]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/net_namespace.c
Merge tag 'for-linus-4.15-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / net / core / net_namespace.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/sched/task.h>
20
21 #include <net/sock.h>
22 #include <net/netlink.h>
23 #include <net/net_namespace.h>
24 #include <net/netns/generic.h>
25
26 /*
27 * Our network namespace constructor/destructor lists
28 */
29
30 static LIST_HEAD(pernet_list);
31 static struct list_head *first_device = &pernet_list;
32 DEFINE_MUTEX(net_mutex);
33
34 LIST_HEAD(net_namespace_list);
35 EXPORT_SYMBOL_GPL(net_namespace_list);
36
37 struct net init_net = {
38 .count = ATOMIC_INIT(1),
39 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
40 };
41 EXPORT_SYMBOL(init_net);
42
43 static bool init_net_initialized;
44
45 #define MIN_PERNET_OPS_ID \
46 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
47
48 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
49
50 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
51
52 static struct net_generic *net_alloc_generic(void)
53 {
54 struct net_generic *ng;
55 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
56
57 ng = kzalloc(generic_size, GFP_KERNEL);
58 if (ng)
59 ng->s.len = max_gen_ptrs;
60
61 return ng;
62 }
63
64 static int net_assign_generic(struct net *net, unsigned int id, void *data)
65 {
66 struct net_generic *ng, *old_ng;
67
68 BUG_ON(!mutex_is_locked(&net_mutex));
69 BUG_ON(id < MIN_PERNET_OPS_ID);
70
71 old_ng = rcu_dereference_protected(net->gen,
72 lockdep_is_held(&net_mutex));
73 if (old_ng->s.len > id) {
74 old_ng->ptr[id] = data;
75 return 0;
76 }
77
78 ng = net_alloc_generic();
79 if (ng == NULL)
80 return -ENOMEM;
81
82 /*
83 * Some synchronisation notes:
84 *
85 * The net_generic explores the net->gen array inside rcu
86 * read section. Besides once set the net->gen->ptr[x]
87 * pointer never changes (see rules in netns/generic.h).
88 *
89 * That said, we simply duplicate this array and schedule
90 * the old copy for kfree after a grace period.
91 */
92
93 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
94 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
95 ng->ptr[id] = data;
96
97 rcu_assign_pointer(net->gen, ng);
98 kfree_rcu(old_ng, s.rcu);
99 return 0;
100 }
101
102 static int ops_init(const struct pernet_operations *ops, struct net *net)
103 {
104 int err = -ENOMEM;
105 void *data = NULL;
106
107 if (ops->id && ops->size) {
108 data = kzalloc(ops->size, GFP_KERNEL);
109 if (!data)
110 goto out;
111
112 err = net_assign_generic(net, *ops->id, data);
113 if (err)
114 goto cleanup;
115 }
116 err = 0;
117 if (ops->init)
118 err = ops->init(net);
119 if (!err)
120 return 0;
121
122 cleanup:
123 kfree(data);
124
125 out:
126 return err;
127 }
128
129 static void ops_free(const struct pernet_operations *ops, struct net *net)
130 {
131 if (ops->id && ops->size) {
132 kfree(net_generic(net, *ops->id));
133 }
134 }
135
136 static void ops_exit_list(const struct pernet_operations *ops,
137 struct list_head *net_exit_list)
138 {
139 struct net *net;
140 if (ops->exit) {
141 list_for_each_entry(net, net_exit_list, exit_list)
142 ops->exit(net);
143 }
144 if (ops->exit_batch)
145 ops->exit_batch(net_exit_list);
146 }
147
148 static void ops_free_list(const struct pernet_operations *ops,
149 struct list_head *net_exit_list)
150 {
151 struct net *net;
152 if (ops->size && ops->id) {
153 list_for_each_entry(net, net_exit_list, exit_list)
154 ops_free(ops, net);
155 }
156 }
157
158 /* should be called with nsid_lock held */
159 static int alloc_netid(struct net *net, struct net *peer, int reqid)
160 {
161 int min = 0, max = 0;
162
163 if (reqid >= 0) {
164 min = reqid;
165 max = reqid + 1;
166 }
167
168 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
169 }
170
171 /* This function is used by idr_for_each(). If net is equal to peer, the
172 * function returns the id so that idr_for_each() stops. Because we cannot
173 * returns the id 0 (idr_for_each() will not stop), we return the magic value
174 * NET_ID_ZERO (-1) for it.
175 */
176 #define NET_ID_ZERO -1
177 static int net_eq_idr(int id, void *net, void *peer)
178 {
179 if (net_eq(net, peer))
180 return id ? : NET_ID_ZERO;
181 return 0;
182 }
183
184 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
185 * is set to true, thus the caller knows that the new id must be notified via
186 * rtnl.
187 */
188 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
189 {
190 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
191 bool alloc_it = *alloc;
192
193 *alloc = false;
194
195 /* Magic value for id 0. */
196 if (id == NET_ID_ZERO)
197 return 0;
198 if (id > 0)
199 return id;
200
201 if (alloc_it) {
202 id = alloc_netid(net, peer, -1);
203 *alloc = true;
204 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
205 }
206
207 return NETNSA_NSID_NOT_ASSIGNED;
208 }
209
210 /* should be called with nsid_lock held */
211 static int __peernet2id(struct net *net, struct net *peer)
212 {
213 bool no = false;
214
215 return __peernet2id_alloc(net, peer, &no);
216 }
217
218 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
219 /* This function returns the id of a peer netns. If no id is assigned, one will
220 * be allocated and returned.
221 */
222 int peernet2id_alloc(struct net *net, struct net *peer)
223 {
224 bool alloc;
225 int id;
226
227 if (atomic_read(&net->count) == 0)
228 return NETNSA_NSID_NOT_ASSIGNED;
229 spin_lock_bh(&net->nsid_lock);
230 alloc = atomic_read(&peer->count) == 0 ? false : true;
231 id = __peernet2id_alloc(net, peer, &alloc);
232 spin_unlock_bh(&net->nsid_lock);
233 if (alloc && id >= 0)
234 rtnl_net_notifyid(net, RTM_NEWNSID, id);
235 return id;
236 }
237 EXPORT_SYMBOL_GPL(peernet2id_alloc);
238
239 /* This function returns, if assigned, the id of a peer netns. */
240 int peernet2id(struct net *net, struct net *peer)
241 {
242 int id;
243
244 spin_lock_bh(&net->nsid_lock);
245 id = __peernet2id(net, peer);
246 spin_unlock_bh(&net->nsid_lock);
247 return id;
248 }
249 EXPORT_SYMBOL(peernet2id);
250
251 /* This function returns true is the peer netns has an id assigned into the
252 * current netns.
253 */
254 bool peernet_has_id(struct net *net, struct net *peer)
255 {
256 return peernet2id(net, peer) >= 0;
257 }
258
259 struct net *get_net_ns_by_id(struct net *net, int id)
260 {
261 struct net *peer;
262
263 if (id < 0)
264 return NULL;
265
266 rcu_read_lock();
267 spin_lock_bh(&net->nsid_lock);
268 peer = idr_find(&net->netns_ids, id);
269 if (peer)
270 get_net(peer);
271 spin_unlock_bh(&net->nsid_lock);
272 rcu_read_unlock();
273
274 return peer;
275 }
276
277 /*
278 * setup_net runs the initializers for the network namespace object.
279 */
280 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
281 {
282 /* Must be called with net_mutex held */
283 const struct pernet_operations *ops, *saved_ops;
284 int error = 0;
285 LIST_HEAD(net_exit_list);
286
287 atomic_set(&net->count, 1);
288 refcount_set(&net->passive, 1);
289 net->dev_base_seq = 1;
290 net->user_ns = user_ns;
291 idr_init(&net->netns_ids);
292 spin_lock_init(&net->nsid_lock);
293
294 list_for_each_entry(ops, &pernet_list, list) {
295 error = ops_init(ops, net);
296 if (error < 0)
297 goto out_undo;
298 }
299 out:
300 return error;
301
302 out_undo:
303 /* Walk through the list backwards calling the exit functions
304 * for the pernet modules whose init functions did not fail.
305 */
306 list_add(&net->exit_list, &net_exit_list);
307 saved_ops = ops;
308 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
309 ops_exit_list(ops, &net_exit_list);
310
311 ops = saved_ops;
312 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
313 ops_free_list(ops, &net_exit_list);
314
315 rcu_barrier();
316 goto out;
317 }
318
319 static int __net_init net_defaults_init_net(struct net *net)
320 {
321 net->core.sysctl_somaxconn = SOMAXCONN;
322 return 0;
323 }
324
325 static struct pernet_operations net_defaults_ops = {
326 .init = net_defaults_init_net,
327 };
328
329 static __init int net_defaults_init(void)
330 {
331 if (register_pernet_subsys(&net_defaults_ops))
332 panic("Cannot initialize net default settings");
333
334 return 0;
335 }
336
337 core_initcall(net_defaults_init);
338
339 #ifdef CONFIG_NET_NS
340 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
341 {
342 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
343 }
344
345 static void dec_net_namespaces(struct ucounts *ucounts)
346 {
347 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
348 }
349
350 static struct kmem_cache *net_cachep;
351 static struct workqueue_struct *netns_wq;
352
353 static struct net *net_alloc(void)
354 {
355 struct net *net = NULL;
356 struct net_generic *ng;
357
358 ng = net_alloc_generic();
359 if (!ng)
360 goto out;
361
362 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
363 if (!net)
364 goto out_free;
365
366 rcu_assign_pointer(net->gen, ng);
367 out:
368 return net;
369
370 out_free:
371 kfree(ng);
372 goto out;
373 }
374
375 static void net_free(struct net *net)
376 {
377 kfree(rcu_access_pointer(net->gen));
378 kmem_cache_free(net_cachep, net);
379 }
380
381 void net_drop_ns(void *p)
382 {
383 struct net *ns = p;
384 if (ns && refcount_dec_and_test(&ns->passive))
385 net_free(ns);
386 }
387
388 struct net *copy_net_ns(unsigned long flags,
389 struct user_namespace *user_ns, struct net *old_net)
390 {
391 struct ucounts *ucounts;
392 struct net *net;
393 int rv;
394
395 if (!(flags & CLONE_NEWNET))
396 return get_net(old_net);
397
398 ucounts = inc_net_namespaces(user_ns);
399 if (!ucounts)
400 return ERR_PTR(-ENOSPC);
401
402 net = net_alloc();
403 if (!net) {
404 dec_net_namespaces(ucounts);
405 return ERR_PTR(-ENOMEM);
406 }
407
408 get_user_ns(user_ns);
409
410 rv = mutex_lock_killable(&net_mutex);
411 if (rv < 0) {
412 net_free(net);
413 dec_net_namespaces(ucounts);
414 put_user_ns(user_ns);
415 return ERR_PTR(rv);
416 }
417
418 net->ucounts = ucounts;
419 rv = setup_net(net, user_ns);
420 if (rv == 0) {
421 rtnl_lock();
422 list_add_tail_rcu(&net->list, &net_namespace_list);
423 rtnl_unlock();
424 }
425 mutex_unlock(&net_mutex);
426 if (rv < 0) {
427 dec_net_namespaces(ucounts);
428 put_user_ns(user_ns);
429 net_drop_ns(net);
430 return ERR_PTR(rv);
431 }
432 return net;
433 }
434
435 static DEFINE_SPINLOCK(cleanup_list_lock);
436 static LIST_HEAD(cleanup_list); /* Must hold cleanup_list_lock to touch */
437
438 static void cleanup_net(struct work_struct *work)
439 {
440 const struct pernet_operations *ops;
441 struct net *net, *tmp;
442 struct list_head net_kill_list;
443 LIST_HEAD(net_exit_list);
444
445 /* Atomically snapshot the list of namespaces to cleanup */
446 spin_lock_irq(&cleanup_list_lock);
447 list_replace_init(&cleanup_list, &net_kill_list);
448 spin_unlock_irq(&cleanup_list_lock);
449
450 mutex_lock(&net_mutex);
451
452 /* Don't let anyone else find us. */
453 rtnl_lock();
454 list_for_each_entry(net, &net_kill_list, cleanup_list) {
455 list_del_rcu(&net->list);
456 list_add_tail(&net->exit_list, &net_exit_list);
457 for_each_net(tmp) {
458 int id;
459
460 spin_lock_bh(&tmp->nsid_lock);
461 id = __peernet2id(tmp, net);
462 if (id >= 0)
463 idr_remove(&tmp->netns_ids, id);
464 spin_unlock_bh(&tmp->nsid_lock);
465 if (id >= 0)
466 rtnl_net_notifyid(tmp, RTM_DELNSID, id);
467 }
468 spin_lock_bh(&net->nsid_lock);
469 idr_destroy(&net->netns_ids);
470 spin_unlock_bh(&net->nsid_lock);
471
472 }
473 rtnl_unlock();
474
475 /*
476 * Another CPU might be rcu-iterating the list, wait for it.
477 * This needs to be before calling the exit() notifiers, so
478 * the rcu_barrier() below isn't sufficient alone.
479 */
480 synchronize_rcu();
481
482 /* Run all of the network namespace exit methods */
483 list_for_each_entry_reverse(ops, &pernet_list, list)
484 ops_exit_list(ops, &net_exit_list);
485
486 /* Free the net generic variables */
487 list_for_each_entry_reverse(ops, &pernet_list, list)
488 ops_free_list(ops, &net_exit_list);
489
490 mutex_unlock(&net_mutex);
491
492 /* Ensure there are no outstanding rcu callbacks using this
493 * network namespace.
494 */
495 rcu_barrier();
496
497 /* Finally it is safe to free my network namespace structure */
498 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
499 list_del_init(&net->exit_list);
500 dec_net_namespaces(net->ucounts);
501 put_user_ns(net->user_ns);
502 net_drop_ns(net);
503 }
504 }
505
506 /**
507 * net_ns_barrier - wait until concurrent net_cleanup_work is done
508 *
509 * cleanup_net runs from work queue and will first remove namespaces
510 * from the global list, then run net exit functions.
511 *
512 * Call this in module exit path to make sure that all netns
513 * ->exit ops have been invoked before the function is removed.
514 */
515 void net_ns_barrier(void)
516 {
517 mutex_lock(&net_mutex);
518 mutex_unlock(&net_mutex);
519 }
520 EXPORT_SYMBOL(net_ns_barrier);
521
522 static DECLARE_WORK(net_cleanup_work, cleanup_net);
523
524 void __put_net(struct net *net)
525 {
526 /* Cleanup the network namespace in process context */
527 unsigned long flags;
528
529 spin_lock_irqsave(&cleanup_list_lock, flags);
530 list_add(&net->cleanup_list, &cleanup_list);
531 spin_unlock_irqrestore(&cleanup_list_lock, flags);
532
533 queue_work(netns_wq, &net_cleanup_work);
534 }
535 EXPORT_SYMBOL_GPL(__put_net);
536
537 struct net *get_net_ns_by_fd(int fd)
538 {
539 struct file *file;
540 struct ns_common *ns;
541 struct net *net;
542
543 file = proc_ns_fget(fd);
544 if (IS_ERR(file))
545 return ERR_CAST(file);
546
547 ns = get_proc_ns(file_inode(file));
548 if (ns->ops == &netns_operations)
549 net = get_net(container_of(ns, struct net, ns));
550 else
551 net = ERR_PTR(-EINVAL);
552
553 fput(file);
554 return net;
555 }
556
557 #else
558 struct net *get_net_ns_by_fd(int fd)
559 {
560 return ERR_PTR(-EINVAL);
561 }
562 #endif
563 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
564
565 struct net *get_net_ns_by_pid(pid_t pid)
566 {
567 struct task_struct *tsk;
568 struct net *net;
569
570 /* Lookup the network namespace */
571 net = ERR_PTR(-ESRCH);
572 rcu_read_lock();
573 tsk = find_task_by_vpid(pid);
574 if (tsk) {
575 struct nsproxy *nsproxy;
576 task_lock(tsk);
577 nsproxy = tsk->nsproxy;
578 if (nsproxy)
579 net = get_net(nsproxy->net_ns);
580 task_unlock(tsk);
581 }
582 rcu_read_unlock();
583 return net;
584 }
585 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
586
587 static __net_init int net_ns_net_init(struct net *net)
588 {
589 #ifdef CONFIG_NET_NS
590 net->ns.ops = &netns_operations;
591 #endif
592 return ns_alloc_inum(&net->ns);
593 }
594
595 static __net_exit void net_ns_net_exit(struct net *net)
596 {
597 ns_free_inum(&net->ns);
598 }
599
600 static struct pernet_operations __net_initdata net_ns_ops = {
601 .init = net_ns_net_init,
602 .exit = net_ns_net_exit,
603 };
604
605 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
606 [NETNSA_NONE] = { .type = NLA_UNSPEC },
607 [NETNSA_NSID] = { .type = NLA_S32 },
608 [NETNSA_PID] = { .type = NLA_U32 },
609 [NETNSA_FD] = { .type = NLA_U32 },
610 };
611
612 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
613 struct netlink_ext_ack *extack)
614 {
615 struct net *net = sock_net(skb->sk);
616 struct nlattr *tb[NETNSA_MAX + 1];
617 struct nlattr *nla;
618 struct net *peer;
619 int nsid, err;
620
621 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
622 rtnl_net_policy, extack);
623 if (err < 0)
624 return err;
625 if (!tb[NETNSA_NSID]) {
626 NL_SET_ERR_MSG(extack, "nsid is missing");
627 return -EINVAL;
628 }
629 nsid = nla_get_s32(tb[NETNSA_NSID]);
630
631 if (tb[NETNSA_PID]) {
632 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
633 nla = tb[NETNSA_PID];
634 } else if (tb[NETNSA_FD]) {
635 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
636 nla = tb[NETNSA_FD];
637 } else {
638 NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
639 return -EINVAL;
640 }
641 if (IS_ERR(peer)) {
642 NL_SET_BAD_ATTR(extack, nla);
643 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
644 return PTR_ERR(peer);
645 }
646
647 spin_lock_bh(&net->nsid_lock);
648 if (__peernet2id(net, peer) >= 0) {
649 spin_unlock_bh(&net->nsid_lock);
650 err = -EEXIST;
651 NL_SET_BAD_ATTR(extack, nla);
652 NL_SET_ERR_MSG(extack,
653 "Peer netns already has a nsid assigned");
654 goto out;
655 }
656
657 err = alloc_netid(net, peer, nsid);
658 spin_unlock_bh(&net->nsid_lock);
659 if (err >= 0) {
660 rtnl_net_notifyid(net, RTM_NEWNSID, err);
661 err = 0;
662 } else if (err == -ENOSPC && nsid >= 0) {
663 err = -EEXIST;
664 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
665 NL_SET_ERR_MSG(extack, "The specified nsid is already used");
666 }
667 out:
668 put_net(peer);
669 return err;
670 }
671
672 static int rtnl_net_get_size(void)
673 {
674 return NLMSG_ALIGN(sizeof(struct rtgenmsg))
675 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
676 ;
677 }
678
679 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
680 int cmd, struct net *net, int nsid)
681 {
682 struct nlmsghdr *nlh;
683 struct rtgenmsg *rth;
684
685 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
686 if (!nlh)
687 return -EMSGSIZE;
688
689 rth = nlmsg_data(nlh);
690 rth->rtgen_family = AF_UNSPEC;
691
692 if (nla_put_s32(skb, NETNSA_NSID, nsid))
693 goto nla_put_failure;
694
695 nlmsg_end(skb, nlh);
696 return 0;
697
698 nla_put_failure:
699 nlmsg_cancel(skb, nlh);
700 return -EMSGSIZE;
701 }
702
703 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
704 struct netlink_ext_ack *extack)
705 {
706 struct net *net = sock_net(skb->sk);
707 struct nlattr *tb[NETNSA_MAX + 1];
708 struct nlattr *nla;
709 struct sk_buff *msg;
710 struct net *peer;
711 int err, id;
712
713 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
714 rtnl_net_policy, extack);
715 if (err < 0)
716 return err;
717 if (tb[NETNSA_PID]) {
718 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
719 nla = tb[NETNSA_PID];
720 } else if (tb[NETNSA_FD]) {
721 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
722 nla = tb[NETNSA_FD];
723 } else {
724 NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
725 return -EINVAL;
726 }
727
728 if (IS_ERR(peer)) {
729 NL_SET_BAD_ATTR(extack, nla);
730 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
731 return PTR_ERR(peer);
732 }
733
734 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
735 if (!msg) {
736 err = -ENOMEM;
737 goto out;
738 }
739
740 id = peernet2id(net, peer);
741 err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
742 RTM_NEWNSID, net, id);
743 if (err < 0)
744 goto err_out;
745
746 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
747 goto out;
748
749 err_out:
750 nlmsg_free(msg);
751 out:
752 put_net(peer);
753 return err;
754 }
755
756 struct rtnl_net_dump_cb {
757 struct net *net;
758 struct sk_buff *skb;
759 struct netlink_callback *cb;
760 int idx;
761 int s_idx;
762 };
763
764 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
765 {
766 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
767 int ret;
768
769 if (net_cb->idx < net_cb->s_idx)
770 goto cont;
771
772 ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
773 net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
774 RTM_NEWNSID, net_cb->net, id);
775 if (ret < 0)
776 return ret;
777
778 cont:
779 net_cb->idx++;
780 return 0;
781 }
782
783 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
784 {
785 struct net *net = sock_net(skb->sk);
786 struct rtnl_net_dump_cb net_cb = {
787 .net = net,
788 .skb = skb,
789 .cb = cb,
790 .idx = 0,
791 .s_idx = cb->args[0],
792 };
793
794 spin_lock_bh(&net->nsid_lock);
795 idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
796 spin_unlock_bh(&net->nsid_lock);
797
798 cb->args[0] = net_cb.idx;
799 return skb->len;
800 }
801
802 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
803 {
804 struct sk_buff *msg;
805 int err = -ENOMEM;
806
807 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
808 if (!msg)
809 goto out;
810
811 err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
812 if (err < 0)
813 goto err_out;
814
815 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
816 return;
817
818 err_out:
819 nlmsg_free(msg);
820 out:
821 rtnl_set_sk_err(net, RTNLGRP_NSID, err);
822 }
823
824 static int __init net_ns_init(void)
825 {
826 struct net_generic *ng;
827
828 #ifdef CONFIG_NET_NS
829 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
830 SMP_CACHE_BYTES,
831 SLAB_PANIC, NULL);
832
833 /* Create workqueue for cleanup */
834 netns_wq = create_singlethread_workqueue("netns");
835 if (!netns_wq)
836 panic("Could not create netns workq");
837 #endif
838
839 ng = net_alloc_generic();
840 if (!ng)
841 panic("Could not allocate generic netns");
842
843 rcu_assign_pointer(init_net.gen, ng);
844
845 mutex_lock(&net_mutex);
846 if (setup_net(&init_net, &init_user_ns))
847 panic("Could not setup the initial network namespace");
848
849 init_net_initialized = true;
850
851 rtnl_lock();
852 list_add_tail_rcu(&init_net.list, &net_namespace_list);
853 rtnl_unlock();
854
855 mutex_unlock(&net_mutex);
856
857 register_pernet_subsys(&net_ns_ops);
858
859 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
860 RTNL_FLAG_DOIT_UNLOCKED);
861 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
862 RTNL_FLAG_DOIT_UNLOCKED);
863
864 return 0;
865 }
866
867 pure_initcall(net_ns_init);
868
869 #ifdef CONFIG_NET_NS
870 static int __register_pernet_operations(struct list_head *list,
871 struct pernet_operations *ops)
872 {
873 struct net *net;
874 int error;
875 LIST_HEAD(net_exit_list);
876
877 list_add_tail(&ops->list, list);
878 if (ops->init || (ops->id && ops->size)) {
879 for_each_net(net) {
880 error = ops_init(ops, net);
881 if (error)
882 goto out_undo;
883 list_add_tail(&net->exit_list, &net_exit_list);
884 }
885 }
886 return 0;
887
888 out_undo:
889 /* If I have an error cleanup all namespaces I initialized */
890 list_del(&ops->list);
891 ops_exit_list(ops, &net_exit_list);
892 ops_free_list(ops, &net_exit_list);
893 return error;
894 }
895
896 static void __unregister_pernet_operations(struct pernet_operations *ops)
897 {
898 struct net *net;
899 LIST_HEAD(net_exit_list);
900
901 list_del(&ops->list);
902 for_each_net(net)
903 list_add_tail(&net->exit_list, &net_exit_list);
904 ops_exit_list(ops, &net_exit_list);
905 ops_free_list(ops, &net_exit_list);
906 }
907
908 #else
909
910 static int __register_pernet_operations(struct list_head *list,
911 struct pernet_operations *ops)
912 {
913 if (!init_net_initialized) {
914 list_add_tail(&ops->list, list);
915 return 0;
916 }
917
918 return ops_init(ops, &init_net);
919 }
920
921 static void __unregister_pernet_operations(struct pernet_operations *ops)
922 {
923 if (!init_net_initialized) {
924 list_del(&ops->list);
925 } else {
926 LIST_HEAD(net_exit_list);
927 list_add(&init_net.exit_list, &net_exit_list);
928 ops_exit_list(ops, &net_exit_list);
929 ops_free_list(ops, &net_exit_list);
930 }
931 }
932
933 #endif /* CONFIG_NET_NS */
934
935 static DEFINE_IDA(net_generic_ids);
936
937 static int register_pernet_operations(struct list_head *list,
938 struct pernet_operations *ops)
939 {
940 int error;
941
942 if (ops->id) {
943 again:
944 error = ida_get_new_above(&net_generic_ids, MIN_PERNET_OPS_ID, ops->id);
945 if (error < 0) {
946 if (error == -EAGAIN) {
947 ida_pre_get(&net_generic_ids, GFP_KERNEL);
948 goto again;
949 }
950 return error;
951 }
952 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
953 }
954 error = __register_pernet_operations(list, ops);
955 if (error) {
956 rcu_barrier();
957 if (ops->id)
958 ida_remove(&net_generic_ids, *ops->id);
959 }
960
961 return error;
962 }
963
964 static void unregister_pernet_operations(struct pernet_operations *ops)
965 {
966
967 __unregister_pernet_operations(ops);
968 rcu_barrier();
969 if (ops->id)
970 ida_remove(&net_generic_ids, *ops->id);
971 }
972
973 /**
974 * register_pernet_subsys - register a network namespace subsystem
975 * @ops: pernet operations structure for the subsystem
976 *
977 * Register a subsystem which has init and exit functions
978 * that are called when network namespaces are created and
979 * destroyed respectively.
980 *
981 * When registered all network namespace init functions are
982 * called for every existing network namespace. Allowing kernel
983 * modules to have a race free view of the set of network namespaces.
984 *
985 * When a new network namespace is created all of the init
986 * methods are called in the order in which they were registered.
987 *
988 * When a network namespace is destroyed all of the exit methods
989 * are called in the reverse of the order with which they were
990 * registered.
991 */
992 int register_pernet_subsys(struct pernet_operations *ops)
993 {
994 int error;
995 mutex_lock(&net_mutex);
996 error = register_pernet_operations(first_device, ops);
997 mutex_unlock(&net_mutex);
998 return error;
999 }
1000 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1001
1002 /**
1003 * unregister_pernet_subsys - unregister a network namespace subsystem
1004 * @ops: pernet operations structure to manipulate
1005 *
1006 * Remove the pernet operations structure from the list to be
1007 * used when network namespaces are created or destroyed. In
1008 * addition run the exit method for all existing network
1009 * namespaces.
1010 */
1011 void unregister_pernet_subsys(struct pernet_operations *ops)
1012 {
1013 mutex_lock(&net_mutex);
1014 unregister_pernet_operations(ops);
1015 mutex_unlock(&net_mutex);
1016 }
1017 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1018
1019 /**
1020 * register_pernet_device - register a network namespace device
1021 * @ops: pernet operations structure for the subsystem
1022 *
1023 * Register a device which has init and exit functions
1024 * that are called when network namespaces are created and
1025 * destroyed respectively.
1026 *
1027 * When registered all network namespace init functions are
1028 * called for every existing network namespace. Allowing kernel
1029 * modules to have a race free view of the set of network namespaces.
1030 *
1031 * When a new network namespace is created all of the init
1032 * methods are called in the order in which they were registered.
1033 *
1034 * When a network namespace is destroyed all of the exit methods
1035 * are called in the reverse of the order with which they were
1036 * registered.
1037 */
1038 int register_pernet_device(struct pernet_operations *ops)
1039 {
1040 int error;
1041 mutex_lock(&net_mutex);
1042 error = register_pernet_operations(&pernet_list, ops);
1043 if (!error && (first_device == &pernet_list))
1044 first_device = &ops->list;
1045 mutex_unlock(&net_mutex);
1046 return error;
1047 }
1048 EXPORT_SYMBOL_GPL(register_pernet_device);
1049
1050 /**
1051 * unregister_pernet_device - unregister a network namespace netdevice
1052 * @ops: pernet operations structure to manipulate
1053 *
1054 * Remove the pernet operations structure from the list to be
1055 * used when network namespaces are created or destroyed. In
1056 * addition run the exit method for all existing network
1057 * namespaces.
1058 */
1059 void unregister_pernet_device(struct pernet_operations *ops)
1060 {
1061 mutex_lock(&net_mutex);
1062 if (&ops->list == first_device)
1063 first_device = first_device->next;
1064 unregister_pernet_operations(ops);
1065 mutex_unlock(&net_mutex);
1066 }
1067 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1068
1069 #ifdef CONFIG_NET_NS
1070 static struct ns_common *netns_get(struct task_struct *task)
1071 {
1072 struct net *net = NULL;
1073 struct nsproxy *nsproxy;
1074
1075 task_lock(task);
1076 nsproxy = task->nsproxy;
1077 if (nsproxy)
1078 net = get_net(nsproxy->net_ns);
1079 task_unlock(task);
1080
1081 return net ? &net->ns : NULL;
1082 }
1083
1084 static inline struct net *to_net_ns(struct ns_common *ns)
1085 {
1086 return container_of(ns, struct net, ns);
1087 }
1088
1089 static void netns_put(struct ns_common *ns)
1090 {
1091 put_net(to_net_ns(ns));
1092 }
1093
1094 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1095 {
1096 struct net *net = to_net_ns(ns);
1097
1098 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1099 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1100 return -EPERM;
1101
1102 put_net(nsproxy->net_ns);
1103 nsproxy->net_ns = get_net(net);
1104 return 0;
1105 }
1106
1107 static struct user_namespace *netns_owner(struct ns_common *ns)
1108 {
1109 return to_net_ns(ns)->user_ns;
1110 }
1111
1112 const struct proc_ns_operations netns_operations = {
1113 .name = "net",
1114 .type = CLONE_NEWNET,
1115 .get = netns_get,
1116 .put = netns_put,
1117 .install = netns_install,
1118 .owner = netns_owner,
1119 };
1120 #endif