]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - net/core/skbuff.c
0338820ee0ec67ce5b399b629984a0d05033e8c5
[mirror_ubuntu-eoan-kernel.git] / net / core / skbuff.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31 /*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
69 #include <net/xfrm.h>
70 #include <net/mpls.h>
71
72 #include <linux/uaccess.h>
73 #include <trace/events/skb.h>
74 #include <linux/highmem.h>
75 #include <linux/capability.h>
76 #include <linux/user_namespace.h>
77 #include <linux/indirect_call_wrapper.h>
78
79 #include "datagram.h"
80
81 struct kmem_cache *skbuff_head_cache __ro_after_init;
82 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
83 #ifdef CONFIG_SKB_EXTENSIONS
84 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
85 #endif
86 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
87 EXPORT_SYMBOL(sysctl_max_skb_frags);
88
89 /**
90 * skb_panic - private function for out-of-line support
91 * @skb: buffer
92 * @sz: size
93 * @addr: address
94 * @msg: skb_over_panic or skb_under_panic
95 *
96 * Out-of-line support for skb_put() and skb_push().
97 * Called via the wrapper skb_over_panic() or skb_under_panic().
98 * Keep out of line to prevent kernel bloat.
99 * __builtin_return_address is not used because it is not always reliable.
100 */
101 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
102 const char msg[])
103 {
104 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
105 msg, addr, skb->len, sz, skb->head, skb->data,
106 (unsigned long)skb->tail, (unsigned long)skb->end,
107 skb->dev ? skb->dev->name : "<NULL>");
108 BUG();
109 }
110
111 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
112 {
113 skb_panic(skb, sz, addr, __func__);
114 }
115
116 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
117 {
118 skb_panic(skb, sz, addr, __func__);
119 }
120
121 /*
122 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
123 * the caller if emergency pfmemalloc reserves are being used. If it is and
124 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
125 * may be used. Otherwise, the packet data may be discarded until enough
126 * memory is free
127 */
128 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
129 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
130
131 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
132 unsigned long ip, bool *pfmemalloc)
133 {
134 void *obj;
135 bool ret_pfmemalloc = false;
136
137 /*
138 * Try a regular allocation, when that fails and we're not entitled
139 * to the reserves, fail.
140 */
141 obj = kmalloc_node_track_caller(size,
142 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
143 node);
144 if (obj || !(gfp_pfmemalloc_allowed(flags)))
145 goto out;
146
147 /* Try again but now we are using pfmemalloc reserves */
148 ret_pfmemalloc = true;
149 obj = kmalloc_node_track_caller(size, flags, node);
150
151 out:
152 if (pfmemalloc)
153 *pfmemalloc = ret_pfmemalloc;
154
155 return obj;
156 }
157
158 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
159 * 'private' fields and also do memory statistics to find all the
160 * [BEEP] leaks.
161 *
162 */
163
164 /**
165 * __alloc_skb - allocate a network buffer
166 * @size: size to allocate
167 * @gfp_mask: allocation mask
168 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
169 * instead of head cache and allocate a cloned (child) skb.
170 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
171 * allocations in case the data is required for writeback
172 * @node: numa node to allocate memory on
173 *
174 * Allocate a new &sk_buff. The returned buffer has no headroom and a
175 * tail room of at least size bytes. The object has a reference count
176 * of one. The return is the buffer. On a failure the return is %NULL.
177 *
178 * Buffers may only be allocated from interrupts using a @gfp_mask of
179 * %GFP_ATOMIC.
180 */
181 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
182 int flags, int node)
183 {
184 struct kmem_cache *cache;
185 struct skb_shared_info *shinfo;
186 struct sk_buff *skb;
187 u8 *data;
188 bool pfmemalloc;
189
190 cache = (flags & SKB_ALLOC_FCLONE)
191 ? skbuff_fclone_cache : skbuff_head_cache;
192
193 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
194 gfp_mask |= __GFP_MEMALLOC;
195
196 /* Get the HEAD */
197 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
198 if (!skb)
199 goto out;
200 prefetchw(skb);
201
202 /* We do our best to align skb_shared_info on a separate cache
203 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
204 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
205 * Both skb->head and skb_shared_info are cache line aligned.
206 */
207 size = SKB_DATA_ALIGN(size);
208 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
209 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
210 if (!data)
211 goto nodata;
212 /* kmalloc(size) might give us more room than requested.
213 * Put skb_shared_info exactly at the end of allocated zone,
214 * to allow max possible filling before reallocation.
215 */
216 size = SKB_WITH_OVERHEAD(ksize(data));
217 prefetchw(data + size);
218
219 /*
220 * Only clear those fields we need to clear, not those that we will
221 * actually initialise below. Hence, don't put any more fields after
222 * the tail pointer in struct sk_buff!
223 */
224 memset(skb, 0, offsetof(struct sk_buff, tail));
225 /* Account for allocated memory : skb + skb->head */
226 skb->truesize = SKB_TRUESIZE(size);
227 skb->pfmemalloc = pfmemalloc;
228 refcount_set(&skb->users, 1);
229 skb->head = data;
230 skb->data = data;
231 skb_reset_tail_pointer(skb);
232 skb->end = skb->tail + size;
233 skb->mac_header = (typeof(skb->mac_header))~0U;
234 skb->transport_header = (typeof(skb->transport_header))~0U;
235
236 /* make sure we initialize shinfo sequentially */
237 shinfo = skb_shinfo(skb);
238 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
239 atomic_set(&shinfo->dataref, 1);
240
241 if (flags & SKB_ALLOC_FCLONE) {
242 struct sk_buff_fclones *fclones;
243
244 fclones = container_of(skb, struct sk_buff_fclones, skb1);
245
246 skb->fclone = SKB_FCLONE_ORIG;
247 refcount_set(&fclones->fclone_ref, 1);
248
249 fclones->skb2.fclone = SKB_FCLONE_CLONE;
250 }
251 out:
252 return skb;
253 nodata:
254 kmem_cache_free(cache, skb);
255 skb = NULL;
256 goto out;
257 }
258 EXPORT_SYMBOL(__alloc_skb);
259
260 /* Caller must provide SKB that is memset cleared */
261 static struct sk_buff *__build_skb_around(struct sk_buff *skb,
262 void *data, unsigned int frag_size)
263 {
264 struct skb_shared_info *shinfo;
265 unsigned int size = frag_size ? : ksize(data);
266
267 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
268
269 /* Assumes caller memset cleared SKB */
270 skb->truesize = SKB_TRUESIZE(size);
271 refcount_set(&skb->users, 1);
272 skb->head = data;
273 skb->data = data;
274 skb_reset_tail_pointer(skb);
275 skb->end = skb->tail + size;
276 skb->mac_header = (typeof(skb->mac_header))~0U;
277 skb->transport_header = (typeof(skb->transport_header))~0U;
278
279 /* make sure we initialize shinfo sequentially */
280 shinfo = skb_shinfo(skb);
281 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
282 atomic_set(&shinfo->dataref, 1);
283
284 return skb;
285 }
286
287 /**
288 * __build_skb - build a network buffer
289 * @data: data buffer provided by caller
290 * @frag_size: size of data, or 0 if head was kmalloced
291 *
292 * Allocate a new &sk_buff. Caller provides space holding head and
293 * skb_shared_info. @data must have been allocated by kmalloc() only if
294 * @frag_size is 0, otherwise data should come from the page allocator
295 * or vmalloc()
296 * The return is the new skb buffer.
297 * On a failure the return is %NULL, and @data is not freed.
298 * Notes :
299 * Before IO, driver allocates only data buffer where NIC put incoming frame
300 * Driver should add room at head (NET_SKB_PAD) and
301 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
302 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
303 * before giving packet to stack.
304 * RX rings only contains data buffers, not full skbs.
305 */
306 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
307 {
308 struct sk_buff *skb;
309
310 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
311 if (unlikely(!skb))
312 return NULL;
313
314 memset(skb, 0, offsetof(struct sk_buff, tail));
315
316 return __build_skb_around(skb, data, frag_size);
317 }
318
319 /* build_skb() is wrapper over __build_skb(), that specifically
320 * takes care of skb->head and skb->pfmemalloc
321 * This means that if @frag_size is not zero, then @data must be backed
322 * by a page fragment, not kmalloc() or vmalloc()
323 */
324 struct sk_buff *build_skb(void *data, unsigned int frag_size)
325 {
326 struct sk_buff *skb = __build_skb(data, frag_size);
327
328 if (skb && frag_size) {
329 skb->head_frag = 1;
330 if (page_is_pfmemalloc(virt_to_head_page(data)))
331 skb->pfmemalloc = 1;
332 }
333 return skb;
334 }
335 EXPORT_SYMBOL(build_skb);
336
337 /**
338 * build_skb_around - build a network buffer around provided skb
339 * @skb: sk_buff provide by caller, must be memset cleared
340 * @data: data buffer provided by caller
341 * @frag_size: size of data, or 0 if head was kmalloced
342 */
343 struct sk_buff *build_skb_around(struct sk_buff *skb,
344 void *data, unsigned int frag_size)
345 {
346 if (unlikely(!skb))
347 return NULL;
348
349 skb = __build_skb_around(skb, data, frag_size);
350
351 if (skb && frag_size) {
352 skb->head_frag = 1;
353 if (page_is_pfmemalloc(virt_to_head_page(data)))
354 skb->pfmemalloc = 1;
355 }
356 return skb;
357 }
358 EXPORT_SYMBOL(build_skb_around);
359
360 #define NAPI_SKB_CACHE_SIZE 64
361
362 struct napi_alloc_cache {
363 struct page_frag_cache page;
364 unsigned int skb_count;
365 void *skb_cache[NAPI_SKB_CACHE_SIZE];
366 };
367
368 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
369 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
370
371 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
372 {
373 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
374
375 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
376 }
377
378 void *napi_alloc_frag(unsigned int fragsz)
379 {
380 fragsz = SKB_DATA_ALIGN(fragsz);
381
382 return __napi_alloc_frag(fragsz, GFP_ATOMIC);
383 }
384 EXPORT_SYMBOL(napi_alloc_frag);
385
386 /**
387 * netdev_alloc_frag - allocate a page fragment
388 * @fragsz: fragment size
389 *
390 * Allocates a frag from a page for receive buffer.
391 * Uses GFP_ATOMIC allocations.
392 */
393 void *netdev_alloc_frag(unsigned int fragsz)
394 {
395 struct page_frag_cache *nc;
396 void *data;
397
398 fragsz = SKB_DATA_ALIGN(fragsz);
399 if (in_irq() || irqs_disabled()) {
400 nc = this_cpu_ptr(&netdev_alloc_cache);
401 data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
402 } else {
403 local_bh_disable();
404 data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
405 local_bh_enable();
406 }
407 return data;
408 }
409 EXPORT_SYMBOL(netdev_alloc_frag);
410
411 /**
412 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
413 * @dev: network device to receive on
414 * @len: length to allocate
415 * @gfp_mask: get_free_pages mask, passed to alloc_skb
416 *
417 * Allocate a new &sk_buff and assign it a usage count of one. The
418 * buffer has NET_SKB_PAD headroom built in. Users should allocate
419 * the headroom they think they need without accounting for the
420 * built in space. The built in space is used for optimisations.
421 *
422 * %NULL is returned if there is no free memory.
423 */
424 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
425 gfp_t gfp_mask)
426 {
427 struct page_frag_cache *nc;
428 struct sk_buff *skb;
429 bool pfmemalloc;
430 void *data;
431
432 len += NET_SKB_PAD;
433
434 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
435 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
436 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
437 if (!skb)
438 goto skb_fail;
439 goto skb_success;
440 }
441
442 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
443 len = SKB_DATA_ALIGN(len);
444
445 if (sk_memalloc_socks())
446 gfp_mask |= __GFP_MEMALLOC;
447
448 if (in_irq() || irqs_disabled()) {
449 nc = this_cpu_ptr(&netdev_alloc_cache);
450 data = page_frag_alloc(nc, len, gfp_mask);
451 pfmemalloc = nc->pfmemalloc;
452 } else {
453 local_bh_disable();
454 nc = this_cpu_ptr(&napi_alloc_cache.page);
455 data = page_frag_alloc(nc, len, gfp_mask);
456 pfmemalloc = nc->pfmemalloc;
457 local_bh_enable();
458 }
459
460 if (unlikely(!data))
461 return NULL;
462
463 skb = __build_skb(data, len);
464 if (unlikely(!skb)) {
465 skb_free_frag(data);
466 return NULL;
467 }
468
469 /* use OR instead of assignment to avoid clearing of bits in mask */
470 if (pfmemalloc)
471 skb->pfmemalloc = 1;
472 skb->head_frag = 1;
473
474 skb_success:
475 skb_reserve(skb, NET_SKB_PAD);
476 skb->dev = dev;
477
478 skb_fail:
479 return skb;
480 }
481 EXPORT_SYMBOL(__netdev_alloc_skb);
482
483 /**
484 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
485 * @napi: napi instance this buffer was allocated for
486 * @len: length to allocate
487 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
488 *
489 * Allocate a new sk_buff for use in NAPI receive. This buffer will
490 * attempt to allocate the head from a special reserved region used
491 * only for NAPI Rx allocation. By doing this we can save several
492 * CPU cycles by avoiding having to disable and re-enable IRQs.
493 *
494 * %NULL is returned if there is no free memory.
495 */
496 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
497 gfp_t gfp_mask)
498 {
499 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
500 struct sk_buff *skb;
501 void *data;
502
503 len += NET_SKB_PAD + NET_IP_ALIGN;
504
505 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
506 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
507 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
508 if (!skb)
509 goto skb_fail;
510 goto skb_success;
511 }
512
513 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
514 len = SKB_DATA_ALIGN(len);
515
516 if (sk_memalloc_socks())
517 gfp_mask |= __GFP_MEMALLOC;
518
519 data = page_frag_alloc(&nc->page, len, gfp_mask);
520 if (unlikely(!data))
521 return NULL;
522
523 skb = __build_skb(data, len);
524 if (unlikely(!skb)) {
525 skb_free_frag(data);
526 return NULL;
527 }
528
529 /* use OR instead of assignment to avoid clearing of bits in mask */
530 if (nc->page.pfmemalloc)
531 skb->pfmemalloc = 1;
532 skb->head_frag = 1;
533
534 skb_success:
535 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
536 skb->dev = napi->dev;
537
538 skb_fail:
539 return skb;
540 }
541 EXPORT_SYMBOL(__napi_alloc_skb);
542
543 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
544 int size, unsigned int truesize)
545 {
546 skb_fill_page_desc(skb, i, page, off, size);
547 skb->len += size;
548 skb->data_len += size;
549 skb->truesize += truesize;
550 }
551 EXPORT_SYMBOL(skb_add_rx_frag);
552
553 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
554 unsigned int truesize)
555 {
556 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
557
558 skb_frag_size_add(frag, size);
559 skb->len += size;
560 skb->data_len += size;
561 skb->truesize += truesize;
562 }
563 EXPORT_SYMBOL(skb_coalesce_rx_frag);
564
565 static void skb_drop_list(struct sk_buff **listp)
566 {
567 kfree_skb_list(*listp);
568 *listp = NULL;
569 }
570
571 static inline void skb_drop_fraglist(struct sk_buff *skb)
572 {
573 skb_drop_list(&skb_shinfo(skb)->frag_list);
574 }
575
576 static void skb_clone_fraglist(struct sk_buff *skb)
577 {
578 struct sk_buff *list;
579
580 skb_walk_frags(skb, list)
581 skb_get(list);
582 }
583
584 static void skb_free_head(struct sk_buff *skb)
585 {
586 unsigned char *head = skb->head;
587
588 if (skb->head_frag)
589 skb_free_frag(head);
590 else
591 kfree(head);
592 }
593
594 static void skb_release_data(struct sk_buff *skb)
595 {
596 struct skb_shared_info *shinfo = skb_shinfo(skb);
597 int i;
598
599 if (skb->cloned &&
600 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
601 &shinfo->dataref))
602 return;
603
604 for (i = 0; i < shinfo->nr_frags; i++)
605 __skb_frag_unref(&shinfo->frags[i]);
606
607 if (shinfo->frag_list)
608 kfree_skb_list(shinfo->frag_list);
609
610 skb_zcopy_clear(skb, true);
611 skb_free_head(skb);
612 }
613
614 /*
615 * Free an skbuff by memory without cleaning the state.
616 */
617 static void kfree_skbmem(struct sk_buff *skb)
618 {
619 struct sk_buff_fclones *fclones;
620
621 switch (skb->fclone) {
622 case SKB_FCLONE_UNAVAILABLE:
623 kmem_cache_free(skbuff_head_cache, skb);
624 return;
625
626 case SKB_FCLONE_ORIG:
627 fclones = container_of(skb, struct sk_buff_fclones, skb1);
628
629 /* We usually free the clone (TX completion) before original skb
630 * This test would have no chance to be true for the clone,
631 * while here, branch prediction will be good.
632 */
633 if (refcount_read(&fclones->fclone_ref) == 1)
634 goto fastpath;
635 break;
636
637 default: /* SKB_FCLONE_CLONE */
638 fclones = container_of(skb, struct sk_buff_fclones, skb2);
639 break;
640 }
641 if (!refcount_dec_and_test(&fclones->fclone_ref))
642 return;
643 fastpath:
644 kmem_cache_free(skbuff_fclone_cache, fclones);
645 }
646
647 void skb_release_head_state(struct sk_buff *skb)
648 {
649 skb_dst_drop(skb);
650 if (skb->destructor) {
651 WARN_ON(in_irq());
652 skb->destructor(skb);
653 }
654 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
655 nf_conntrack_put(skb_nfct(skb));
656 #endif
657 skb_ext_put(skb);
658 }
659
660 /* Free everything but the sk_buff shell. */
661 static void skb_release_all(struct sk_buff *skb)
662 {
663 skb_release_head_state(skb);
664 if (likely(skb->head))
665 skb_release_data(skb);
666 }
667
668 /**
669 * __kfree_skb - private function
670 * @skb: buffer
671 *
672 * Free an sk_buff. Release anything attached to the buffer.
673 * Clean the state. This is an internal helper function. Users should
674 * always call kfree_skb
675 */
676
677 void __kfree_skb(struct sk_buff *skb)
678 {
679 skb_release_all(skb);
680 kfree_skbmem(skb);
681 }
682 EXPORT_SYMBOL(__kfree_skb);
683
684 /**
685 * kfree_skb - free an sk_buff
686 * @skb: buffer to free
687 *
688 * Drop a reference to the buffer and free it if the usage count has
689 * hit zero.
690 */
691 void kfree_skb(struct sk_buff *skb)
692 {
693 if (!skb_unref(skb))
694 return;
695
696 trace_kfree_skb(skb, __builtin_return_address(0));
697 __kfree_skb(skb);
698 }
699 EXPORT_SYMBOL(kfree_skb);
700
701 void kfree_skb_list(struct sk_buff *segs)
702 {
703 while (segs) {
704 struct sk_buff *next = segs->next;
705
706 kfree_skb(segs);
707 segs = next;
708 }
709 }
710 EXPORT_SYMBOL(kfree_skb_list);
711
712 /* Dump skb information and contents.
713 *
714 * Must only be called from net_ratelimit()-ed paths.
715 *
716 * Dumps up to can_dump_full whole packets if full_pkt, headers otherwise.
717 */
718 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
719 {
720 static atomic_t can_dump_full = ATOMIC_INIT(5);
721 struct skb_shared_info *sh = skb_shinfo(skb);
722 struct net_device *dev = skb->dev;
723 struct sock *sk = skb->sk;
724 struct sk_buff *list_skb;
725 bool has_mac, has_trans;
726 int headroom, tailroom;
727 int i, len, seg_len;
728
729 if (full_pkt)
730 full_pkt = atomic_dec_if_positive(&can_dump_full) >= 0;
731
732 if (full_pkt)
733 len = skb->len;
734 else
735 len = min_t(int, skb->len, MAX_HEADER + 128);
736
737 headroom = skb_headroom(skb);
738 tailroom = skb_tailroom(skb);
739
740 has_mac = skb_mac_header_was_set(skb);
741 has_trans = skb_transport_header_was_set(skb);
742
743 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
744 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
745 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
746 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
747 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
748 level, skb->len, headroom, skb_headlen(skb), tailroom,
749 has_mac ? skb->mac_header : -1,
750 has_mac ? skb_mac_header_len(skb) : -1,
751 skb->network_header,
752 has_trans ? skb_network_header_len(skb) : -1,
753 has_trans ? skb->transport_header : -1,
754 sh->tx_flags, sh->nr_frags,
755 sh->gso_size, sh->gso_type, sh->gso_segs,
756 skb->csum, skb->ip_summed, skb->csum_complete_sw,
757 skb->csum_valid, skb->csum_level,
758 skb->hash, skb->sw_hash, skb->l4_hash,
759 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
760
761 if (dev)
762 printk("%sdev name=%s feat=0x%pNF\n",
763 level, dev->name, &dev->features);
764 if (sk)
765 printk("%ssk family=%hu type=%u proto=%u\n",
766 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
767
768 if (full_pkt && headroom)
769 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
770 16, 1, skb->head, headroom, false);
771
772 seg_len = min_t(int, skb_headlen(skb), len);
773 if (seg_len)
774 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
775 16, 1, skb->data, seg_len, false);
776 len -= seg_len;
777
778 if (full_pkt && tailroom)
779 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
780 16, 1, skb_tail_pointer(skb), tailroom, false);
781
782 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
783 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
784 u32 p_off, p_len, copied;
785 struct page *p;
786 u8 *vaddr;
787
788 skb_frag_foreach_page(frag, frag->page_offset,
789 skb_frag_size(frag), p, p_off, p_len,
790 copied) {
791 seg_len = min_t(int, p_len, len);
792 vaddr = kmap_atomic(p);
793 print_hex_dump(level, "skb frag: ",
794 DUMP_PREFIX_OFFSET,
795 16, 1, vaddr + p_off, seg_len, false);
796 kunmap_atomic(vaddr);
797 len -= seg_len;
798 if (!len)
799 break;
800 }
801 }
802
803 if (full_pkt && skb_has_frag_list(skb)) {
804 printk("skb fraglist:\n");
805 skb_walk_frags(skb, list_skb)
806 skb_dump(level, list_skb, true);
807 }
808 }
809 EXPORT_SYMBOL(skb_dump);
810
811 /**
812 * skb_tx_error - report an sk_buff xmit error
813 * @skb: buffer that triggered an error
814 *
815 * Report xmit error if a device callback is tracking this skb.
816 * skb must be freed afterwards.
817 */
818 void skb_tx_error(struct sk_buff *skb)
819 {
820 skb_zcopy_clear(skb, true);
821 }
822 EXPORT_SYMBOL(skb_tx_error);
823
824 /**
825 * consume_skb - free an skbuff
826 * @skb: buffer to free
827 *
828 * Drop a ref to the buffer and free it if the usage count has hit zero
829 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
830 * is being dropped after a failure and notes that
831 */
832 void consume_skb(struct sk_buff *skb)
833 {
834 if (!skb_unref(skb))
835 return;
836
837 trace_consume_skb(skb);
838 __kfree_skb(skb);
839 }
840 EXPORT_SYMBOL(consume_skb);
841
842 /**
843 * consume_stateless_skb - free an skbuff, assuming it is stateless
844 * @skb: buffer to free
845 *
846 * Alike consume_skb(), but this variant assumes that this is the last
847 * skb reference and all the head states have been already dropped
848 */
849 void __consume_stateless_skb(struct sk_buff *skb)
850 {
851 trace_consume_skb(skb);
852 skb_release_data(skb);
853 kfree_skbmem(skb);
854 }
855
856 void __kfree_skb_flush(void)
857 {
858 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
859
860 /* flush skb_cache if containing objects */
861 if (nc->skb_count) {
862 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
863 nc->skb_cache);
864 nc->skb_count = 0;
865 }
866 }
867
868 static inline void _kfree_skb_defer(struct sk_buff *skb)
869 {
870 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
871
872 /* drop skb->head and call any destructors for packet */
873 skb_release_all(skb);
874
875 /* record skb to CPU local list */
876 nc->skb_cache[nc->skb_count++] = skb;
877
878 #ifdef CONFIG_SLUB
879 /* SLUB writes into objects when freeing */
880 prefetchw(skb);
881 #endif
882
883 /* flush skb_cache if it is filled */
884 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
885 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
886 nc->skb_cache);
887 nc->skb_count = 0;
888 }
889 }
890 void __kfree_skb_defer(struct sk_buff *skb)
891 {
892 _kfree_skb_defer(skb);
893 }
894
895 void napi_consume_skb(struct sk_buff *skb, int budget)
896 {
897 if (unlikely(!skb))
898 return;
899
900 /* Zero budget indicate non-NAPI context called us, like netpoll */
901 if (unlikely(!budget)) {
902 dev_consume_skb_any(skb);
903 return;
904 }
905
906 if (!skb_unref(skb))
907 return;
908
909 /* if reaching here SKB is ready to free */
910 trace_consume_skb(skb);
911
912 /* if SKB is a clone, don't handle this case */
913 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
914 __kfree_skb(skb);
915 return;
916 }
917
918 _kfree_skb_defer(skb);
919 }
920 EXPORT_SYMBOL(napi_consume_skb);
921
922 /* Make sure a field is enclosed inside headers_start/headers_end section */
923 #define CHECK_SKB_FIELD(field) \
924 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
925 offsetof(struct sk_buff, headers_start)); \
926 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
927 offsetof(struct sk_buff, headers_end)); \
928
929 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
930 {
931 new->tstamp = old->tstamp;
932 /* We do not copy old->sk */
933 new->dev = old->dev;
934 memcpy(new->cb, old->cb, sizeof(old->cb));
935 skb_dst_copy(new, old);
936 __skb_ext_copy(new, old);
937 __nf_copy(new, old, false);
938
939 /* Note : this field could be in headers_start/headers_end section
940 * It is not yet because we do not want to have a 16 bit hole
941 */
942 new->queue_mapping = old->queue_mapping;
943
944 memcpy(&new->headers_start, &old->headers_start,
945 offsetof(struct sk_buff, headers_end) -
946 offsetof(struct sk_buff, headers_start));
947 CHECK_SKB_FIELD(protocol);
948 CHECK_SKB_FIELD(csum);
949 CHECK_SKB_FIELD(hash);
950 CHECK_SKB_FIELD(priority);
951 CHECK_SKB_FIELD(skb_iif);
952 CHECK_SKB_FIELD(vlan_proto);
953 CHECK_SKB_FIELD(vlan_tci);
954 CHECK_SKB_FIELD(transport_header);
955 CHECK_SKB_FIELD(network_header);
956 CHECK_SKB_FIELD(mac_header);
957 CHECK_SKB_FIELD(inner_protocol);
958 CHECK_SKB_FIELD(inner_transport_header);
959 CHECK_SKB_FIELD(inner_network_header);
960 CHECK_SKB_FIELD(inner_mac_header);
961 CHECK_SKB_FIELD(mark);
962 #ifdef CONFIG_NETWORK_SECMARK
963 CHECK_SKB_FIELD(secmark);
964 #endif
965 #ifdef CONFIG_NET_RX_BUSY_POLL
966 CHECK_SKB_FIELD(napi_id);
967 #endif
968 #ifdef CONFIG_XPS
969 CHECK_SKB_FIELD(sender_cpu);
970 #endif
971 #ifdef CONFIG_NET_SCHED
972 CHECK_SKB_FIELD(tc_index);
973 #endif
974
975 }
976
977 /*
978 * You should not add any new code to this function. Add it to
979 * __copy_skb_header above instead.
980 */
981 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
982 {
983 #define C(x) n->x = skb->x
984
985 n->next = n->prev = NULL;
986 n->sk = NULL;
987 __copy_skb_header(n, skb);
988
989 C(len);
990 C(data_len);
991 C(mac_len);
992 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
993 n->cloned = 1;
994 n->nohdr = 0;
995 n->peeked = 0;
996 C(pfmemalloc);
997 n->destructor = NULL;
998 C(tail);
999 C(end);
1000 C(head);
1001 C(head_frag);
1002 C(data);
1003 C(truesize);
1004 refcount_set(&n->users, 1);
1005
1006 atomic_inc(&(skb_shinfo(skb)->dataref));
1007 skb->cloned = 1;
1008
1009 return n;
1010 #undef C
1011 }
1012
1013 /**
1014 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1015 * @first: first sk_buff of the msg
1016 */
1017 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1018 {
1019 struct sk_buff *n;
1020
1021 n = alloc_skb(0, GFP_ATOMIC);
1022 if (!n)
1023 return NULL;
1024
1025 n->len = first->len;
1026 n->data_len = first->len;
1027 n->truesize = first->truesize;
1028
1029 skb_shinfo(n)->frag_list = first;
1030
1031 __copy_skb_header(n, first);
1032 n->destructor = NULL;
1033
1034 return n;
1035 }
1036 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1037
1038 /**
1039 * skb_morph - morph one skb into another
1040 * @dst: the skb to receive the contents
1041 * @src: the skb to supply the contents
1042 *
1043 * This is identical to skb_clone except that the target skb is
1044 * supplied by the user.
1045 *
1046 * The target skb is returned upon exit.
1047 */
1048 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1049 {
1050 skb_release_all(dst);
1051 return __skb_clone(dst, src);
1052 }
1053 EXPORT_SYMBOL_GPL(skb_morph);
1054
1055 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1056 {
1057 unsigned long max_pg, num_pg, new_pg, old_pg;
1058 struct user_struct *user;
1059
1060 if (capable(CAP_IPC_LOCK) || !size)
1061 return 0;
1062
1063 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1064 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1065 user = mmp->user ? : current_user();
1066
1067 do {
1068 old_pg = atomic_long_read(&user->locked_vm);
1069 new_pg = old_pg + num_pg;
1070 if (new_pg > max_pg)
1071 return -ENOBUFS;
1072 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1073 old_pg);
1074
1075 if (!mmp->user) {
1076 mmp->user = get_uid(user);
1077 mmp->num_pg = num_pg;
1078 } else {
1079 mmp->num_pg += num_pg;
1080 }
1081
1082 return 0;
1083 }
1084 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1085
1086 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1087 {
1088 if (mmp->user) {
1089 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1090 free_uid(mmp->user);
1091 }
1092 }
1093 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1094
1095 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1096 {
1097 struct ubuf_info *uarg;
1098 struct sk_buff *skb;
1099
1100 WARN_ON_ONCE(!in_task());
1101
1102 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1103 if (!skb)
1104 return NULL;
1105
1106 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1107 uarg = (void *)skb->cb;
1108 uarg->mmp.user = NULL;
1109
1110 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1111 kfree_skb(skb);
1112 return NULL;
1113 }
1114
1115 uarg->callback = sock_zerocopy_callback;
1116 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1117 uarg->len = 1;
1118 uarg->bytelen = size;
1119 uarg->zerocopy = 1;
1120 refcount_set(&uarg->refcnt, 1);
1121 sock_hold(sk);
1122
1123 return uarg;
1124 }
1125 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1126
1127 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1128 {
1129 return container_of((void *)uarg, struct sk_buff, cb);
1130 }
1131
1132 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1133 struct ubuf_info *uarg)
1134 {
1135 if (uarg) {
1136 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1137 u32 bytelen, next;
1138
1139 /* realloc only when socket is locked (TCP, UDP cork),
1140 * so uarg->len and sk_zckey access is serialized
1141 */
1142 if (!sock_owned_by_user(sk)) {
1143 WARN_ON_ONCE(1);
1144 return NULL;
1145 }
1146
1147 bytelen = uarg->bytelen + size;
1148 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1149 /* TCP can create new skb to attach new uarg */
1150 if (sk->sk_type == SOCK_STREAM)
1151 goto new_alloc;
1152 return NULL;
1153 }
1154
1155 next = (u32)atomic_read(&sk->sk_zckey);
1156 if ((u32)(uarg->id + uarg->len) == next) {
1157 if (mm_account_pinned_pages(&uarg->mmp, size))
1158 return NULL;
1159 uarg->len++;
1160 uarg->bytelen = bytelen;
1161 atomic_set(&sk->sk_zckey, ++next);
1162
1163 /* no extra ref when appending to datagram (MSG_MORE) */
1164 if (sk->sk_type == SOCK_STREAM)
1165 sock_zerocopy_get(uarg);
1166
1167 return uarg;
1168 }
1169 }
1170
1171 new_alloc:
1172 return sock_zerocopy_alloc(sk, size);
1173 }
1174 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1175
1176 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1177 {
1178 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1179 u32 old_lo, old_hi;
1180 u64 sum_len;
1181
1182 old_lo = serr->ee.ee_info;
1183 old_hi = serr->ee.ee_data;
1184 sum_len = old_hi - old_lo + 1ULL + len;
1185
1186 if (sum_len >= (1ULL << 32))
1187 return false;
1188
1189 if (lo != old_hi + 1)
1190 return false;
1191
1192 serr->ee.ee_data += len;
1193 return true;
1194 }
1195
1196 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1197 {
1198 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1199 struct sock_exterr_skb *serr;
1200 struct sock *sk = skb->sk;
1201 struct sk_buff_head *q;
1202 unsigned long flags;
1203 u32 lo, hi;
1204 u16 len;
1205
1206 mm_unaccount_pinned_pages(&uarg->mmp);
1207
1208 /* if !len, there was only 1 call, and it was aborted
1209 * so do not queue a completion notification
1210 */
1211 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1212 goto release;
1213
1214 len = uarg->len;
1215 lo = uarg->id;
1216 hi = uarg->id + len - 1;
1217
1218 serr = SKB_EXT_ERR(skb);
1219 memset(serr, 0, sizeof(*serr));
1220 serr->ee.ee_errno = 0;
1221 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1222 serr->ee.ee_data = hi;
1223 serr->ee.ee_info = lo;
1224 if (!success)
1225 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1226
1227 q = &sk->sk_error_queue;
1228 spin_lock_irqsave(&q->lock, flags);
1229 tail = skb_peek_tail(q);
1230 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1231 !skb_zerocopy_notify_extend(tail, lo, len)) {
1232 __skb_queue_tail(q, skb);
1233 skb = NULL;
1234 }
1235 spin_unlock_irqrestore(&q->lock, flags);
1236
1237 sk->sk_error_report(sk);
1238
1239 release:
1240 consume_skb(skb);
1241 sock_put(sk);
1242 }
1243 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1244
1245 void sock_zerocopy_put(struct ubuf_info *uarg)
1246 {
1247 if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1248 if (uarg->callback)
1249 uarg->callback(uarg, uarg->zerocopy);
1250 else
1251 consume_skb(skb_from_uarg(uarg));
1252 }
1253 }
1254 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1255
1256 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1257 {
1258 if (uarg) {
1259 struct sock *sk = skb_from_uarg(uarg)->sk;
1260
1261 atomic_dec(&sk->sk_zckey);
1262 uarg->len--;
1263
1264 if (have_uref)
1265 sock_zerocopy_put(uarg);
1266 }
1267 }
1268 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1269
1270 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1271 {
1272 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1273 }
1274 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1275
1276 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1277 struct msghdr *msg, int len,
1278 struct ubuf_info *uarg)
1279 {
1280 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1281 struct iov_iter orig_iter = msg->msg_iter;
1282 int err, orig_len = skb->len;
1283
1284 /* An skb can only point to one uarg. This edge case happens when
1285 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1286 */
1287 if (orig_uarg && uarg != orig_uarg)
1288 return -EEXIST;
1289
1290 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1291 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1292 struct sock *save_sk = skb->sk;
1293
1294 /* Streams do not free skb on error. Reset to prev state. */
1295 msg->msg_iter = orig_iter;
1296 skb->sk = sk;
1297 ___pskb_trim(skb, orig_len);
1298 skb->sk = save_sk;
1299 return err;
1300 }
1301
1302 skb_zcopy_set(skb, uarg, NULL);
1303 return skb->len - orig_len;
1304 }
1305 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1306
1307 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1308 gfp_t gfp_mask)
1309 {
1310 if (skb_zcopy(orig)) {
1311 if (skb_zcopy(nskb)) {
1312 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1313 if (!gfp_mask) {
1314 WARN_ON_ONCE(1);
1315 return -ENOMEM;
1316 }
1317 if (skb_uarg(nskb) == skb_uarg(orig))
1318 return 0;
1319 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1320 return -EIO;
1321 }
1322 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1323 }
1324 return 0;
1325 }
1326
1327 /**
1328 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1329 * @skb: the skb to modify
1330 * @gfp_mask: allocation priority
1331 *
1332 * This must be called on SKBTX_DEV_ZEROCOPY skb.
1333 * It will copy all frags into kernel and drop the reference
1334 * to userspace pages.
1335 *
1336 * If this function is called from an interrupt gfp_mask() must be
1337 * %GFP_ATOMIC.
1338 *
1339 * Returns 0 on success or a negative error code on failure
1340 * to allocate kernel memory to copy to.
1341 */
1342 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1343 {
1344 int num_frags = skb_shinfo(skb)->nr_frags;
1345 struct page *page, *head = NULL;
1346 int i, new_frags;
1347 u32 d_off;
1348
1349 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1350 return -EINVAL;
1351
1352 if (!num_frags)
1353 goto release;
1354
1355 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1356 for (i = 0; i < new_frags; i++) {
1357 page = alloc_page(gfp_mask);
1358 if (!page) {
1359 while (head) {
1360 struct page *next = (struct page *)page_private(head);
1361 put_page(head);
1362 head = next;
1363 }
1364 return -ENOMEM;
1365 }
1366 set_page_private(page, (unsigned long)head);
1367 head = page;
1368 }
1369
1370 page = head;
1371 d_off = 0;
1372 for (i = 0; i < num_frags; i++) {
1373 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1374 u32 p_off, p_len, copied;
1375 struct page *p;
1376 u8 *vaddr;
1377
1378 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1379 p, p_off, p_len, copied) {
1380 u32 copy, done = 0;
1381 vaddr = kmap_atomic(p);
1382
1383 while (done < p_len) {
1384 if (d_off == PAGE_SIZE) {
1385 d_off = 0;
1386 page = (struct page *)page_private(page);
1387 }
1388 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1389 memcpy(page_address(page) + d_off,
1390 vaddr + p_off + done, copy);
1391 done += copy;
1392 d_off += copy;
1393 }
1394 kunmap_atomic(vaddr);
1395 }
1396 }
1397
1398 /* skb frags release userspace buffers */
1399 for (i = 0; i < num_frags; i++)
1400 skb_frag_unref(skb, i);
1401
1402 /* skb frags point to kernel buffers */
1403 for (i = 0; i < new_frags - 1; i++) {
1404 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1405 head = (struct page *)page_private(head);
1406 }
1407 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1408 skb_shinfo(skb)->nr_frags = new_frags;
1409
1410 release:
1411 skb_zcopy_clear(skb, false);
1412 return 0;
1413 }
1414 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1415
1416 /**
1417 * skb_clone - duplicate an sk_buff
1418 * @skb: buffer to clone
1419 * @gfp_mask: allocation priority
1420 *
1421 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1422 * copies share the same packet data but not structure. The new
1423 * buffer has a reference count of 1. If the allocation fails the
1424 * function returns %NULL otherwise the new buffer is returned.
1425 *
1426 * If this function is called from an interrupt gfp_mask() must be
1427 * %GFP_ATOMIC.
1428 */
1429
1430 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1431 {
1432 struct sk_buff_fclones *fclones = container_of(skb,
1433 struct sk_buff_fclones,
1434 skb1);
1435 struct sk_buff *n;
1436
1437 if (skb_orphan_frags(skb, gfp_mask))
1438 return NULL;
1439
1440 if (skb->fclone == SKB_FCLONE_ORIG &&
1441 refcount_read(&fclones->fclone_ref) == 1) {
1442 n = &fclones->skb2;
1443 refcount_set(&fclones->fclone_ref, 2);
1444 } else {
1445 if (skb_pfmemalloc(skb))
1446 gfp_mask |= __GFP_MEMALLOC;
1447
1448 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1449 if (!n)
1450 return NULL;
1451
1452 n->fclone = SKB_FCLONE_UNAVAILABLE;
1453 }
1454
1455 return __skb_clone(n, skb);
1456 }
1457 EXPORT_SYMBOL(skb_clone);
1458
1459 void skb_headers_offset_update(struct sk_buff *skb, int off)
1460 {
1461 /* Only adjust this if it actually is csum_start rather than csum */
1462 if (skb->ip_summed == CHECKSUM_PARTIAL)
1463 skb->csum_start += off;
1464 /* {transport,network,mac}_header and tail are relative to skb->head */
1465 skb->transport_header += off;
1466 skb->network_header += off;
1467 if (skb_mac_header_was_set(skb))
1468 skb->mac_header += off;
1469 skb->inner_transport_header += off;
1470 skb->inner_network_header += off;
1471 skb->inner_mac_header += off;
1472 }
1473 EXPORT_SYMBOL(skb_headers_offset_update);
1474
1475 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1476 {
1477 __copy_skb_header(new, old);
1478
1479 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1480 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1481 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1482 }
1483 EXPORT_SYMBOL(skb_copy_header);
1484
1485 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1486 {
1487 if (skb_pfmemalloc(skb))
1488 return SKB_ALLOC_RX;
1489 return 0;
1490 }
1491
1492 /**
1493 * skb_copy - create private copy of an sk_buff
1494 * @skb: buffer to copy
1495 * @gfp_mask: allocation priority
1496 *
1497 * Make a copy of both an &sk_buff and its data. This is used when the
1498 * caller wishes to modify the data and needs a private copy of the
1499 * data to alter. Returns %NULL on failure or the pointer to the buffer
1500 * on success. The returned buffer has a reference count of 1.
1501 *
1502 * As by-product this function converts non-linear &sk_buff to linear
1503 * one, so that &sk_buff becomes completely private and caller is allowed
1504 * to modify all the data of returned buffer. This means that this
1505 * function is not recommended for use in circumstances when only
1506 * header is going to be modified. Use pskb_copy() instead.
1507 */
1508
1509 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1510 {
1511 int headerlen = skb_headroom(skb);
1512 unsigned int size = skb_end_offset(skb) + skb->data_len;
1513 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1514 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1515
1516 if (!n)
1517 return NULL;
1518
1519 /* Set the data pointer */
1520 skb_reserve(n, headerlen);
1521 /* Set the tail pointer and length */
1522 skb_put(n, skb->len);
1523
1524 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1525
1526 skb_copy_header(n, skb);
1527 return n;
1528 }
1529 EXPORT_SYMBOL(skb_copy);
1530
1531 /**
1532 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1533 * @skb: buffer to copy
1534 * @headroom: headroom of new skb
1535 * @gfp_mask: allocation priority
1536 * @fclone: if true allocate the copy of the skb from the fclone
1537 * cache instead of the head cache; it is recommended to set this
1538 * to true for the cases where the copy will likely be cloned
1539 *
1540 * Make a copy of both an &sk_buff and part of its data, located
1541 * in header. Fragmented data remain shared. This is used when
1542 * the caller wishes to modify only header of &sk_buff and needs
1543 * private copy of the header to alter. Returns %NULL on failure
1544 * or the pointer to the buffer on success.
1545 * The returned buffer has a reference count of 1.
1546 */
1547
1548 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1549 gfp_t gfp_mask, bool fclone)
1550 {
1551 unsigned int size = skb_headlen(skb) + headroom;
1552 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1553 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1554
1555 if (!n)
1556 goto out;
1557
1558 /* Set the data pointer */
1559 skb_reserve(n, headroom);
1560 /* Set the tail pointer and length */
1561 skb_put(n, skb_headlen(skb));
1562 /* Copy the bytes */
1563 skb_copy_from_linear_data(skb, n->data, n->len);
1564
1565 n->truesize += skb->data_len;
1566 n->data_len = skb->data_len;
1567 n->len = skb->len;
1568
1569 if (skb_shinfo(skb)->nr_frags) {
1570 int i;
1571
1572 if (skb_orphan_frags(skb, gfp_mask) ||
1573 skb_zerocopy_clone(n, skb, gfp_mask)) {
1574 kfree_skb(n);
1575 n = NULL;
1576 goto out;
1577 }
1578 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1579 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1580 skb_frag_ref(skb, i);
1581 }
1582 skb_shinfo(n)->nr_frags = i;
1583 }
1584
1585 if (skb_has_frag_list(skb)) {
1586 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1587 skb_clone_fraglist(n);
1588 }
1589
1590 skb_copy_header(n, skb);
1591 out:
1592 return n;
1593 }
1594 EXPORT_SYMBOL(__pskb_copy_fclone);
1595
1596 /**
1597 * pskb_expand_head - reallocate header of &sk_buff
1598 * @skb: buffer to reallocate
1599 * @nhead: room to add at head
1600 * @ntail: room to add at tail
1601 * @gfp_mask: allocation priority
1602 *
1603 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1604 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1605 * reference count of 1. Returns zero in the case of success or error,
1606 * if expansion failed. In the last case, &sk_buff is not changed.
1607 *
1608 * All the pointers pointing into skb header may change and must be
1609 * reloaded after call to this function.
1610 */
1611
1612 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1613 gfp_t gfp_mask)
1614 {
1615 int i, osize = skb_end_offset(skb);
1616 int size = osize + nhead + ntail;
1617 long off;
1618 u8 *data;
1619
1620 BUG_ON(nhead < 0);
1621
1622 BUG_ON(skb_shared(skb));
1623
1624 size = SKB_DATA_ALIGN(size);
1625
1626 if (skb_pfmemalloc(skb))
1627 gfp_mask |= __GFP_MEMALLOC;
1628 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1629 gfp_mask, NUMA_NO_NODE, NULL);
1630 if (!data)
1631 goto nodata;
1632 size = SKB_WITH_OVERHEAD(ksize(data));
1633
1634 /* Copy only real data... and, alas, header. This should be
1635 * optimized for the cases when header is void.
1636 */
1637 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1638
1639 memcpy((struct skb_shared_info *)(data + size),
1640 skb_shinfo(skb),
1641 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1642
1643 /*
1644 * if shinfo is shared we must drop the old head gracefully, but if it
1645 * is not we can just drop the old head and let the existing refcount
1646 * be since all we did is relocate the values
1647 */
1648 if (skb_cloned(skb)) {
1649 if (skb_orphan_frags(skb, gfp_mask))
1650 goto nofrags;
1651 if (skb_zcopy(skb))
1652 refcount_inc(&skb_uarg(skb)->refcnt);
1653 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1654 skb_frag_ref(skb, i);
1655
1656 if (skb_has_frag_list(skb))
1657 skb_clone_fraglist(skb);
1658
1659 skb_release_data(skb);
1660 } else {
1661 skb_free_head(skb);
1662 }
1663 off = (data + nhead) - skb->head;
1664
1665 skb->head = data;
1666 skb->head_frag = 0;
1667 skb->data += off;
1668 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1669 skb->end = size;
1670 off = nhead;
1671 #else
1672 skb->end = skb->head + size;
1673 #endif
1674 skb->tail += off;
1675 skb_headers_offset_update(skb, nhead);
1676 skb->cloned = 0;
1677 skb->hdr_len = 0;
1678 skb->nohdr = 0;
1679 atomic_set(&skb_shinfo(skb)->dataref, 1);
1680
1681 skb_metadata_clear(skb);
1682
1683 /* It is not generally safe to change skb->truesize.
1684 * For the moment, we really care of rx path, or
1685 * when skb is orphaned (not attached to a socket).
1686 */
1687 if (!skb->sk || skb->destructor == sock_edemux)
1688 skb->truesize += size - osize;
1689
1690 return 0;
1691
1692 nofrags:
1693 kfree(data);
1694 nodata:
1695 return -ENOMEM;
1696 }
1697 EXPORT_SYMBOL(pskb_expand_head);
1698
1699 /* Make private copy of skb with writable head and some headroom */
1700
1701 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1702 {
1703 struct sk_buff *skb2;
1704 int delta = headroom - skb_headroom(skb);
1705
1706 if (delta <= 0)
1707 skb2 = pskb_copy(skb, GFP_ATOMIC);
1708 else {
1709 skb2 = skb_clone(skb, GFP_ATOMIC);
1710 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1711 GFP_ATOMIC)) {
1712 kfree_skb(skb2);
1713 skb2 = NULL;
1714 }
1715 }
1716 return skb2;
1717 }
1718 EXPORT_SYMBOL(skb_realloc_headroom);
1719
1720 /**
1721 * skb_copy_expand - copy and expand sk_buff
1722 * @skb: buffer to copy
1723 * @newheadroom: new free bytes at head
1724 * @newtailroom: new free bytes at tail
1725 * @gfp_mask: allocation priority
1726 *
1727 * Make a copy of both an &sk_buff and its data and while doing so
1728 * allocate additional space.
1729 *
1730 * This is used when the caller wishes to modify the data and needs a
1731 * private copy of the data to alter as well as more space for new fields.
1732 * Returns %NULL on failure or the pointer to the buffer
1733 * on success. The returned buffer has a reference count of 1.
1734 *
1735 * You must pass %GFP_ATOMIC as the allocation priority if this function
1736 * is called from an interrupt.
1737 */
1738 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1739 int newheadroom, int newtailroom,
1740 gfp_t gfp_mask)
1741 {
1742 /*
1743 * Allocate the copy buffer
1744 */
1745 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1746 gfp_mask, skb_alloc_rx_flag(skb),
1747 NUMA_NO_NODE);
1748 int oldheadroom = skb_headroom(skb);
1749 int head_copy_len, head_copy_off;
1750
1751 if (!n)
1752 return NULL;
1753
1754 skb_reserve(n, newheadroom);
1755
1756 /* Set the tail pointer and length */
1757 skb_put(n, skb->len);
1758
1759 head_copy_len = oldheadroom;
1760 head_copy_off = 0;
1761 if (newheadroom <= head_copy_len)
1762 head_copy_len = newheadroom;
1763 else
1764 head_copy_off = newheadroom - head_copy_len;
1765
1766 /* Copy the linear header and data. */
1767 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1768 skb->len + head_copy_len));
1769
1770 skb_copy_header(n, skb);
1771
1772 skb_headers_offset_update(n, newheadroom - oldheadroom);
1773
1774 return n;
1775 }
1776 EXPORT_SYMBOL(skb_copy_expand);
1777
1778 /**
1779 * __skb_pad - zero pad the tail of an skb
1780 * @skb: buffer to pad
1781 * @pad: space to pad
1782 * @free_on_error: free buffer on error
1783 *
1784 * Ensure that a buffer is followed by a padding area that is zero
1785 * filled. Used by network drivers which may DMA or transfer data
1786 * beyond the buffer end onto the wire.
1787 *
1788 * May return error in out of memory cases. The skb is freed on error
1789 * if @free_on_error is true.
1790 */
1791
1792 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1793 {
1794 int err;
1795 int ntail;
1796
1797 /* If the skbuff is non linear tailroom is always zero.. */
1798 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1799 memset(skb->data+skb->len, 0, pad);
1800 return 0;
1801 }
1802
1803 ntail = skb->data_len + pad - (skb->end - skb->tail);
1804 if (likely(skb_cloned(skb) || ntail > 0)) {
1805 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1806 if (unlikely(err))
1807 goto free_skb;
1808 }
1809
1810 /* FIXME: The use of this function with non-linear skb's really needs
1811 * to be audited.
1812 */
1813 err = skb_linearize(skb);
1814 if (unlikely(err))
1815 goto free_skb;
1816
1817 memset(skb->data + skb->len, 0, pad);
1818 return 0;
1819
1820 free_skb:
1821 if (free_on_error)
1822 kfree_skb(skb);
1823 return err;
1824 }
1825 EXPORT_SYMBOL(__skb_pad);
1826
1827 /**
1828 * pskb_put - add data to the tail of a potentially fragmented buffer
1829 * @skb: start of the buffer to use
1830 * @tail: tail fragment of the buffer to use
1831 * @len: amount of data to add
1832 *
1833 * This function extends the used data area of the potentially
1834 * fragmented buffer. @tail must be the last fragment of @skb -- or
1835 * @skb itself. If this would exceed the total buffer size the kernel
1836 * will panic. A pointer to the first byte of the extra data is
1837 * returned.
1838 */
1839
1840 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1841 {
1842 if (tail != skb) {
1843 skb->data_len += len;
1844 skb->len += len;
1845 }
1846 return skb_put(tail, len);
1847 }
1848 EXPORT_SYMBOL_GPL(pskb_put);
1849
1850 /**
1851 * skb_put - add data to a buffer
1852 * @skb: buffer to use
1853 * @len: amount of data to add
1854 *
1855 * This function extends the used data area of the buffer. If this would
1856 * exceed the total buffer size the kernel will panic. A pointer to the
1857 * first byte of the extra data is returned.
1858 */
1859 void *skb_put(struct sk_buff *skb, unsigned int len)
1860 {
1861 void *tmp = skb_tail_pointer(skb);
1862 SKB_LINEAR_ASSERT(skb);
1863 skb->tail += len;
1864 skb->len += len;
1865 if (unlikely(skb->tail > skb->end))
1866 skb_over_panic(skb, len, __builtin_return_address(0));
1867 return tmp;
1868 }
1869 EXPORT_SYMBOL(skb_put);
1870
1871 /**
1872 * skb_push - add data to the start of a buffer
1873 * @skb: buffer to use
1874 * @len: amount of data to add
1875 *
1876 * This function extends the used data area of the buffer at the buffer
1877 * start. If this would exceed the total buffer headroom the kernel will
1878 * panic. A pointer to the first byte of the extra data is returned.
1879 */
1880 void *skb_push(struct sk_buff *skb, unsigned int len)
1881 {
1882 skb->data -= len;
1883 skb->len += len;
1884 if (unlikely(skb->data < skb->head))
1885 skb_under_panic(skb, len, __builtin_return_address(0));
1886 return skb->data;
1887 }
1888 EXPORT_SYMBOL(skb_push);
1889
1890 /**
1891 * skb_pull - remove data from the start of a buffer
1892 * @skb: buffer to use
1893 * @len: amount of data to remove
1894 *
1895 * This function removes data from the start of a buffer, returning
1896 * the memory to the headroom. A pointer to the next data in the buffer
1897 * is returned. Once the data has been pulled future pushes will overwrite
1898 * the old data.
1899 */
1900 void *skb_pull(struct sk_buff *skb, unsigned int len)
1901 {
1902 return skb_pull_inline(skb, len);
1903 }
1904 EXPORT_SYMBOL(skb_pull);
1905
1906 /**
1907 * skb_trim - remove end from a buffer
1908 * @skb: buffer to alter
1909 * @len: new length
1910 *
1911 * Cut the length of a buffer down by removing data from the tail. If
1912 * the buffer is already under the length specified it is not modified.
1913 * The skb must be linear.
1914 */
1915 void skb_trim(struct sk_buff *skb, unsigned int len)
1916 {
1917 if (skb->len > len)
1918 __skb_trim(skb, len);
1919 }
1920 EXPORT_SYMBOL(skb_trim);
1921
1922 /* Trims skb to length len. It can change skb pointers.
1923 */
1924
1925 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1926 {
1927 struct sk_buff **fragp;
1928 struct sk_buff *frag;
1929 int offset = skb_headlen(skb);
1930 int nfrags = skb_shinfo(skb)->nr_frags;
1931 int i;
1932 int err;
1933
1934 if (skb_cloned(skb) &&
1935 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1936 return err;
1937
1938 i = 0;
1939 if (offset >= len)
1940 goto drop_pages;
1941
1942 for (; i < nfrags; i++) {
1943 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1944
1945 if (end < len) {
1946 offset = end;
1947 continue;
1948 }
1949
1950 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1951
1952 drop_pages:
1953 skb_shinfo(skb)->nr_frags = i;
1954
1955 for (; i < nfrags; i++)
1956 skb_frag_unref(skb, i);
1957
1958 if (skb_has_frag_list(skb))
1959 skb_drop_fraglist(skb);
1960 goto done;
1961 }
1962
1963 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1964 fragp = &frag->next) {
1965 int end = offset + frag->len;
1966
1967 if (skb_shared(frag)) {
1968 struct sk_buff *nfrag;
1969
1970 nfrag = skb_clone(frag, GFP_ATOMIC);
1971 if (unlikely(!nfrag))
1972 return -ENOMEM;
1973
1974 nfrag->next = frag->next;
1975 consume_skb(frag);
1976 frag = nfrag;
1977 *fragp = frag;
1978 }
1979
1980 if (end < len) {
1981 offset = end;
1982 continue;
1983 }
1984
1985 if (end > len &&
1986 unlikely((err = pskb_trim(frag, len - offset))))
1987 return err;
1988
1989 if (frag->next)
1990 skb_drop_list(&frag->next);
1991 break;
1992 }
1993
1994 done:
1995 if (len > skb_headlen(skb)) {
1996 skb->data_len -= skb->len - len;
1997 skb->len = len;
1998 } else {
1999 skb->len = len;
2000 skb->data_len = 0;
2001 skb_set_tail_pointer(skb, len);
2002 }
2003
2004 if (!skb->sk || skb->destructor == sock_edemux)
2005 skb_condense(skb);
2006 return 0;
2007 }
2008 EXPORT_SYMBOL(___pskb_trim);
2009
2010 /* Note : use pskb_trim_rcsum() instead of calling this directly
2011 */
2012 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2013 {
2014 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2015 int delta = skb->len - len;
2016
2017 skb->csum = csum_block_sub(skb->csum,
2018 skb_checksum(skb, len, delta, 0),
2019 len);
2020 }
2021 return __pskb_trim(skb, len);
2022 }
2023 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2024
2025 /**
2026 * __pskb_pull_tail - advance tail of skb header
2027 * @skb: buffer to reallocate
2028 * @delta: number of bytes to advance tail
2029 *
2030 * The function makes a sense only on a fragmented &sk_buff,
2031 * it expands header moving its tail forward and copying necessary
2032 * data from fragmented part.
2033 *
2034 * &sk_buff MUST have reference count of 1.
2035 *
2036 * Returns %NULL (and &sk_buff does not change) if pull failed
2037 * or value of new tail of skb in the case of success.
2038 *
2039 * All the pointers pointing into skb header may change and must be
2040 * reloaded after call to this function.
2041 */
2042
2043 /* Moves tail of skb head forward, copying data from fragmented part,
2044 * when it is necessary.
2045 * 1. It may fail due to malloc failure.
2046 * 2. It may change skb pointers.
2047 *
2048 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2049 */
2050 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2051 {
2052 /* If skb has not enough free space at tail, get new one
2053 * plus 128 bytes for future expansions. If we have enough
2054 * room at tail, reallocate without expansion only if skb is cloned.
2055 */
2056 int i, k, eat = (skb->tail + delta) - skb->end;
2057
2058 if (eat > 0 || skb_cloned(skb)) {
2059 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2060 GFP_ATOMIC))
2061 return NULL;
2062 }
2063
2064 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2065 skb_tail_pointer(skb), delta));
2066
2067 /* Optimization: no fragments, no reasons to preestimate
2068 * size of pulled pages. Superb.
2069 */
2070 if (!skb_has_frag_list(skb))
2071 goto pull_pages;
2072
2073 /* Estimate size of pulled pages. */
2074 eat = delta;
2075 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2076 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2077
2078 if (size >= eat)
2079 goto pull_pages;
2080 eat -= size;
2081 }
2082
2083 /* If we need update frag list, we are in troubles.
2084 * Certainly, it is possible to add an offset to skb data,
2085 * but taking into account that pulling is expected to
2086 * be very rare operation, it is worth to fight against
2087 * further bloating skb head and crucify ourselves here instead.
2088 * Pure masohism, indeed. 8)8)
2089 */
2090 if (eat) {
2091 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2092 struct sk_buff *clone = NULL;
2093 struct sk_buff *insp = NULL;
2094
2095 do {
2096 if (list->len <= eat) {
2097 /* Eaten as whole. */
2098 eat -= list->len;
2099 list = list->next;
2100 insp = list;
2101 } else {
2102 /* Eaten partially. */
2103
2104 if (skb_shared(list)) {
2105 /* Sucks! We need to fork list. :-( */
2106 clone = skb_clone(list, GFP_ATOMIC);
2107 if (!clone)
2108 return NULL;
2109 insp = list->next;
2110 list = clone;
2111 } else {
2112 /* This may be pulled without
2113 * problems. */
2114 insp = list;
2115 }
2116 if (!pskb_pull(list, eat)) {
2117 kfree_skb(clone);
2118 return NULL;
2119 }
2120 break;
2121 }
2122 } while (eat);
2123
2124 /* Free pulled out fragments. */
2125 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2126 skb_shinfo(skb)->frag_list = list->next;
2127 kfree_skb(list);
2128 }
2129 /* And insert new clone at head. */
2130 if (clone) {
2131 clone->next = list;
2132 skb_shinfo(skb)->frag_list = clone;
2133 }
2134 }
2135 /* Success! Now we may commit changes to skb data. */
2136
2137 pull_pages:
2138 eat = delta;
2139 k = 0;
2140 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2141 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2142
2143 if (size <= eat) {
2144 skb_frag_unref(skb, i);
2145 eat -= size;
2146 } else {
2147 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
2148 if (eat) {
2149 skb_shinfo(skb)->frags[k].page_offset += eat;
2150 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
2151 if (!i)
2152 goto end;
2153 eat = 0;
2154 }
2155 k++;
2156 }
2157 }
2158 skb_shinfo(skb)->nr_frags = k;
2159
2160 end:
2161 skb->tail += delta;
2162 skb->data_len -= delta;
2163
2164 if (!skb->data_len)
2165 skb_zcopy_clear(skb, false);
2166
2167 return skb_tail_pointer(skb);
2168 }
2169 EXPORT_SYMBOL(__pskb_pull_tail);
2170
2171 /**
2172 * skb_copy_bits - copy bits from skb to kernel buffer
2173 * @skb: source skb
2174 * @offset: offset in source
2175 * @to: destination buffer
2176 * @len: number of bytes to copy
2177 *
2178 * Copy the specified number of bytes from the source skb to the
2179 * destination buffer.
2180 *
2181 * CAUTION ! :
2182 * If its prototype is ever changed,
2183 * check arch/{*}/net/{*}.S files,
2184 * since it is called from BPF assembly code.
2185 */
2186 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2187 {
2188 int start = skb_headlen(skb);
2189 struct sk_buff *frag_iter;
2190 int i, copy;
2191
2192 if (offset > (int)skb->len - len)
2193 goto fault;
2194
2195 /* Copy header. */
2196 if ((copy = start - offset) > 0) {
2197 if (copy > len)
2198 copy = len;
2199 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2200 if ((len -= copy) == 0)
2201 return 0;
2202 offset += copy;
2203 to += copy;
2204 }
2205
2206 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2207 int end;
2208 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2209
2210 WARN_ON(start > offset + len);
2211
2212 end = start + skb_frag_size(f);
2213 if ((copy = end - offset) > 0) {
2214 u32 p_off, p_len, copied;
2215 struct page *p;
2216 u8 *vaddr;
2217
2218 if (copy > len)
2219 copy = len;
2220
2221 skb_frag_foreach_page(f,
2222 f->page_offset + offset - start,
2223 copy, p, p_off, p_len, copied) {
2224 vaddr = kmap_atomic(p);
2225 memcpy(to + copied, vaddr + p_off, p_len);
2226 kunmap_atomic(vaddr);
2227 }
2228
2229 if ((len -= copy) == 0)
2230 return 0;
2231 offset += copy;
2232 to += copy;
2233 }
2234 start = end;
2235 }
2236
2237 skb_walk_frags(skb, frag_iter) {
2238 int end;
2239
2240 WARN_ON(start > offset + len);
2241
2242 end = start + frag_iter->len;
2243 if ((copy = end - offset) > 0) {
2244 if (copy > len)
2245 copy = len;
2246 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2247 goto fault;
2248 if ((len -= copy) == 0)
2249 return 0;
2250 offset += copy;
2251 to += copy;
2252 }
2253 start = end;
2254 }
2255
2256 if (!len)
2257 return 0;
2258
2259 fault:
2260 return -EFAULT;
2261 }
2262 EXPORT_SYMBOL(skb_copy_bits);
2263
2264 /*
2265 * Callback from splice_to_pipe(), if we need to release some pages
2266 * at the end of the spd in case we error'ed out in filling the pipe.
2267 */
2268 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2269 {
2270 put_page(spd->pages[i]);
2271 }
2272
2273 static struct page *linear_to_page(struct page *page, unsigned int *len,
2274 unsigned int *offset,
2275 struct sock *sk)
2276 {
2277 struct page_frag *pfrag = sk_page_frag(sk);
2278
2279 if (!sk_page_frag_refill(sk, pfrag))
2280 return NULL;
2281
2282 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2283
2284 memcpy(page_address(pfrag->page) + pfrag->offset,
2285 page_address(page) + *offset, *len);
2286 *offset = pfrag->offset;
2287 pfrag->offset += *len;
2288
2289 return pfrag->page;
2290 }
2291
2292 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2293 struct page *page,
2294 unsigned int offset)
2295 {
2296 return spd->nr_pages &&
2297 spd->pages[spd->nr_pages - 1] == page &&
2298 (spd->partial[spd->nr_pages - 1].offset +
2299 spd->partial[spd->nr_pages - 1].len == offset);
2300 }
2301
2302 /*
2303 * Fill page/offset/length into spd, if it can hold more pages.
2304 */
2305 static bool spd_fill_page(struct splice_pipe_desc *spd,
2306 struct pipe_inode_info *pipe, struct page *page,
2307 unsigned int *len, unsigned int offset,
2308 bool linear,
2309 struct sock *sk)
2310 {
2311 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2312 return true;
2313
2314 if (linear) {
2315 page = linear_to_page(page, len, &offset, sk);
2316 if (!page)
2317 return true;
2318 }
2319 if (spd_can_coalesce(spd, page, offset)) {
2320 spd->partial[spd->nr_pages - 1].len += *len;
2321 return false;
2322 }
2323 get_page(page);
2324 spd->pages[spd->nr_pages] = page;
2325 spd->partial[spd->nr_pages].len = *len;
2326 spd->partial[spd->nr_pages].offset = offset;
2327 spd->nr_pages++;
2328
2329 return false;
2330 }
2331
2332 static bool __splice_segment(struct page *page, unsigned int poff,
2333 unsigned int plen, unsigned int *off,
2334 unsigned int *len,
2335 struct splice_pipe_desc *spd, bool linear,
2336 struct sock *sk,
2337 struct pipe_inode_info *pipe)
2338 {
2339 if (!*len)
2340 return true;
2341
2342 /* skip this segment if already processed */
2343 if (*off >= plen) {
2344 *off -= plen;
2345 return false;
2346 }
2347
2348 /* ignore any bits we already processed */
2349 poff += *off;
2350 plen -= *off;
2351 *off = 0;
2352
2353 do {
2354 unsigned int flen = min(*len, plen);
2355
2356 if (spd_fill_page(spd, pipe, page, &flen, poff,
2357 linear, sk))
2358 return true;
2359 poff += flen;
2360 plen -= flen;
2361 *len -= flen;
2362 } while (*len && plen);
2363
2364 return false;
2365 }
2366
2367 /*
2368 * Map linear and fragment data from the skb to spd. It reports true if the
2369 * pipe is full or if we already spliced the requested length.
2370 */
2371 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2372 unsigned int *offset, unsigned int *len,
2373 struct splice_pipe_desc *spd, struct sock *sk)
2374 {
2375 int seg;
2376 struct sk_buff *iter;
2377
2378 /* map the linear part :
2379 * If skb->head_frag is set, this 'linear' part is backed by a
2380 * fragment, and if the head is not shared with any clones then
2381 * we can avoid a copy since we own the head portion of this page.
2382 */
2383 if (__splice_segment(virt_to_page(skb->data),
2384 (unsigned long) skb->data & (PAGE_SIZE - 1),
2385 skb_headlen(skb),
2386 offset, len, spd,
2387 skb_head_is_locked(skb),
2388 sk, pipe))
2389 return true;
2390
2391 /*
2392 * then map the fragments
2393 */
2394 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2395 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2396
2397 if (__splice_segment(skb_frag_page(f),
2398 f->page_offset, skb_frag_size(f),
2399 offset, len, spd, false, sk, pipe))
2400 return true;
2401 }
2402
2403 skb_walk_frags(skb, iter) {
2404 if (*offset >= iter->len) {
2405 *offset -= iter->len;
2406 continue;
2407 }
2408 /* __skb_splice_bits() only fails if the output has no room
2409 * left, so no point in going over the frag_list for the error
2410 * case.
2411 */
2412 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2413 return true;
2414 }
2415
2416 return false;
2417 }
2418
2419 /*
2420 * Map data from the skb to a pipe. Should handle both the linear part,
2421 * the fragments, and the frag list.
2422 */
2423 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2424 struct pipe_inode_info *pipe, unsigned int tlen,
2425 unsigned int flags)
2426 {
2427 struct partial_page partial[MAX_SKB_FRAGS];
2428 struct page *pages[MAX_SKB_FRAGS];
2429 struct splice_pipe_desc spd = {
2430 .pages = pages,
2431 .partial = partial,
2432 .nr_pages_max = MAX_SKB_FRAGS,
2433 .ops = &nosteal_pipe_buf_ops,
2434 .spd_release = sock_spd_release,
2435 };
2436 int ret = 0;
2437
2438 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2439
2440 if (spd.nr_pages)
2441 ret = splice_to_pipe(pipe, &spd);
2442
2443 return ret;
2444 }
2445 EXPORT_SYMBOL_GPL(skb_splice_bits);
2446
2447 /* Send skb data on a socket. Socket must be locked. */
2448 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2449 int len)
2450 {
2451 unsigned int orig_len = len;
2452 struct sk_buff *head = skb;
2453 unsigned short fragidx;
2454 int slen, ret;
2455
2456 do_frag_list:
2457
2458 /* Deal with head data */
2459 while (offset < skb_headlen(skb) && len) {
2460 struct kvec kv;
2461 struct msghdr msg;
2462
2463 slen = min_t(int, len, skb_headlen(skb) - offset);
2464 kv.iov_base = skb->data + offset;
2465 kv.iov_len = slen;
2466 memset(&msg, 0, sizeof(msg));
2467 msg.msg_flags = MSG_DONTWAIT;
2468
2469 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2470 if (ret <= 0)
2471 goto error;
2472
2473 offset += ret;
2474 len -= ret;
2475 }
2476
2477 /* All the data was skb head? */
2478 if (!len)
2479 goto out;
2480
2481 /* Make offset relative to start of frags */
2482 offset -= skb_headlen(skb);
2483
2484 /* Find where we are in frag list */
2485 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2486 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2487
2488 if (offset < frag->size)
2489 break;
2490
2491 offset -= frag->size;
2492 }
2493
2494 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2495 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2496
2497 slen = min_t(size_t, len, frag->size - offset);
2498
2499 while (slen) {
2500 ret = kernel_sendpage_locked(sk, frag->page.p,
2501 frag->page_offset + offset,
2502 slen, MSG_DONTWAIT);
2503 if (ret <= 0)
2504 goto error;
2505
2506 len -= ret;
2507 offset += ret;
2508 slen -= ret;
2509 }
2510
2511 offset = 0;
2512 }
2513
2514 if (len) {
2515 /* Process any frag lists */
2516
2517 if (skb == head) {
2518 if (skb_has_frag_list(skb)) {
2519 skb = skb_shinfo(skb)->frag_list;
2520 goto do_frag_list;
2521 }
2522 } else if (skb->next) {
2523 skb = skb->next;
2524 goto do_frag_list;
2525 }
2526 }
2527
2528 out:
2529 return orig_len - len;
2530
2531 error:
2532 return orig_len == len ? ret : orig_len - len;
2533 }
2534 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2535
2536 /**
2537 * skb_store_bits - store bits from kernel buffer to skb
2538 * @skb: destination buffer
2539 * @offset: offset in destination
2540 * @from: source buffer
2541 * @len: number of bytes to copy
2542 *
2543 * Copy the specified number of bytes from the source buffer to the
2544 * destination skb. This function handles all the messy bits of
2545 * traversing fragment lists and such.
2546 */
2547
2548 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2549 {
2550 int start = skb_headlen(skb);
2551 struct sk_buff *frag_iter;
2552 int i, copy;
2553
2554 if (offset > (int)skb->len - len)
2555 goto fault;
2556
2557 if ((copy = start - offset) > 0) {
2558 if (copy > len)
2559 copy = len;
2560 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2561 if ((len -= copy) == 0)
2562 return 0;
2563 offset += copy;
2564 from += copy;
2565 }
2566
2567 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2568 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2569 int end;
2570
2571 WARN_ON(start > offset + len);
2572
2573 end = start + skb_frag_size(frag);
2574 if ((copy = end - offset) > 0) {
2575 u32 p_off, p_len, copied;
2576 struct page *p;
2577 u8 *vaddr;
2578
2579 if (copy > len)
2580 copy = len;
2581
2582 skb_frag_foreach_page(frag,
2583 frag->page_offset + offset - start,
2584 copy, p, p_off, p_len, copied) {
2585 vaddr = kmap_atomic(p);
2586 memcpy(vaddr + p_off, from + copied, p_len);
2587 kunmap_atomic(vaddr);
2588 }
2589
2590 if ((len -= copy) == 0)
2591 return 0;
2592 offset += copy;
2593 from += copy;
2594 }
2595 start = end;
2596 }
2597
2598 skb_walk_frags(skb, frag_iter) {
2599 int end;
2600
2601 WARN_ON(start > offset + len);
2602
2603 end = start + frag_iter->len;
2604 if ((copy = end - offset) > 0) {
2605 if (copy > len)
2606 copy = len;
2607 if (skb_store_bits(frag_iter, offset - start,
2608 from, copy))
2609 goto fault;
2610 if ((len -= copy) == 0)
2611 return 0;
2612 offset += copy;
2613 from += copy;
2614 }
2615 start = end;
2616 }
2617 if (!len)
2618 return 0;
2619
2620 fault:
2621 return -EFAULT;
2622 }
2623 EXPORT_SYMBOL(skb_store_bits);
2624
2625 /* Checksum skb data. */
2626 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2627 __wsum csum, const struct skb_checksum_ops *ops)
2628 {
2629 int start = skb_headlen(skb);
2630 int i, copy = start - offset;
2631 struct sk_buff *frag_iter;
2632 int pos = 0;
2633
2634 /* Checksum header. */
2635 if (copy > 0) {
2636 if (copy > len)
2637 copy = len;
2638 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2639 skb->data + offset, copy, csum);
2640 if ((len -= copy) == 0)
2641 return csum;
2642 offset += copy;
2643 pos = copy;
2644 }
2645
2646 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2647 int end;
2648 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2649
2650 WARN_ON(start > offset + len);
2651
2652 end = start + skb_frag_size(frag);
2653 if ((copy = end - offset) > 0) {
2654 u32 p_off, p_len, copied;
2655 struct page *p;
2656 __wsum csum2;
2657 u8 *vaddr;
2658
2659 if (copy > len)
2660 copy = len;
2661
2662 skb_frag_foreach_page(frag,
2663 frag->page_offset + offset - start,
2664 copy, p, p_off, p_len, copied) {
2665 vaddr = kmap_atomic(p);
2666 csum2 = INDIRECT_CALL_1(ops->update,
2667 csum_partial_ext,
2668 vaddr + p_off, p_len, 0);
2669 kunmap_atomic(vaddr);
2670 csum = INDIRECT_CALL_1(ops->combine,
2671 csum_block_add_ext, csum,
2672 csum2, pos, p_len);
2673 pos += p_len;
2674 }
2675
2676 if (!(len -= copy))
2677 return csum;
2678 offset += copy;
2679 }
2680 start = end;
2681 }
2682
2683 skb_walk_frags(skb, frag_iter) {
2684 int end;
2685
2686 WARN_ON(start > offset + len);
2687
2688 end = start + frag_iter->len;
2689 if ((copy = end - offset) > 0) {
2690 __wsum csum2;
2691 if (copy > len)
2692 copy = len;
2693 csum2 = __skb_checksum(frag_iter, offset - start,
2694 copy, 0, ops);
2695 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2696 csum, csum2, pos, copy);
2697 if ((len -= copy) == 0)
2698 return csum;
2699 offset += copy;
2700 pos += copy;
2701 }
2702 start = end;
2703 }
2704 BUG_ON(len);
2705
2706 return csum;
2707 }
2708 EXPORT_SYMBOL(__skb_checksum);
2709
2710 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2711 int len, __wsum csum)
2712 {
2713 const struct skb_checksum_ops ops = {
2714 .update = csum_partial_ext,
2715 .combine = csum_block_add_ext,
2716 };
2717
2718 return __skb_checksum(skb, offset, len, csum, &ops);
2719 }
2720 EXPORT_SYMBOL(skb_checksum);
2721
2722 /* Both of above in one bottle. */
2723
2724 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2725 u8 *to, int len, __wsum csum)
2726 {
2727 int start = skb_headlen(skb);
2728 int i, copy = start - offset;
2729 struct sk_buff *frag_iter;
2730 int pos = 0;
2731
2732 /* Copy header. */
2733 if (copy > 0) {
2734 if (copy > len)
2735 copy = len;
2736 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2737 copy, csum);
2738 if ((len -= copy) == 0)
2739 return csum;
2740 offset += copy;
2741 to += copy;
2742 pos = copy;
2743 }
2744
2745 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2746 int end;
2747
2748 WARN_ON(start > offset + len);
2749
2750 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2751 if ((copy = end - offset) > 0) {
2752 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2753 u32 p_off, p_len, copied;
2754 struct page *p;
2755 __wsum csum2;
2756 u8 *vaddr;
2757
2758 if (copy > len)
2759 copy = len;
2760
2761 skb_frag_foreach_page(frag,
2762 frag->page_offset + offset - start,
2763 copy, p, p_off, p_len, copied) {
2764 vaddr = kmap_atomic(p);
2765 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2766 to + copied,
2767 p_len, 0);
2768 kunmap_atomic(vaddr);
2769 csum = csum_block_add(csum, csum2, pos);
2770 pos += p_len;
2771 }
2772
2773 if (!(len -= copy))
2774 return csum;
2775 offset += copy;
2776 to += copy;
2777 }
2778 start = end;
2779 }
2780
2781 skb_walk_frags(skb, frag_iter) {
2782 __wsum csum2;
2783 int end;
2784
2785 WARN_ON(start > offset + len);
2786
2787 end = start + frag_iter->len;
2788 if ((copy = end - offset) > 0) {
2789 if (copy > len)
2790 copy = len;
2791 csum2 = skb_copy_and_csum_bits(frag_iter,
2792 offset - start,
2793 to, copy, 0);
2794 csum = csum_block_add(csum, csum2, pos);
2795 if ((len -= copy) == 0)
2796 return csum;
2797 offset += copy;
2798 to += copy;
2799 pos += copy;
2800 }
2801 start = end;
2802 }
2803 BUG_ON(len);
2804 return csum;
2805 }
2806 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2807
2808 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2809 {
2810 __sum16 sum;
2811
2812 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2813 /* See comments in __skb_checksum_complete(). */
2814 if (likely(!sum)) {
2815 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2816 !skb->csum_complete_sw)
2817 netdev_rx_csum_fault(skb->dev, skb);
2818 }
2819 if (!skb_shared(skb))
2820 skb->csum_valid = !sum;
2821 return sum;
2822 }
2823 EXPORT_SYMBOL(__skb_checksum_complete_head);
2824
2825 /* This function assumes skb->csum already holds pseudo header's checksum,
2826 * which has been changed from the hardware checksum, for example, by
2827 * __skb_checksum_validate_complete(). And, the original skb->csum must
2828 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2829 *
2830 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2831 * zero. The new checksum is stored back into skb->csum unless the skb is
2832 * shared.
2833 */
2834 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2835 {
2836 __wsum csum;
2837 __sum16 sum;
2838
2839 csum = skb_checksum(skb, 0, skb->len, 0);
2840
2841 sum = csum_fold(csum_add(skb->csum, csum));
2842 /* This check is inverted, because we already knew the hardware
2843 * checksum is invalid before calling this function. So, if the
2844 * re-computed checksum is valid instead, then we have a mismatch
2845 * between the original skb->csum and skb_checksum(). This means either
2846 * the original hardware checksum is incorrect or we screw up skb->csum
2847 * when moving skb->data around.
2848 */
2849 if (likely(!sum)) {
2850 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2851 !skb->csum_complete_sw)
2852 netdev_rx_csum_fault(skb->dev, skb);
2853 }
2854
2855 if (!skb_shared(skb)) {
2856 /* Save full packet checksum */
2857 skb->csum = csum;
2858 skb->ip_summed = CHECKSUM_COMPLETE;
2859 skb->csum_complete_sw = 1;
2860 skb->csum_valid = !sum;
2861 }
2862
2863 return sum;
2864 }
2865 EXPORT_SYMBOL(__skb_checksum_complete);
2866
2867 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2868 {
2869 net_warn_ratelimited(
2870 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2871 __func__);
2872 return 0;
2873 }
2874
2875 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2876 int offset, int len)
2877 {
2878 net_warn_ratelimited(
2879 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2880 __func__);
2881 return 0;
2882 }
2883
2884 static const struct skb_checksum_ops default_crc32c_ops = {
2885 .update = warn_crc32c_csum_update,
2886 .combine = warn_crc32c_csum_combine,
2887 };
2888
2889 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2890 &default_crc32c_ops;
2891 EXPORT_SYMBOL(crc32c_csum_stub);
2892
2893 /**
2894 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2895 * @from: source buffer
2896 *
2897 * Calculates the amount of linear headroom needed in the 'to' skb passed
2898 * into skb_zerocopy().
2899 */
2900 unsigned int
2901 skb_zerocopy_headlen(const struct sk_buff *from)
2902 {
2903 unsigned int hlen = 0;
2904
2905 if (!from->head_frag ||
2906 skb_headlen(from) < L1_CACHE_BYTES ||
2907 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2908 hlen = skb_headlen(from);
2909
2910 if (skb_has_frag_list(from))
2911 hlen = from->len;
2912
2913 return hlen;
2914 }
2915 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2916
2917 /**
2918 * skb_zerocopy - Zero copy skb to skb
2919 * @to: destination buffer
2920 * @from: source buffer
2921 * @len: number of bytes to copy from source buffer
2922 * @hlen: size of linear headroom in destination buffer
2923 *
2924 * Copies up to `len` bytes from `from` to `to` by creating references
2925 * to the frags in the source buffer.
2926 *
2927 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2928 * headroom in the `to` buffer.
2929 *
2930 * Return value:
2931 * 0: everything is OK
2932 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2933 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2934 */
2935 int
2936 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2937 {
2938 int i, j = 0;
2939 int plen = 0; /* length of skb->head fragment */
2940 int ret;
2941 struct page *page;
2942 unsigned int offset;
2943
2944 BUG_ON(!from->head_frag && !hlen);
2945
2946 /* dont bother with small payloads */
2947 if (len <= skb_tailroom(to))
2948 return skb_copy_bits(from, 0, skb_put(to, len), len);
2949
2950 if (hlen) {
2951 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2952 if (unlikely(ret))
2953 return ret;
2954 len -= hlen;
2955 } else {
2956 plen = min_t(int, skb_headlen(from), len);
2957 if (plen) {
2958 page = virt_to_head_page(from->head);
2959 offset = from->data - (unsigned char *)page_address(page);
2960 __skb_fill_page_desc(to, 0, page, offset, plen);
2961 get_page(page);
2962 j = 1;
2963 len -= plen;
2964 }
2965 }
2966
2967 to->truesize += len + plen;
2968 to->len += len + plen;
2969 to->data_len += len + plen;
2970
2971 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2972 skb_tx_error(from);
2973 return -ENOMEM;
2974 }
2975 skb_zerocopy_clone(to, from, GFP_ATOMIC);
2976
2977 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2978 if (!len)
2979 break;
2980 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2981 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2982 len -= skb_shinfo(to)->frags[j].size;
2983 skb_frag_ref(to, j);
2984 j++;
2985 }
2986 skb_shinfo(to)->nr_frags = j;
2987
2988 return 0;
2989 }
2990 EXPORT_SYMBOL_GPL(skb_zerocopy);
2991
2992 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2993 {
2994 __wsum csum;
2995 long csstart;
2996
2997 if (skb->ip_summed == CHECKSUM_PARTIAL)
2998 csstart = skb_checksum_start_offset(skb);
2999 else
3000 csstart = skb_headlen(skb);
3001
3002 BUG_ON(csstart > skb_headlen(skb));
3003
3004 skb_copy_from_linear_data(skb, to, csstart);
3005
3006 csum = 0;
3007 if (csstart != skb->len)
3008 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3009 skb->len - csstart, 0);
3010
3011 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3012 long csstuff = csstart + skb->csum_offset;
3013
3014 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3015 }
3016 }
3017 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3018
3019 /**
3020 * skb_dequeue - remove from the head of the queue
3021 * @list: list to dequeue from
3022 *
3023 * Remove the head of the list. The list lock is taken so the function
3024 * may be used safely with other locking list functions. The head item is
3025 * returned or %NULL if the list is empty.
3026 */
3027
3028 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3029 {
3030 unsigned long flags;
3031 struct sk_buff *result;
3032
3033 spin_lock_irqsave(&list->lock, flags);
3034 result = __skb_dequeue(list);
3035 spin_unlock_irqrestore(&list->lock, flags);
3036 return result;
3037 }
3038 EXPORT_SYMBOL(skb_dequeue);
3039
3040 /**
3041 * skb_dequeue_tail - remove from the tail of the queue
3042 * @list: list to dequeue from
3043 *
3044 * Remove the tail of the list. The list lock is taken so the function
3045 * may be used safely with other locking list functions. The tail item is
3046 * returned or %NULL if the list is empty.
3047 */
3048 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3049 {
3050 unsigned long flags;
3051 struct sk_buff *result;
3052
3053 spin_lock_irqsave(&list->lock, flags);
3054 result = __skb_dequeue_tail(list);
3055 spin_unlock_irqrestore(&list->lock, flags);
3056 return result;
3057 }
3058 EXPORT_SYMBOL(skb_dequeue_tail);
3059
3060 /**
3061 * skb_queue_purge - empty a list
3062 * @list: list to empty
3063 *
3064 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3065 * the list and one reference dropped. This function takes the list
3066 * lock and is atomic with respect to other list locking functions.
3067 */
3068 void skb_queue_purge(struct sk_buff_head *list)
3069 {
3070 struct sk_buff *skb;
3071 while ((skb = skb_dequeue(list)) != NULL)
3072 kfree_skb(skb);
3073 }
3074 EXPORT_SYMBOL(skb_queue_purge);
3075
3076 /**
3077 * skb_rbtree_purge - empty a skb rbtree
3078 * @root: root of the rbtree to empty
3079 * Return value: the sum of truesizes of all purged skbs.
3080 *
3081 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3082 * the list and one reference dropped. This function does not take
3083 * any lock. Synchronization should be handled by the caller (e.g., TCP
3084 * out-of-order queue is protected by the socket lock).
3085 */
3086 unsigned int skb_rbtree_purge(struct rb_root *root)
3087 {
3088 struct rb_node *p = rb_first(root);
3089 unsigned int sum = 0;
3090
3091 while (p) {
3092 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3093
3094 p = rb_next(p);
3095 rb_erase(&skb->rbnode, root);
3096 sum += skb->truesize;
3097 kfree_skb(skb);
3098 }
3099 return sum;
3100 }
3101
3102 /**
3103 * skb_queue_head - queue a buffer at the list head
3104 * @list: list to use
3105 * @newsk: buffer to queue
3106 *
3107 * Queue a buffer at the start of the list. This function takes the
3108 * list lock and can be used safely with other locking &sk_buff functions
3109 * safely.
3110 *
3111 * A buffer cannot be placed on two lists at the same time.
3112 */
3113 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3114 {
3115 unsigned long flags;
3116
3117 spin_lock_irqsave(&list->lock, flags);
3118 __skb_queue_head(list, newsk);
3119 spin_unlock_irqrestore(&list->lock, flags);
3120 }
3121 EXPORT_SYMBOL(skb_queue_head);
3122
3123 /**
3124 * skb_queue_tail - queue a buffer at the list tail
3125 * @list: list to use
3126 * @newsk: buffer to queue
3127 *
3128 * Queue a buffer at the tail of the list. This function takes the
3129 * list lock and can be used safely with other locking &sk_buff functions
3130 * safely.
3131 *
3132 * A buffer cannot be placed on two lists at the same time.
3133 */
3134 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3135 {
3136 unsigned long flags;
3137
3138 spin_lock_irqsave(&list->lock, flags);
3139 __skb_queue_tail(list, newsk);
3140 spin_unlock_irqrestore(&list->lock, flags);
3141 }
3142 EXPORT_SYMBOL(skb_queue_tail);
3143
3144 /**
3145 * skb_unlink - remove a buffer from a list
3146 * @skb: buffer to remove
3147 * @list: list to use
3148 *
3149 * Remove a packet from a list. The list locks are taken and this
3150 * function is atomic with respect to other list locked calls
3151 *
3152 * You must know what list the SKB is on.
3153 */
3154 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3155 {
3156 unsigned long flags;
3157
3158 spin_lock_irqsave(&list->lock, flags);
3159 __skb_unlink(skb, list);
3160 spin_unlock_irqrestore(&list->lock, flags);
3161 }
3162 EXPORT_SYMBOL(skb_unlink);
3163
3164 /**
3165 * skb_append - append a buffer
3166 * @old: buffer to insert after
3167 * @newsk: buffer to insert
3168 * @list: list to use
3169 *
3170 * Place a packet after a given packet in a list. The list locks are taken
3171 * and this function is atomic with respect to other list locked calls.
3172 * A buffer cannot be placed on two lists at the same time.
3173 */
3174 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3175 {
3176 unsigned long flags;
3177
3178 spin_lock_irqsave(&list->lock, flags);
3179 __skb_queue_after(list, old, newsk);
3180 spin_unlock_irqrestore(&list->lock, flags);
3181 }
3182 EXPORT_SYMBOL(skb_append);
3183
3184 static inline void skb_split_inside_header(struct sk_buff *skb,
3185 struct sk_buff* skb1,
3186 const u32 len, const int pos)
3187 {
3188 int i;
3189
3190 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3191 pos - len);
3192 /* And move data appendix as is. */
3193 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3194 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3195
3196 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3197 skb_shinfo(skb)->nr_frags = 0;
3198 skb1->data_len = skb->data_len;
3199 skb1->len += skb1->data_len;
3200 skb->data_len = 0;
3201 skb->len = len;
3202 skb_set_tail_pointer(skb, len);
3203 }
3204
3205 static inline void skb_split_no_header(struct sk_buff *skb,
3206 struct sk_buff* skb1,
3207 const u32 len, int pos)
3208 {
3209 int i, k = 0;
3210 const int nfrags = skb_shinfo(skb)->nr_frags;
3211
3212 skb_shinfo(skb)->nr_frags = 0;
3213 skb1->len = skb1->data_len = skb->len - len;
3214 skb->len = len;
3215 skb->data_len = len - pos;
3216
3217 for (i = 0; i < nfrags; i++) {
3218 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3219
3220 if (pos + size > len) {
3221 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3222
3223 if (pos < len) {
3224 /* Split frag.
3225 * We have two variants in this case:
3226 * 1. Move all the frag to the second
3227 * part, if it is possible. F.e.
3228 * this approach is mandatory for TUX,
3229 * where splitting is expensive.
3230 * 2. Split is accurately. We make this.
3231 */
3232 skb_frag_ref(skb, i);
3233 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3234 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3235 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3236 skb_shinfo(skb)->nr_frags++;
3237 }
3238 k++;
3239 } else
3240 skb_shinfo(skb)->nr_frags++;
3241 pos += size;
3242 }
3243 skb_shinfo(skb1)->nr_frags = k;
3244 }
3245
3246 /**
3247 * skb_split - Split fragmented skb to two parts at length len.
3248 * @skb: the buffer to split
3249 * @skb1: the buffer to receive the second part
3250 * @len: new length for skb
3251 */
3252 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3253 {
3254 int pos = skb_headlen(skb);
3255
3256 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3257 SKBTX_SHARED_FRAG;
3258 skb_zerocopy_clone(skb1, skb, 0);
3259 if (len < pos) /* Split line is inside header. */
3260 skb_split_inside_header(skb, skb1, len, pos);
3261 else /* Second chunk has no header, nothing to copy. */
3262 skb_split_no_header(skb, skb1, len, pos);
3263 }
3264 EXPORT_SYMBOL(skb_split);
3265
3266 /* Shifting from/to a cloned skb is a no-go.
3267 *
3268 * Caller cannot keep skb_shinfo related pointers past calling here!
3269 */
3270 static int skb_prepare_for_shift(struct sk_buff *skb)
3271 {
3272 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3273 }
3274
3275 /**
3276 * skb_shift - Shifts paged data partially from skb to another
3277 * @tgt: buffer into which tail data gets added
3278 * @skb: buffer from which the paged data comes from
3279 * @shiftlen: shift up to this many bytes
3280 *
3281 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3282 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3283 * It's up to caller to free skb if everything was shifted.
3284 *
3285 * If @tgt runs out of frags, the whole operation is aborted.
3286 *
3287 * Skb cannot include anything else but paged data while tgt is allowed
3288 * to have non-paged data as well.
3289 *
3290 * TODO: full sized shift could be optimized but that would need
3291 * specialized skb free'er to handle frags without up-to-date nr_frags.
3292 */
3293 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3294 {
3295 int from, to, merge, todo;
3296 struct skb_frag_struct *fragfrom, *fragto;
3297
3298 BUG_ON(shiftlen > skb->len);
3299
3300 if (skb_headlen(skb))
3301 return 0;
3302 if (skb_zcopy(tgt) || skb_zcopy(skb))
3303 return 0;
3304
3305 todo = shiftlen;
3306 from = 0;
3307 to = skb_shinfo(tgt)->nr_frags;
3308 fragfrom = &skb_shinfo(skb)->frags[from];
3309
3310 /* Actual merge is delayed until the point when we know we can
3311 * commit all, so that we don't have to undo partial changes
3312 */
3313 if (!to ||
3314 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3315 fragfrom->page_offset)) {
3316 merge = -1;
3317 } else {
3318 merge = to - 1;
3319
3320 todo -= skb_frag_size(fragfrom);
3321 if (todo < 0) {
3322 if (skb_prepare_for_shift(skb) ||
3323 skb_prepare_for_shift(tgt))
3324 return 0;
3325
3326 /* All previous frag pointers might be stale! */
3327 fragfrom = &skb_shinfo(skb)->frags[from];
3328 fragto = &skb_shinfo(tgt)->frags[merge];
3329
3330 skb_frag_size_add(fragto, shiftlen);
3331 skb_frag_size_sub(fragfrom, shiftlen);
3332 fragfrom->page_offset += shiftlen;
3333
3334 goto onlymerged;
3335 }
3336
3337 from++;
3338 }
3339
3340 /* Skip full, not-fitting skb to avoid expensive operations */
3341 if ((shiftlen == skb->len) &&
3342 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3343 return 0;
3344
3345 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3346 return 0;
3347
3348 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3349 if (to == MAX_SKB_FRAGS)
3350 return 0;
3351
3352 fragfrom = &skb_shinfo(skb)->frags[from];
3353 fragto = &skb_shinfo(tgt)->frags[to];
3354
3355 if (todo >= skb_frag_size(fragfrom)) {
3356 *fragto = *fragfrom;
3357 todo -= skb_frag_size(fragfrom);
3358 from++;
3359 to++;
3360
3361 } else {
3362 __skb_frag_ref(fragfrom);
3363 fragto->page = fragfrom->page;
3364 fragto->page_offset = fragfrom->page_offset;
3365 skb_frag_size_set(fragto, todo);
3366
3367 fragfrom->page_offset += todo;
3368 skb_frag_size_sub(fragfrom, todo);
3369 todo = 0;
3370
3371 to++;
3372 break;
3373 }
3374 }
3375
3376 /* Ready to "commit" this state change to tgt */
3377 skb_shinfo(tgt)->nr_frags = to;
3378
3379 if (merge >= 0) {
3380 fragfrom = &skb_shinfo(skb)->frags[0];
3381 fragto = &skb_shinfo(tgt)->frags[merge];
3382
3383 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3384 __skb_frag_unref(fragfrom);
3385 }
3386
3387 /* Reposition in the original skb */
3388 to = 0;
3389 while (from < skb_shinfo(skb)->nr_frags)
3390 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3391 skb_shinfo(skb)->nr_frags = to;
3392
3393 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3394
3395 onlymerged:
3396 /* Most likely the tgt won't ever need its checksum anymore, skb on
3397 * the other hand might need it if it needs to be resent
3398 */
3399 tgt->ip_summed = CHECKSUM_PARTIAL;
3400 skb->ip_summed = CHECKSUM_PARTIAL;
3401
3402 /* Yak, is it really working this way? Some helper please? */
3403 skb->len -= shiftlen;
3404 skb->data_len -= shiftlen;
3405 skb->truesize -= shiftlen;
3406 tgt->len += shiftlen;
3407 tgt->data_len += shiftlen;
3408 tgt->truesize += shiftlen;
3409
3410 return shiftlen;
3411 }
3412
3413 /**
3414 * skb_prepare_seq_read - Prepare a sequential read of skb data
3415 * @skb: the buffer to read
3416 * @from: lower offset of data to be read
3417 * @to: upper offset of data to be read
3418 * @st: state variable
3419 *
3420 * Initializes the specified state variable. Must be called before
3421 * invoking skb_seq_read() for the first time.
3422 */
3423 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3424 unsigned int to, struct skb_seq_state *st)
3425 {
3426 st->lower_offset = from;
3427 st->upper_offset = to;
3428 st->root_skb = st->cur_skb = skb;
3429 st->frag_idx = st->stepped_offset = 0;
3430 st->frag_data = NULL;
3431 }
3432 EXPORT_SYMBOL(skb_prepare_seq_read);
3433
3434 /**
3435 * skb_seq_read - Sequentially read skb data
3436 * @consumed: number of bytes consumed by the caller so far
3437 * @data: destination pointer for data to be returned
3438 * @st: state variable
3439 *
3440 * Reads a block of skb data at @consumed relative to the
3441 * lower offset specified to skb_prepare_seq_read(). Assigns
3442 * the head of the data block to @data and returns the length
3443 * of the block or 0 if the end of the skb data or the upper
3444 * offset has been reached.
3445 *
3446 * The caller is not required to consume all of the data
3447 * returned, i.e. @consumed is typically set to the number
3448 * of bytes already consumed and the next call to
3449 * skb_seq_read() will return the remaining part of the block.
3450 *
3451 * Note 1: The size of each block of data returned can be arbitrary,
3452 * this limitation is the cost for zerocopy sequential
3453 * reads of potentially non linear data.
3454 *
3455 * Note 2: Fragment lists within fragments are not implemented
3456 * at the moment, state->root_skb could be replaced with
3457 * a stack for this purpose.
3458 */
3459 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3460 struct skb_seq_state *st)
3461 {
3462 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3463 skb_frag_t *frag;
3464
3465 if (unlikely(abs_offset >= st->upper_offset)) {
3466 if (st->frag_data) {
3467 kunmap_atomic(st->frag_data);
3468 st->frag_data = NULL;
3469 }
3470 return 0;
3471 }
3472
3473 next_skb:
3474 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3475
3476 if (abs_offset < block_limit && !st->frag_data) {
3477 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3478 return block_limit - abs_offset;
3479 }
3480
3481 if (st->frag_idx == 0 && !st->frag_data)
3482 st->stepped_offset += skb_headlen(st->cur_skb);
3483
3484 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3485 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3486 block_limit = skb_frag_size(frag) + st->stepped_offset;
3487
3488 if (abs_offset < block_limit) {
3489 if (!st->frag_data)
3490 st->frag_data = kmap_atomic(skb_frag_page(frag));
3491
3492 *data = (u8 *) st->frag_data + frag->page_offset +
3493 (abs_offset - st->stepped_offset);
3494
3495 return block_limit - abs_offset;
3496 }
3497
3498 if (st->frag_data) {
3499 kunmap_atomic(st->frag_data);
3500 st->frag_data = NULL;
3501 }
3502
3503 st->frag_idx++;
3504 st->stepped_offset += skb_frag_size(frag);
3505 }
3506
3507 if (st->frag_data) {
3508 kunmap_atomic(st->frag_data);
3509 st->frag_data = NULL;
3510 }
3511
3512 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3513 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3514 st->frag_idx = 0;
3515 goto next_skb;
3516 } else if (st->cur_skb->next) {
3517 st->cur_skb = st->cur_skb->next;
3518 st->frag_idx = 0;
3519 goto next_skb;
3520 }
3521
3522 return 0;
3523 }
3524 EXPORT_SYMBOL(skb_seq_read);
3525
3526 /**
3527 * skb_abort_seq_read - Abort a sequential read of skb data
3528 * @st: state variable
3529 *
3530 * Must be called if skb_seq_read() was not called until it
3531 * returned 0.
3532 */
3533 void skb_abort_seq_read(struct skb_seq_state *st)
3534 {
3535 if (st->frag_data)
3536 kunmap_atomic(st->frag_data);
3537 }
3538 EXPORT_SYMBOL(skb_abort_seq_read);
3539
3540 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3541
3542 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3543 struct ts_config *conf,
3544 struct ts_state *state)
3545 {
3546 return skb_seq_read(offset, text, TS_SKB_CB(state));
3547 }
3548
3549 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3550 {
3551 skb_abort_seq_read(TS_SKB_CB(state));
3552 }
3553
3554 /**
3555 * skb_find_text - Find a text pattern in skb data
3556 * @skb: the buffer to look in
3557 * @from: search offset
3558 * @to: search limit
3559 * @config: textsearch configuration
3560 *
3561 * Finds a pattern in the skb data according to the specified
3562 * textsearch configuration. Use textsearch_next() to retrieve
3563 * subsequent occurrences of the pattern. Returns the offset
3564 * to the first occurrence or UINT_MAX if no match was found.
3565 */
3566 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3567 unsigned int to, struct ts_config *config)
3568 {
3569 struct ts_state state;
3570 unsigned int ret;
3571
3572 config->get_next_block = skb_ts_get_next_block;
3573 config->finish = skb_ts_finish;
3574
3575 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3576
3577 ret = textsearch_find(config, &state);
3578 return (ret <= to - from ? ret : UINT_MAX);
3579 }
3580 EXPORT_SYMBOL(skb_find_text);
3581
3582 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3583 int offset, size_t size)
3584 {
3585 int i = skb_shinfo(skb)->nr_frags;
3586
3587 if (skb_can_coalesce(skb, i, page, offset)) {
3588 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3589 } else if (i < MAX_SKB_FRAGS) {
3590 get_page(page);
3591 skb_fill_page_desc(skb, i, page, offset, size);
3592 } else {
3593 return -EMSGSIZE;
3594 }
3595
3596 return 0;
3597 }
3598 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3599
3600 /**
3601 * skb_pull_rcsum - pull skb and update receive checksum
3602 * @skb: buffer to update
3603 * @len: length of data pulled
3604 *
3605 * This function performs an skb_pull on the packet and updates
3606 * the CHECKSUM_COMPLETE checksum. It should be used on
3607 * receive path processing instead of skb_pull unless you know
3608 * that the checksum difference is zero (e.g., a valid IP header)
3609 * or you are setting ip_summed to CHECKSUM_NONE.
3610 */
3611 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3612 {
3613 unsigned char *data = skb->data;
3614
3615 BUG_ON(len > skb->len);
3616 __skb_pull(skb, len);
3617 skb_postpull_rcsum(skb, data, len);
3618 return skb->data;
3619 }
3620 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3621
3622 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3623 {
3624 skb_frag_t head_frag;
3625 struct page *page;
3626
3627 page = virt_to_head_page(frag_skb->head);
3628 head_frag.page.p = page;
3629 head_frag.page_offset = frag_skb->data -
3630 (unsigned char *)page_address(page);
3631 head_frag.size = skb_headlen(frag_skb);
3632 return head_frag;
3633 }
3634
3635 /**
3636 * skb_segment - Perform protocol segmentation on skb.
3637 * @head_skb: buffer to segment
3638 * @features: features for the output path (see dev->features)
3639 *
3640 * This function performs segmentation on the given skb. It returns
3641 * a pointer to the first in a list of new skbs for the segments.
3642 * In case of error it returns ERR_PTR(err).
3643 */
3644 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3645 netdev_features_t features)
3646 {
3647 struct sk_buff *segs = NULL;
3648 struct sk_buff *tail = NULL;
3649 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3650 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3651 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3652 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3653 struct sk_buff *frag_skb = head_skb;
3654 unsigned int offset = doffset;
3655 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3656 unsigned int partial_segs = 0;
3657 unsigned int headroom;
3658 unsigned int len = head_skb->len;
3659 __be16 proto;
3660 bool csum, sg;
3661 int nfrags = skb_shinfo(head_skb)->nr_frags;
3662 int err = -ENOMEM;
3663 int i = 0;
3664 int pos;
3665 int dummy;
3666
3667 __skb_push(head_skb, doffset);
3668 proto = skb_network_protocol(head_skb, &dummy);
3669 if (unlikely(!proto))
3670 return ERR_PTR(-EINVAL);
3671
3672 sg = !!(features & NETIF_F_SG);
3673 csum = !!can_checksum_protocol(features, proto);
3674
3675 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3676 if (!(features & NETIF_F_GSO_PARTIAL)) {
3677 struct sk_buff *iter;
3678 unsigned int frag_len;
3679
3680 if (!list_skb ||
3681 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3682 goto normal;
3683
3684 /* If we get here then all the required
3685 * GSO features except frag_list are supported.
3686 * Try to split the SKB to multiple GSO SKBs
3687 * with no frag_list.
3688 * Currently we can do that only when the buffers don't
3689 * have a linear part and all the buffers except
3690 * the last are of the same length.
3691 */
3692 frag_len = list_skb->len;
3693 skb_walk_frags(head_skb, iter) {
3694 if (frag_len != iter->len && iter->next)
3695 goto normal;
3696 if (skb_headlen(iter) && !iter->head_frag)
3697 goto normal;
3698
3699 len -= iter->len;
3700 }
3701
3702 if (len != frag_len)
3703 goto normal;
3704 }
3705
3706 /* GSO partial only requires that we trim off any excess that
3707 * doesn't fit into an MSS sized block, so take care of that
3708 * now.
3709 */
3710 partial_segs = len / mss;
3711 if (partial_segs > 1)
3712 mss *= partial_segs;
3713 else
3714 partial_segs = 0;
3715 }
3716
3717 normal:
3718 headroom = skb_headroom(head_skb);
3719 pos = skb_headlen(head_skb);
3720
3721 do {
3722 struct sk_buff *nskb;
3723 skb_frag_t *nskb_frag;
3724 int hsize;
3725 int size;
3726
3727 if (unlikely(mss == GSO_BY_FRAGS)) {
3728 len = list_skb->len;
3729 } else {
3730 len = head_skb->len - offset;
3731 if (len > mss)
3732 len = mss;
3733 }
3734
3735 hsize = skb_headlen(head_skb) - offset;
3736 if (hsize < 0)
3737 hsize = 0;
3738 if (hsize > len || !sg)
3739 hsize = len;
3740
3741 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3742 (skb_headlen(list_skb) == len || sg)) {
3743 BUG_ON(skb_headlen(list_skb) > len);
3744
3745 i = 0;
3746 nfrags = skb_shinfo(list_skb)->nr_frags;
3747 frag = skb_shinfo(list_skb)->frags;
3748 frag_skb = list_skb;
3749 pos += skb_headlen(list_skb);
3750
3751 while (pos < offset + len) {
3752 BUG_ON(i >= nfrags);
3753
3754 size = skb_frag_size(frag);
3755 if (pos + size > offset + len)
3756 break;
3757
3758 i++;
3759 pos += size;
3760 frag++;
3761 }
3762
3763 nskb = skb_clone(list_skb, GFP_ATOMIC);
3764 list_skb = list_skb->next;
3765
3766 if (unlikely(!nskb))
3767 goto err;
3768
3769 if (unlikely(pskb_trim(nskb, len))) {
3770 kfree_skb(nskb);
3771 goto err;
3772 }
3773
3774 hsize = skb_end_offset(nskb);
3775 if (skb_cow_head(nskb, doffset + headroom)) {
3776 kfree_skb(nskb);
3777 goto err;
3778 }
3779
3780 nskb->truesize += skb_end_offset(nskb) - hsize;
3781 skb_release_head_state(nskb);
3782 __skb_push(nskb, doffset);
3783 } else {
3784 nskb = __alloc_skb(hsize + doffset + headroom,
3785 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3786 NUMA_NO_NODE);
3787
3788 if (unlikely(!nskb))
3789 goto err;
3790
3791 skb_reserve(nskb, headroom);
3792 __skb_put(nskb, doffset);
3793 }
3794
3795 if (segs)
3796 tail->next = nskb;
3797 else
3798 segs = nskb;
3799 tail = nskb;
3800
3801 __copy_skb_header(nskb, head_skb);
3802
3803 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3804 skb_reset_mac_len(nskb);
3805
3806 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3807 nskb->data - tnl_hlen,
3808 doffset + tnl_hlen);
3809
3810 if (nskb->len == len + doffset)
3811 goto perform_csum_check;
3812
3813 if (!sg) {
3814 if (!nskb->remcsum_offload)
3815 nskb->ip_summed = CHECKSUM_NONE;
3816 SKB_GSO_CB(nskb)->csum =
3817 skb_copy_and_csum_bits(head_skb, offset,
3818 skb_put(nskb, len),
3819 len, 0);
3820 SKB_GSO_CB(nskb)->csum_start =
3821 skb_headroom(nskb) + doffset;
3822 continue;
3823 }
3824
3825 nskb_frag = skb_shinfo(nskb)->frags;
3826
3827 skb_copy_from_linear_data_offset(head_skb, offset,
3828 skb_put(nskb, hsize), hsize);
3829
3830 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3831 SKBTX_SHARED_FRAG;
3832
3833 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3834 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3835 goto err;
3836
3837 while (pos < offset + len) {
3838 if (i >= nfrags) {
3839 i = 0;
3840 nfrags = skb_shinfo(list_skb)->nr_frags;
3841 frag = skb_shinfo(list_skb)->frags;
3842 frag_skb = list_skb;
3843 if (!skb_headlen(list_skb)) {
3844 BUG_ON(!nfrags);
3845 } else {
3846 BUG_ON(!list_skb->head_frag);
3847
3848 /* to make room for head_frag. */
3849 i--;
3850 frag--;
3851 }
3852 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3853 skb_zerocopy_clone(nskb, frag_skb,
3854 GFP_ATOMIC))
3855 goto err;
3856
3857 list_skb = list_skb->next;
3858 }
3859
3860 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3861 MAX_SKB_FRAGS)) {
3862 net_warn_ratelimited(
3863 "skb_segment: too many frags: %u %u\n",
3864 pos, mss);
3865 err = -EINVAL;
3866 goto err;
3867 }
3868
3869 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3870 __skb_frag_ref(nskb_frag);
3871 size = skb_frag_size(nskb_frag);
3872
3873 if (pos < offset) {
3874 nskb_frag->page_offset += offset - pos;
3875 skb_frag_size_sub(nskb_frag, offset - pos);
3876 }
3877
3878 skb_shinfo(nskb)->nr_frags++;
3879
3880 if (pos + size <= offset + len) {
3881 i++;
3882 frag++;
3883 pos += size;
3884 } else {
3885 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3886 goto skip_fraglist;
3887 }
3888
3889 nskb_frag++;
3890 }
3891
3892 skip_fraglist:
3893 nskb->data_len = len - hsize;
3894 nskb->len += nskb->data_len;
3895 nskb->truesize += nskb->data_len;
3896
3897 perform_csum_check:
3898 if (!csum) {
3899 if (skb_has_shared_frag(nskb) &&
3900 __skb_linearize(nskb))
3901 goto err;
3902
3903 if (!nskb->remcsum_offload)
3904 nskb->ip_summed = CHECKSUM_NONE;
3905 SKB_GSO_CB(nskb)->csum =
3906 skb_checksum(nskb, doffset,
3907 nskb->len - doffset, 0);
3908 SKB_GSO_CB(nskb)->csum_start =
3909 skb_headroom(nskb) + doffset;
3910 }
3911 } while ((offset += len) < head_skb->len);
3912
3913 /* Some callers want to get the end of the list.
3914 * Put it in segs->prev to avoid walking the list.
3915 * (see validate_xmit_skb_list() for example)
3916 */
3917 segs->prev = tail;
3918
3919 if (partial_segs) {
3920 struct sk_buff *iter;
3921 int type = skb_shinfo(head_skb)->gso_type;
3922 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3923
3924 /* Update type to add partial and then remove dodgy if set */
3925 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3926 type &= ~SKB_GSO_DODGY;
3927
3928 /* Update GSO info and prepare to start updating headers on
3929 * our way back down the stack of protocols.
3930 */
3931 for (iter = segs; iter; iter = iter->next) {
3932 skb_shinfo(iter)->gso_size = gso_size;
3933 skb_shinfo(iter)->gso_segs = partial_segs;
3934 skb_shinfo(iter)->gso_type = type;
3935 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3936 }
3937
3938 if (tail->len - doffset <= gso_size)
3939 skb_shinfo(tail)->gso_size = 0;
3940 else if (tail != segs)
3941 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3942 }
3943
3944 /* Following permits correct backpressure, for protocols
3945 * using skb_set_owner_w().
3946 * Idea is to tranfert ownership from head_skb to last segment.
3947 */
3948 if (head_skb->destructor == sock_wfree) {
3949 swap(tail->truesize, head_skb->truesize);
3950 swap(tail->destructor, head_skb->destructor);
3951 swap(tail->sk, head_skb->sk);
3952 }
3953 return segs;
3954
3955 err:
3956 kfree_skb_list(segs);
3957 return ERR_PTR(err);
3958 }
3959 EXPORT_SYMBOL_GPL(skb_segment);
3960
3961 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
3962 {
3963 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3964 unsigned int offset = skb_gro_offset(skb);
3965 unsigned int headlen = skb_headlen(skb);
3966 unsigned int len = skb_gro_len(skb);
3967 unsigned int delta_truesize;
3968 struct sk_buff *lp;
3969
3970 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
3971 return -E2BIG;
3972
3973 lp = NAPI_GRO_CB(p)->last;
3974 pinfo = skb_shinfo(lp);
3975
3976 if (headlen <= offset) {
3977 skb_frag_t *frag;
3978 skb_frag_t *frag2;
3979 int i = skbinfo->nr_frags;
3980 int nr_frags = pinfo->nr_frags + i;
3981
3982 if (nr_frags > MAX_SKB_FRAGS)
3983 goto merge;
3984
3985 offset -= headlen;
3986 pinfo->nr_frags = nr_frags;
3987 skbinfo->nr_frags = 0;
3988
3989 frag = pinfo->frags + nr_frags;
3990 frag2 = skbinfo->frags + i;
3991 do {
3992 *--frag = *--frag2;
3993 } while (--i);
3994
3995 frag->page_offset += offset;
3996 skb_frag_size_sub(frag, offset);
3997
3998 /* all fragments truesize : remove (head size + sk_buff) */
3999 delta_truesize = skb->truesize -
4000 SKB_TRUESIZE(skb_end_offset(skb));
4001
4002 skb->truesize -= skb->data_len;
4003 skb->len -= skb->data_len;
4004 skb->data_len = 0;
4005
4006 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4007 goto done;
4008 } else if (skb->head_frag) {
4009 int nr_frags = pinfo->nr_frags;
4010 skb_frag_t *frag = pinfo->frags + nr_frags;
4011 struct page *page = virt_to_head_page(skb->head);
4012 unsigned int first_size = headlen - offset;
4013 unsigned int first_offset;
4014
4015 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4016 goto merge;
4017
4018 first_offset = skb->data -
4019 (unsigned char *)page_address(page) +
4020 offset;
4021
4022 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4023
4024 frag->page.p = page;
4025 frag->page_offset = first_offset;
4026 skb_frag_size_set(frag, first_size);
4027
4028 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4029 /* We dont need to clear skbinfo->nr_frags here */
4030
4031 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4032 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4033 goto done;
4034 }
4035
4036 merge:
4037 delta_truesize = skb->truesize;
4038 if (offset > headlen) {
4039 unsigned int eat = offset - headlen;
4040
4041 skbinfo->frags[0].page_offset += eat;
4042 skb_frag_size_sub(&skbinfo->frags[0], eat);
4043 skb->data_len -= eat;
4044 skb->len -= eat;
4045 offset = headlen;
4046 }
4047
4048 __skb_pull(skb, offset);
4049
4050 if (NAPI_GRO_CB(p)->last == p)
4051 skb_shinfo(p)->frag_list = skb;
4052 else
4053 NAPI_GRO_CB(p)->last->next = skb;
4054 NAPI_GRO_CB(p)->last = skb;
4055 __skb_header_release(skb);
4056 lp = p;
4057
4058 done:
4059 NAPI_GRO_CB(p)->count++;
4060 p->data_len += len;
4061 p->truesize += delta_truesize;
4062 p->len += len;
4063 if (lp != p) {
4064 lp->data_len += len;
4065 lp->truesize += delta_truesize;
4066 lp->len += len;
4067 }
4068 NAPI_GRO_CB(skb)->same_flow = 1;
4069 return 0;
4070 }
4071 EXPORT_SYMBOL_GPL(skb_gro_receive);
4072
4073 #ifdef CONFIG_SKB_EXTENSIONS
4074 #define SKB_EXT_ALIGN_VALUE 8
4075 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4076
4077 static const u8 skb_ext_type_len[] = {
4078 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4079 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4080 #endif
4081 #ifdef CONFIG_XFRM
4082 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4083 #endif
4084 };
4085
4086 static __always_inline unsigned int skb_ext_total_length(void)
4087 {
4088 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4089 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4090 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4091 #endif
4092 #ifdef CONFIG_XFRM
4093 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4094 #endif
4095 0;
4096 }
4097
4098 static void skb_extensions_init(void)
4099 {
4100 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4101 BUILD_BUG_ON(skb_ext_total_length() > 255);
4102
4103 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4104 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4105 0,
4106 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4107 NULL);
4108 }
4109 #else
4110 static void skb_extensions_init(void) {}
4111 #endif
4112
4113 void __init skb_init(void)
4114 {
4115 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4116 sizeof(struct sk_buff),
4117 0,
4118 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4119 offsetof(struct sk_buff, cb),
4120 sizeof_field(struct sk_buff, cb),
4121 NULL);
4122 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4123 sizeof(struct sk_buff_fclones),
4124 0,
4125 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4126 NULL);
4127 skb_extensions_init();
4128 }
4129
4130 static int
4131 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4132 unsigned int recursion_level)
4133 {
4134 int start = skb_headlen(skb);
4135 int i, copy = start - offset;
4136 struct sk_buff *frag_iter;
4137 int elt = 0;
4138
4139 if (unlikely(recursion_level >= 24))
4140 return -EMSGSIZE;
4141
4142 if (copy > 0) {
4143 if (copy > len)
4144 copy = len;
4145 sg_set_buf(sg, skb->data + offset, copy);
4146 elt++;
4147 if ((len -= copy) == 0)
4148 return elt;
4149 offset += copy;
4150 }
4151
4152 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4153 int end;
4154
4155 WARN_ON(start > offset + len);
4156
4157 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4158 if ((copy = end - offset) > 0) {
4159 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4160 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4161 return -EMSGSIZE;
4162
4163 if (copy > len)
4164 copy = len;
4165 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4166 frag->page_offset+offset-start);
4167 elt++;
4168 if (!(len -= copy))
4169 return elt;
4170 offset += copy;
4171 }
4172 start = end;
4173 }
4174
4175 skb_walk_frags(skb, frag_iter) {
4176 int end, ret;
4177
4178 WARN_ON(start > offset + len);
4179
4180 end = start + frag_iter->len;
4181 if ((copy = end - offset) > 0) {
4182 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4183 return -EMSGSIZE;
4184
4185 if (copy > len)
4186 copy = len;
4187 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4188 copy, recursion_level + 1);
4189 if (unlikely(ret < 0))
4190 return ret;
4191 elt += ret;
4192 if ((len -= copy) == 0)
4193 return elt;
4194 offset += copy;
4195 }
4196 start = end;
4197 }
4198 BUG_ON(len);
4199 return elt;
4200 }
4201
4202 /**
4203 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4204 * @skb: Socket buffer containing the buffers to be mapped
4205 * @sg: The scatter-gather list to map into
4206 * @offset: The offset into the buffer's contents to start mapping
4207 * @len: Length of buffer space to be mapped
4208 *
4209 * Fill the specified scatter-gather list with mappings/pointers into a
4210 * region of the buffer space attached to a socket buffer. Returns either
4211 * the number of scatterlist items used, or -EMSGSIZE if the contents
4212 * could not fit.
4213 */
4214 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4215 {
4216 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4217
4218 if (nsg <= 0)
4219 return nsg;
4220
4221 sg_mark_end(&sg[nsg - 1]);
4222
4223 return nsg;
4224 }
4225 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4226
4227 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4228 * sglist without mark the sg which contain last skb data as the end.
4229 * So the caller can mannipulate sg list as will when padding new data after
4230 * the first call without calling sg_unmark_end to expend sg list.
4231 *
4232 * Scenario to use skb_to_sgvec_nomark:
4233 * 1. sg_init_table
4234 * 2. skb_to_sgvec_nomark(payload1)
4235 * 3. skb_to_sgvec_nomark(payload2)
4236 *
4237 * This is equivalent to:
4238 * 1. sg_init_table
4239 * 2. skb_to_sgvec(payload1)
4240 * 3. sg_unmark_end
4241 * 4. skb_to_sgvec(payload2)
4242 *
4243 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4244 * is more preferable.
4245 */
4246 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4247 int offset, int len)
4248 {
4249 return __skb_to_sgvec(skb, sg, offset, len, 0);
4250 }
4251 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4252
4253
4254
4255 /**
4256 * skb_cow_data - Check that a socket buffer's data buffers are writable
4257 * @skb: The socket buffer to check.
4258 * @tailbits: Amount of trailing space to be added
4259 * @trailer: Returned pointer to the skb where the @tailbits space begins
4260 *
4261 * Make sure that the data buffers attached to a socket buffer are
4262 * writable. If they are not, private copies are made of the data buffers
4263 * and the socket buffer is set to use these instead.
4264 *
4265 * If @tailbits is given, make sure that there is space to write @tailbits
4266 * bytes of data beyond current end of socket buffer. @trailer will be
4267 * set to point to the skb in which this space begins.
4268 *
4269 * The number of scatterlist elements required to completely map the
4270 * COW'd and extended socket buffer will be returned.
4271 */
4272 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4273 {
4274 int copyflag;
4275 int elt;
4276 struct sk_buff *skb1, **skb_p;
4277
4278 /* If skb is cloned or its head is paged, reallocate
4279 * head pulling out all the pages (pages are considered not writable
4280 * at the moment even if they are anonymous).
4281 */
4282 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4283 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4284 return -ENOMEM;
4285
4286 /* Easy case. Most of packets will go this way. */
4287 if (!skb_has_frag_list(skb)) {
4288 /* A little of trouble, not enough of space for trailer.
4289 * This should not happen, when stack is tuned to generate
4290 * good frames. OK, on miss we reallocate and reserve even more
4291 * space, 128 bytes is fair. */
4292
4293 if (skb_tailroom(skb) < tailbits &&
4294 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4295 return -ENOMEM;
4296
4297 /* Voila! */
4298 *trailer = skb;
4299 return 1;
4300 }
4301
4302 /* Misery. We are in troubles, going to mincer fragments... */
4303
4304 elt = 1;
4305 skb_p = &skb_shinfo(skb)->frag_list;
4306 copyflag = 0;
4307
4308 while ((skb1 = *skb_p) != NULL) {
4309 int ntail = 0;
4310
4311 /* The fragment is partially pulled by someone,
4312 * this can happen on input. Copy it and everything
4313 * after it. */
4314
4315 if (skb_shared(skb1))
4316 copyflag = 1;
4317
4318 /* If the skb is the last, worry about trailer. */
4319
4320 if (skb1->next == NULL && tailbits) {
4321 if (skb_shinfo(skb1)->nr_frags ||
4322 skb_has_frag_list(skb1) ||
4323 skb_tailroom(skb1) < tailbits)
4324 ntail = tailbits + 128;
4325 }
4326
4327 if (copyflag ||
4328 skb_cloned(skb1) ||
4329 ntail ||
4330 skb_shinfo(skb1)->nr_frags ||
4331 skb_has_frag_list(skb1)) {
4332 struct sk_buff *skb2;
4333
4334 /* Fuck, we are miserable poor guys... */
4335 if (ntail == 0)
4336 skb2 = skb_copy(skb1, GFP_ATOMIC);
4337 else
4338 skb2 = skb_copy_expand(skb1,
4339 skb_headroom(skb1),
4340 ntail,
4341 GFP_ATOMIC);
4342 if (unlikely(skb2 == NULL))
4343 return -ENOMEM;
4344
4345 if (skb1->sk)
4346 skb_set_owner_w(skb2, skb1->sk);
4347
4348 /* Looking around. Are we still alive?
4349 * OK, link new skb, drop old one */
4350
4351 skb2->next = skb1->next;
4352 *skb_p = skb2;
4353 kfree_skb(skb1);
4354 skb1 = skb2;
4355 }
4356 elt++;
4357 *trailer = skb1;
4358 skb_p = &skb1->next;
4359 }
4360
4361 return elt;
4362 }
4363 EXPORT_SYMBOL_GPL(skb_cow_data);
4364
4365 static void sock_rmem_free(struct sk_buff *skb)
4366 {
4367 struct sock *sk = skb->sk;
4368
4369 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4370 }
4371
4372 static void skb_set_err_queue(struct sk_buff *skb)
4373 {
4374 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4375 * So, it is safe to (mis)use it to mark skbs on the error queue.
4376 */
4377 skb->pkt_type = PACKET_OUTGOING;
4378 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4379 }
4380
4381 /*
4382 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4383 */
4384 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4385 {
4386 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4387 (unsigned int)sk->sk_rcvbuf)
4388 return -ENOMEM;
4389
4390 skb_orphan(skb);
4391 skb->sk = sk;
4392 skb->destructor = sock_rmem_free;
4393 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4394 skb_set_err_queue(skb);
4395
4396 /* before exiting rcu section, make sure dst is refcounted */
4397 skb_dst_force(skb);
4398
4399 skb_queue_tail(&sk->sk_error_queue, skb);
4400 if (!sock_flag(sk, SOCK_DEAD))
4401 sk->sk_error_report(sk);
4402 return 0;
4403 }
4404 EXPORT_SYMBOL(sock_queue_err_skb);
4405
4406 static bool is_icmp_err_skb(const struct sk_buff *skb)
4407 {
4408 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4409 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4410 }
4411
4412 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4413 {
4414 struct sk_buff_head *q = &sk->sk_error_queue;
4415 struct sk_buff *skb, *skb_next = NULL;
4416 bool icmp_next = false;
4417 unsigned long flags;
4418
4419 spin_lock_irqsave(&q->lock, flags);
4420 skb = __skb_dequeue(q);
4421 if (skb && (skb_next = skb_peek(q))) {
4422 icmp_next = is_icmp_err_skb(skb_next);
4423 if (icmp_next)
4424 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4425 }
4426 spin_unlock_irqrestore(&q->lock, flags);
4427
4428 if (is_icmp_err_skb(skb) && !icmp_next)
4429 sk->sk_err = 0;
4430
4431 if (skb_next)
4432 sk->sk_error_report(sk);
4433
4434 return skb;
4435 }
4436 EXPORT_SYMBOL(sock_dequeue_err_skb);
4437
4438 /**
4439 * skb_clone_sk - create clone of skb, and take reference to socket
4440 * @skb: the skb to clone
4441 *
4442 * This function creates a clone of a buffer that holds a reference on
4443 * sk_refcnt. Buffers created via this function are meant to be
4444 * returned using sock_queue_err_skb, or free via kfree_skb.
4445 *
4446 * When passing buffers allocated with this function to sock_queue_err_skb
4447 * it is necessary to wrap the call with sock_hold/sock_put in order to
4448 * prevent the socket from being released prior to being enqueued on
4449 * the sk_error_queue.
4450 */
4451 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4452 {
4453 struct sock *sk = skb->sk;
4454 struct sk_buff *clone;
4455
4456 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4457 return NULL;
4458
4459 clone = skb_clone(skb, GFP_ATOMIC);
4460 if (!clone) {
4461 sock_put(sk);
4462 return NULL;
4463 }
4464
4465 clone->sk = sk;
4466 clone->destructor = sock_efree;
4467
4468 return clone;
4469 }
4470 EXPORT_SYMBOL(skb_clone_sk);
4471
4472 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4473 struct sock *sk,
4474 int tstype,
4475 bool opt_stats)
4476 {
4477 struct sock_exterr_skb *serr;
4478 int err;
4479
4480 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4481
4482 serr = SKB_EXT_ERR(skb);
4483 memset(serr, 0, sizeof(*serr));
4484 serr->ee.ee_errno = ENOMSG;
4485 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4486 serr->ee.ee_info = tstype;
4487 serr->opt_stats = opt_stats;
4488 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4489 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4490 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4491 if (sk->sk_protocol == IPPROTO_TCP &&
4492 sk->sk_type == SOCK_STREAM)
4493 serr->ee.ee_data -= sk->sk_tskey;
4494 }
4495
4496 err = sock_queue_err_skb(sk, skb);
4497
4498 if (err)
4499 kfree_skb(skb);
4500 }
4501
4502 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4503 {
4504 bool ret;
4505
4506 if (likely(sysctl_tstamp_allow_data || tsonly))
4507 return true;
4508
4509 read_lock_bh(&sk->sk_callback_lock);
4510 ret = sk->sk_socket && sk->sk_socket->file &&
4511 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4512 read_unlock_bh(&sk->sk_callback_lock);
4513 return ret;
4514 }
4515
4516 void skb_complete_tx_timestamp(struct sk_buff *skb,
4517 struct skb_shared_hwtstamps *hwtstamps)
4518 {
4519 struct sock *sk = skb->sk;
4520
4521 if (!skb_may_tx_timestamp(sk, false))
4522 goto err;
4523
4524 /* Take a reference to prevent skb_orphan() from freeing the socket,
4525 * but only if the socket refcount is not zero.
4526 */
4527 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4528 *skb_hwtstamps(skb) = *hwtstamps;
4529 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4530 sock_put(sk);
4531 return;
4532 }
4533
4534 err:
4535 kfree_skb(skb);
4536 }
4537 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4538
4539 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4540 struct skb_shared_hwtstamps *hwtstamps,
4541 struct sock *sk, int tstype)
4542 {
4543 struct sk_buff *skb;
4544 bool tsonly, opt_stats = false;
4545
4546 if (!sk)
4547 return;
4548
4549 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4550 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4551 return;
4552
4553 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4554 if (!skb_may_tx_timestamp(sk, tsonly))
4555 return;
4556
4557 if (tsonly) {
4558 #ifdef CONFIG_INET
4559 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4560 sk->sk_protocol == IPPROTO_TCP &&
4561 sk->sk_type == SOCK_STREAM) {
4562 skb = tcp_get_timestamping_opt_stats(sk);
4563 opt_stats = true;
4564 } else
4565 #endif
4566 skb = alloc_skb(0, GFP_ATOMIC);
4567 } else {
4568 skb = skb_clone(orig_skb, GFP_ATOMIC);
4569 }
4570 if (!skb)
4571 return;
4572
4573 if (tsonly) {
4574 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4575 SKBTX_ANY_TSTAMP;
4576 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4577 }
4578
4579 if (hwtstamps)
4580 *skb_hwtstamps(skb) = *hwtstamps;
4581 else
4582 skb->tstamp = ktime_get_real();
4583
4584 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4585 }
4586 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4587
4588 void skb_tstamp_tx(struct sk_buff *orig_skb,
4589 struct skb_shared_hwtstamps *hwtstamps)
4590 {
4591 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4592 SCM_TSTAMP_SND);
4593 }
4594 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4595
4596 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4597 {
4598 struct sock *sk = skb->sk;
4599 struct sock_exterr_skb *serr;
4600 int err = 1;
4601
4602 skb->wifi_acked_valid = 1;
4603 skb->wifi_acked = acked;
4604
4605 serr = SKB_EXT_ERR(skb);
4606 memset(serr, 0, sizeof(*serr));
4607 serr->ee.ee_errno = ENOMSG;
4608 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4609
4610 /* Take a reference to prevent skb_orphan() from freeing the socket,
4611 * but only if the socket refcount is not zero.
4612 */
4613 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4614 err = sock_queue_err_skb(sk, skb);
4615 sock_put(sk);
4616 }
4617 if (err)
4618 kfree_skb(skb);
4619 }
4620 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4621
4622 /**
4623 * skb_partial_csum_set - set up and verify partial csum values for packet
4624 * @skb: the skb to set
4625 * @start: the number of bytes after skb->data to start checksumming.
4626 * @off: the offset from start to place the checksum.
4627 *
4628 * For untrusted partially-checksummed packets, we need to make sure the values
4629 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4630 *
4631 * This function checks and sets those values and skb->ip_summed: if this
4632 * returns false you should drop the packet.
4633 */
4634 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4635 {
4636 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4637 u32 csum_start = skb_headroom(skb) + (u32)start;
4638
4639 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4640 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4641 start, off, skb_headroom(skb), skb_headlen(skb));
4642 return false;
4643 }
4644 skb->ip_summed = CHECKSUM_PARTIAL;
4645 skb->csum_start = csum_start;
4646 skb->csum_offset = off;
4647 skb_set_transport_header(skb, start);
4648 return true;
4649 }
4650 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4651
4652 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4653 unsigned int max)
4654 {
4655 if (skb_headlen(skb) >= len)
4656 return 0;
4657
4658 /* If we need to pullup then pullup to the max, so we
4659 * won't need to do it again.
4660 */
4661 if (max > skb->len)
4662 max = skb->len;
4663
4664 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4665 return -ENOMEM;
4666
4667 if (skb_headlen(skb) < len)
4668 return -EPROTO;
4669
4670 return 0;
4671 }
4672
4673 #define MAX_TCP_HDR_LEN (15 * 4)
4674
4675 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4676 typeof(IPPROTO_IP) proto,
4677 unsigned int off)
4678 {
4679 switch (proto) {
4680 int err;
4681
4682 case IPPROTO_TCP:
4683 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4684 off + MAX_TCP_HDR_LEN);
4685 if (!err && !skb_partial_csum_set(skb, off,
4686 offsetof(struct tcphdr,
4687 check)))
4688 err = -EPROTO;
4689 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4690
4691 case IPPROTO_UDP:
4692 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4693 off + sizeof(struct udphdr));
4694 if (!err && !skb_partial_csum_set(skb, off,
4695 offsetof(struct udphdr,
4696 check)))
4697 err = -EPROTO;
4698 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4699 }
4700
4701 return ERR_PTR(-EPROTO);
4702 }
4703
4704 /* This value should be large enough to cover a tagged ethernet header plus
4705 * maximally sized IP and TCP or UDP headers.
4706 */
4707 #define MAX_IP_HDR_LEN 128
4708
4709 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4710 {
4711 unsigned int off;
4712 bool fragment;
4713 __sum16 *csum;
4714 int err;
4715
4716 fragment = false;
4717
4718 err = skb_maybe_pull_tail(skb,
4719 sizeof(struct iphdr),
4720 MAX_IP_HDR_LEN);
4721 if (err < 0)
4722 goto out;
4723
4724 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4725 fragment = true;
4726
4727 off = ip_hdrlen(skb);
4728
4729 err = -EPROTO;
4730
4731 if (fragment)
4732 goto out;
4733
4734 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4735 if (IS_ERR(csum))
4736 return PTR_ERR(csum);
4737
4738 if (recalculate)
4739 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4740 ip_hdr(skb)->daddr,
4741 skb->len - off,
4742 ip_hdr(skb)->protocol, 0);
4743 err = 0;
4744
4745 out:
4746 return err;
4747 }
4748
4749 /* This value should be large enough to cover a tagged ethernet header plus
4750 * an IPv6 header, all options, and a maximal TCP or UDP header.
4751 */
4752 #define MAX_IPV6_HDR_LEN 256
4753
4754 #define OPT_HDR(type, skb, off) \
4755 (type *)(skb_network_header(skb) + (off))
4756
4757 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4758 {
4759 int err;
4760 u8 nexthdr;
4761 unsigned int off;
4762 unsigned int len;
4763 bool fragment;
4764 bool done;
4765 __sum16 *csum;
4766
4767 fragment = false;
4768 done = false;
4769
4770 off = sizeof(struct ipv6hdr);
4771
4772 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4773 if (err < 0)
4774 goto out;
4775
4776 nexthdr = ipv6_hdr(skb)->nexthdr;
4777
4778 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4779 while (off <= len && !done) {
4780 switch (nexthdr) {
4781 case IPPROTO_DSTOPTS:
4782 case IPPROTO_HOPOPTS:
4783 case IPPROTO_ROUTING: {
4784 struct ipv6_opt_hdr *hp;
4785
4786 err = skb_maybe_pull_tail(skb,
4787 off +
4788 sizeof(struct ipv6_opt_hdr),
4789 MAX_IPV6_HDR_LEN);
4790 if (err < 0)
4791 goto out;
4792
4793 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4794 nexthdr = hp->nexthdr;
4795 off += ipv6_optlen(hp);
4796 break;
4797 }
4798 case IPPROTO_AH: {
4799 struct ip_auth_hdr *hp;
4800
4801 err = skb_maybe_pull_tail(skb,
4802 off +
4803 sizeof(struct ip_auth_hdr),
4804 MAX_IPV6_HDR_LEN);
4805 if (err < 0)
4806 goto out;
4807
4808 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4809 nexthdr = hp->nexthdr;
4810 off += ipv6_authlen(hp);
4811 break;
4812 }
4813 case IPPROTO_FRAGMENT: {
4814 struct frag_hdr *hp;
4815
4816 err = skb_maybe_pull_tail(skb,
4817 off +
4818 sizeof(struct frag_hdr),
4819 MAX_IPV6_HDR_LEN);
4820 if (err < 0)
4821 goto out;
4822
4823 hp = OPT_HDR(struct frag_hdr, skb, off);
4824
4825 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4826 fragment = true;
4827
4828 nexthdr = hp->nexthdr;
4829 off += sizeof(struct frag_hdr);
4830 break;
4831 }
4832 default:
4833 done = true;
4834 break;
4835 }
4836 }
4837
4838 err = -EPROTO;
4839
4840 if (!done || fragment)
4841 goto out;
4842
4843 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4844 if (IS_ERR(csum))
4845 return PTR_ERR(csum);
4846
4847 if (recalculate)
4848 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4849 &ipv6_hdr(skb)->daddr,
4850 skb->len - off, nexthdr, 0);
4851 err = 0;
4852
4853 out:
4854 return err;
4855 }
4856
4857 /**
4858 * skb_checksum_setup - set up partial checksum offset
4859 * @skb: the skb to set up
4860 * @recalculate: if true the pseudo-header checksum will be recalculated
4861 */
4862 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4863 {
4864 int err;
4865
4866 switch (skb->protocol) {
4867 case htons(ETH_P_IP):
4868 err = skb_checksum_setup_ipv4(skb, recalculate);
4869 break;
4870
4871 case htons(ETH_P_IPV6):
4872 err = skb_checksum_setup_ipv6(skb, recalculate);
4873 break;
4874
4875 default:
4876 err = -EPROTO;
4877 break;
4878 }
4879
4880 return err;
4881 }
4882 EXPORT_SYMBOL(skb_checksum_setup);
4883
4884 /**
4885 * skb_checksum_maybe_trim - maybe trims the given skb
4886 * @skb: the skb to check
4887 * @transport_len: the data length beyond the network header
4888 *
4889 * Checks whether the given skb has data beyond the given transport length.
4890 * If so, returns a cloned skb trimmed to this transport length.
4891 * Otherwise returns the provided skb. Returns NULL in error cases
4892 * (e.g. transport_len exceeds skb length or out-of-memory).
4893 *
4894 * Caller needs to set the skb transport header and free any returned skb if it
4895 * differs from the provided skb.
4896 */
4897 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4898 unsigned int transport_len)
4899 {
4900 struct sk_buff *skb_chk;
4901 unsigned int len = skb_transport_offset(skb) + transport_len;
4902 int ret;
4903
4904 if (skb->len < len)
4905 return NULL;
4906 else if (skb->len == len)
4907 return skb;
4908
4909 skb_chk = skb_clone(skb, GFP_ATOMIC);
4910 if (!skb_chk)
4911 return NULL;
4912
4913 ret = pskb_trim_rcsum(skb_chk, len);
4914 if (ret) {
4915 kfree_skb(skb_chk);
4916 return NULL;
4917 }
4918
4919 return skb_chk;
4920 }
4921
4922 /**
4923 * skb_checksum_trimmed - validate checksum of an skb
4924 * @skb: the skb to check
4925 * @transport_len: the data length beyond the network header
4926 * @skb_chkf: checksum function to use
4927 *
4928 * Applies the given checksum function skb_chkf to the provided skb.
4929 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4930 *
4931 * If the skb has data beyond the given transport length, then a
4932 * trimmed & cloned skb is checked and returned.
4933 *
4934 * Caller needs to set the skb transport header and free any returned skb if it
4935 * differs from the provided skb.
4936 */
4937 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4938 unsigned int transport_len,
4939 __sum16(*skb_chkf)(struct sk_buff *skb))
4940 {
4941 struct sk_buff *skb_chk;
4942 unsigned int offset = skb_transport_offset(skb);
4943 __sum16 ret;
4944
4945 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4946 if (!skb_chk)
4947 goto err;
4948
4949 if (!pskb_may_pull(skb_chk, offset))
4950 goto err;
4951
4952 skb_pull_rcsum(skb_chk, offset);
4953 ret = skb_chkf(skb_chk);
4954 skb_push_rcsum(skb_chk, offset);
4955
4956 if (ret)
4957 goto err;
4958
4959 return skb_chk;
4960
4961 err:
4962 if (skb_chk && skb_chk != skb)
4963 kfree_skb(skb_chk);
4964
4965 return NULL;
4966
4967 }
4968 EXPORT_SYMBOL(skb_checksum_trimmed);
4969
4970 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4971 {
4972 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4973 skb->dev->name);
4974 }
4975 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4976
4977 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4978 {
4979 if (head_stolen) {
4980 skb_release_head_state(skb);
4981 kmem_cache_free(skbuff_head_cache, skb);
4982 } else {
4983 __kfree_skb(skb);
4984 }
4985 }
4986 EXPORT_SYMBOL(kfree_skb_partial);
4987
4988 /**
4989 * skb_try_coalesce - try to merge skb to prior one
4990 * @to: prior buffer
4991 * @from: buffer to add
4992 * @fragstolen: pointer to boolean
4993 * @delta_truesize: how much more was allocated than was requested
4994 */
4995 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4996 bool *fragstolen, int *delta_truesize)
4997 {
4998 struct skb_shared_info *to_shinfo, *from_shinfo;
4999 int i, delta, len = from->len;
5000
5001 *fragstolen = false;
5002
5003 if (skb_cloned(to))
5004 return false;
5005
5006 if (len <= skb_tailroom(to)) {
5007 if (len)
5008 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5009 *delta_truesize = 0;
5010 return true;
5011 }
5012
5013 to_shinfo = skb_shinfo(to);
5014 from_shinfo = skb_shinfo(from);
5015 if (to_shinfo->frag_list || from_shinfo->frag_list)
5016 return false;
5017 if (skb_zcopy(to) || skb_zcopy(from))
5018 return false;
5019
5020 if (skb_headlen(from) != 0) {
5021 struct page *page;
5022 unsigned int offset;
5023
5024 if (to_shinfo->nr_frags +
5025 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5026 return false;
5027
5028 if (skb_head_is_locked(from))
5029 return false;
5030
5031 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5032
5033 page = virt_to_head_page(from->head);
5034 offset = from->data - (unsigned char *)page_address(page);
5035
5036 skb_fill_page_desc(to, to_shinfo->nr_frags,
5037 page, offset, skb_headlen(from));
5038 *fragstolen = true;
5039 } else {
5040 if (to_shinfo->nr_frags +
5041 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5042 return false;
5043
5044 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5045 }
5046
5047 WARN_ON_ONCE(delta < len);
5048
5049 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5050 from_shinfo->frags,
5051 from_shinfo->nr_frags * sizeof(skb_frag_t));
5052 to_shinfo->nr_frags += from_shinfo->nr_frags;
5053
5054 if (!skb_cloned(from))
5055 from_shinfo->nr_frags = 0;
5056
5057 /* if the skb is not cloned this does nothing
5058 * since we set nr_frags to 0.
5059 */
5060 for (i = 0; i < from_shinfo->nr_frags; i++)
5061 __skb_frag_ref(&from_shinfo->frags[i]);
5062
5063 to->truesize += delta;
5064 to->len += len;
5065 to->data_len += len;
5066
5067 *delta_truesize = delta;
5068 return true;
5069 }
5070 EXPORT_SYMBOL(skb_try_coalesce);
5071
5072 /**
5073 * skb_scrub_packet - scrub an skb
5074 *
5075 * @skb: buffer to clean
5076 * @xnet: packet is crossing netns
5077 *
5078 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5079 * into/from a tunnel. Some information have to be cleared during these
5080 * operations.
5081 * skb_scrub_packet can also be used to clean a skb before injecting it in
5082 * another namespace (@xnet == true). We have to clear all information in the
5083 * skb that could impact namespace isolation.
5084 */
5085 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5086 {
5087 skb->pkt_type = PACKET_HOST;
5088 skb->skb_iif = 0;
5089 skb->ignore_df = 0;
5090 skb_dst_drop(skb);
5091 secpath_reset(skb);
5092 nf_reset(skb);
5093 nf_reset_trace(skb);
5094
5095 #ifdef CONFIG_NET_SWITCHDEV
5096 skb->offload_fwd_mark = 0;
5097 skb->offload_l3_fwd_mark = 0;
5098 #endif
5099
5100 if (!xnet)
5101 return;
5102
5103 ipvs_reset(skb);
5104 skb->mark = 0;
5105 skb->tstamp = 0;
5106 }
5107 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5108
5109 /**
5110 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5111 *
5112 * @skb: GSO skb
5113 *
5114 * skb_gso_transport_seglen is used to determine the real size of the
5115 * individual segments, including Layer4 headers (TCP/UDP).
5116 *
5117 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5118 */
5119 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5120 {
5121 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5122 unsigned int thlen = 0;
5123
5124 if (skb->encapsulation) {
5125 thlen = skb_inner_transport_header(skb) -
5126 skb_transport_header(skb);
5127
5128 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5129 thlen += inner_tcp_hdrlen(skb);
5130 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5131 thlen = tcp_hdrlen(skb);
5132 } else if (unlikely(skb_is_gso_sctp(skb))) {
5133 thlen = sizeof(struct sctphdr);
5134 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5135 thlen = sizeof(struct udphdr);
5136 }
5137 /* UFO sets gso_size to the size of the fragmentation
5138 * payload, i.e. the size of the L4 (UDP) header is already
5139 * accounted for.
5140 */
5141 return thlen + shinfo->gso_size;
5142 }
5143
5144 /**
5145 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5146 *
5147 * @skb: GSO skb
5148 *
5149 * skb_gso_network_seglen is used to determine the real size of the
5150 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5151 *
5152 * The MAC/L2 header is not accounted for.
5153 */
5154 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5155 {
5156 unsigned int hdr_len = skb_transport_header(skb) -
5157 skb_network_header(skb);
5158
5159 return hdr_len + skb_gso_transport_seglen(skb);
5160 }
5161
5162 /**
5163 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5164 *
5165 * @skb: GSO skb
5166 *
5167 * skb_gso_mac_seglen is used to determine the real size of the
5168 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5169 * headers (TCP/UDP).
5170 */
5171 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5172 {
5173 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5174
5175 return hdr_len + skb_gso_transport_seglen(skb);
5176 }
5177
5178 /**
5179 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5180 *
5181 * There are a couple of instances where we have a GSO skb, and we
5182 * want to determine what size it would be after it is segmented.
5183 *
5184 * We might want to check:
5185 * - L3+L4+payload size (e.g. IP forwarding)
5186 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5187 *
5188 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5189 *
5190 * @skb: GSO skb
5191 *
5192 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5193 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5194 *
5195 * @max_len: The maximum permissible length.
5196 *
5197 * Returns true if the segmented length <= max length.
5198 */
5199 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5200 unsigned int seg_len,
5201 unsigned int max_len) {
5202 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5203 const struct sk_buff *iter;
5204
5205 if (shinfo->gso_size != GSO_BY_FRAGS)
5206 return seg_len <= max_len;
5207
5208 /* Undo this so we can re-use header sizes */
5209 seg_len -= GSO_BY_FRAGS;
5210
5211 skb_walk_frags(skb, iter) {
5212 if (seg_len + skb_headlen(iter) > max_len)
5213 return false;
5214 }
5215
5216 return true;
5217 }
5218
5219 /**
5220 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5221 *
5222 * @skb: GSO skb
5223 * @mtu: MTU to validate against
5224 *
5225 * skb_gso_validate_network_len validates if a given skb will fit a
5226 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5227 * payload.
5228 */
5229 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5230 {
5231 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5232 }
5233 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5234
5235 /**
5236 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5237 *
5238 * @skb: GSO skb
5239 * @len: length to validate against
5240 *
5241 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5242 * length once split, including L2, L3 and L4 headers and the payload.
5243 */
5244 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5245 {
5246 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5247 }
5248 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5249
5250 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5251 {
5252 int mac_len, meta_len;
5253 void *meta;
5254
5255 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5256 kfree_skb(skb);
5257 return NULL;
5258 }
5259
5260 mac_len = skb->data - skb_mac_header(skb);
5261 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5262 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5263 mac_len - VLAN_HLEN - ETH_TLEN);
5264 }
5265
5266 meta_len = skb_metadata_len(skb);
5267 if (meta_len) {
5268 meta = skb_metadata_end(skb) - meta_len;
5269 memmove(meta + VLAN_HLEN, meta, meta_len);
5270 }
5271
5272 skb->mac_header += VLAN_HLEN;
5273 return skb;
5274 }
5275
5276 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5277 {
5278 struct vlan_hdr *vhdr;
5279 u16 vlan_tci;
5280
5281 if (unlikely(skb_vlan_tag_present(skb))) {
5282 /* vlan_tci is already set-up so leave this for another time */
5283 return skb;
5284 }
5285
5286 skb = skb_share_check(skb, GFP_ATOMIC);
5287 if (unlikely(!skb))
5288 goto err_free;
5289
5290 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5291 goto err_free;
5292
5293 vhdr = (struct vlan_hdr *)skb->data;
5294 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5295 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5296
5297 skb_pull_rcsum(skb, VLAN_HLEN);
5298 vlan_set_encap_proto(skb, vhdr);
5299
5300 skb = skb_reorder_vlan_header(skb);
5301 if (unlikely(!skb))
5302 goto err_free;
5303
5304 skb_reset_network_header(skb);
5305 skb_reset_transport_header(skb);
5306 skb_reset_mac_len(skb);
5307
5308 return skb;
5309
5310 err_free:
5311 kfree_skb(skb);
5312 return NULL;
5313 }
5314 EXPORT_SYMBOL(skb_vlan_untag);
5315
5316 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5317 {
5318 if (!pskb_may_pull(skb, write_len))
5319 return -ENOMEM;
5320
5321 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5322 return 0;
5323
5324 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5325 }
5326 EXPORT_SYMBOL(skb_ensure_writable);
5327
5328 /* remove VLAN header from packet and update csum accordingly.
5329 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5330 */
5331 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5332 {
5333 struct vlan_hdr *vhdr;
5334 int offset = skb->data - skb_mac_header(skb);
5335 int err;
5336
5337 if (WARN_ONCE(offset,
5338 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5339 offset)) {
5340 return -EINVAL;
5341 }
5342
5343 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5344 if (unlikely(err))
5345 return err;
5346
5347 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5348
5349 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5350 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5351
5352 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5353 __skb_pull(skb, VLAN_HLEN);
5354
5355 vlan_set_encap_proto(skb, vhdr);
5356 skb->mac_header += VLAN_HLEN;
5357
5358 if (skb_network_offset(skb) < ETH_HLEN)
5359 skb_set_network_header(skb, ETH_HLEN);
5360
5361 skb_reset_mac_len(skb);
5362
5363 return err;
5364 }
5365 EXPORT_SYMBOL(__skb_vlan_pop);
5366
5367 /* Pop a vlan tag either from hwaccel or from payload.
5368 * Expects skb->data at mac header.
5369 */
5370 int skb_vlan_pop(struct sk_buff *skb)
5371 {
5372 u16 vlan_tci;
5373 __be16 vlan_proto;
5374 int err;
5375
5376 if (likely(skb_vlan_tag_present(skb))) {
5377 __vlan_hwaccel_clear_tag(skb);
5378 } else {
5379 if (unlikely(!eth_type_vlan(skb->protocol)))
5380 return 0;
5381
5382 err = __skb_vlan_pop(skb, &vlan_tci);
5383 if (err)
5384 return err;
5385 }
5386 /* move next vlan tag to hw accel tag */
5387 if (likely(!eth_type_vlan(skb->protocol)))
5388 return 0;
5389
5390 vlan_proto = skb->protocol;
5391 err = __skb_vlan_pop(skb, &vlan_tci);
5392 if (unlikely(err))
5393 return err;
5394
5395 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5396 return 0;
5397 }
5398 EXPORT_SYMBOL(skb_vlan_pop);
5399
5400 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5401 * Expects skb->data at mac header.
5402 */
5403 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5404 {
5405 if (skb_vlan_tag_present(skb)) {
5406 int offset = skb->data - skb_mac_header(skb);
5407 int err;
5408
5409 if (WARN_ONCE(offset,
5410 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5411 offset)) {
5412 return -EINVAL;
5413 }
5414
5415 err = __vlan_insert_tag(skb, skb->vlan_proto,
5416 skb_vlan_tag_get(skb));
5417 if (err)
5418 return err;
5419
5420 skb->protocol = skb->vlan_proto;
5421 skb->mac_len += VLAN_HLEN;
5422
5423 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5424 }
5425 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5426 return 0;
5427 }
5428 EXPORT_SYMBOL(skb_vlan_push);
5429
5430 /* Update the ethertype of hdr and the skb csum value if required. */
5431 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5432 __be16 ethertype)
5433 {
5434 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5435 __be16 diff[] = { ~hdr->h_proto, ethertype };
5436
5437 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5438 }
5439
5440 hdr->h_proto = ethertype;
5441 }
5442
5443 /**
5444 * skb_mpls_push() - push a new MPLS header after the mac header
5445 *
5446 * @skb: buffer
5447 * @mpls_lse: MPLS label stack entry to push
5448 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5449 *
5450 * Expects skb->data at mac header.
5451 *
5452 * Returns 0 on success, -errno otherwise.
5453 */
5454 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto)
5455 {
5456 struct mpls_shim_hdr *lse;
5457 int err;
5458
5459 if (unlikely(!eth_p_mpls(mpls_proto)))
5460 return -EINVAL;
5461
5462 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5463 if (skb->encapsulation)
5464 return -EINVAL;
5465
5466 err = skb_cow_head(skb, MPLS_HLEN);
5467 if (unlikely(err))
5468 return err;
5469
5470 if (!skb->inner_protocol) {
5471 skb_set_inner_network_header(skb, skb->mac_len);
5472 skb_set_inner_protocol(skb, skb->protocol);
5473 }
5474
5475 skb_push(skb, MPLS_HLEN);
5476 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5477 skb->mac_len);
5478 skb_reset_mac_header(skb);
5479 skb_set_network_header(skb, skb->mac_len);
5480
5481 lse = mpls_hdr(skb);
5482 lse->label_stack_entry = mpls_lse;
5483 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5484
5485 if (skb->dev && skb->dev->type == ARPHRD_ETHER)
5486 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5487 skb->protocol = mpls_proto;
5488
5489 return 0;
5490 }
5491 EXPORT_SYMBOL_GPL(skb_mpls_push);
5492
5493 /**
5494 * skb_mpls_pop() - pop the outermost MPLS header
5495 *
5496 * @skb: buffer
5497 * @next_proto: ethertype of header after popped MPLS header
5498 *
5499 * Expects skb->data at mac header.
5500 *
5501 * Returns 0 on success, -errno otherwise.
5502 */
5503 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto)
5504 {
5505 int err;
5506
5507 if (unlikely(!eth_p_mpls(skb->protocol)))
5508 return -EINVAL;
5509
5510 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5511 if (unlikely(err))
5512 return err;
5513
5514 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5515 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5516 skb->mac_len);
5517
5518 __skb_pull(skb, MPLS_HLEN);
5519 skb_reset_mac_header(skb);
5520 skb_set_network_header(skb, skb->mac_len);
5521
5522 if (skb->dev && skb->dev->type == ARPHRD_ETHER) {
5523 struct ethhdr *hdr;
5524
5525 /* use mpls_hdr() to get ethertype to account for VLANs. */
5526 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5527 skb_mod_eth_type(skb, hdr, next_proto);
5528 }
5529 skb->protocol = next_proto;
5530
5531 return 0;
5532 }
5533 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5534
5535 /**
5536 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5537 *
5538 * @skb: buffer
5539 * @mpls_lse: new MPLS label stack entry to update to
5540 *
5541 * Expects skb->data at mac header.
5542 *
5543 * Returns 0 on success, -errno otherwise.
5544 */
5545 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5546 {
5547 int err;
5548
5549 if (unlikely(!eth_p_mpls(skb->protocol)))
5550 return -EINVAL;
5551
5552 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5553 if (unlikely(err))
5554 return err;
5555
5556 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5557 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5558
5559 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5560 }
5561
5562 mpls_hdr(skb)->label_stack_entry = mpls_lse;
5563
5564 return 0;
5565 }
5566 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5567
5568 /**
5569 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5570 *
5571 * @skb: buffer
5572 *
5573 * Expects skb->data at mac header.
5574 *
5575 * Returns 0 on success, -errno otherwise.
5576 */
5577 int skb_mpls_dec_ttl(struct sk_buff *skb)
5578 {
5579 u32 lse;
5580 u8 ttl;
5581
5582 if (unlikely(!eth_p_mpls(skb->protocol)))
5583 return -EINVAL;
5584
5585 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5586 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5587 if (!--ttl)
5588 return -EINVAL;
5589
5590 lse &= ~MPLS_LS_TTL_MASK;
5591 lse |= ttl << MPLS_LS_TTL_SHIFT;
5592
5593 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5594 }
5595 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5596
5597 /**
5598 * alloc_skb_with_frags - allocate skb with page frags
5599 *
5600 * @header_len: size of linear part
5601 * @data_len: needed length in frags
5602 * @max_page_order: max page order desired.
5603 * @errcode: pointer to error code if any
5604 * @gfp_mask: allocation mask
5605 *
5606 * This can be used to allocate a paged skb, given a maximal order for frags.
5607 */
5608 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5609 unsigned long data_len,
5610 int max_page_order,
5611 int *errcode,
5612 gfp_t gfp_mask)
5613 {
5614 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5615 unsigned long chunk;
5616 struct sk_buff *skb;
5617 struct page *page;
5618 int i;
5619
5620 *errcode = -EMSGSIZE;
5621 /* Note this test could be relaxed, if we succeed to allocate
5622 * high order pages...
5623 */
5624 if (npages > MAX_SKB_FRAGS)
5625 return NULL;
5626
5627 *errcode = -ENOBUFS;
5628 skb = alloc_skb(header_len, gfp_mask);
5629 if (!skb)
5630 return NULL;
5631
5632 skb->truesize += npages << PAGE_SHIFT;
5633
5634 for (i = 0; npages > 0; i++) {
5635 int order = max_page_order;
5636
5637 while (order) {
5638 if (npages >= 1 << order) {
5639 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5640 __GFP_COMP |
5641 __GFP_NOWARN,
5642 order);
5643 if (page)
5644 goto fill_page;
5645 /* Do not retry other high order allocations */
5646 order = 1;
5647 max_page_order = 0;
5648 }
5649 order--;
5650 }
5651 page = alloc_page(gfp_mask);
5652 if (!page)
5653 goto failure;
5654 fill_page:
5655 chunk = min_t(unsigned long, data_len,
5656 PAGE_SIZE << order);
5657 skb_fill_page_desc(skb, i, page, 0, chunk);
5658 data_len -= chunk;
5659 npages -= 1 << order;
5660 }
5661 return skb;
5662
5663 failure:
5664 kfree_skb(skb);
5665 return NULL;
5666 }
5667 EXPORT_SYMBOL(alloc_skb_with_frags);
5668
5669 /* carve out the first off bytes from skb when off < headlen */
5670 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5671 const int headlen, gfp_t gfp_mask)
5672 {
5673 int i;
5674 int size = skb_end_offset(skb);
5675 int new_hlen = headlen - off;
5676 u8 *data;
5677
5678 size = SKB_DATA_ALIGN(size);
5679
5680 if (skb_pfmemalloc(skb))
5681 gfp_mask |= __GFP_MEMALLOC;
5682 data = kmalloc_reserve(size +
5683 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5684 gfp_mask, NUMA_NO_NODE, NULL);
5685 if (!data)
5686 return -ENOMEM;
5687
5688 size = SKB_WITH_OVERHEAD(ksize(data));
5689
5690 /* Copy real data, and all frags */
5691 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5692 skb->len -= off;
5693
5694 memcpy((struct skb_shared_info *)(data + size),
5695 skb_shinfo(skb),
5696 offsetof(struct skb_shared_info,
5697 frags[skb_shinfo(skb)->nr_frags]));
5698 if (skb_cloned(skb)) {
5699 /* drop the old head gracefully */
5700 if (skb_orphan_frags(skb, gfp_mask)) {
5701 kfree(data);
5702 return -ENOMEM;
5703 }
5704 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5705 skb_frag_ref(skb, i);
5706 if (skb_has_frag_list(skb))
5707 skb_clone_fraglist(skb);
5708 skb_release_data(skb);
5709 } else {
5710 /* we can reuse existing recount- all we did was
5711 * relocate values
5712 */
5713 skb_free_head(skb);
5714 }
5715
5716 skb->head = data;
5717 skb->data = data;
5718 skb->head_frag = 0;
5719 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5720 skb->end = size;
5721 #else
5722 skb->end = skb->head + size;
5723 #endif
5724 skb_set_tail_pointer(skb, skb_headlen(skb));
5725 skb_headers_offset_update(skb, 0);
5726 skb->cloned = 0;
5727 skb->hdr_len = 0;
5728 skb->nohdr = 0;
5729 atomic_set(&skb_shinfo(skb)->dataref, 1);
5730
5731 return 0;
5732 }
5733
5734 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5735
5736 /* carve out the first eat bytes from skb's frag_list. May recurse into
5737 * pskb_carve()
5738 */
5739 static int pskb_carve_frag_list(struct sk_buff *skb,
5740 struct skb_shared_info *shinfo, int eat,
5741 gfp_t gfp_mask)
5742 {
5743 struct sk_buff *list = shinfo->frag_list;
5744 struct sk_buff *clone = NULL;
5745 struct sk_buff *insp = NULL;
5746
5747 do {
5748 if (!list) {
5749 pr_err("Not enough bytes to eat. Want %d\n", eat);
5750 return -EFAULT;
5751 }
5752 if (list->len <= eat) {
5753 /* Eaten as whole. */
5754 eat -= list->len;
5755 list = list->next;
5756 insp = list;
5757 } else {
5758 /* Eaten partially. */
5759 if (skb_shared(list)) {
5760 clone = skb_clone(list, gfp_mask);
5761 if (!clone)
5762 return -ENOMEM;
5763 insp = list->next;
5764 list = clone;
5765 } else {
5766 /* This may be pulled without problems. */
5767 insp = list;
5768 }
5769 if (pskb_carve(list, eat, gfp_mask) < 0) {
5770 kfree_skb(clone);
5771 return -ENOMEM;
5772 }
5773 break;
5774 }
5775 } while (eat);
5776
5777 /* Free pulled out fragments. */
5778 while ((list = shinfo->frag_list) != insp) {
5779 shinfo->frag_list = list->next;
5780 kfree_skb(list);
5781 }
5782 /* And insert new clone at head. */
5783 if (clone) {
5784 clone->next = list;
5785 shinfo->frag_list = clone;
5786 }
5787 return 0;
5788 }
5789
5790 /* carve off first len bytes from skb. Split line (off) is in the
5791 * non-linear part of skb
5792 */
5793 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5794 int pos, gfp_t gfp_mask)
5795 {
5796 int i, k = 0;
5797 int size = skb_end_offset(skb);
5798 u8 *data;
5799 const int nfrags = skb_shinfo(skb)->nr_frags;
5800 struct skb_shared_info *shinfo;
5801
5802 size = SKB_DATA_ALIGN(size);
5803
5804 if (skb_pfmemalloc(skb))
5805 gfp_mask |= __GFP_MEMALLOC;
5806 data = kmalloc_reserve(size +
5807 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5808 gfp_mask, NUMA_NO_NODE, NULL);
5809 if (!data)
5810 return -ENOMEM;
5811
5812 size = SKB_WITH_OVERHEAD(ksize(data));
5813
5814 memcpy((struct skb_shared_info *)(data + size),
5815 skb_shinfo(skb), offsetof(struct skb_shared_info,
5816 frags[skb_shinfo(skb)->nr_frags]));
5817 if (skb_orphan_frags(skb, gfp_mask)) {
5818 kfree(data);
5819 return -ENOMEM;
5820 }
5821 shinfo = (struct skb_shared_info *)(data + size);
5822 for (i = 0; i < nfrags; i++) {
5823 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5824
5825 if (pos + fsize > off) {
5826 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5827
5828 if (pos < off) {
5829 /* Split frag.
5830 * We have two variants in this case:
5831 * 1. Move all the frag to the second
5832 * part, if it is possible. F.e.
5833 * this approach is mandatory for TUX,
5834 * where splitting is expensive.
5835 * 2. Split is accurately. We make this.
5836 */
5837 shinfo->frags[0].page_offset += off - pos;
5838 skb_frag_size_sub(&shinfo->frags[0], off - pos);
5839 }
5840 skb_frag_ref(skb, i);
5841 k++;
5842 }
5843 pos += fsize;
5844 }
5845 shinfo->nr_frags = k;
5846 if (skb_has_frag_list(skb))
5847 skb_clone_fraglist(skb);
5848
5849 if (k == 0) {
5850 /* split line is in frag list */
5851 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5852 }
5853 skb_release_data(skb);
5854
5855 skb->head = data;
5856 skb->head_frag = 0;
5857 skb->data = data;
5858 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5859 skb->end = size;
5860 #else
5861 skb->end = skb->head + size;
5862 #endif
5863 skb_reset_tail_pointer(skb);
5864 skb_headers_offset_update(skb, 0);
5865 skb->cloned = 0;
5866 skb->hdr_len = 0;
5867 skb->nohdr = 0;
5868 skb->len -= off;
5869 skb->data_len = skb->len;
5870 atomic_set(&skb_shinfo(skb)->dataref, 1);
5871 return 0;
5872 }
5873
5874 /* remove len bytes from the beginning of the skb */
5875 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5876 {
5877 int headlen = skb_headlen(skb);
5878
5879 if (len < headlen)
5880 return pskb_carve_inside_header(skb, len, headlen, gfp);
5881 else
5882 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5883 }
5884
5885 /* Extract to_copy bytes starting at off from skb, and return this in
5886 * a new skb
5887 */
5888 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5889 int to_copy, gfp_t gfp)
5890 {
5891 struct sk_buff *clone = skb_clone(skb, gfp);
5892
5893 if (!clone)
5894 return NULL;
5895
5896 if (pskb_carve(clone, off, gfp) < 0 ||
5897 pskb_trim(clone, to_copy)) {
5898 kfree_skb(clone);
5899 return NULL;
5900 }
5901 return clone;
5902 }
5903 EXPORT_SYMBOL(pskb_extract);
5904
5905 /**
5906 * skb_condense - try to get rid of fragments/frag_list if possible
5907 * @skb: buffer
5908 *
5909 * Can be used to save memory before skb is added to a busy queue.
5910 * If packet has bytes in frags and enough tail room in skb->head,
5911 * pull all of them, so that we can free the frags right now and adjust
5912 * truesize.
5913 * Notes:
5914 * We do not reallocate skb->head thus can not fail.
5915 * Caller must re-evaluate skb->truesize if needed.
5916 */
5917 void skb_condense(struct sk_buff *skb)
5918 {
5919 if (skb->data_len) {
5920 if (skb->data_len > skb->end - skb->tail ||
5921 skb_cloned(skb))
5922 return;
5923
5924 /* Nice, we can free page frag(s) right now */
5925 __pskb_pull_tail(skb, skb->data_len);
5926 }
5927 /* At this point, skb->truesize might be over estimated,
5928 * because skb had a fragment, and fragments do not tell
5929 * their truesize.
5930 * When we pulled its content into skb->head, fragment
5931 * was freed, but __pskb_pull_tail() could not possibly
5932 * adjust skb->truesize, not knowing the frag truesize.
5933 */
5934 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5935 }
5936
5937 #ifdef CONFIG_SKB_EXTENSIONS
5938 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
5939 {
5940 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
5941 }
5942
5943 static struct skb_ext *skb_ext_alloc(void)
5944 {
5945 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
5946
5947 if (new) {
5948 memset(new->offset, 0, sizeof(new->offset));
5949 refcount_set(&new->refcnt, 1);
5950 }
5951
5952 return new;
5953 }
5954
5955 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
5956 unsigned int old_active)
5957 {
5958 struct skb_ext *new;
5959
5960 if (refcount_read(&old->refcnt) == 1)
5961 return old;
5962
5963 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
5964 if (!new)
5965 return NULL;
5966
5967 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
5968 refcount_set(&new->refcnt, 1);
5969
5970 #ifdef CONFIG_XFRM
5971 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
5972 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
5973 unsigned int i;
5974
5975 for (i = 0; i < sp->len; i++)
5976 xfrm_state_hold(sp->xvec[i]);
5977 }
5978 #endif
5979 __skb_ext_put(old);
5980 return new;
5981 }
5982
5983 /**
5984 * skb_ext_add - allocate space for given extension, COW if needed
5985 * @skb: buffer
5986 * @id: extension to allocate space for
5987 *
5988 * Allocates enough space for the given extension.
5989 * If the extension is already present, a pointer to that extension
5990 * is returned.
5991 *
5992 * If the skb was cloned, COW applies and the returned memory can be
5993 * modified without changing the extension space of clones buffers.
5994 *
5995 * Returns pointer to the extension or NULL on allocation failure.
5996 */
5997 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
5998 {
5999 struct skb_ext *new, *old = NULL;
6000 unsigned int newlen, newoff;
6001
6002 if (skb->active_extensions) {
6003 old = skb->extensions;
6004
6005 new = skb_ext_maybe_cow(old, skb->active_extensions);
6006 if (!new)
6007 return NULL;
6008
6009 if (__skb_ext_exist(new, id))
6010 goto set_active;
6011
6012 newoff = new->chunks;
6013 } else {
6014 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6015
6016 new = skb_ext_alloc();
6017 if (!new)
6018 return NULL;
6019 }
6020
6021 newlen = newoff + skb_ext_type_len[id];
6022 new->chunks = newlen;
6023 new->offset[id] = newoff;
6024 set_active:
6025 skb->extensions = new;
6026 skb->active_extensions |= 1 << id;
6027 return skb_ext_get_ptr(new, id);
6028 }
6029 EXPORT_SYMBOL(skb_ext_add);
6030
6031 #ifdef CONFIG_XFRM
6032 static void skb_ext_put_sp(struct sec_path *sp)
6033 {
6034 unsigned int i;
6035
6036 for (i = 0; i < sp->len; i++)
6037 xfrm_state_put(sp->xvec[i]);
6038 }
6039 #endif
6040
6041 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6042 {
6043 struct skb_ext *ext = skb->extensions;
6044
6045 skb->active_extensions &= ~(1 << id);
6046 if (skb->active_extensions == 0) {
6047 skb->extensions = NULL;
6048 __skb_ext_put(ext);
6049 #ifdef CONFIG_XFRM
6050 } else if (id == SKB_EXT_SEC_PATH &&
6051 refcount_read(&ext->refcnt) == 1) {
6052 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6053
6054 skb_ext_put_sp(sp);
6055 sp->len = 0;
6056 #endif
6057 }
6058 }
6059 EXPORT_SYMBOL(__skb_ext_del);
6060
6061 void __skb_ext_put(struct skb_ext *ext)
6062 {
6063 /* If this is last clone, nothing can increment
6064 * it after check passes. Avoids one atomic op.
6065 */
6066 if (refcount_read(&ext->refcnt) == 1)
6067 goto free_now;
6068
6069 if (!refcount_dec_and_test(&ext->refcnt))
6070 return;
6071 free_now:
6072 #ifdef CONFIG_XFRM
6073 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6074 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6075 #endif
6076
6077 kmem_cache_free(skbuff_ext_cache, ext);
6078 }
6079 EXPORT_SYMBOL(__skb_ext_put);
6080 #endif /* CONFIG_SKB_EXTENSIONS */