]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/net_namespace.c
Merge tag 'pci-v3.20-fixes-1' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[mirror_ubuntu-artful-kernel.git] / net / core / net_namespace.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/rtnetlink.h>
20 #include <net/sock.h>
21 #include <net/netlink.h>
22 #include <net/net_namespace.h>
23 #include <net/netns/generic.h>
24
25 /*
26 * Our network namespace constructor/destructor lists
27 */
28
29 static LIST_HEAD(pernet_list);
30 static struct list_head *first_device = &pernet_list;
31 DEFINE_MUTEX(net_mutex);
32
33 LIST_HEAD(net_namespace_list);
34 EXPORT_SYMBOL_GPL(net_namespace_list);
35
36 struct net init_net = {
37 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
38 };
39 EXPORT_SYMBOL(init_net);
40
41 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
42
43 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
44
45 static struct net_generic *net_alloc_generic(void)
46 {
47 struct net_generic *ng;
48 size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
49
50 ng = kzalloc(generic_size, GFP_KERNEL);
51 if (ng)
52 ng->len = max_gen_ptrs;
53
54 return ng;
55 }
56
57 static int net_assign_generic(struct net *net, int id, void *data)
58 {
59 struct net_generic *ng, *old_ng;
60
61 BUG_ON(!mutex_is_locked(&net_mutex));
62 BUG_ON(id == 0);
63
64 old_ng = rcu_dereference_protected(net->gen,
65 lockdep_is_held(&net_mutex));
66 ng = old_ng;
67 if (old_ng->len >= id)
68 goto assign;
69
70 ng = net_alloc_generic();
71 if (ng == NULL)
72 return -ENOMEM;
73
74 /*
75 * Some synchronisation notes:
76 *
77 * The net_generic explores the net->gen array inside rcu
78 * read section. Besides once set the net->gen->ptr[x]
79 * pointer never changes (see rules in netns/generic.h).
80 *
81 * That said, we simply duplicate this array and schedule
82 * the old copy for kfree after a grace period.
83 */
84
85 memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
86
87 rcu_assign_pointer(net->gen, ng);
88 kfree_rcu(old_ng, rcu);
89 assign:
90 ng->ptr[id - 1] = data;
91 return 0;
92 }
93
94 static int ops_init(const struct pernet_operations *ops, struct net *net)
95 {
96 int err = -ENOMEM;
97 void *data = NULL;
98
99 if (ops->id && ops->size) {
100 data = kzalloc(ops->size, GFP_KERNEL);
101 if (!data)
102 goto out;
103
104 err = net_assign_generic(net, *ops->id, data);
105 if (err)
106 goto cleanup;
107 }
108 err = 0;
109 if (ops->init)
110 err = ops->init(net);
111 if (!err)
112 return 0;
113
114 cleanup:
115 kfree(data);
116
117 out:
118 return err;
119 }
120
121 static void ops_free(const struct pernet_operations *ops, struct net *net)
122 {
123 if (ops->id && ops->size) {
124 int id = *ops->id;
125 kfree(net_generic(net, id));
126 }
127 }
128
129 static void ops_exit_list(const struct pernet_operations *ops,
130 struct list_head *net_exit_list)
131 {
132 struct net *net;
133 if (ops->exit) {
134 list_for_each_entry(net, net_exit_list, exit_list)
135 ops->exit(net);
136 }
137 if (ops->exit_batch)
138 ops->exit_batch(net_exit_list);
139 }
140
141 static void ops_free_list(const struct pernet_operations *ops,
142 struct list_head *net_exit_list)
143 {
144 struct net *net;
145 if (ops->size && ops->id) {
146 list_for_each_entry(net, net_exit_list, exit_list)
147 ops_free(ops, net);
148 }
149 }
150
151 static int alloc_netid(struct net *net, struct net *peer, int reqid)
152 {
153 int min = 0, max = 0;
154
155 ASSERT_RTNL();
156
157 if (reqid >= 0) {
158 min = reqid;
159 max = reqid + 1;
160 }
161
162 return idr_alloc(&net->netns_ids, peer, min, max, GFP_KERNEL);
163 }
164
165 /* This function is used by idr_for_each(). If net is equal to peer, the
166 * function returns the id so that idr_for_each() stops. Because we cannot
167 * returns the id 0 (idr_for_each() will not stop), we return the magic value
168 * NET_ID_ZERO (-1) for it.
169 */
170 #define NET_ID_ZERO -1
171 static int net_eq_idr(int id, void *net, void *peer)
172 {
173 if (net_eq(net, peer))
174 return id ? : NET_ID_ZERO;
175 return 0;
176 }
177
178 static int __peernet2id(struct net *net, struct net *peer, bool alloc)
179 {
180 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
181
182 ASSERT_RTNL();
183
184 /* Magic value for id 0. */
185 if (id == NET_ID_ZERO)
186 return 0;
187 if (id > 0)
188 return id;
189
190 if (alloc)
191 return alloc_netid(net, peer, -1);
192
193 return -ENOENT;
194 }
195
196 /* This function returns the id of a peer netns. If no id is assigned, one will
197 * be allocated and returned.
198 */
199 int peernet2id(struct net *net, struct net *peer)
200 {
201 int id = __peernet2id(net, peer, true);
202
203 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
204 }
205 EXPORT_SYMBOL(peernet2id);
206
207 struct net *get_net_ns_by_id(struct net *net, int id)
208 {
209 struct net *peer;
210
211 if (id < 0)
212 return NULL;
213
214 rcu_read_lock();
215 peer = idr_find(&net->netns_ids, id);
216 if (peer)
217 get_net(peer);
218 rcu_read_unlock();
219
220 return peer;
221 }
222
223 /*
224 * setup_net runs the initializers for the network namespace object.
225 */
226 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
227 {
228 /* Must be called with net_mutex held */
229 const struct pernet_operations *ops, *saved_ops;
230 int error = 0;
231 LIST_HEAD(net_exit_list);
232
233 atomic_set(&net->count, 1);
234 atomic_set(&net->passive, 1);
235 net->dev_base_seq = 1;
236 net->user_ns = user_ns;
237 idr_init(&net->netns_ids);
238
239 #ifdef NETNS_REFCNT_DEBUG
240 atomic_set(&net->use_count, 0);
241 #endif
242
243 list_for_each_entry(ops, &pernet_list, list) {
244 error = ops_init(ops, net);
245 if (error < 0)
246 goto out_undo;
247 }
248 out:
249 return error;
250
251 out_undo:
252 /* Walk through the list backwards calling the exit functions
253 * for the pernet modules whose init functions did not fail.
254 */
255 list_add(&net->exit_list, &net_exit_list);
256 saved_ops = ops;
257 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
258 ops_exit_list(ops, &net_exit_list);
259
260 ops = saved_ops;
261 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
262 ops_free_list(ops, &net_exit_list);
263
264 rcu_barrier();
265 goto out;
266 }
267
268
269 #ifdef CONFIG_NET_NS
270 static struct kmem_cache *net_cachep;
271 static struct workqueue_struct *netns_wq;
272
273 static struct net *net_alloc(void)
274 {
275 struct net *net = NULL;
276 struct net_generic *ng;
277
278 ng = net_alloc_generic();
279 if (!ng)
280 goto out;
281
282 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
283 if (!net)
284 goto out_free;
285
286 rcu_assign_pointer(net->gen, ng);
287 out:
288 return net;
289
290 out_free:
291 kfree(ng);
292 goto out;
293 }
294
295 static void net_free(struct net *net)
296 {
297 #ifdef NETNS_REFCNT_DEBUG
298 if (unlikely(atomic_read(&net->use_count) != 0)) {
299 pr_emerg("network namespace not free! Usage: %d\n",
300 atomic_read(&net->use_count));
301 return;
302 }
303 #endif
304 kfree(rcu_access_pointer(net->gen));
305 kmem_cache_free(net_cachep, net);
306 }
307
308 void net_drop_ns(void *p)
309 {
310 struct net *ns = p;
311 if (ns && atomic_dec_and_test(&ns->passive))
312 net_free(ns);
313 }
314
315 struct net *copy_net_ns(unsigned long flags,
316 struct user_namespace *user_ns, struct net *old_net)
317 {
318 struct net *net;
319 int rv;
320
321 if (!(flags & CLONE_NEWNET))
322 return get_net(old_net);
323
324 net = net_alloc();
325 if (!net)
326 return ERR_PTR(-ENOMEM);
327
328 get_user_ns(user_ns);
329
330 mutex_lock(&net_mutex);
331 rv = setup_net(net, user_ns);
332 if (rv == 0) {
333 rtnl_lock();
334 list_add_tail_rcu(&net->list, &net_namespace_list);
335 rtnl_unlock();
336 }
337 mutex_unlock(&net_mutex);
338 if (rv < 0) {
339 put_user_ns(user_ns);
340 net_drop_ns(net);
341 return ERR_PTR(rv);
342 }
343 return net;
344 }
345
346 static DEFINE_SPINLOCK(cleanup_list_lock);
347 static LIST_HEAD(cleanup_list); /* Must hold cleanup_list_lock to touch */
348
349 static void cleanup_net(struct work_struct *work)
350 {
351 const struct pernet_operations *ops;
352 struct net *net, *tmp;
353 struct list_head net_kill_list;
354 LIST_HEAD(net_exit_list);
355
356 /* Atomically snapshot the list of namespaces to cleanup */
357 spin_lock_irq(&cleanup_list_lock);
358 list_replace_init(&cleanup_list, &net_kill_list);
359 spin_unlock_irq(&cleanup_list_lock);
360
361 mutex_lock(&net_mutex);
362
363 /* Don't let anyone else find us. */
364 rtnl_lock();
365 list_for_each_entry(net, &net_kill_list, cleanup_list) {
366 list_del_rcu(&net->list);
367 list_add_tail(&net->exit_list, &net_exit_list);
368 for_each_net(tmp) {
369 int id = __peernet2id(tmp, net, false);
370
371 if (id >= 0)
372 idr_remove(&tmp->netns_ids, id);
373 }
374 idr_destroy(&net->netns_ids);
375
376 }
377 rtnl_unlock();
378
379 /*
380 * Another CPU might be rcu-iterating the list, wait for it.
381 * This needs to be before calling the exit() notifiers, so
382 * the rcu_barrier() below isn't sufficient alone.
383 */
384 synchronize_rcu();
385
386 /* Run all of the network namespace exit methods */
387 list_for_each_entry_reverse(ops, &pernet_list, list)
388 ops_exit_list(ops, &net_exit_list);
389
390 /* Free the net generic variables */
391 list_for_each_entry_reverse(ops, &pernet_list, list)
392 ops_free_list(ops, &net_exit_list);
393
394 mutex_unlock(&net_mutex);
395
396 /* Ensure there are no outstanding rcu callbacks using this
397 * network namespace.
398 */
399 rcu_barrier();
400
401 /* Finally it is safe to free my network namespace structure */
402 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
403 list_del_init(&net->exit_list);
404 put_user_ns(net->user_ns);
405 net_drop_ns(net);
406 }
407 }
408 static DECLARE_WORK(net_cleanup_work, cleanup_net);
409
410 void __put_net(struct net *net)
411 {
412 /* Cleanup the network namespace in process context */
413 unsigned long flags;
414
415 spin_lock_irqsave(&cleanup_list_lock, flags);
416 list_add(&net->cleanup_list, &cleanup_list);
417 spin_unlock_irqrestore(&cleanup_list_lock, flags);
418
419 queue_work(netns_wq, &net_cleanup_work);
420 }
421 EXPORT_SYMBOL_GPL(__put_net);
422
423 struct net *get_net_ns_by_fd(int fd)
424 {
425 struct file *file;
426 struct ns_common *ns;
427 struct net *net;
428
429 file = proc_ns_fget(fd);
430 if (IS_ERR(file))
431 return ERR_CAST(file);
432
433 ns = get_proc_ns(file_inode(file));
434 if (ns->ops == &netns_operations)
435 net = get_net(container_of(ns, struct net, ns));
436 else
437 net = ERR_PTR(-EINVAL);
438
439 fput(file);
440 return net;
441 }
442
443 #else
444 struct net *get_net_ns_by_fd(int fd)
445 {
446 return ERR_PTR(-EINVAL);
447 }
448 #endif
449 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
450
451 struct net *get_net_ns_by_pid(pid_t pid)
452 {
453 struct task_struct *tsk;
454 struct net *net;
455
456 /* Lookup the network namespace */
457 net = ERR_PTR(-ESRCH);
458 rcu_read_lock();
459 tsk = find_task_by_vpid(pid);
460 if (tsk) {
461 struct nsproxy *nsproxy;
462 task_lock(tsk);
463 nsproxy = tsk->nsproxy;
464 if (nsproxy)
465 net = get_net(nsproxy->net_ns);
466 task_unlock(tsk);
467 }
468 rcu_read_unlock();
469 return net;
470 }
471 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
472
473 static __net_init int net_ns_net_init(struct net *net)
474 {
475 #ifdef CONFIG_NET_NS
476 net->ns.ops = &netns_operations;
477 #endif
478 return ns_alloc_inum(&net->ns);
479 }
480
481 static __net_exit void net_ns_net_exit(struct net *net)
482 {
483 ns_free_inum(&net->ns);
484 }
485
486 static struct pernet_operations __net_initdata net_ns_ops = {
487 .init = net_ns_net_init,
488 .exit = net_ns_net_exit,
489 };
490
491 static struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
492 [NETNSA_NONE] = { .type = NLA_UNSPEC },
493 [NETNSA_NSID] = { .type = NLA_S32 },
494 [NETNSA_PID] = { .type = NLA_U32 },
495 [NETNSA_FD] = { .type = NLA_U32 },
496 };
497
498 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
499 {
500 struct net *net = sock_net(skb->sk);
501 struct nlattr *tb[NETNSA_MAX + 1];
502 struct net *peer;
503 int nsid, err;
504
505 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
506 rtnl_net_policy);
507 if (err < 0)
508 return err;
509 if (!tb[NETNSA_NSID])
510 return -EINVAL;
511 nsid = nla_get_s32(tb[NETNSA_NSID]);
512
513 if (tb[NETNSA_PID])
514 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
515 else if (tb[NETNSA_FD])
516 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
517 else
518 return -EINVAL;
519 if (IS_ERR(peer))
520 return PTR_ERR(peer);
521
522 if (__peernet2id(net, peer, false) >= 0) {
523 err = -EEXIST;
524 goto out;
525 }
526
527 err = alloc_netid(net, peer, nsid);
528 if (err > 0)
529 err = 0;
530 out:
531 put_net(peer);
532 return err;
533 }
534
535 static int rtnl_net_get_size(void)
536 {
537 return NLMSG_ALIGN(sizeof(struct rtgenmsg))
538 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
539 ;
540 }
541
542 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
543 int cmd, struct net *net, struct net *peer)
544 {
545 struct nlmsghdr *nlh;
546 struct rtgenmsg *rth;
547 int id;
548
549 ASSERT_RTNL();
550
551 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
552 if (!nlh)
553 return -EMSGSIZE;
554
555 rth = nlmsg_data(nlh);
556 rth->rtgen_family = AF_UNSPEC;
557
558 id = __peernet2id(net, peer, false);
559 if (id < 0)
560 id = NETNSA_NSID_NOT_ASSIGNED;
561 if (nla_put_s32(skb, NETNSA_NSID, id))
562 goto nla_put_failure;
563
564 nlmsg_end(skb, nlh);
565 return 0;
566
567 nla_put_failure:
568 nlmsg_cancel(skb, nlh);
569 return -EMSGSIZE;
570 }
571
572 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
573 {
574 struct net *net = sock_net(skb->sk);
575 struct nlattr *tb[NETNSA_MAX + 1];
576 struct sk_buff *msg;
577 int err = -ENOBUFS;
578 struct net *peer;
579
580 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
581 rtnl_net_policy);
582 if (err < 0)
583 return err;
584 if (tb[NETNSA_PID])
585 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
586 else if (tb[NETNSA_FD])
587 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
588 else
589 return -EINVAL;
590
591 if (IS_ERR(peer))
592 return PTR_ERR(peer);
593
594 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
595 if (!msg) {
596 err = -ENOMEM;
597 goto out;
598 }
599
600 err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
601 RTM_GETNSID, net, peer);
602 if (err < 0)
603 goto err_out;
604
605 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
606 goto out;
607
608 err_out:
609 nlmsg_free(msg);
610 out:
611 put_net(peer);
612 return err;
613 }
614
615 static int __init net_ns_init(void)
616 {
617 struct net_generic *ng;
618
619 #ifdef CONFIG_NET_NS
620 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
621 SMP_CACHE_BYTES,
622 SLAB_PANIC, NULL);
623
624 /* Create workqueue for cleanup */
625 netns_wq = create_singlethread_workqueue("netns");
626 if (!netns_wq)
627 panic("Could not create netns workq");
628 #endif
629
630 ng = net_alloc_generic();
631 if (!ng)
632 panic("Could not allocate generic netns");
633
634 rcu_assign_pointer(init_net.gen, ng);
635
636 mutex_lock(&net_mutex);
637 if (setup_net(&init_net, &init_user_ns))
638 panic("Could not setup the initial network namespace");
639
640 rtnl_lock();
641 list_add_tail_rcu(&init_net.list, &net_namespace_list);
642 rtnl_unlock();
643
644 mutex_unlock(&net_mutex);
645
646 register_pernet_subsys(&net_ns_ops);
647
648 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
649 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, NULL, NULL);
650
651 return 0;
652 }
653
654 pure_initcall(net_ns_init);
655
656 #ifdef CONFIG_NET_NS
657 static int __register_pernet_operations(struct list_head *list,
658 struct pernet_operations *ops)
659 {
660 struct net *net;
661 int error;
662 LIST_HEAD(net_exit_list);
663
664 list_add_tail(&ops->list, list);
665 if (ops->init || (ops->id && ops->size)) {
666 for_each_net(net) {
667 error = ops_init(ops, net);
668 if (error)
669 goto out_undo;
670 list_add_tail(&net->exit_list, &net_exit_list);
671 }
672 }
673 return 0;
674
675 out_undo:
676 /* If I have an error cleanup all namespaces I initialized */
677 list_del(&ops->list);
678 ops_exit_list(ops, &net_exit_list);
679 ops_free_list(ops, &net_exit_list);
680 return error;
681 }
682
683 static void __unregister_pernet_operations(struct pernet_operations *ops)
684 {
685 struct net *net;
686 LIST_HEAD(net_exit_list);
687
688 list_del(&ops->list);
689 for_each_net(net)
690 list_add_tail(&net->exit_list, &net_exit_list);
691 ops_exit_list(ops, &net_exit_list);
692 ops_free_list(ops, &net_exit_list);
693 }
694
695 #else
696
697 static int __register_pernet_operations(struct list_head *list,
698 struct pernet_operations *ops)
699 {
700 return ops_init(ops, &init_net);
701 }
702
703 static void __unregister_pernet_operations(struct pernet_operations *ops)
704 {
705 LIST_HEAD(net_exit_list);
706 list_add(&init_net.exit_list, &net_exit_list);
707 ops_exit_list(ops, &net_exit_list);
708 ops_free_list(ops, &net_exit_list);
709 }
710
711 #endif /* CONFIG_NET_NS */
712
713 static DEFINE_IDA(net_generic_ids);
714
715 static int register_pernet_operations(struct list_head *list,
716 struct pernet_operations *ops)
717 {
718 int error;
719
720 if (ops->id) {
721 again:
722 error = ida_get_new_above(&net_generic_ids, 1, ops->id);
723 if (error < 0) {
724 if (error == -EAGAIN) {
725 ida_pre_get(&net_generic_ids, GFP_KERNEL);
726 goto again;
727 }
728 return error;
729 }
730 max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
731 }
732 error = __register_pernet_operations(list, ops);
733 if (error) {
734 rcu_barrier();
735 if (ops->id)
736 ida_remove(&net_generic_ids, *ops->id);
737 }
738
739 return error;
740 }
741
742 static void unregister_pernet_operations(struct pernet_operations *ops)
743 {
744
745 __unregister_pernet_operations(ops);
746 rcu_barrier();
747 if (ops->id)
748 ida_remove(&net_generic_ids, *ops->id);
749 }
750
751 /**
752 * register_pernet_subsys - register a network namespace subsystem
753 * @ops: pernet operations structure for the subsystem
754 *
755 * Register a subsystem which has init and exit functions
756 * that are called when network namespaces are created and
757 * destroyed respectively.
758 *
759 * When registered all network namespace init functions are
760 * called for every existing network namespace. Allowing kernel
761 * modules to have a race free view of the set of network namespaces.
762 *
763 * When a new network namespace is created all of the init
764 * methods are called in the order in which they were registered.
765 *
766 * When a network namespace is destroyed all of the exit methods
767 * are called in the reverse of the order with which they were
768 * registered.
769 */
770 int register_pernet_subsys(struct pernet_operations *ops)
771 {
772 int error;
773 mutex_lock(&net_mutex);
774 error = register_pernet_operations(first_device, ops);
775 mutex_unlock(&net_mutex);
776 return error;
777 }
778 EXPORT_SYMBOL_GPL(register_pernet_subsys);
779
780 /**
781 * unregister_pernet_subsys - unregister a network namespace subsystem
782 * @ops: pernet operations structure to manipulate
783 *
784 * Remove the pernet operations structure from the list to be
785 * used when network namespaces are created or destroyed. In
786 * addition run the exit method for all existing network
787 * namespaces.
788 */
789 void unregister_pernet_subsys(struct pernet_operations *ops)
790 {
791 mutex_lock(&net_mutex);
792 unregister_pernet_operations(ops);
793 mutex_unlock(&net_mutex);
794 }
795 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
796
797 /**
798 * register_pernet_device - register a network namespace device
799 * @ops: pernet operations structure for the subsystem
800 *
801 * Register a device which has init and exit functions
802 * that are called when network namespaces are created and
803 * destroyed respectively.
804 *
805 * When registered all network namespace init functions are
806 * called for every existing network namespace. Allowing kernel
807 * modules to have a race free view of the set of network namespaces.
808 *
809 * When a new network namespace is created all of the init
810 * methods are called in the order in which they were registered.
811 *
812 * When a network namespace is destroyed all of the exit methods
813 * are called in the reverse of the order with which they were
814 * registered.
815 */
816 int register_pernet_device(struct pernet_operations *ops)
817 {
818 int error;
819 mutex_lock(&net_mutex);
820 error = register_pernet_operations(&pernet_list, ops);
821 if (!error && (first_device == &pernet_list))
822 first_device = &ops->list;
823 mutex_unlock(&net_mutex);
824 return error;
825 }
826 EXPORT_SYMBOL_GPL(register_pernet_device);
827
828 /**
829 * unregister_pernet_device - unregister a network namespace netdevice
830 * @ops: pernet operations structure to manipulate
831 *
832 * Remove the pernet operations structure from the list to be
833 * used when network namespaces are created or destroyed. In
834 * addition run the exit method for all existing network
835 * namespaces.
836 */
837 void unregister_pernet_device(struct pernet_operations *ops)
838 {
839 mutex_lock(&net_mutex);
840 if (&ops->list == first_device)
841 first_device = first_device->next;
842 unregister_pernet_operations(ops);
843 mutex_unlock(&net_mutex);
844 }
845 EXPORT_SYMBOL_GPL(unregister_pernet_device);
846
847 #ifdef CONFIG_NET_NS
848 static struct ns_common *netns_get(struct task_struct *task)
849 {
850 struct net *net = NULL;
851 struct nsproxy *nsproxy;
852
853 task_lock(task);
854 nsproxy = task->nsproxy;
855 if (nsproxy)
856 net = get_net(nsproxy->net_ns);
857 task_unlock(task);
858
859 return net ? &net->ns : NULL;
860 }
861
862 static inline struct net *to_net_ns(struct ns_common *ns)
863 {
864 return container_of(ns, struct net, ns);
865 }
866
867 static void netns_put(struct ns_common *ns)
868 {
869 put_net(to_net_ns(ns));
870 }
871
872 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
873 {
874 struct net *net = to_net_ns(ns);
875
876 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
877 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
878 return -EPERM;
879
880 put_net(nsproxy->net_ns);
881 nsproxy->net_ns = get_net(net);
882 return 0;
883 }
884
885 const struct proc_ns_operations netns_operations = {
886 .name = "net",
887 .type = CLONE_NEWNET,
888 .get = netns_get,
889 .put = netns_put,
890 .install = netns_install,
891 };
892 #endif