]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/net_namespace.c
Merge branch 'tee/initial-merge' into fixes
[mirror_ubuntu-artful-kernel.git] / net / core / net_namespace.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/sched/task.h>
20
21 #include <net/sock.h>
22 #include <net/netlink.h>
23 #include <net/net_namespace.h>
24 #include <net/netns/generic.h>
25
26 /*
27 * Our network namespace constructor/destructor lists
28 */
29
30 static LIST_HEAD(pernet_list);
31 static struct list_head *first_device = &pernet_list;
32 DEFINE_MUTEX(net_mutex);
33
34 LIST_HEAD(net_namespace_list);
35 EXPORT_SYMBOL_GPL(net_namespace_list);
36
37 struct net init_net = {
38 .count = ATOMIC_INIT(1),
39 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
40 };
41 EXPORT_SYMBOL(init_net);
42
43 static bool init_net_initialized;
44
45 #define MIN_PERNET_OPS_ID \
46 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
47
48 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
49
50 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
51
52 static struct net_generic *net_alloc_generic(void)
53 {
54 struct net_generic *ng;
55 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
56
57 ng = kzalloc(generic_size, GFP_KERNEL);
58 if (ng)
59 ng->s.len = max_gen_ptrs;
60
61 return ng;
62 }
63
64 static int net_assign_generic(struct net *net, unsigned int id, void *data)
65 {
66 struct net_generic *ng, *old_ng;
67
68 BUG_ON(!mutex_is_locked(&net_mutex));
69 BUG_ON(id < MIN_PERNET_OPS_ID);
70
71 old_ng = rcu_dereference_protected(net->gen,
72 lockdep_is_held(&net_mutex));
73 if (old_ng->s.len > id) {
74 old_ng->ptr[id] = data;
75 return 0;
76 }
77
78 ng = net_alloc_generic();
79 if (ng == NULL)
80 return -ENOMEM;
81
82 /*
83 * Some synchronisation notes:
84 *
85 * The net_generic explores the net->gen array inside rcu
86 * read section. Besides once set the net->gen->ptr[x]
87 * pointer never changes (see rules in netns/generic.h).
88 *
89 * That said, we simply duplicate this array and schedule
90 * the old copy for kfree after a grace period.
91 */
92
93 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
94 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
95 ng->ptr[id] = data;
96
97 rcu_assign_pointer(net->gen, ng);
98 kfree_rcu(old_ng, s.rcu);
99 return 0;
100 }
101
102 static int ops_init(const struct pernet_operations *ops, struct net *net)
103 {
104 int err = -ENOMEM;
105 void *data = NULL;
106
107 if (ops->id && ops->size) {
108 data = kzalloc(ops->size, GFP_KERNEL);
109 if (!data)
110 goto out;
111
112 err = net_assign_generic(net, *ops->id, data);
113 if (err)
114 goto cleanup;
115 }
116 err = 0;
117 if (ops->init)
118 err = ops->init(net);
119 if (!err)
120 return 0;
121
122 cleanup:
123 kfree(data);
124
125 out:
126 return err;
127 }
128
129 static void ops_free(const struct pernet_operations *ops, struct net *net)
130 {
131 if (ops->id && ops->size) {
132 kfree(net_generic(net, *ops->id));
133 }
134 }
135
136 static void ops_exit_list(const struct pernet_operations *ops,
137 struct list_head *net_exit_list)
138 {
139 struct net *net;
140 if (ops->exit) {
141 list_for_each_entry(net, net_exit_list, exit_list)
142 ops->exit(net);
143 }
144 if (ops->exit_batch)
145 ops->exit_batch(net_exit_list);
146 }
147
148 static void ops_free_list(const struct pernet_operations *ops,
149 struct list_head *net_exit_list)
150 {
151 struct net *net;
152 if (ops->size && ops->id) {
153 list_for_each_entry(net, net_exit_list, exit_list)
154 ops_free(ops, net);
155 }
156 }
157
158 /* should be called with nsid_lock held */
159 static int alloc_netid(struct net *net, struct net *peer, int reqid)
160 {
161 int min = 0, max = 0;
162
163 if (reqid >= 0) {
164 min = reqid;
165 max = reqid + 1;
166 }
167
168 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
169 }
170
171 /* This function is used by idr_for_each(). If net is equal to peer, the
172 * function returns the id so that idr_for_each() stops. Because we cannot
173 * returns the id 0 (idr_for_each() will not stop), we return the magic value
174 * NET_ID_ZERO (-1) for it.
175 */
176 #define NET_ID_ZERO -1
177 static int net_eq_idr(int id, void *net, void *peer)
178 {
179 if (net_eq(net, peer))
180 return id ? : NET_ID_ZERO;
181 return 0;
182 }
183
184 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
185 * is set to true, thus the caller knows that the new id must be notified via
186 * rtnl.
187 */
188 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
189 {
190 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
191 bool alloc_it = *alloc;
192
193 *alloc = false;
194
195 /* Magic value for id 0. */
196 if (id == NET_ID_ZERO)
197 return 0;
198 if (id > 0)
199 return id;
200
201 if (alloc_it) {
202 id = alloc_netid(net, peer, -1);
203 *alloc = true;
204 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
205 }
206
207 return NETNSA_NSID_NOT_ASSIGNED;
208 }
209
210 /* should be called with nsid_lock held */
211 static int __peernet2id(struct net *net, struct net *peer)
212 {
213 bool no = false;
214
215 return __peernet2id_alloc(net, peer, &no);
216 }
217
218 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
219 /* This function returns the id of a peer netns. If no id is assigned, one will
220 * be allocated and returned.
221 */
222 int peernet2id_alloc(struct net *net, struct net *peer)
223 {
224 bool alloc;
225 int id;
226
227 if (atomic_read(&net->count) == 0)
228 return NETNSA_NSID_NOT_ASSIGNED;
229 spin_lock_bh(&net->nsid_lock);
230 alloc = atomic_read(&peer->count) == 0 ? false : true;
231 id = __peernet2id_alloc(net, peer, &alloc);
232 spin_unlock_bh(&net->nsid_lock);
233 if (alloc && id >= 0)
234 rtnl_net_notifyid(net, RTM_NEWNSID, id);
235 return id;
236 }
237
238 /* This function returns, if assigned, the id of a peer netns. */
239 int peernet2id(struct net *net, struct net *peer)
240 {
241 int id;
242
243 spin_lock_bh(&net->nsid_lock);
244 id = __peernet2id(net, peer);
245 spin_unlock_bh(&net->nsid_lock);
246 return id;
247 }
248 EXPORT_SYMBOL(peernet2id);
249
250 /* This function returns true is the peer netns has an id assigned into the
251 * current netns.
252 */
253 bool peernet_has_id(struct net *net, struct net *peer)
254 {
255 return peernet2id(net, peer) >= 0;
256 }
257
258 struct net *get_net_ns_by_id(struct net *net, int id)
259 {
260 struct net *peer;
261
262 if (id < 0)
263 return NULL;
264
265 rcu_read_lock();
266 spin_lock_bh(&net->nsid_lock);
267 peer = idr_find(&net->netns_ids, id);
268 if (peer)
269 get_net(peer);
270 spin_unlock_bh(&net->nsid_lock);
271 rcu_read_unlock();
272
273 return peer;
274 }
275
276 /*
277 * setup_net runs the initializers for the network namespace object.
278 */
279 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
280 {
281 /* Must be called with net_mutex held */
282 const struct pernet_operations *ops, *saved_ops;
283 int error = 0;
284 LIST_HEAD(net_exit_list);
285
286 atomic_set(&net->count, 1);
287 atomic_set(&net->passive, 1);
288 net->dev_base_seq = 1;
289 net->user_ns = user_ns;
290 idr_init(&net->netns_ids);
291 spin_lock_init(&net->nsid_lock);
292
293 list_for_each_entry(ops, &pernet_list, list) {
294 error = ops_init(ops, net);
295 if (error < 0)
296 goto out_undo;
297 }
298 out:
299 return error;
300
301 out_undo:
302 /* Walk through the list backwards calling the exit functions
303 * for the pernet modules whose init functions did not fail.
304 */
305 list_add(&net->exit_list, &net_exit_list);
306 saved_ops = ops;
307 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
308 ops_exit_list(ops, &net_exit_list);
309
310 ops = saved_ops;
311 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
312 ops_free_list(ops, &net_exit_list);
313
314 rcu_barrier();
315 goto out;
316 }
317
318
319 #ifdef CONFIG_NET_NS
320 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
321 {
322 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
323 }
324
325 static void dec_net_namespaces(struct ucounts *ucounts)
326 {
327 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
328 }
329
330 static struct kmem_cache *net_cachep;
331 static struct workqueue_struct *netns_wq;
332
333 static struct net *net_alloc(void)
334 {
335 struct net *net = NULL;
336 struct net_generic *ng;
337
338 ng = net_alloc_generic();
339 if (!ng)
340 goto out;
341
342 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
343 if (!net)
344 goto out_free;
345
346 rcu_assign_pointer(net->gen, ng);
347 out:
348 return net;
349
350 out_free:
351 kfree(ng);
352 goto out;
353 }
354
355 static void net_free(struct net *net)
356 {
357 kfree(rcu_access_pointer(net->gen));
358 kmem_cache_free(net_cachep, net);
359 }
360
361 void net_drop_ns(void *p)
362 {
363 struct net *ns = p;
364 if (ns && atomic_dec_and_test(&ns->passive))
365 net_free(ns);
366 }
367
368 struct net *copy_net_ns(unsigned long flags,
369 struct user_namespace *user_ns, struct net *old_net)
370 {
371 struct ucounts *ucounts;
372 struct net *net;
373 int rv;
374
375 if (!(flags & CLONE_NEWNET))
376 return get_net(old_net);
377
378 ucounts = inc_net_namespaces(user_ns);
379 if (!ucounts)
380 return ERR_PTR(-ENOSPC);
381
382 net = net_alloc();
383 if (!net) {
384 dec_net_namespaces(ucounts);
385 return ERR_PTR(-ENOMEM);
386 }
387
388 get_user_ns(user_ns);
389
390 rv = mutex_lock_killable(&net_mutex);
391 if (rv < 0) {
392 net_free(net);
393 dec_net_namespaces(ucounts);
394 put_user_ns(user_ns);
395 return ERR_PTR(rv);
396 }
397
398 net->ucounts = ucounts;
399 rv = setup_net(net, user_ns);
400 if (rv == 0) {
401 rtnl_lock();
402 list_add_tail_rcu(&net->list, &net_namespace_list);
403 rtnl_unlock();
404 }
405 mutex_unlock(&net_mutex);
406 if (rv < 0) {
407 dec_net_namespaces(ucounts);
408 put_user_ns(user_ns);
409 net_drop_ns(net);
410 return ERR_PTR(rv);
411 }
412 return net;
413 }
414
415 static DEFINE_SPINLOCK(cleanup_list_lock);
416 static LIST_HEAD(cleanup_list); /* Must hold cleanup_list_lock to touch */
417
418 static void cleanup_net(struct work_struct *work)
419 {
420 const struct pernet_operations *ops;
421 struct net *net, *tmp;
422 struct list_head net_kill_list;
423 LIST_HEAD(net_exit_list);
424
425 /* Atomically snapshot the list of namespaces to cleanup */
426 spin_lock_irq(&cleanup_list_lock);
427 list_replace_init(&cleanup_list, &net_kill_list);
428 spin_unlock_irq(&cleanup_list_lock);
429
430 mutex_lock(&net_mutex);
431
432 /* Don't let anyone else find us. */
433 rtnl_lock();
434 list_for_each_entry(net, &net_kill_list, cleanup_list) {
435 list_del_rcu(&net->list);
436 list_add_tail(&net->exit_list, &net_exit_list);
437 for_each_net(tmp) {
438 int id;
439
440 spin_lock_bh(&tmp->nsid_lock);
441 id = __peernet2id(tmp, net);
442 if (id >= 0)
443 idr_remove(&tmp->netns_ids, id);
444 spin_unlock_bh(&tmp->nsid_lock);
445 if (id >= 0)
446 rtnl_net_notifyid(tmp, RTM_DELNSID, id);
447 }
448 spin_lock_bh(&net->nsid_lock);
449 idr_destroy(&net->netns_ids);
450 spin_unlock_bh(&net->nsid_lock);
451
452 }
453 rtnl_unlock();
454
455 /*
456 * Another CPU might be rcu-iterating the list, wait for it.
457 * This needs to be before calling the exit() notifiers, so
458 * the rcu_barrier() below isn't sufficient alone.
459 */
460 synchronize_rcu();
461
462 /* Run all of the network namespace exit methods */
463 list_for_each_entry_reverse(ops, &pernet_list, list)
464 ops_exit_list(ops, &net_exit_list);
465
466 /* Free the net generic variables */
467 list_for_each_entry_reverse(ops, &pernet_list, list)
468 ops_free_list(ops, &net_exit_list);
469
470 mutex_unlock(&net_mutex);
471
472 /* Ensure there are no outstanding rcu callbacks using this
473 * network namespace.
474 */
475 rcu_barrier();
476
477 /* Finally it is safe to free my network namespace structure */
478 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
479 list_del_init(&net->exit_list);
480 dec_net_namespaces(net->ucounts);
481 put_user_ns(net->user_ns);
482 net_drop_ns(net);
483 }
484 }
485 static DECLARE_WORK(net_cleanup_work, cleanup_net);
486
487 void __put_net(struct net *net)
488 {
489 /* Cleanup the network namespace in process context */
490 unsigned long flags;
491
492 spin_lock_irqsave(&cleanup_list_lock, flags);
493 list_add(&net->cleanup_list, &cleanup_list);
494 spin_unlock_irqrestore(&cleanup_list_lock, flags);
495
496 queue_work(netns_wq, &net_cleanup_work);
497 }
498 EXPORT_SYMBOL_GPL(__put_net);
499
500 struct net *get_net_ns_by_fd(int fd)
501 {
502 struct file *file;
503 struct ns_common *ns;
504 struct net *net;
505
506 file = proc_ns_fget(fd);
507 if (IS_ERR(file))
508 return ERR_CAST(file);
509
510 ns = get_proc_ns(file_inode(file));
511 if (ns->ops == &netns_operations)
512 net = get_net(container_of(ns, struct net, ns));
513 else
514 net = ERR_PTR(-EINVAL);
515
516 fput(file);
517 return net;
518 }
519
520 #else
521 struct net *get_net_ns_by_fd(int fd)
522 {
523 return ERR_PTR(-EINVAL);
524 }
525 #endif
526 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
527
528 struct net *get_net_ns_by_pid(pid_t pid)
529 {
530 struct task_struct *tsk;
531 struct net *net;
532
533 /* Lookup the network namespace */
534 net = ERR_PTR(-ESRCH);
535 rcu_read_lock();
536 tsk = find_task_by_vpid(pid);
537 if (tsk) {
538 struct nsproxy *nsproxy;
539 task_lock(tsk);
540 nsproxy = tsk->nsproxy;
541 if (nsproxy)
542 net = get_net(nsproxy->net_ns);
543 task_unlock(tsk);
544 }
545 rcu_read_unlock();
546 return net;
547 }
548 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
549
550 static __net_init int net_ns_net_init(struct net *net)
551 {
552 #ifdef CONFIG_NET_NS
553 net->ns.ops = &netns_operations;
554 #endif
555 return ns_alloc_inum(&net->ns);
556 }
557
558 static __net_exit void net_ns_net_exit(struct net *net)
559 {
560 ns_free_inum(&net->ns);
561 }
562
563 static struct pernet_operations __net_initdata net_ns_ops = {
564 .init = net_ns_net_init,
565 .exit = net_ns_net_exit,
566 };
567
568 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
569 [NETNSA_NONE] = { .type = NLA_UNSPEC },
570 [NETNSA_NSID] = { .type = NLA_S32 },
571 [NETNSA_PID] = { .type = NLA_U32 },
572 [NETNSA_FD] = { .type = NLA_U32 },
573 };
574
575 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
576 struct netlink_ext_ack *extack)
577 {
578 struct net *net = sock_net(skb->sk);
579 struct nlattr *tb[NETNSA_MAX + 1];
580 struct net *peer;
581 int nsid, err;
582
583 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
584 rtnl_net_policy, extack);
585 if (err < 0)
586 return err;
587 if (!tb[NETNSA_NSID])
588 return -EINVAL;
589 nsid = nla_get_s32(tb[NETNSA_NSID]);
590
591 if (tb[NETNSA_PID])
592 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
593 else if (tb[NETNSA_FD])
594 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
595 else
596 return -EINVAL;
597 if (IS_ERR(peer))
598 return PTR_ERR(peer);
599
600 spin_lock_bh(&net->nsid_lock);
601 if (__peernet2id(net, peer) >= 0) {
602 spin_unlock_bh(&net->nsid_lock);
603 err = -EEXIST;
604 goto out;
605 }
606
607 err = alloc_netid(net, peer, nsid);
608 spin_unlock_bh(&net->nsid_lock);
609 if (err >= 0) {
610 rtnl_net_notifyid(net, RTM_NEWNSID, err);
611 err = 0;
612 }
613 out:
614 put_net(peer);
615 return err;
616 }
617
618 static int rtnl_net_get_size(void)
619 {
620 return NLMSG_ALIGN(sizeof(struct rtgenmsg))
621 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
622 ;
623 }
624
625 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
626 int cmd, struct net *net, int nsid)
627 {
628 struct nlmsghdr *nlh;
629 struct rtgenmsg *rth;
630
631 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
632 if (!nlh)
633 return -EMSGSIZE;
634
635 rth = nlmsg_data(nlh);
636 rth->rtgen_family = AF_UNSPEC;
637
638 if (nla_put_s32(skb, NETNSA_NSID, nsid))
639 goto nla_put_failure;
640
641 nlmsg_end(skb, nlh);
642 return 0;
643
644 nla_put_failure:
645 nlmsg_cancel(skb, nlh);
646 return -EMSGSIZE;
647 }
648
649 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
650 struct netlink_ext_ack *extack)
651 {
652 struct net *net = sock_net(skb->sk);
653 struct nlattr *tb[NETNSA_MAX + 1];
654 struct sk_buff *msg;
655 struct net *peer;
656 int err, id;
657
658 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
659 rtnl_net_policy, extack);
660 if (err < 0)
661 return err;
662 if (tb[NETNSA_PID])
663 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
664 else if (tb[NETNSA_FD])
665 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
666 else
667 return -EINVAL;
668
669 if (IS_ERR(peer))
670 return PTR_ERR(peer);
671
672 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
673 if (!msg) {
674 err = -ENOMEM;
675 goto out;
676 }
677
678 id = peernet2id(net, peer);
679 err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
680 RTM_NEWNSID, net, id);
681 if (err < 0)
682 goto err_out;
683
684 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
685 goto out;
686
687 err_out:
688 nlmsg_free(msg);
689 out:
690 put_net(peer);
691 return err;
692 }
693
694 struct rtnl_net_dump_cb {
695 struct net *net;
696 struct sk_buff *skb;
697 struct netlink_callback *cb;
698 int idx;
699 int s_idx;
700 };
701
702 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
703 {
704 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
705 int ret;
706
707 if (net_cb->idx < net_cb->s_idx)
708 goto cont;
709
710 ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
711 net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
712 RTM_NEWNSID, net_cb->net, id);
713 if (ret < 0)
714 return ret;
715
716 cont:
717 net_cb->idx++;
718 return 0;
719 }
720
721 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
722 {
723 struct net *net = sock_net(skb->sk);
724 struct rtnl_net_dump_cb net_cb = {
725 .net = net,
726 .skb = skb,
727 .cb = cb,
728 .idx = 0,
729 .s_idx = cb->args[0],
730 };
731
732 spin_lock_bh(&net->nsid_lock);
733 idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
734 spin_unlock_bh(&net->nsid_lock);
735
736 cb->args[0] = net_cb.idx;
737 return skb->len;
738 }
739
740 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
741 {
742 struct sk_buff *msg;
743 int err = -ENOMEM;
744
745 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
746 if (!msg)
747 goto out;
748
749 err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
750 if (err < 0)
751 goto err_out;
752
753 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
754 return;
755
756 err_out:
757 nlmsg_free(msg);
758 out:
759 rtnl_set_sk_err(net, RTNLGRP_NSID, err);
760 }
761
762 static int __init net_ns_init(void)
763 {
764 struct net_generic *ng;
765
766 #ifdef CONFIG_NET_NS
767 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
768 SMP_CACHE_BYTES,
769 SLAB_PANIC, NULL);
770
771 /* Create workqueue for cleanup */
772 netns_wq = create_singlethread_workqueue("netns");
773 if (!netns_wq)
774 panic("Could not create netns workq");
775 #endif
776
777 ng = net_alloc_generic();
778 if (!ng)
779 panic("Could not allocate generic netns");
780
781 rcu_assign_pointer(init_net.gen, ng);
782
783 mutex_lock(&net_mutex);
784 if (setup_net(&init_net, &init_user_ns))
785 panic("Could not setup the initial network namespace");
786
787 init_net_initialized = true;
788
789 rtnl_lock();
790 list_add_tail_rcu(&init_net.list, &net_namespace_list);
791 rtnl_unlock();
792
793 mutex_unlock(&net_mutex);
794
795 register_pernet_subsys(&net_ns_ops);
796
797 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
798 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
799 NULL);
800
801 return 0;
802 }
803
804 pure_initcall(net_ns_init);
805
806 #ifdef CONFIG_NET_NS
807 static int __register_pernet_operations(struct list_head *list,
808 struct pernet_operations *ops)
809 {
810 struct net *net;
811 int error;
812 LIST_HEAD(net_exit_list);
813
814 list_add_tail(&ops->list, list);
815 if (ops->init || (ops->id && ops->size)) {
816 for_each_net(net) {
817 error = ops_init(ops, net);
818 if (error)
819 goto out_undo;
820 list_add_tail(&net->exit_list, &net_exit_list);
821 }
822 }
823 return 0;
824
825 out_undo:
826 /* If I have an error cleanup all namespaces I initialized */
827 list_del(&ops->list);
828 ops_exit_list(ops, &net_exit_list);
829 ops_free_list(ops, &net_exit_list);
830 return error;
831 }
832
833 static void __unregister_pernet_operations(struct pernet_operations *ops)
834 {
835 struct net *net;
836 LIST_HEAD(net_exit_list);
837
838 list_del(&ops->list);
839 for_each_net(net)
840 list_add_tail(&net->exit_list, &net_exit_list);
841 ops_exit_list(ops, &net_exit_list);
842 ops_free_list(ops, &net_exit_list);
843 }
844
845 #else
846
847 static int __register_pernet_operations(struct list_head *list,
848 struct pernet_operations *ops)
849 {
850 if (!init_net_initialized) {
851 list_add_tail(&ops->list, list);
852 return 0;
853 }
854
855 return ops_init(ops, &init_net);
856 }
857
858 static void __unregister_pernet_operations(struct pernet_operations *ops)
859 {
860 if (!init_net_initialized) {
861 list_del(&ops->list);
862 } else {
863 LIST_HEAD(net_exit_list);
864 list_add(&init_net.exit_list, &net_exit_list);
865 ops_exit_list(ops, &net_exit_list);
866 ops_free_list(ops, &net_exit_list);
867 }
868 }
869
870 #endif /* CONFIG_NET_NS */
871
872 static DEFINE_IDA(net_generic_ids);
873
874 static int register_pernet_operations(struct list_head *list,
875 struct pernet_operations *ops)
876 {
877 int error;
878
879 if (ops->id) {
880 again:
881 error = ida_get_new_above(&net_generic_ids, MIN_PERNET_OPS_ID, ops->id);
882 if (error < 0) {
883 if (error == -EAGAIN) {
884 ida_pre_get(&net_generic_ids, GFP_KERNEL);
885 goto again;
886 }
887 return error;
888 }
889 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
890 }
891 error = __register_pernet_operations(list, ops);
892 if (error) {
893 rcu_barrier();
894 if (ops->id)
895 ida_remove(&net_generic_ids, *ops->id);
896 }
897
898 return error;
899 }
900
901 static void unregister_pernet_operations(struct pernet_operations *ops)
902 {
903
904 __unregister_pernet_operations(ops);
905 rcu_barrier();
906 if (ops->id)
907 ida_remove(&net_generic_ids, *ops->id);
908 }
909
910 /**
911 * register_pernet_subsys - register a network namespace subsystem
912 * @ops: pernet operations structure for the subsystem
913 *
914 * Register a subsystem which has init and exit functions
915 * that are called when network namespaces are created and
916 * destroyed respectively.
917 *
918 * When registered all network namespace init functions are
919 * called for every existing network namespace. Allowing kernel
920 * modules to have a race free view of the set of network namespaces.
921 *
922 * When a new network namespace is created all of the init
923 * methods are called in the order in which they were registered.
924 *
925 * When a network namespace is destroyed all of the exit methods
926 * are called in the reverse of the order with which they were
927 * registered.
928 */
929 int register_pernet_subsys(struct pernet_operations *ops)
930 {
931 int error;
932 mutex_lock(&net_mutex);
933 error = register_pernet_operations(first_device, ops);
934 mutex_unlock(&net_mutex);
935 return error;
936 }
937 EXPORT_SYMBOL_GPL(register_pernet_subsys);
938
939 /**
940 * unregister_pernet_subsys - unregister a network namespace subsystem
941 * @ops: pernet operations structure to manipulate
942 *
943 * Remove the pernet operations structure from the list to be
944 * used when network namespaces are created or destroyed. In
945 * addition run the exit method for all existing network
946 * namespaces.
947 */
948 void unregister_pernet_subsys(struct pernet_operations *ops)
949 {
950 mutex_lock(&net_mutex);
951 unregister_pernet_operations(ops);
952 mutex_unlock(&net_mutex);
953 }
954 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
955
956 /**
957 * register_pernet_device - register a network namespace device
958 * @ops: pernet operations structure for the subsystem
959 *
960 * Register a device which has init and exit functions
961 * that are called when network namespaces are created and
962 * destroyed respectively.
963 *
964 * When registered all network namespace init functions are
965 * called for every existing network namespace. Allowing kernel
966 * modules to have a race free view of the set of network namespaces.
967 *
968 * When a new network namespace is created all of the init
969 * methods are called in the order in which they were registered.
970 *
971 * When a network namespace is destroyed all of the exit methods
972 * are called in the reverse of the order with which they were
973 * registered.
974 */
975 int register_pernet_device(struct pernet_operations *ops)
976 {
977 int error;
978 mutex_lock(&net_mutex);
979 error = register_pernet_operations(&pernet_list, ops);
980 if (!error && (first_device == &pernet_list))
981 first_device = &ops->list;
982 mutex_unlock(&net_mutex);
983 return error;
984 }
985 EXPORT_SYMBOL_GPL(register_pernet_device);
986
987 /**
988 * unregister_pernet_device - unregister a network namespace netdevice
989 * @ops: pernet operations structure to manipulate
990 *
991 * Remove the pernet operations structure from the list to be
992 * used when network namespaces are created or destroyed. In
993 * addition run the exit method for all existing network
994 * namespaces.
995 */
996 void unregister_pernet_device(struct pernet_operations *ops)
997 {
998 mutex_lock(&net_mutex);
999 if (&ops->list == first_device)
1000 first_device = first_device->next;
1001 unregister_pernet_operations(ops);
1002 mutex_unlock(&net_mutex);
1003 }
1004 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1005
1006 #ifdef CONFIG_NET_NS
1007 static struct ns_common *netns_get(struct task_struct *task)
1008 {
1009 struct net *net = NULL;
1010 struct nsproxy *nsproxy;
1011
1012 task_lock(task);
1013 nsproxy = task->nsproxy;
1014 if (nsproxy)
1015 net = get_net(nsproxy->net_ns);
1016 task_unlock(task);
1017
1018 return net ? &net->ns : NULL;
1019 }
1020
1021 static inline struct net *to_net_ns(struct ns_common *ns)
1022 {
1023 return container_of(ns, struct net, ns);
1024 }
1025
1026 static void netns_put(struct ns_common *ns)
1027 {
1028 put_net(to_net_ns(ns));
1029 }
1030
1031 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1032 {
1033 struct net *net = to_net_ns(ns);
1034
1035 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1036 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1037 return -EPERM;
1038
1039 put_net(nsproxy->net_ns);
1040 nsproxy->net_ns = get_net(net);
1041 return 0;
1042 }
1043
1044 static struct user_namespace *netns_owner(struct ns_common *ns)
1045 {
1046 return to_net_ns(ns)->user_ns;
1047 }
1048
1049 const struct proc_ns_operations netns_operations = {
1050 .name = "net",
1051 .type = CLONE_NEWNET,
1052 .get = netns_get,
1053 .put = netns_put,
1054 .install = netns_install,
1055 .owner = netns_owner,
1056 };
1057 #endif