ns))
1103 panic("Could not setup the initial network namespace");
1104
1105 init_net_initialized = true;
1106 up_write(&pernet_ops_rwsem);
1107
1108 if (register_pernet_subsys(&net_ns_ops))
1109 panic("Could not register network namespace subsystems");
1110
1111 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
1112 RTNL_FLAG_DOIT_UNLOCKED);
1113 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
1114 RTNL_FLAG_DOIT_UNLOCKED);
1115
1116 return 0;
1117 }
1118
1119 pure_initcall(net_ns_init);
1120
1121 #ifdef CONFIG_NET_NS
1122 static int __register_pernet_operations(struct list_head *list,
1123 struct pernet_operations *ops)
1124 {
1125 struct net *net;
1126 int error;
1127 LIST_HEAD(net_exit_list);
1128
1129 list_add_tail(&ops->list, list);
1130 if (ops->init || (ops->id && ops->size)) {
1131 /* We held write locked pernet_ops_rwsem, and parallel
1132 * setup_net() and cleanup_net() are not possible.
1133 */
1134 for_each_net(net) {
1135 error = ops_init(ops, net);
1136 if (error)
1137 goto out_undo;
1138 list_add_tail(&net->exit_list, &net_exit_list);
1139 }
1140 }
1141 return 0;
1142
1143 out_undo:
1144 /* If I have an error cleanup all namespaces I initialized */
1145 list_del(&ops->list);
1146 ops_pre_exit_list(ops, &net_exit_list);
1147 synchronize_rcu();
1148 ops_exit_list(ops, &net_exit_list);
1149 ops_free_list(ops, &net_exit_list);
1150 return error;
1151 }
1152
1153 static void __unregister_pernet_operations(struct pernet_operations *ops)
1154 {
1155 struct net *net;
1156 LIST_HEAD(net_exit_list);
1157
1158 list_del(&ops->list);
1159 /* See comment in __register_pernet_operations() */
1160 for_each_net(net)
1161 list_add_tail(&net->exit_list, &net_exit_list);
1162 ops_pre_exit_list(ops, &net_exit_list);
1163 synchronize_rcu();
1164 ops_exit_list(ops, &net_exit_list);
1165 ops_free_list(ops, &net_exit_list);
1166 }
1167
1168 #else
1169
1170 static int __register_pernet_operations(struct list_head *list,
1171 struct pernet_operations *ops)
1172 {
1173 if (!init_net_initialized) {
1174 list_add_tail(&ops->list, list);
1175 return 0;
1176 }
1177
1178 return ops_init(ops, &init_net);
1179 }
1180
1181 static void __unregister_pernet_operations(struct pernet_operations *ops)
1182 {
1183 if (!init_net_initialized) {
1184 list_del(&ops->list);
1185 } else {
1186 LIST_HEAD(net_exit_list);
1187 list_add(&init_net.exit_list, &net_exit_list);
1188 ops_pre_exit_list(ops, &net_exit_list);
1189 synchronize_rcu();
1190 ops_exit_list(ops, &net_exit_list);
1191 ops_free_list(ops, &net_exit_list);
1192 }
1193 }
1194
1195 #endif /* CONFIG_NET_NS */
1196
1197 static DEFINE_IDA(net_generic_ids);
1198
1199 static int register_pernet_operations(struct list_head *list,
1200 struct pernet_operations *ops)
1201 {
1202 int error;
1203
1204 if (ops->id) {
1205 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1206 GFP_KERNEL);
1207 if (error < 0)
1208 return error;
1209 *ops->id = error;
1210 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
1211 }
1212 error = __register_pernet_operations(list, ops);
1213 if (error) {
1214 rcu_barrier();
1215 if (ops->id)
1216 ida_free(&net_generic_ids, *ops->id);
1217 }
1218
1219 return error;
1220 }
1221
1222 static void unregister_pernet_operations(struct pernet_operations *ops)
1223 {
1224 __unregister_pernet_operations(ops);
1225 rcu_barrier();
1226 if (ops->id)
1227 ida_free(&net_generic_ids, *ops->id);
1228 }
1229
1230 /**
1231 * register_pernet_subsys - register a network namespace subsystem
1232 * @ops: pernet operations structure for the subsystem
1233 *
1234 * Register a subsystem which has init and exit functions
1235 * that are called when network namespaces are created and
1236 * destroyed respectively.
1237 *
1238 * When registered all network namespace init functions are
1239 * called for every existing network namespace. Allowing kernel
1240 * modules to have a race free view of the set of network namespaces.
1241 *
1242 * When a new network namespace is created all of the init
1243 * methods are called in the order in which they were registered.
1244 *
1245 * When a network namespace is destroyed all of the exit methods
1246 * are called in the reverse of the order with which they were
1247 * registered.
1248 */
1249 int register_pernet_subsys(struct pernet_operations *ops)
1250 {
1251 int error;
1252 down_write(&pernet_ops_rwsem);
1253 error = register_pernet_operations(first_device, ops);
1254 up_write(&pernet_ops_rwsem);
1255 return error;
1256 }
1257 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1258
1259 /**
1260 * unregister_pernet_subsys - unregister a network namespace subsystem
1261 * @ops: pernet operations structure to manipulate
1262 *
1263 * Remove the pernet operations structure from the list to be
1264 * used when network namespaces are created or destroyed. In
1265 * addition run the exit method for all existing network
1266 * namespaces.
1267 */
1268 void unregister_pernet_subsys(struct pernet_operations *ops)
1269 {
1270 down_write(&pernet_ops_rwsem);
1271 unregister_pernet_operations(ops);
1272 up_write(&pernet_ops_rwsem);
1273 }
1274 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1275
1276 /**
1277 * register_pernet_device - register a network namespace device
1278 * @ops: pernet operations structure for the subsystem
1279 *
1280 * Register a device which has init and exit functions
1281 * that are called when network namespaces are created and
1282 * destroyed respectively.
1283 *
1284 * When registered all network namespace init functions are
1285 * called for every existing network namespace. Allowing kernel
1286 * modules to have a race free view of the set of network namespaces.
1287 *
1288 * When a new network namespace is created all of the init
1289 * methods are called in the order in which they were registered.
1290 *
1291 * When a network namespace is destroyed all of the exit methods
1292 * are called in the reverse of the order with which they were
1293 * registered.
1294 */
1295 int register_pernet_device(struct pernet_operations *ops)
1296 {
1297 int error;
1298 down_write(&pernet_ops_rwsem);
1299 error = register_pernet_operations(&pernet_list, ops);
1300 if (!error && (first_device == &pernet_list))
1301 first_device = &ops->list;
1302 up_write(&pernet_ops_rwsem);
1303 return error;
1304 }
1305 EXPORT_SYMBOL_GPL(register_pernet_device);
1306
1307 /**
1308 * unregister_pernet_device - unregister a network namespace netdevice
1309 * @ops: pernet operations structure to manipulate
1310 *
1311 * Remove the pernet operations structure from the list to be
1312 * used when network namespaces are created or destroyed. In
1313 * addition run the exit method for all existing network
1314 * namespaces.
1315 */
1316 void unregister_pernet_device(struct pernet_operations *ops)
1317 {
1318 down_write(&pernet_ops_rwsem);
1319 if (&ops->list == first_device)
1320 first_device = first_device->next;
1321 unregister_pernet_operations(ops);
1322 up_write(&pernet_ops_rwsem);
1323 }
1324 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1325
1326 #ifdef CONFIG_NET_NS
1327 static struct ns_common *netns_get(struct task_struct *task)
1328 {
1329 struct net *net = NULL;
1330 struct nsproxy *nsproxy;
1331
1332 task_lock(task);
1333 nsproxy = task->nsproxy;
1334 if (nsproxy)
1335 net = get_net(nsproxy->net_ns);
1336 task_unlock(task);
1337
1338 return net ? &net->ns : NULL;
1339 }
1340
1341 static inline struct net *to_net_ns(struct ns_common *ns)
1342 {
1343 return container_of(ns, struct net, ns);
1344 }
1345
1346 static void netns_put(struct ns_common *ns)
1347 {
1348 put_net(to_net_ns(ns));
1349 }
1350
1351 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1352 {
1353 struct net *net = to_net_ns(ns);
1354
1355 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1356 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1357 return -EPERM;
1358
1359 put_net(nsproxy->net_ns);
1360 nsproxy->net_ns = get_net(net);
1361 return 0;
1362 }
1363
1364 static struct user_namespace *netns_owner(struct ns_common *ns)
1365 {
1366 return to_net_ns(ns)->user_ns;
1367 }
1368
1369 const struct proc_ns_operations netns_operations = {
1370 .name = "net",
1371 .type = CLONE_NEWNET,
1372 .get = netns_get,
1373 .put = netns_put,
1374 .install = netns_install,
1375 .owner = netns_owner,
1376 };
1377 #endif