]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - net/core/net_namespace.c
Merge tag 'chrome-platform-for-linus-4.16' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-eoan-kernel.git] / net / core / net_namespace.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/sched/task.h>
20
21 #include <net/sock.h>
22 #include <net/netlink.h>
23 #include <net/net_namespace.h>
24 #include <net/netns/generic.h>
25
26 /*
27 * Our network namespace constructor/destructor lists
28 */
29
30 static LIST_HEAD(pernet_list);
31 static struct list_head *first_device = &pernet_list;
32 DEFINE_MUTEX(net_mutex);
33
34 LIST_HEAD(net_namespace_list);
35 EXPORT_SYMBOL_GPL(net_namespace_list);
36
37 struct net init_net = {
38 .count = REFCOUNT_INIT(1),
39 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
40 };
41 EXPORT_SYMBOL(init_net);
42
43 static bool init_net_initialized;
44
45 #define MIN_PERNET_OPS_ID \
46 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
47
48 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
49
50 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
51
52 static struct net_generic *net_alloc_generic(void)
53 {
54 struct net_generic *ng;
55 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
56
57 ng = kzalloc(generic_size, GFP_KERNEL);
58 if (ng)
59 ng->s.len = max_gen_ptrs;
60
61 return ng;
62 }
63
64 static int net_assign_generic(struct net *net, unsigned int id, void *data)
65 {
66 struct net_generic *ng, *old_ng;
67
68 BUG_ON(!mutex_is_locked(&net_mutex));
69 BUG_ON(id < MIN_PERNET_OPS_ID);
70
71 old_ng = rcu_dereference_protected(net->gen,
72 lockdep_is_held(&net_mutex));
73 if (old_ng->s.len > id) {
74 old_ng->ptr[id] = data;
75 return 0;
76 }
77
78 ng = net_alloc_generic();
79 if (ng == NULL)
80 return -ENOMEM;
81
82 /*
83 * Some synchronisation notes:
84 *
85 * The net_generic explores the net->gen array inside rcu
86 * read section. Besides once set the net->gen->ptr[x]
87 * pointer never changes (see rules in netns/generic.h).
88 *
89 * That said, we simply duplicate this array and schedule
90 * the old copy for kfree after a grace period.
91 */
92
93 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
94 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
95 ng->ptr[id] = data;
96
97 rcu_assign_pointer(net->gen, ng);
98 kfree_rcu(old_ng, s.rcu);
99 return 0;
100 }
101
102 static int ops_init(const struct pernet_operations *ops, struct net *net)
103 {
104 int err = -ENOMEM;
105 void *data = NULL;
106
107 if (ops->id && ops->size) {
108 data = kzalloc(ops->size, GFP_KERNEL);
109 if (!data)
110 goto out;
111
112 err = net_assign_generic(net, *ops->id, data);
113 if (err)
114 goto cleanup;
115 }
116 err = 0;
117 if (ops->init)
118 err = ops->init(net);
119 if (!err)
120 return 0;
121
122 cleanup:
123 kfree(data);
124
125 out:
126 return err;
127 }
128
129 static void ops_free(const struct pernet_operations *ops, struct net *net)
130 {
131 if (ops->id && ops->size) {
132 kfree(net_generic(net, *ops->id));
133 }
134 }
135
136 static void ops_exit_list(const struct pernet_operations *ops,
137 struct list_head *net_exit_list)
138 {
139 struct net *net;
140 if (ops->exit) {
141 list_for_each_entry(net, net_exit_list, exit_list)
142 ops->exit(net);
143 }
144 if (ops->exit_batch)
145 ops->exit_batch(net_exit_list);
146 }
147
148 static void ops_free_list(const struct pernet_operations *ops,
149 struct list_head *net_exit_list)
150 {
151 struct net *net;
152 if (ops->size && ops->id) {
153 list_for_each_entry(net, net_exit_list, exit_list)
154 ops_free(ops, net);
155 }
156 }
157
158 /* should be called with nsid_lock held */
159 static int alloc_netid(struct net *net, struct net *peer, int reqid)
160 {
161 int min = 0, max = 0;
162
163 if (reqid >= 0) {
164 min = reqid;
165 max = reqid + 1;
166 }
167
168 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
169 }
170
171 /* This function is used by idr_for_each(). If net is equal to peer, the
172 * function returns the id so that idr_for_each() stops. Because we cannot
173 * returns the id 0 (idr_for_each() will not stop), we return the magic value
174 * NET_ID_ZERO (-1) for it.
175 */
176 #define NET_ID_ZERO -1
177 static int net_eq_idr(int id, void *net, void *peer)
178 {
179 if (net_eq(net, peer))
180 return id ? : NET_ID_ZERO;
181 return 0;
182 }
183
184 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
185 * is set to true, thus the caller knows that the new id must be notified via
186 * rtnl.
187 */
188 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
189 {
190 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
191 bool alloc_it = *alloc;
192
193 *alloc = false;
194
195 /* Magic value for id 0. */
196 if (id == NET_ID_ZERO)
197 return 0;
198 if (id > 0)
199 return id;
200
201 if (alloc_it) {
202 id = alloc_netid(net, peer, -1);
203 *alloc = true;
204 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
205 }
206
207 return NETNSA_NSID_NOT_ASSIGNED;
208 }
209
210 /* should be called with nsid_lock held */
211 static int __peernet2id(struct net *net, struct net *peer)
212 {
213 bool no = false;
214
215 return __peernet2id_alloc(net, peer, &no);
216 }
217
218 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
219 /* This function returns the id of a peer netns. If no id is assigned, one will
220 * be allocated and returned.
221 */
222 int peernet2id_alloc(struct net *net, struct net *peer)
223 {
224 bool alloc = false, alive = false;
225 int id;
226
227 if (refcount_read(&net->count) == 0)
228 return NETNSA_NSID_NOT_ASSIGNED;
229 spin_lock_bh(&net->nsid_lock);
230 /*
231 * When peer is obtained from RCU lists, we may race with
232 * its cleanup. Check whether it's alive, and this guarantees
233 * we never hash a peer back to net->netns_ids, after it has
234 * just been idr_remove()'d from there in cleanup_net().
235 */
236 if (maybe_get_net(peer))
237 alive = alloc = true;
238 id = __peernet2id_alloc(net, peer, &alloc);
239 spin_unlock_bh(&net->nsid_lock);
240 if (alloc && id >= 0)
241 rtnl_net_notifyid(net, RTM_NEWNSID, id);
242 if (alive)
243 put_net(peer);
244 return id;
245 }
246 EXPORT_SYMBOL_GPL(peernet2id_alloc);
247
248 /* This function returns, if assigned, the id of a peer netns. */
249 int peernet2id(struct net *net, struct net *peer)
250 {
251 int id;
252
253 spin_lock_bh(&net->nsid_lock);
254 id = __peernet2id(net, peer);
255 spin_unlock_bh(&net->nsid_lock);
256 return id;
257 }
258 EXPORT_SYMBOL(peernet2id);
259
260 /* This function returns true is the peer netns has an id assigned into the
261 * current netns.
262 */
263 bool peernet_has_id(struct net *net, struct net *peer)
264 {
265 return peernet2id(net, peer) >= 0;
266 }
267
268 struct net *get_net_ns_by_id(struct net *net, int id)
269 {
270 struct net *peer;
271
272 if (id < 0)
273 return NULL;
274
275 rcu_read_lock();
276 peer = idr_find(&net->netns_ids, id);
277 if (peer)
278 peer = maybe_get_net(peer);
279 rcu_read_unlock();
280
281 return peer;
282 }
283
284 /*
285 * setup_net runs the initializers for the network namespace object.
286 */
287 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
288 {
289 /* Must be called with net_mutex held */
290 const struct pernet_operations *ops, *saved_ops;
291 int error = 0;
292 LIST_HEAD(net_exit_list);
293
294 refcount_set(&net->count, 1);
295 refcount_set(&net->passive, 1);
296 net->dev_base_seq = 1;
297 net->user_ns = user_ns;
298 idr_init(&net->netns_ids);
299 spin_lock_init(&net->nsid_lock);
300
301 list_for_each_entry(ops, &pernet_list, list) {
302 error = ops_init(ops, net);
303 if (error < 0)
304 goto out_undo;
305 }
306 out:
307 return error;
308
309 out_undo:
310 /* Walk through the list backwards calling the exit functions
311 * for the pernet modules whose init functions did not fail.
312 */
313 list_add(&net->exit_list, &net_exit_list);
314 saved_ops = ops;
315 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
316 ops_exit_list(ops, &net_exit_list);
317
318 ops = saved_ops;
319 list_for_each_entry_continue_reverse(ops, &pernet_list, list)
320 ops_free_list(ops, &net_exit_list);
321
322 rcu_barrier();
323 goto out;
324 }
325
326 static int __net_init net_defaults_init_net(struct net *net)
327 {
328 net->core.sysctl_somaxconn = SOMAXCONN;
329 return 0;
330 }
331
332 static struct pernet_operations net_defaults_ops = {
333 .init = net_defaults_init_net,
334 };
335
336 static __init int net_defaults_init(void)
337 {
338 if (register_pernet_subsys(&net_defaults_ops))
339 panic("Cannot initialize net default settings");
340
341 return 0;
342 }
343
344 core_initcall(net_defaults_init);
345
346 #ifdef CONFIG_NET_NS
347 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
348 {
349 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
350 }
351
352 static void dec_net_namespaces(struct ucounts *ucounts)
353 {
354 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
355 }
356
357 static struct kmem_cache *net_cachep;
358 static struct workqueue_struct *netns_wq;
359
360 static struct net *net_alloc(void)
361 {
362 struct net *net = NULL;
363 struct net_generic *ng;
364
365 ng = net_alloc_generic();
366 if (!ng)
367 goto out;
368
369 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
370 if (!net)
371 goto out_free;
372
373 rcu_assign_pointer(net->gen, ng);
374 out:
375 return net;
376
377 out_free:
378 kfree(ng);
379 goto out;
380 }
381
382 static void net_free(struct net *net)
383 {
384 kfree(rcu_access_pointer(net->gen));
385 kmem_cache_free(net_cachep, net);
386 }
387
388 void net_drop_ns(void *p)
389 {
390 struct net *ns = p;
391 if (ns && refcount_dec_and_test(&ns->passive))
392 net_free(ns);
393 }
394
395 struct net *copy_net_ns(unsigned long flags,
396 struct user_namespace *user_ns, struct net *old_net)
397 {
398 struct ucounts *ucounts;
399 struct net *net;
400 int rv;
401
402 if (!(flags & CLONE_NEWNET))
403 return get_net(old_net);
404
405 ucounts = inc_net_namespaces(user_ns);
406 if (!ucounts)
407 return ERR_PTR(-ENOSPC);
408
409 net = net_alloc();
410 if (!net) {
411 dec_net_namespaces(ucounts);
412 return ERR_PTR(-ENOMEM);
413 }
414
415 get_user_ns(user_ns);
416
417 rv = mutex_lock_killable(&net_mutex);
418 if (rv < 0) {
419 net_free(net);
420 dec_net_namespaces(ucounts);
421 put_user_ns(user_ns);
422 return ERR_PTR(rv);
423 }
424
425 net->ucounts = ucounts;
426 rv = setup_net(net, user_ns);
427 if (rv == 0) {
428 rtnl_lock();
429 list_add_tail_rcu(&net->list, &net_namespace_list);
430 rtnl_unlock();
431 }
432 mutex_unlock(&net_mutex);
433 if (rv < 0) {
434 dec_net_namespaces(ucounts);
435 put_user_ns(user_ns);
436 net_drop_ns(net);
437 return ERR_PTR(rv);
438 }
439 return net;
440 }
441
442 static void unhash_nsid(struct net *net, struct net *last)
443 {
444 struct net *tmp;
445 /* This function is only called from cleanup_net() work,
446 * and this work is the only process, that may delete
447 * a net from net_namespace_list. So, when the below
448 * is executing, the list may only grow. Thus, we do not
449 * use for_each_net_rcu() or rtnl_lock().
450 */
451 for_each_net(tmp) {
452 int id;
453
454 spin_lock_bh(&tmp->nsid_lock);
455 id = __peernet2id(tmp, net);
456 if (id >= 0)
457 idr_remove(&tmp->netns_ids, id);
458 spin_unlock_bh(&tmp->nsid_lock);
459 if (id >= 0)
460 rtnl_net_notifyid(tmp, RTM_DELNSID, id);
461 if (tmp == last)
462 break;
463 }
464 spin_lock_bh(&net->nsid_lock);
465 idr_destroy(&net->netns_ids);
466 spin_unlock_bh(&net->nsid_lock);
467 }
468
469 static DEFINE_SPINLOCK(cleanup_list_lock);
470 static LIST_HEAD(cleanup_list); /* Must hold cleanup_list_lock to touch */
471
472 static void cleanup_net(struct work_struct *work)
473 {
474 const struct pernet_operations *ops;
475 struct net *net, *tmp, *last;
476 struct list_head net_kill_list;
477 LIST_HEAD(net_exit_list);
478
479 /* Atomically snapshot the list of namespaces to cleanup */
480 spin_lock_irq(&cleanup_list_lock);
481 list_replace_init(&cleanup_list, &net_kill_list);
482 spin_unlock_irq(&cleanup_list_lock);
483
484 mutex_lock(&net_mutex);
485
486 /* Don't let anyone else find us. */
487 rtnl_lock();
488 list_for_each_entry(net, &net_kill_list, cleanup_list)
489 list_del_rcu(&net->list);
490 /* Cache last net. After we unlock rtnl, no one new net
491 * added to net_namespace_list can assign nsid pointer
492 * to a net from net_kill_list (see peernet2id_alloc()).
493 * So, we skip them in unhash_nsid().
494 *
495 * Note, that unhash_nsid() does not delete nsid links
496 * between net_kill_list's nets, as they've already
497 * deleted from net_namespace_list. But, this would be
498 * useless anyway, as netns_ids are destroyed there.
499 */
500 last = list_last_entry(&net_namespace_list, struct net, list);
501 rtnl_unlock();
502
503 list_for_each_entry(net, &net_kill_list, cleanup_list) {
504 unhash_nsid(net, last);
505 list_add_tail(&net->exit_list, &net_exit_list);
506 }
507
508 /*
509 * Another CPU might be rcu-iterating the list, wait for it.
510 * This needs to be before calling the exit() notifiers, so
511 * the rcu_barrier() below isn't sufficient alone.
512 */
513 synchronize_rcu();
514
515 /* Run all of the network namespace exit methods */
516 list_for_each_entry_reverse(ops, &pernet_list, list)
517 ops_exit_list(ops, &net_exit_list);
518
519 /* Free the net generic variables */
520 list_for_each_entry_reverse(ops, &pernet_list, list)
521 ops_free_list(ops, &net_exit_list);
522
523 mutex_unlock(&net_mutex);
524
525 /* Ensure there are no outstanding rcu callbacks using this
526 * network namespace.
527 */
528 rcu_barrier();
529
530 /* Finally it is safe to free my network namespace structure */
531 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
532 list_del_init(&net->exit_list);
533 dec_net_namespaces(net->ucounts);
534 put_user_ns(net->user_ns);
535 net_drop_ns(net);
536 }
537 }
538
539 /**
540 * net_ns_barrier - wait until concurrent net_cleanup_work is done
541 *
542 * cleanup_net runs from work queue and will first remove namespaces
543 * from the global list, then run net exit functions.
544 *
545 * Call this in module exit path to make sure that all netns
546 * ->exit ops have been invoked before the function is removed.
547 */
548 void net_ns_barrier(void)
549 {
550 mutex_lock(&net_mutex);
551 mutex_unlock(&net_mutex);
552 }
553 EXPORT_SYMBOL(net_ns_barrier);
554
555 static DECLARE_WORK(net_cleanup_work, cleanup_net);
556
557 void __put_net(struct net *net)
558 {
559 /* Cleanup the network namespace in process context */
560 unsigned long flags;
561
562 spin_lock_irqsave(&cleanup_list_lock, flags);
563 list_add(&net->cleanup_list, &cleanup_list);
564 spin_unlock_irqrestore(&cleanup_list_lock, flags);
565
566 queue_work(netns_wq, &net_cleanup_work);
567 }
568 EXPORT_SYMBOL_GPL(__put_net);
569
570 struct net *get_net_ns_by_fd(int fd)
571 {
572 struct file *file;
573 struct ns_common *ns;
574 struct net *net;
575
576 file = proc_ns_fget(fd);
577 if (IS_ERR(file))
578 return ERR_CAST(file);
579
580 ns = get_proc_ns(file_inode(file));
581 if (ns->ops == &netns_operations)
582 net = get_net(container_of(ns, struct net, ns));
583 else
584 net = ERR_PTR(-EINVAL);
585
586 fput(file);
587 return net;
588 }
589
590 #else
591 struct net *get_net_ns_by_fd(int fd)
592 {
593 return ERR_PTR(-EINVAL);
594 }
595 #endif
596 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
597
598 struct net *get_net_ns_by_pid(pid_t pid)
599 {
600 struct task_struct *tsk;
601 struct net *net;
602
603 /* Lookup the network namespace */
604 net = ERR_PTR(-ESRCH);
605 rcu_read_lock();
606 tsk = find_task_by_vpid(pid);
607 if (tsk) {
608 struct nsproxy *nsproxy;
609 task_lock(tsk);
610 nsproxy = tsk->nsproxy;
611 if (nsproxy)
612 net = get_net(nsproxy->net_ns);
613 task_unlock(tsk);
614 }
615 rcu_read_unlock();
616 return net;
617 }
618 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
619
620 static __net_init int net_ns_net_init(struct net *net)
621 {
622 #ifdef CONFIG_NET_NS
623 net->ns.ops = &netns_operations;
624 #endif
625 return ns_alloc_inum(&net->ns);
626 }
627
628 static __net_exit void net_ns_net_exit(struct net *net)
629 {
630 ns_free_inum(&net->ns);
631 }
632
633 static struct pernet_operations __net_initdata net_ns_ops = {
634 .init = net_ns_net_init,
635 .exit = net_ns_net_exit,
636 };
637
638 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
639 [NETNSA_NONE] = { .type = NLA_UNSPEC },
640 [NETNSA_NSID] = { .type = NLA_S32 },
641 [NETNSA_PID] = { .type = NLA_U32 },
642 [NETNSA_FD] = { .type = NLA_U32 },
643 };
644
645 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
646 struct netlink_ext_ack *extack)
647 {
648 struct net *net = sock_net(skb->sk);
649 struct nlattr *tb[NETNSA_MAX + 1];
650 struct nlattr *nla;
651 struct net *peer;
652 int nsid, err;
653
654 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
655 rtnl_net_policy, extack);
656 if (err < 0)
657 return err;
658 if (!tb[NETNSA_NSID]) {
659 NL_SET_ERR_MSG(extack, "nsid is missing");
660 return -EINVAL;
661 }
662 nsid = nla_get_s32(tb[NETNSA_NSID]);
663
664 if (tb[NETNSA_PID]) {
665 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
666 nla = tb[NETNSA_PID];
667 } else if (tb[NETNSA_FD]) {
668 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
669 nla = tb[NETNSA_FD];
670 } else {
671 NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
672 return -EINVAL;
673 }
674 if (IS_ERR(peer)) {
675 NL_SET_BAD_ATTR(extack, nla);
676 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
677 return PTR_ERR(peer);
678 }
679
680 spin_lock_bh(&net->nsid_lock);
681 if (__peernet2id(net, peer) >= 0) {
682 spin_unlock_bh(&net->nsid_lock);
683 err = -EEXIST;
684 NL_SET_BAD_ATTR(extack, nla);
685 NL_SET_ERR_MSG(extack,
686 "Peer netns already has a nsid assigned");
687 goto out;
688 }
689
690 err = alloc_netid(net, peer, nsid);
691 spin_unlock_bh(&net->nsid_lock);
692 if (err >= 0) {
693 rtnl_net_notifyid(net, RTM_NEWNSID, err);
694 err = 0;
695 } else if (err == -ENOSPC && nsid >= 0) {
696 err = -EEXIST;
697 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
698 NL_SET_ERR_MSG(extack, "The specified nsid is already used");
699 }
700 out:
701 put_net(peer);
702 return err;
703 }
704
705 static int rtnl_net_get_size(void)
706 {
707 return NLMSG_ALIGN(sizeof(struct rtgenmsg))
708 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
709 ;
710 }
711
712 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
713 int cmd, struct net *net, int nsid)
714 {
715 struct nlmsghdr *nlh;
716 struct rtgenmsg *rth;
717
718 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
719 if (!nlh)
720 return -EMSGSIZE;
721
722 rth = nlmsg_data(nlh);
723 rth->rtgen_family = AF_UNSPEC;
724
725 if (nla_put_s32(skb, NETNSA_NSID, nsid))
726 goto nla_put_failure;
727
728 nlmsg_end(skb, nlh);
729 return 0;
730
731 nla_put_failure:
732 nlmsg_cancel(skb, nlh);
733 return -EMSGSIZE;
734 }
735
736 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
737 struct netlink_ext_ack *extack)
738 {
739 struct net *net = sock_net(skb->sk);
740 struct nlattr *tb[NETNSA_MAX + 1];
741 struct nlattr *nla;
742 struct sk_buff *msg;
743 struct net *peer;
744 int err, id;
745
746 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
747 rtnl_net_policy, extack);
748 if (err < 0)
749 return err;
750 if (tb[NETNSA_PID]) {
751 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
752 nla = tb[NETNSA_PID];
753 } else if (tb[NETNSA_FD]) {
754 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
755 nla = tb[NETNSA_FD];
756 } else {
757 NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
758 return -EINVAL;
759 }
760
761 if (IS_ERR(peer)) {
762 NL_SET_BAD_ATTR(extack, nla);
763 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
764 return PTR_ERR(peer);
765 }
766
767 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
768 if (!msg) {
769 err = -ENOMEM;
770 goto out;
771 }
772
773 id = peernet2id(net, peer);
774 err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
775 RTM_NEWNSID, net, id);
776 if (err < 0)
777 goto err_out;
778
779 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
780 goto out;
781
782 err_out:
783 nlmsg_free(msg);
784 out:
785 put_net(peer);
786 return err;
787 }
788
789 struct rtnl_net_dump_cb {
790 struct net *net;
791 struct sk_buff *skb;
792 struct netlink_callback *cb;
793 int idx;
794 int s_idx;
795 };
796
797 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
798 {
799 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
800 int ret;
801
802 if (net_cb->idx < net_cb->s_idx)
803 goto cont;
804
805 ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
806 net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
807 RTM_NEWNSID, net_cb->net, id);
808 if (ret < 0)
809 return ret;
810
811 cont:
812 net_cb->idx++;
813 return 0;
814 }
815
816 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
817 {
818 struct net *net = sock_net(skb->sk);
819 struct rtnl_net_dump_cb net_cb = {
820 .net = net,
821 .skb = skb,
822 .cb = cb,
823 .idx = 0,
824 .s_idx = cb->args[0],
825 };
826
827 spin_lock_bh(&net->nsid_lock);
828 idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
829 spin_unlock_bh(&net->nsid_lock);
830
831 cb->args[0] = net_cb.idx;
832 return skb->len;
833 }
834
835 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
836 {
837 struct sk_buff *msg;
838 int err = -ENOMEM;
839
840 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
841 if (!msg)
842 goto out;
843
844 err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
845 if (err < 0)
846 goto err_out;
847
848 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
849 return;
850
851 err_out:
852 nlmsg_free(msg);
853 out:
854 rtnl_set_sk_err(net, RTNLGRP_NSID, err);
855 }
856
857 static int __init net_ns_init(void)
858 {
859 struct net_generic *ng;
860
861 #ifdef CONFIG_NET_NS
862 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
863 SMP_CACHE_BYTES,
864 SLAB_PANIC, NULL);
865
866 /* Create workqueue for cleanup */
867 netns_wq = create_singlethread_workqueue("netns");
868 if (!netns_wq)
869 panic("Could not create netns workq");
870 #endif
871
872 ng = net_alloc_generic();
873 if (!ng)
874 panic("Could not allocate generic netns");
875
876 rcu_assign_pointer(init_net.gen, ng);
877
878 mutex_lock(&net_mutex);
879 if (setup_net(&init_net, &init_user_ns))
880 panic("Could not setup the initial network namespace");
881
882 init_net_initialized = true;
883
884 rtnl_lock();
885 list_add_tail_rcu(&init_net.list, &net_namespace_list);
886 rtnl_unlock();
887
888 mutex_unlock(&net_mutex);
889
890 register_pernet_subsys(&net_ns_ops);
891
892 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
893 RTNL_FLAG_DOIT_UNLOCKED);
894 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
895 RTNL_FLAG_DOIT_UNLOCKED);
896
897 return 0;
898 }
899
900 pure_initcall(net_ns_init);
901
902 #ifdef CONFIG_NET_NS
903 static int __register_pernet_operations(struct list_head *list,
904 struct pernet_operations *ops)
905 {
906 struct net *net;
907 int error;
908 LIST_HEAD(net_exit_list);
909
910 list_add_tail(&ops->list, list);
911 if (ops->init || (ops->id && ops->size)) {
912 for_each_net(net) {
913 error = ops_init(ops, net);
914 if (error)
915 goto out_undo;
916 list_add_tail(&net->exit_list, &net_exit_list);
917 }
918 }
919 return 0;
920
921 out_undo:
922 /* If I have an error cleanup all namespaces I initialized */
923 list_del(&ops->list);
924 ops_exit_list(ops, &net_exit_list);
925 ops_free_list(ops, &net_exit_list);
926 return error;
927 }
928
929 static void __unregister_pernet_operations(struct pernet_operations *ops)
930 {
931 struct net *net;
932 LIST_HEAD(net_exit_list);
933
934 list_del(&ops->list);
935 for_each_net(net)
936 list_add_tail(&net->exit_list, &net_exit_list);
937 ops_exit_list(ops, &net_exit_list);
938 ops_free_list(ops, &net_exit_list);
939 }
940
941 #else
942
943 static int __register_pernet_operations(struct list_head *list,
944 struct pernet_operations *ops)
945 {
946 if (!init_net_initialized) {
947 list_add_tail(&ops->list, list);
948 return 0;
949 }
950
951 return ops_init(ops, &init_net);
952 }
953
954 static void __unregister_pernet_operations(struct pernet_operations *ops)
955 {
956 if (!init_net_initialized) {
957 list_del(&ops->list);
958 } else {
959 LIST_HEAD(net_exit_list);
960 list_add(&init_net.exit_list, &net_exit_list);
961 ops_exit_list(ops, &net_exit_list);
962 ops_free_list(ops, &net_exit_list);
963 }
964 }
965
966 #endif /* CONFIG_NET_NS */
967
968 static DEFINE_IDA(net_generic_ids);
969
970 static int register_pernet_operations(struct list_head *list,
971 struct pernet_operations *ops)
972 {
973 int error;
974
975 if (ops->id) {
976 again:
977 error = ida_get_new_above(&net_generic_ids, MIN_PERNET_OPS_ID, ops->id);
978 if (error < 0) {
979 if (error == -EAGAIN) {
980 ida_pre_get(&net_generic_ids, GFP_KERNEL);
981 goto again;
982 }
983 return error;
984 }
985 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
986 }
987 error = __register_pernet_operations(list, ops);
988 if (error) {
989 rcu_barrier();
990 if (ops->id)
991 ida_remove(&net_generic_ids, *ops->id);
992 }
993
994 return error;
995 }
996
997 static void unregister_pernet_operations(struct pernet_operations *ops)
998 {
999
1000 __unregister_pernet_operations(ops);
1001 rcu_barrier();
1002 if (ops->id)
1003 ida_remove(&net_generic_ids, *ops->id);
1004 }
1005
1006 /**
1007 * register_pernet_subsys - register a network namespace subsystem
1008 * @ops: pernet operations structure for the subsystem
1009 *
1010 * Register a subsystem which has init and exit functions
1011 * that are called when network namespaces are created and
1012 * destroyed respectively.
1013 *
1014 * When registered all network namespace init functions are
1015 * called for every existing network namespace. Allowing kernel
1016 * modules to have a race free view of the set of network namespaces.
1017 *
1018 * When a new network namespace is created all of the init
1019 * methods are called in the order in which they were registered.
1020 *
1021 * When a network namespace is destroyed all of the exit methods
1022 * are called in the reverse of the order with which they were
1023 * registered.
1024 */
1025 int register_pernet_subsys(struct pernet_operations *ops)
1026 {
1027 int error;
1028 mutex_lock(&net_mutex);
1029 error = register_pernet_operations(first_device, ops);
1030 mutex_unlock(&net_mutex);
1031 return error;
1032 }
1033 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1034
1035 /**
1036 * unregister_pernet_subsys - unregister a network namespace subsystem
1037 * @ops: pernet operations structure to manipulate
1038 *
1039 * Remove the pernet operations structure from the list to be
1040 * used when network namespaces are created or destroyed. In
1041 * addition run the exit method for all existing network
1042 * namespaces.
1043 */
1044 void unregister_pernet_subsys(struct pernet_operations *ops)
1045 {
1046 mutex_lock(&net_mutex);
1047 unregister_pernet_operations(ops);
1048 mutex_unlock(&net_mutex);
1049 }
1050 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1051
1052 /**
1053 * register_pernet_device - register a network namespace device
1054 * @ops: pernet operations structure for the subsystem
1055 *
1056 * Register a device which has init and exit functions
1057 * that are called when network namespaces are created and
1058 * destroyed respectively.
1059 *
1060 * When registered all network namespace init functions are
1061 * called for every existing network namespace. Allowing kernel
1062 * modules to have a race free view of the set of network namespaces.
1063 *
1064 * When a new network namespace is created all of the init
1065 * methods are called in the order in which they were registered.
1066 *
1067 * When a network namespace is destroyed all of the exit methods
1068 * are called in the reverse of the order with which they were
1069 * registered.
1070 */
1071 int register_pernet_device(struct pernet_operations *ops)
1072 {
1073 int error;
1074 mutex_lock(&net_mutex);
1075 error = register_pernet_operations(&pernet_list, ops);
1076 if (!error && (first_device == &pernet_list))
1077 first_device = &ops->list;
1078 mutex_unlock(&net_mutex);
1079 return error;
1080 }
1081 EXPORT_SYMBOL_GPL(register_pernet_device);
1082
1083 /**
1084 * unregister_pernet_device - unregister a network namespace netdevice
1085 * @ops: pernet operations structure to manipulate
1086 *
1087 * Remove the pernet operations structure from the list to be
1088 * used when network namespaces are created or destroyed. In
1089 * addition run the exit method for all existing network
1090 * namespaces.
1091 */
1092 void unregister_pernet_device(struct pernet_operations *ops)
1093 {
1094 mutex_lock(&net_mutex);
1095 if (&ops->list == first_device)
1096 first_device = first_device->next;
1097 unregister_pernet_operations(ops);
1098 mutex_unlock(&net_mutex);
1099 }
1100 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1101
1102 #ifdef CONFIG_NET_NS
1103 static struct ns_common *netns_get(struct task_struct *task)
1104 {
1105 struct net *net = NULL;
1106 struct nsproxy *nsproxy;
1107
1108 task_lock(task);
1109 nsproxy = task->nsproxy;
1110 if (nsproxy)
1111 net = get_net(nsproxy->net_ns);
1112 task_unlock(task);
1113
1114 return net ? &net->ns : NULL;
1115 }
1116
1117 static inline struct net *to_net_ns(struct ns_common *ns)
1118 {
1119 return container_of(ns, struct net, ns);
1120 }
1121
1122 static void netns_put(struct ns_common *ns)
1123 {
1124 put_net(to_net_ns(ns));
1125 }
1126
1127 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1128 {
1129 struct net *net = to_net_ns(ns);
1130
1131 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1132 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1133 return -EPERM;
1134
1135 put_net(nsproxy->net_ns);
1136 nsproxy->net_ns = get_net(net);
1137 return 0;
1138 }
1139
1140 static struct user_namespace *netns_owner(struct ns_common *ns)
1141 {
1142 return to_net_ns(ns)->user_ns;
1143 }
1144
1145 const struct proc_ns_operations netns_operations = {
1146 .name = "net",
1147 .type = CLONE_NEWNET,
1148 .get = netns_get,
1149 .put = netns_put,
1150 .install = netns_install,
1151 .owner = netns_owner,
1152 };
1153 #endif