]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/core/skbuff.c
staging: ft1000: Remove unused headers.
[mirror_ubuntu-zesty-kernel.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/mm.h>
44 #include <linux/interrupt.h>
45 #include <linux/in.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60
61 #include <net/protocol.h>
62 #include <net/dst.h>
63 #include <net/sock.h>
64 #include <net/checksum.h>
65 #include <net/xfrm.h>
66
67 #include <asm/uaccess.h>
68 #include <asm/system.h>
69 #include <trace/events/skb.h>
70
71 #include "kmap_skb.h"
72
73 static struct kmem_cache *skbuff_head_cache __read_mostly;
74 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
75
76 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
77 struct pipe_buffer *buf)
78 {
79 put_page(buf->page);
80 }
81
82 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
83 struct pipe_buffer *buf)
84 {
85 get_page(buf->page);
86 }
87
88 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
90 {
91 return 1;
92 }
93
94
95 /* Pipe buffer operations for a socket. */
96 static const struct pipe_buf_operations sock_pipe_buf_ops = {
97 .can_merge = 0,
98 .map = generic_pipe_buf_map,
99 .unmap = generic_pipe_buf_unmap,
100 .confirm = generic_pipe_buf_confirm,
101 .release = sock_pipe_buf_release,
102 .steal = sock_pipe_buf_steal,
103 .get = sock_pipe_buf_get,
104 };
105
106 /*
107 * Keep out-of-line to prevent kernel bloat.
108 * __builtin_return_address is not used because it is not always
109 * reliable.
110 */
111
112 /**
113 * skb_over_panic - private function
114 * @skb: buffer
115 * @sz: size
116 * @here: address
117 *
118 * Out of line support code for skb_put(). Not user callable.
119 */
120 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
121 {
122 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
123 "data:%p tail:%#lx end:%#lx dev:%s\n",
124 here, skb->len, sz, skb->head, skb->data,
125 (unsigned long)skb->tail, (unsigned long)skb->end,
126 skb->dev ? skb->dev->name : "<NULL>");
127 BUG();
128 }
129
130 /**
131 * skb_under_panic - private function
132 * @skb: buffer
133 * @sz: size
134 * @here: address
135 *
136 * Out of line support code for skb_push(). Not user callable.
137 */
138
139 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
140 {
141 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
142 "data:%p tail:%#lx end:%#lx dev:%s\n",
143 here, skb->len, sz, skb->head, skb->data,
144 (unsigned long)skb->tail, (unsigned long)skb->end,
145 skb->dev ? skb->dev->name : "<NULL>");
146 BUG();
147 }
148
149 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
150 * 'private' fields and also do memory statistics to find all the
151 * [BEEP] leaks.
152 *
153 */
154
155 /**
156 * __alloc_skb - allocate a network buffer
157 * @size: size to allocate
158 * @gfp_mask: allocation mask
159 * @fclone: allocate from fclone cache instead of head cache
160 * and allocate a cloned (child) skb
161 * @node: numa node to allocate memory on
162 *
163 * Allocate a new &sk_buff. The returned buffer has no headroom and a
164 * tail room of size bytes. The object has a reference count of one.
165 * The return is the buffer. On a failure the return is %NULL.
166 *
167 * Buffers may only be allocated from interrupts using a @gfp_mask of
168 * %GFP_ATOMIC.
169 */
170 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
171 int fclone, int node)
172 {
173 struct kmem_cache *cache;
174 struct skb_shared_info *shinfo;
175 struct sk_buff *skb;
176 u8 *data;
177
178 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
179
180 /* Get the HEAD */
181 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
182 if (!skb)
183 goto out;
184 prefetchw(skb);
185
186 size = SKB_DATA_ALIGN(size);
187 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
188 gfp_mask, node);
189 if (!data)
190 goto nodata;
191 prefetchw(data + size);
192
193 /*
194 * Only clear those fields we need to clear, not those that we will
195 * actually initialise below. Hence, don't put any more fields after
196 * the tail pointer in struct sk_buff!
197 */
198 memset(skb, 0, offsetof(struct sk_buff, tail));
199 skb->truesize = size + sizeof(struct sk_buff);
200 atomic_set(&skb->users, 1);
201 skb->head = data;
202 skb->data = data;
203 skb_reset_tail_pointer(skb);
204 skb->end = skb->tail + size;
205 #ifdef NET_SKBUFF_DATA_USES_OFFSET
206 skb->mac_header = ~0U;
207 #endif
208
209 /* make sure we initialize shinfo sequentially */
210 shinfo = skb_shinfo(skb);
211 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
212 atomic_set(&shinfo->dataref, 1);
213
214 if (fclone) {
215 struct sk_buff *child = skb + 1;
216 atomic_t *fclone_ref = (atomic_t *) (child + 1);
217
218 kmemcheck_annotate_bitfield(child, flags1);
219 kmemcheck_annotate_bitfield(child, flags2);
220 skb->fclone = SKB_FCLONE_ORIG;
221 atomic_set(fclone_ref, 1);
222
223 child->fclone = SKB_FCLONE_UNAVAILABLE;
224 }
225 out:
226 return skb;
227 nodata:
228 kmem_cache_free(cache, skb);
229 skb = NULL;
230 goto out;
231 }
232 EXPORT_SYMBOL(__alloc_skb);
233
234 /**
235 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
236 * @dev: network device to receive on
237 * @length: length to allocate
238 * @gfp_mask: get_free_pages mask, passed to alloc_skb
239 *
240 * Allocate a new &sk_buff and assign it a usage count of one. The
241 * buffer has unspecified headroom built in. Users should allocate
242 * the headroom they think they need without accounting for the
243 * built in space. The built in space is used for optimisations.
244 *
245 * %NULL is returned if there is no free memory.
246 */
247 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
248 unsigned int length, gfp_t gfp_mask)
249 {
250 struct sk_buff *skb;
251
252 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
253 if (likely(skb)) {
254 skb_reserve(skb, NET_SKB_PAD);
255 skb->dev = dev;
256 }
257 return skb;
258 }
259 EXPORT_SYMBOL(__netdev_alloc_skb);
260
261 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
262 int size)
263 {
264 skb_fill_page_desc(skb, i, page, off, size);
265 skb->len += size;
266 skb->data_len += size;
267 skb->truesize += size;
268 }
269 EXPORT_SYMBOL(skb_add_rx_frag);
270
271 /**
272 * dev_alloc_skb - allocate an skbuff for receiving
273 * @length: length to allocate
274 *
275 * Allocate a new &sk_buff and assign it a usage count of one. The
276 * buffer has unspecified headroom built in. Users should allocate
277 * the headroom they think they need without accounting for the
278 * built in space. The built in space is used for optimisations.
279 *
280 * %NULL is returned if there is no free memory. Although this function
281 * allocates memory it can be called from an interrupt.
282 */
283 struct sk_buff *dev_alloc_skb(unsigned int length)
284 {
285 /*
286 * There is more code here than it seems:
287 * __dev_alloc_skb is an inline
288 */
289 return __dev_alloc_skb(length, GFP_ATOMIC);
290 }
291 EXPORT_SYMBOL(dev_alloc_skb);
292
293 static void skb_drop_list(struct sk_buff **listp)
294 {
295 struct sk_buff *list = *listp;
296
297 *listp = NULL;
298
299 do {
300 struct sk_buff *this = list;
301 list = list->next;
302 kfree_skb(this);
303 } while (list);
304 }
305
306 static inline void skb_drop_fraglist(struct sk_buff *skb)
307 {
308 skb_drop_list(&skb_shinfo(skb)->frag_list);
309 }
310
311 static void skb_clone_fraglist(struct sk_buff *skb)
312 {
313 struct sk_buff *list;
314
315 skb_walk_frags(skb, list)
316 skb_get(list);
317 }
318
319 static void skb_release_data(struct sk_buff *skb)
320 {
321 if (!skb->cloned ||
322 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
323 &skb_shinfo(skb)->dataref)) {
324 if (skb_shinfo(skb)->nr_frags) {
325 int i;
326 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
327 put_page(skb_shinfo(skb)->frags[i].page);
328 }
329
330 if (skb_has_frag_list(skb))
331 skb_drop_fraglist(skb);
332
333 kfree(skb->head);
334 }
335 }
336
337 /*
338 * Free an skbuff by memory without cleaning the state.
339 */
340 static void kfree_skbmem(struct sk_buff *skb)
341 {
342 struct sk_buff *other;
343 atomic_t *fclone_ref;
344
345 switch (skb->fclone) {
346 case SKB_FCLONE_UNAVAILABLE:
347 kmem_cache_free(skbuff_head_cache, skb);
348 break;
349
350 case SKB_FCLONE_ORIG:
351 fclone_ref = (atomic_t *) (skb + 2);
352 if (atomic_dec_and_test(fclone_ref))
353 kmem_cache_free(skbuff_fclone_cache, skb);
354 break;
355
356 case SKB_FCLONE_CLONE:
357 fclone_ref = (atomic_t *) (skb + 1);
358 other = skb - 1;
359
360 /* The clone portion is available for
361 * fast-cloning again.
362 */
363 skb->fclone = SKB_FCLONE_UNAVAILABLE;
364
365 if (atomic_dec_and_test(fclone_ref))
366 kmem_cache_free(skbuff_fclone_cache, other);
367 break;
368 }
369 }
370
371 static void skb_release_head_state(struct sk_buff *skb)
372 {
373 skb_dst_drop(skb);
374 #ifdef CONFIG_XFRM
375 secpath_put(skb->sp);
376 #endif
377 if (skb->destructor) {
378 WARN_ON(in_irq());
379 skb->destructor(skb);
380 }
381 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
382 nf_conntrack_put(skb->nfct);
383 nf_conntrack_put_reasm(skb->nfct_reasm);
384 #endif
385 #ifdef CONFIG_BRIDGE_NETFILTER
386 nf_bridge_put(skb->nf_bridge);
387 #endif
388 /* XXX: IS this still necessary? - JHS */
389 #ifdef CONFIG_NET_SCHED
390 skb->tc_index = 0;
391 #ifdef CONFIG_NET_CLS_ACT
392 skb->tc_verd = 0;
393 #endif
394 #endif
395 }
396
397 /* Free everything but the sk_buff shell. */
398 static void skb_release_all(struct sk_buff *skb)
399 {
400 skb_release_head_state(skb);
401 skb_release_data(skb);
402 }
403
404 /**
405 * __kfree_skb - private function
406 * @skb: buffer
407 *
408 * Free an sk_buff. Release anything attached to the buffer.
409 * Clean the state. This is an internal helper function. Users should
410 * always call kfree_skb
411 */
412
413 void __kfree_skb(struct sk_buff *skb)
414 {
415 skb_release_all(skb);
416 kfree_skbmem(skb);
417 }
418 EXPORT_SYMBOL(__kfree_skb);
419
420 /**
421 * kfree_skb - free an sk_buff
422 * @skb: buffer to free
423 *
424 * Drop a reference to the buffer and free it if the usage count has
425 * hit zero.
426 */
427 void kfree_skb(struct sk_buff *skb)
428 {
429 if (unlikely(!skb))
430 return;
431 if (likely(atomic_read(&skb->users) == 1))
432 smp_rmb();
433 else if (likely(!atomic_dec_and_test(&skb->users)))
434 return;
435 trace_kfree_skb(skb, __builtin_return_address(0));
436 __kfree_skb(skb);
437 }
438 EXPORT_SYMBOL(kfree_skb);
439
440 /**
441 * consume_skb - free an skbuff
442 * @skb: buffer to free
443 *
444 * Drop a ref to the buffer and free it if the usage count has hit zero
445 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
446 * is being dropped after a failure and notes that
447 */
448 void consume_skb(struct sk_buff *skb)
449 {
450 if (unlikely(!skb))
451 return;
452 if (likely(atomic_read(&skb->users) == 1))
453 smp_rmb();
454 else if (likely(!atomic_dec_and_test(&skb->users)))
455 return;
456 trace_consume_skb(skb);
457 __kfree_skb(skb);
458 }
459 EXPORT_SYMBOL(consume_skb);
460
461 /**
462 * skb_recycle_check - check if skb can be reused for receive
463 * @skb: buffer
464 * @skb_size: minimum receive buffer size
465 *
466 * Checks that the skb passed in is not shared or cloned, and
467 * that it is linear and its head portion at least as large as
468 * skb_size so that it can be recycled as a receive buffer.
469 * If these conditions are met, this function does any necessary
470 * reference count dropping and cleans up the skbuff as if it
471 * just came from __alloc_skb().
472 */
473 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
474 {
475 struct skb_shared_info *shinfo;
476
477 if (irqs_disabled())
478 return false;
479
480 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
481 return false;
482
483 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
484 if (skb_end_pointer(skb) - skb->head < skb_size)
485 return false;
486
487 if (skb_shared(skb) || skb_cloned(skb))
488 return false;
489
490 skb_release_head_state(skb);
491
492 shinfo = skb_shinfo(skb);
493 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
494 atomic_set(&shinfo->dataref, 1);
495
496 memset(skb, 0, offsetof(struct sk_buff, tail));
497 skb->data = skb->head + NET_SKB_PAD;
498 skb_reset_tail_pointer(skb);
499
500 return true;
501 }
502 EXPORT_SYMBOL(skb_recycle_check);
503
504 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
505 {
506 new->tstamp = old->tstamp;
507 new->dev = old->dev;
508 new->transport_header = old->transport_header;
509 new->network_header = old->network_header;
510 new->mac_header = old->mac_header;
511 skb_dst_copy(new, old);
512 new->rxhash = old->rxhash;
513 #ifdef CONFIG_XFRM
514 new->sp = secpath_get(old->sp);
515 #endif
516 memcpy(new->cb, old->cb, sizeof(old->cb));
517 new->csum = old->csum;
518 new->local_df = old->local_df;
519 new->pkt_type = old->pkt_type;
520 new->ip_summed = old->ip_summed;
521 skb_copy_queue_mapping(new, old);
522 new->priority = old->priority;
523 new->deliver_no_wcard = old->deliver_no_wcard;
524 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
525 new->ipvs_property = old->ipvs_property;
526 #endif
527 new->protocol = old->protocol;
528 new->mark = old->mark;
529 new->skb_iif = old->skb_iif;
530 __nf_copy(new, old);
531 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
532 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
533 new->nf_trace = old->nf_trace;
534 #endif
535 #ifdef CONFIG_NET_SCHED
536 new->tc_index = old->tc_index;
537 #ifdef CONFIG_NET_CLS_ACT
538 new->tc_verd = old->tc_verd;
539 #endif
540 #endif
541 new->vlan_tci = old->vlan_tci;
542
543 skb_copy_secmark(new, old);
544 }
545
546 /*
547 * You should not add any new code to this function. Add it to
548 * __copy_skb_header above instead.
549 */
550 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
551 {
552 #define C(x) n->x = skb->x
553
554 n->next = n->prev = NULL;
555 n->sk = NULL;
556 __copy_skb_header(n, skb);
557
558 C(len);
559 C(data_len);
560 C(mac_len);
561 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
562 n->cloned = 1;
563 n->nohdr = 0;
564 n->destructor = NULL;
565 C(tail);
566 C(end);
567 C(head);
568 C(data);
569 C(truesize);
570 atomic_set(&n->users, 1);
571
572 atomic_inc(&(skb_shinfo(skb)->dataref));
573 skb->cloned = 1;
574
575 return n;
576 #undef C
577 }
578
579 /**
580 * skb_morph - morph one skb into another
581 * @dst: the skb to receive the contents
582 * @src: the skb to supply the contents
583 *
584 * This is identical to skb_clone except that the target skb is
585 * supplied by the user.
586 *
587 * The target skb is returned upon exit.
588 */
589 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
590 {
591 skb_release_all(dst);
592 return __skb_clone(dst, src);
593 }
594 EXPORT_SYMBOL_GPL(skb_morph);
595
596 /**
597 * skb_clone - duplicate an sk_buff
598 * @skb: buffer to clone
599 * @gfp_mask: allocation priority
600 *
601 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
602 * copies share the same packet data but not structure. The new
603 * buffer has a reference count of 1. If the allocation fails the
604 * function returns %NULL otherwise the new buffer is returned.
605 *
606 * If this function is called from an interrupt gfp_mask() must be
607 * %GFP_ATOMIC.
608 */
609
610 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
611 {
612 struct sk_buff *n;
613
614 n = skb + 1;
615 if (skb->fclone == SKB_FCLONE_ORIG &&
616 n->fclone == SKB_FCLONE_UNAVAILABLE) {
617 atomic_t *fclone_ref = (atomic_t *) (n + 1);
618 n->fclone = SKB_FCLONE_CLONE;
619 atomic_inc(fclone_ref);
620 } else {
621 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
622 if (!n)
623 return NULL;
624
625 kmemcheck_annotate_bitfield(n, flags1);
626 kmemcheck_annotate_bitfield(n, flags2);
627 n->fclone = SKB_FCLONE_UNAVAILABLE;
628 }
629
630 return __skb_clone(n, skb);
631 }
632 EXPORT_SYMBOL(skb_clone);
633
634 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
635 {
636 #ifndef NET_SKBUFF_DATA_USES_OFFSET
637 /*
638 * Shift between the two data areas in bytes
639 */
640 unsigned long offset = new->data - old->data;
641 #endif
642
643 __copy_skb_header(new, old);
644
645 #ifndef NET_SKBUFF_DATA_USES_OFFSET
646 /* {transport,network,mac}_header are relative to skb->head */
647 new->transport_header += offset;
648 new->network_header += offset;
649 if (skb_mac_header_was_set(new))
650 new->mac_header += offset;
651 #endif
652 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
653 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
654 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
655 }
656
657 /**
658 * skb_copy - create private copy of an sk_buff
659 * @skb: buffer to copy
660 * @gfp_mask: allocation priority
661 *
662 * Make a copy of both an &sk_buff and its data. This is used when the
663 * caller wishes to modify the data and needs a private copy of the
664 * data to alter. Returns %NULL on failure or the pointer to the buffer
665 * on success. The returned buffer has a reference count of 1.
666 *
667 * As by-product this function converts non-linear &sk_buff to linear
668 * one, so that &sk_buff becomes completely private and caller is allowed
669 * to modify all the data of returned buffer. This means that this
670 * function is not recommended for use in circumstances when only
671 * header is going to be modified. Use pskb_copy() instead.
672 */
673
674 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
675 {
676 int headerlen = skb_headroom(skb);
677 unsigned int size = (skb_end_pointer(skb) - skb->head) + skb->data_len;
678 struct sk_buff *n = alloc_skb(size, gfp_mask);
679
680 if (!n)
681 return NULL;
682
683 /* Set the data pointer */
684 skb_reserve(n, headerlen);
685 /* Set the tail pointer and length */
686 skb_put(n, skb->len);
687
688 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
689 BUG();
690
691 copy_skb_header(n, skb);
692 return n;
693 }
694 EXPORT_SYMBOL(skb_copy);
695
696 /**
697 * pskb_copy - create copy of an sk_buff with private head.
698 * @skb: buffer to copy
699 * @gfp_mask: allocation priority
700 *
701 * Make a copy of both an &sk_buff and part of its data, located
702 * in header. Fragmented data remain shared. This is used when
703 * the caller wishes to modify only header of &sk_buff and needs
704 * private copy of the header to alter. Returns %NULL on failure
705 * or the pointer to the buffer on success.
706 * The returned buffer has a reference count of 1.
707 */
708
709 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
710 {
711 unsigned int size = skb_end_pointer(skb) - skb->head;
712 struct sk_buff *n = alloc_skb(size, gfp_mask);
713
714 if (!n)
715 goto out;
716
717 /* Set the data pointer */
718 skb_reserve(n, skb_headroom(skb));
719 /* Set the tail pointer and length */
720 skb_put(n, skb_headlen(skb));
721 /* Copy the bytes */
722 skb_copy_from_linear_data(skb, n->data, n->len);
723
724 n->truesize += skb->data_len;
725 n->data_len = skb->data_len;
726 n->len = skb->len;
727
728 if (skb_shinfo(skb)->nr_frags) {
729 int i;
730
731 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
732 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
733 get_page(skb_shinfo(n)->frags[i].page);
734 }
735 skb_shinfo(n)->nr_frags = i;
736 }
737
738 if (skb_has_frag_list(skb)) {
739 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
740 skb_clone_fraglist(n);
741 }
742
743 copy_skb_header(n, skb);
744 out:
745 return n;
746 }
747 EXPORT_SYMBOL(pskb_copy);
748
749 /**
750 * pskb_expand_head - reallocate header of &sk_buff
751 * @skb: buffer to reallocate
752 * @nhead: room to add at head
753 * @ntail: room to add at tail
754 * @gfp_mask: allocation priority
755 *
756 * Expands (or creates identical copy, if &nhead and &ntail are zero)
757 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
758 * reference count of 1. Returns zero in the case of success or error,
759 * if expansion failed. In the last case, &sk_buff is not changed.
760 *
761 * All the pointers pointing into skb header may change and must be
762 * reloaded after call to this function.
763 */
764
765 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
766 gfp_t gfp_mask)
767 {
768 int i;
769 u8 *data;
770 int size = nhead + (skb_end_pointer(skb) - skb->head) + ntail;
771 long off;
772 bool fastpath;
773
774 BUG_ON(nhead < 0);
775
776 if (skb_shared(skb))
777 BUG();
778
779 size = SKB_DATA_ALIGN(size);
780
781 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
782 if (!data)
783 goto nodata;
784
785 /* Copy only real data... and, alas, header. This should be
786 * optimized for the cases when header is void.
787 */
788 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
789
790 memcpy((struct skb_shared_info *)(data + size),
791 skb_shinfo(skb),
792 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
793
794 /* Check if we can avoid taking references on fragments if we own
795 * the last reference on skb->head. (see skb_release_data())
796 */
797 if (!skb->cloned)
798 fastpath = true;
799 else {
800 int delta = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
801
802 fastpath = atomic_read(&skb_shinfo(skb)->dataref) == delta;
803 }
804
805 if (fastpath) {
806 kfree(skb->head);
807 } else {
808 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
809 get_page(skb_shinfo(skb)->frags[i].page);
810
811 if (skb_has_frag_list(skb))
812 skb_clone_fraglist(skb);
813
814 skb_release_data(skb);
815 }
816 off = (data + nhead) - skb->head;
817
818 skb->head = data;
819 skb->data += off;
820 #ifdef NET_SKBUFF_DATA_USES_OFFSET
821 skb->end = size;
822 off = nhead;
823 #else
824 skb->end = skb->head + size;
825 #endif
826 /* {transport,network,mac}_header and tail are relative to skb->head */
827 skb->tail += off;
828 skb->transport_header += off;
829 skb->network_header += off;
830 if (skb_mac_header_was_set(skb))
831 skb->mac_header += off;
832 /* Only adjust this if it actually is csum_start rather than csum */
833 if (skb->ip_summed == CHECKSUM_PARTIAL)
834 skb->csum_start += nhead;
835 skb->cloned = 0;
836 skb->hdr_len = 0;
837 skb->nohdr = 0;
838 atomic_set(&skb_shinfo(skb)->dataref, 1);
839 return 0;
840
841 nodata:
842 return -ENOMEM;
843 }
844 EXPORT_SYMBOL(pskb_expand_head);
845
846 /* Make private copy of skb with writable head and some headroom */
847
848 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
849 {
850 struct sk_buff *skb2;
851 int delta = headroom - skb_headroom(skb);
852
853 if (delta <= 0)
854 skb2 = pskb_copy(skb, GFP_ATOMIC);
855 else {
856 skb2 = skb_clone(skb, GFP_ATOMIC);
857 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
858 GFP_ATOMIC)) {
859 kfree_skb(skb2);
860 skb2 = NULL;
861 }
862 }
863 return skb2;
864 }
865 EXPORT_SYMBOL(skb_realloc_headroom);
866
867 /**
868 * skb_copy_expand - copy and expand sk_buff
869 * @skb: buffer to copy
870 * @newheadroom: new free bytes at head
871 * @newtailroom: new free bytes at tail
872 * @gfp_mask: allocation priority
873 *
874 * Make a copy of both an &sk_buff and its data and while doing so
875 * allocate additional space.
876 *
877 * This is used when the caller wishes to modify the data and needs a
878 * private copy of the data to alter as well as more space for new fields.
879 * Returns %NULL on failure or the pointer to the buffer
880 * on success. The returned buffer has a reference count of 1.
881 *
882 * You must pass %GFP_ATOMIC as the allocation priority if this function
883 * is called from an interrupt.
884 */
885 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
886 int newheadroom, int newtailroom,
887 gfp_t gfp_mask)
888 {
889 /*
890 * Allocate the copy buffer
891 */
892 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
893 gfp_mask);
894 int oldheadroom = skb_headroom(skb);
895 int head_copy_len, head_copy_off;
896 int off;
897
898 if (!n)
899 return NULL;
900
901 skb_reserve(n, newheadroom);
902
903 /* Set the tail pointer and length */
904 skb_put(n, skb->len);
905
906 head_copy_len = oldheadroom;
907 head_copy_off = 0;
908 if (newheadroom <= head_copy_len)
909 head_copy_len = newheadroom;
910 else
911 head_copy_off = newheadroom - head_copy_len;
912
913 /* Copy the linear header and data. */
914 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
915 skb->len + head_copy_len))
916 BUG();
917
918 copy_skb_header(n, skb);
919
920 off = newheadroom - oldheadroom;
921 if (n->ip_summed == CHECKSUM_PARTIAL)
922 n->csum_start += off;
923 #ifdef NET_SKBUFF_DATA_USES_OFFSET
924 n->transport_header += off;
925 n->network_header += off;
926 if (skb_mac_header_was_set(skb))
927 n->mac_header += off;
928 #endif
929
930 return n;
931 }
932 EXPORT_SYMBOL(skb_copy_expand);
933
934 /**
935 * skb_pad - zero pad the tail of an skb
936 * @skb: buffer to pad
937 * @pad: space to pad
938 *
939 * Ensure that a buffer is followed by a padding area that is zero
940 * filled. Used by network drivers which may DMA or transfer data
941 * beyond the buffer end onto the wire.
942 *
943 * May return error in out of memory cases. The skb is freed on error.
944 */
945
946 int skb_pad(struct sk_buff *skb, int pad)
947 {
948 int err;
949 int ntail;
950
951 /* If the skbuff is non linear tailroom is always zero.. */
952 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
953 memset(skb->data+skb->len, 0, pad);
954 return 0;
955 }
956
957 ntail = skb->data_len + pad - (skb->end - skb->tail);
958 if (likely(skb_cloned(skb) || ntail > 0)) {
959 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
960 if (unlikely(err))
961 goto free_skb;
962 }
963
964 /* FIXME: The use of this function with non-linear skb's really needs
965 * to be audited.
966 */
967 err = skb_linearize(skb);
968 if (unlikely(err))
969 goto free_skb;
970
971 memset(skb->data + skb->len, 0, pad);
972 return 0;
973
974 free_skb:
975 kfree_skb(skb);
976 return err;
977 }
978 EXPORT_SYMBOL(skb_pad);
979
980 /**
981 * skb_put - add data to a buffer
982 * @skb: buffer to use
983 * @len: amount of data to add
984 *
985 * This function extends the used data area of the buffer. If this would
986 * exceed the total buffer size the kernel will panic. A pointer to the
987 * first byte of the extra data is returned.
988 */
989 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
990 {
991 unsigned char *tmp = skb_tail_pointer(skb);
992 SKB_LINEAR_ASSERT(skb);
993 skb->tail += len;
994 skb->len += len;
995 if (unlikely(skb->tail > skb->end))
996 skb_over_panic(skb, len, __builtin_return_address(0));
997 return tmp;
998 }
999 EXPORT_SYMBOL(skb_put);
1000
1001 /**
1002 * skb_push - add data to the start of a buffer
1003 * @skb: buffer to use
1004 * @len: amount of data to add
1005 *
1006 * This function extends the used data area of the buffer at the buffer
1007 * start. If this would exceed the total buffer headroom the kernel will
1008 * panic. A pointer to the first byte of the extra data is returned.
1009 */
1010 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1011 {
1012 skb->data -= len;
1013 skb->len += len;
1014 if (unlikely(skb->data<skb->head))
1015 skb_under_panic(skb, len, __builtin_return_address(0));
1016 return skb->data;
1017 }
1018 EXPORT_SYMBOL(skb_push);
1019
1020 /**
1021 * skb_pull - remove data from the start of a buffer
1022 * @skb: buffer to use
1023 * @len: amount of data to remove
1024 *
1025 * This function removes data from the start of a buffer, returning
1026 * the memory to the headroom. A pointer to the next data in the buffer
1027 * is returned. Once the data has been pulled future pushes will overwrite
1028 * the old data.
1029 */
1030 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1031 {
1032 return skb_pull_inline(skb, len);
1033 }
1034 EXPORT_SYMBOL(skb_pull);
1035
1036 /**
1037 * skb_trim - remove end from a buffer
1038 * @skb: buffer to alter
1039 * @len: new length
1040 *
1041 * Cut the length of a buffer down by removing data from the tail. If
1042 * the buffer is already under the length specified it is not modified.
1043 * The skb must be linear.
1044 */
1045 void skb_trim(struct sk_buff *skb, unsigned int len)
1046 {
1047 if (skb->len > len)
1048 __skb_trim(skb, len);
1049 }
1050 EXPORT_SYMBOL(skb_trim);
1051
1052 /* Trims skb to length len. It can change skb pointers.
1053 */
1054
1055 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1056 {
1057 struct sk_buff **fragp;
1058 struct sk_buff *frag;
1059 int offset = skb_headlen(skb);
1060 int nfrags = skb_shinfo(skb)->nr_frags;
1061 int i;
1062 int err;
1063
1064 if (skb_cloned(skb) &&
1065 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1066 return err;
1067
1068 i = 0;
1069 if (offset >= len)
1070 goto drop_pages;
1071
1072 for (; i < nfrags; i++) {
1073 int end = offset + skb_shinfo(skb)->frags[i].size;
1074
1075 if (end < len) {
1076 offset = end;
1077 continue;
1078 }
1079
1080 skb_shinfo(skb)->frags[i++].size = len - offset;
1081
1082 drop_pages:
1083 skb_shinfo(skb)->nr_frags = i;
1084
1085 for (; i < nfrags; i++)
1086 put_page(skb_shinfo(skb)->frags[i].page);
1087
1088 if (skb_has_frag_list(skb))
1089 skb_drop_fraglist(skb);
1090 goto done;
1091 }
1092
1093 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1094 fragp = &frag->next) {
1095 int end = offset + frag->len;
1096
1097 if (skb_shared(frag)) {
1098 struct sk_buff *nfrag;
1099
1100 nfrag = skb_clone(frag, GFP_ATOMIC);
1101 if (unlikely(!nfrag))
1102 return -ENOMEM;
1103
1104 nfrag->next = frag->next;
1105 kfree_skb(frag);
1106 frag = nfrag;
1107 *fragp = frag;
1108 }
1109
1110 if (end < len) {
1111 offset = end;
1112 continue;
1113 }
1114
1115 if (end > len &&
1116 unlikely((err = pskb_trim(frag, len - offset))))
1117 return err;
1118
1119 if (frag->next)
1120 skb_drop_list(&frag->next);
1121 break;
1122 }
1123
1124 done:
1125 if (len > skb_headlen(skb)) {
1126 skb->data_len -= skb->len - len;
1127 skb->len = len;
1128 } else {
1129 skb->len = len;
1130 skb->data_len = 0;
1131 skb_set_tail_pointer(skb, len);
1132 }
1133
1134 return 0;
1135 }
1136 EXPORT_SYMBOL(___pskb_trim);
1137
1138 /**
1139 * __pskb_pull_tail - advance tail of skb header
1140 * @skb: buffer to reallocate
1141 * @delta: number of bytes to advance tail
1142 *
1143 * The function makes a sense only on a fragmented &sk_buff,
1144 * it expands header moving its tail forward and copying necessary
1145 * data from fragmented part.
1146 *
1147 * &sk_buff MUST have reference count of 1.
1148 *
1149 * Returns %NULL (and &sk_buff does not change) if pull failed
1150 * or value of new tail of skb in the case of success.
1151 *
1152 * All the pointers pointing into skb header may change and must be
1153 * reloaded after call to this function.
1154 */
1155
1156 /* Moves tail of skb head forward, copying data from fragmented part,
1157 * when it is necessary.
1158 * 1. It may fail due to malloc failure.
1159 * 2. It may change skb pointers.
1160 *
1161 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1162 */
1163 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1164 {
1165 /* If skb has not enough free space at tail, get new one
1166 * plus 128 bytes for future expansions. If we have enough
1167 * room at tail, reallocate without expansion only if skb is cloned.
1168 */
1169 int i, k, eat = (skb->tail + delta) - skb->end;
1170
1171 if (eat > 0 || skb_cloned(skb)) {
1172 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1173 GFP_ATOMIC))
1174 return NULL;
1175 }
1176
1177 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1178 BUG();
1179
1180 /* Optimization: no fragments, no reasons to preestimate
1181 * size of pulled pages. Superb.
1182 */
1183 if (!skb_has_frag_list(skb))
1184 goto pull_pages;
1185
1186 /* Estimate size of pulled pages. */
1187 eat = delta;
1188 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1189 if (skb_shinfo(skb)->frags[i].size >= eat)
1190 goto pull_pages;
1191 eat -= skb_shinfo(skb)->frags[i].size;
1192 }
1193
1194 /* If we need update frag list, we are in troubles.
1195 * Certainly, it possible to add an offset to skb data,
1196 * but taking into account that pulling is expected to
1197 * be very rare operation, it is worth to fight against
1198 * further bloating skb head and crucify ourselves here instead.
1199 * Pure masohism, indeed. 8)8)
1200 */
1201 if (eat) {
1202 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1203 struct sk_buff *clone = NULL;
1204 struct sk_buff *insp = NULL;
1205
1206 do {
1207 BUG_ON(!list);
1208
1209 if (list->len <= eat) {
1210 /* Eaten as whole. */
1211 eat -= list->len;
1212 list = list->next;
1213 insp = list;
1214 } else {
1215 /* Eaten partially. */
1216
1217 if (skb_shared(list)) {
1218 /* Sucks! We need to fork list. :-( */
1219 clone = skb_clone(list, GFP_ATOMIC);
1220 if (!clone)
1221 return NULL;
1222 insp = list->next;
1223 list = clone;
1224 } else {
1225 /* This may be pulled without
1226 * problems. */
1227 insp = list;
1228 }
1229 if (!pskb_pull(list, eat)) {
1230 kfree_skb(clone);
1231 return NULL;
1232 }
1233 break;
1234 }
1235 } while (eat);
1236
1237 /* Free pulled out fragments. */
1238 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1239 skb_shinfo(skb)->frag_list = list->next;
1240 kfree_skb(list);
1241 }
1242 /* And insert new clone at head. */
1243 if (clone) {
1244 clone->next = list;
1245 skb_shinfo(skb)->frag_list = clone;
1246 }
1247 }
1248 /* Success! Now we may commit changes to skb data. */
1249
1250 pull_pages:
1251 eat = delta;
1252 k = 0;
1253 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1254 if (skb_shinfo(skb)->frags[i].size <= eat) {
1255 put_page(skb_shinfo(skb)->frags[i].page);
1256 eat -= skb_shinfo(skb)->frags[i].size;
1257 } else {
1258 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1259 if (eat) {
1260 skb_shinfo(skb)->frags[k].page_offset += eat;
1261 skb_shinfo(skb)->frags[k].size -= eat;
1262 eat = 0;
1263 }
1264 k++;
1265 }
1266 }
1267 skb_shinfo(skb)->nr_frags = k;
1268
1269 skb->tail += delta;
1270 skb->data_len -= delta;
1271
1272 return skb_tail_pointer(skb);
1273 }
1274 EXPORT_SYMBOL(__pskb_pull_tail);
1275
1276 /* Copy some data bits from skb to kernel buffer. */
1277
1278 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1279 {
1280 int start = skb_headlen(skb);
1281 struct sk_buff *frag_iter;
1282 int i, copy;
1283
1284 if (offset > (int)skb->len - len)
1285 goto fault;
1286
1287 /* Copy header. */
1288 if ((copy = start - offset) > 0) {
1289 if (copy > len)
1290 copy = len;
1291 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1292 if ((len -= copy) == 0)
1293 return 0;
1294 offset += copy;
1295 to += copy;
1296 }
1297
1298 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1299 int end;
1300
1301 WARN_ON(start > offset + len);
1302
1303 end = start + skb_shinfo(skb)->frags[i].size;
1304 if ((copy = end - offset) > 0) {
1305 u8 *vaddr;
1306
1307 if (copy > len)
1308 copy = len;
1309
1310 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1311 memcpy(to,
1312 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1313 offset - start, copy);
1314 kunmap_skb_frag(vaddr);
1315
1316 if ((len -= copy) == 0)
1317 return 0;
1318 offset += copy;
1319 to += copy;
1320 }
1321 start = end;
1322 }
1323
1324 skb_walk_frags(skb, frag_iter) {
1325 int end;
1326
1327 WARN_ON(start > offset + len);
1328
1329 end = start + frag_iter->len;
1330 if ((copy = end - offset) > 0) {
1331 if (copy > len)
1332 copy = len;
1333 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1334 goto fault;
1335 if ((len -= copy) == 0)
1336 return 0;
1337 offset += copy;
1338 to += copy;
1339 }
1340 start = end;
1341 }
1342 if (!len)
1343 return 0;
1344
1345 fault:
1346 return -EFAULT;
1347 }
1348 EXPORT_SYMBOL(skb_copy_bits);
1349
1350 /*
1351 * Callback from splice_to_pipe(), if we need to release some pages
1352 * at the end of the spd in case we error'ed out in filling the pipe.
1353 */
1354 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1355 {
1356 put_page(spd->pages[i]);
1357 }
1358
1359 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1360 unsigned int *offset,
1361 struct sk_buff *skb, struct sock *sk)
1362 {
1363 struct page *p = sk->sk_sndmsg_page;
1364 unsigned int off;
1365
1366 if (!p) {
1367 new_page:
1368 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1369 if (!p)
1370 return NULL;
1371
1372 off = sk->sk_sndmsg_off = 0;
1373 /* hold one ref to this page until it's full */
1374 } else {
1375 unsigned int mlen;
1376
1377 off = sk->sk_sndmsg_off;
1378 mlen = PAGE_SIZE - off;
1379 if (mlen < 64 && mlen < *len) {
1380 put_page(p);
1381 goto new_page;
1382 }
1383
1384 *len = min_t(unsigned int, *len, mlen);
1385 }
1386
1387 memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1388 sk->sk_sndmsg_off += *len;
1389 *offset = off;
1390 get_page(p);
1391
1392 return p;
1393 }
1394
1395 /*
1396 * Fill page/offset/length into spd, if it can hold more pages.
1397 */
1398 static inline int spd_fill_page(struct splice_pipe_desc *spd,
1399 struct pipe_inode_info *pipe, struct page *page,
1400 unsigned int *len, unsigned int offset,
1401 struct sk_buff *skb, int linear,
1402 struct sock *sk)
1403 {
1404 if (unlikely(spd->nr_pages == pipe->buffers))
1405 return 1;
1406
1407 if (linear) {
1408 page = linear_to_page(page, len, &offset, skb, sk);
1409 if (!page)
1410 return 1;
1411 } else
1412 get_page(page);
1413
1414 spd->pages[spd->nr_pages] = page;
1415 spd->partial[spd->nr_pages].len = *len;
1416 spd->partial[spd->nr_pages].offset = offset;
1417 spd->nr_pages++;
1418
1419 return 0;
1420 }
1421
1422 static inline void __segment_seek(struct page **page, unsigned int *poff,
1423 unsigned int *plen, unsigned int off)
1424 {
1425 unsigned long n;
1426
1427 *poff += off;
1428 n = *poff / PAGE_SIZE;
1429 if (n)
1430 *page = nth_page(*page, n);
1431
1432 *poff = *poff % PAGE_SIZE;
1433 *plen -= off;
1434 }
1435
1436 static inline int __splice_segment(struct page *page, unsigned int poff,
1437 unsigned int plen, unsigned int *off,
1438 unsigned int *len, struct sk_buff *skb,
1439 struct splice_pipe_desc *spd, int linear,
1440 struct sock *sk,
1441 struct pipe_inode_info *pipe)
1442 {
1443 if (!*len)
1444 return 1;
1445
1446 /* skip this segment if already processed */
1447 if (*off >= plen) {
1448 *off -= plen;
1449 return 0;
1450 }
1451
1452 /* ignore any bits we already processed */
1453 if (*off) {
1454 __segment_seek(&page, &poff, &plen, *off);
1455 *off = 0;
1456 }
1457
1458 do {
1459 unsigned int flen = min(*len, plen);
1460
1461 /* the linear region may spread across several pages */
1462 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1463
1464 if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1465 return 1;
1466
1467 __segment_seek(&page, &poff, &plen, flen);
1468 *len -= flen;
1469
1470 } while (*len && plen);
1471
1472 return 0;
1473 }
1474
1475 /*
1476 * Map linear and fragment data from the skb to spd. It reports failure if the
1477 * pipe is full or if we already spliced the requested length.
1478 */
1479 static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1480 unsigned int *offset, unsigned int *len,
1481 struct splice_pipe_desc *spd, struct sock *sk)
1482 {
1483 int seg;
1484
1485 /*
1486 * map the linear part
1487 */
1488 if (__splice_segment(virt_to_page(skb->data),
1489 (unsigned long) skb->data & (PAGE_SIZE - 1),
1490 skb_headlen(skb),
1491 offset, len, skb, spd, 1, sk, pipe))
1492 return 1;
1493
1494 /*
1495 * then map the fragments
1496 */
1497 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1498 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1499
1500 if (__splice_segment(f->page, f->page_offset, f->size,
1501 offset, len, skb, spd, 0, sk, pipe))
1502 return 1;
1503 }
1504
1505 return 0;
1506 }
1507
1508 /*
1509 * Map data from the skb to a pipe. Should handle both the linear part,
1510 * the fragments, and the frag list. It does NOT handle frag lists within
1511 * the frag list, if such a thing exists. We'd probably need to recurse to
1512 * handle that cleanly.
1513 */
1514 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1515 struct pipe_inode_info *pipe, unsigned int tlen,
1516 unsigned int flags)
1517 {
1518 struct partial_page partial[PIPE_DEF_BUFFERS];
1519 struct page *pages[PIPE_DEF_BUFFERS];
1520 struct splice_pipe_desc spd = {
1521 .pages = pages,
1522 .partial = partial,
1523 .flags = flags,
1524 .ops = &sock_pipe_buf_ops,
1525 .spd_release = sock_spd_release,
1526 };
1527 struct sk_buff *frag_iter;
1528 struct sock *sk = skb->sk;
1529 int ret = 0;
1530
1531 if (splice_grow_spd(pipe, &spd))
1532 return -ENOMEM;
1533
1534 /*
1535 * __skb_splice_bits() only fails if the output has no room left,
1536 * so no point in going over the frag_list for the error case.
1537 */
1538 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1539 goto done;
1540 else if (!tlen)
1541 goto done;
1542
1543 /*
1544 * now see if we have a frag_list to map
1545 */
1546 skb_walk_frags(skb, frag_iter) {
1547 if (!tlen)
1548 break;
1549 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1550 break;
1551 }
1552
1553 done:
1554 if (spd.nr_pages) {
1555 /*
1556 * Drop the socket lock, otherwise we have reverse
1557 * locking dependencies between sk_lock and i_mutex
1558 * here as compared to sendfile(). We enter here
1559 * with the socket lock held, and splice_to_pipe() will
1560 * grab the pipe inode lock. For sendfile() emulation,
1561 * we call into ->sendpage() with the i_mutex lock held
1562 * and networking will grab the socket lock.
1563 */
1564 release_sock(sk);
1565 ret = splice_to_pipe(pipe, &spd);
1566 lock_sock(sk);
1567 }
1568
1569 splice_shrink_spd(pipe, &spd);
1570 return ret;
1571 }
1572
1573 /**
1574 * skb_store_bits - store bits from kernel buffer to skb
1575 * @skb: destination buffer
1576 * @offset: offset in destination
1577 * @from: source buffer
1578 * @len: number of bytes to copy
1579 *
1580 * Copy the specified number of bytes from the source buffer to the
1581 * destination skb. This function handles all the messy bits of
1582 * traversing fragment lists and such.
1583 */
1584
1585 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1586 {
1587 int start = skb_headlen(skb);
1588 struct sk_buff *frag_iter;
1589 int i, copy;
1590
1591 if (offset > (int)skb->len - len)
1592 goto fault;
1593
1594 if ((copy = start - offset) > 0) {
1595 if (copy > len)
1596 copy = len;
1597 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1598 if ((len -= copy) == 0)
1599 return 0;
1600 offset += copy;
1601 from += copy;
1602 }
1603
1604 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1605 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1606 int end;
1607
1608 WARN_ON(start > offset + len);
1609
1610 end = start + frag->size;
1611 if ((copy = end - offset) > 0) {
1612 u8 *vaddr;
1613
1614 if (copy > len)
1615 copy = len;
1616
1617 vaddr = kmap_skb_frag(frag);
1618 memcpy(vaddr + frag->page_offset + offset - start,
1619 from, copy);
1620 kunmap_skb_frag(vaddr);
1621
1622 if ((len -= copy) == 0)
1623 return 0;
1624 offset += copy;
1625 from += copy;
1626 }
1627 start = end;
1628 }
1629
1630 skb_walk_frags(skb, frag_iter) {
1631 int end;
1632
1633 WARN_ON(start > offset + len);
1634
1635 end = start + frag_iter->len;
1636 if ((copy = end - offset) > 0) {
1637 if (copy > len)
1638 copy = len;
1639 if (skb_store_bits(frag_iter, offset - start,
1640 from, copy))
1641 goto fault;
1642 if ((len -= copy) == 0)
1643 return 0;
1644 offset += copy;
1645 from += copy;
1646 }
1647 start = end;
1648 }
1649 if (!len)
1650 return 0;
1651
1652 fault:
1653 return -EFAULT;
1654 }
1655 EXPORT_SYMBOL(skb_store_bits);
1656
1657 /* Checksum skb data. */
1658
1659 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1660 int len, __wsum csum)
1661 {
1662 int start = skb_headlen(skb);
1663 int i, copy = start - offset;
1664 struct sk_buff *frag_iter;
1665 int pos = 0;
1666
1667 /* Checksum header. */
1668 if (copy > 0) {
1669 if (copy > len)
1670 copy = len;
1671 csum = csum_partial(skb->data + offset, copy, csum);
1672 if ((len -= copy) == 0)
1673 return csum;
1674 offset += copy;
1675 pos = copy;
1676 }
1677
1678 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1679 int end;
1680
1681 WARN_ON(start > offset + len);
1682
1683 end = start + skb_shinfo(skb)->frags[i].size;
1684 if ((copy = end - offset) > 0) {
1685 __wsum csum2;
1686 u8 *vaddr;
1687 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1688
1689 if (copy > len)
1690 copy = len;
1691 vaddr = kmap_skb_frag(frag);
1692 csum2 = csum_partial(vaddr + frag->page_offset +
1693 offset - start, copy, 0);
1694 kunmap_skb_frag(vaddr);
1695 csum = csum_block_add(csum, csum2, pos);
1696 if (!(len -= copy))
1697 return csum;
1698 offset += copy;
1699 pos += copy;
1700 }
1701 start = end;
1702 }
1703
1704 skb_walk_frags(skb, frag_iter) {
1705 int end;
1706
1707 WARN_ON(start > offset + len);
1708
1709 end = start + frag_iter->len;
1710 if ((copy = end - offset) > 0) {
1711 __wsum csum2;
1712 if (copy > len)
1713 copy = len;
1714 csum2 = skb_checksum(frag_iter, offset - start,
1715 copy, 0);
1716 csum = csum_block_add(csum, csum2, pos);
1717 if ((len -= copy) == 0)
1718 return csum;
1719 offset += copy;
1720 pos += copy;
1721 }
1722 start = end;
1723 }
1724 BUG_ON(len);
1725
1726 return csum;
1727 }
1728 EXPORT_SYMBOL(skb_checksum);
1729
1730 /* Both of above in one bottle. */
1731
1732 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1733 u8 *to, int len, __wsum csum)
1734 {
1735 int start = skb_headlen(skb);
1736 int i, copy = start - offset;
1737 struct sk_buff *frag_iter;
1738 int pos = 0;
1739
1740 /* Copy header. */
1741 if (copy > 0) {
1742 if (copy > len)
1743 copy = len;
1744 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1745 copy, csum);
1746 if ((len -= copy) == 0)
1747 return csum;
1748 offset += copy;
1749 to += copy;
1750 pos = copy;
1751 }
1752
1753 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1754 int end;
1755
1756 WARN_ON(start > offset + len);
1757
1758 end = start + skb_shinfo(skb)->frags[i].size;
1759 if ((copy = end - offset) > 0) {
1760 __wsum csum2;
1761 u8 *vaddr;
1762 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1763
1764 if (copy > len)
1765 copy = len;
1766 vaddr = kmap_skb_frag(frag);
1767 csum2 = csum_partial_copy_nocheck(vaddr +
1768 frag->page_offset +
1769 offset - start, to,
1770 copy, 0);
1771 kunmap_skb_frag(vaddr);
1772 csum = csum_block_add(csum, csum2, pos);
1773 if (!(len -= copy))
1774 return csum;
1775 offset += copy;
1776 to += copy;
1777 pos += copy;
1778 }
1779 start = end;
1780 }
1781
1782 skb_walk_frags(skb, frag_iter) {
1783 __wsum csum2;
1784 int end;
1785
1786 WARN_ON(start > offset + len);
1787
1788 end = start + frag_iter->len;
1789 if ((copy = end - offset) > 0) {
1790 if (copy > len)
1791 copy = len;
1792 csum2 = skb_copy_and_csum_bits(frag_iter,
1793 offset - start,
1794 to, copy, 0);
1795 csum = csum_block_add(csum, csum2, pos);
1796 if ((len -= copy) == 0)
1797 return csum;
1798 offset += copy;
1799 to += copy;
1800 pos += copy;
1801 }
1802 start = end;
1803 }
1804 BUG_ON(len);
1805 return csum;
1806 }
1807 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1808
1809 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1810 {
1811 __wsum csum;
1812 long csstart;
1813
1814 if (skb->ip_summed == CHECKSUM_PARTIAL)
1815 csstart = skb->csum_start - skb_headroom(skb);
1816 else
1817 csstart = skb_headlen(skb);
1818
1819 BUG_ON(csstart > skb_headlen(skb));
1820
1821 skb_copy_from_linear_data(skb, to, csstart);
1822
1823 csum = 0;
1824 if (csstart != skb->len)
1825 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1826 skb->len - csstart, 0);
1827
1828 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1829 long csstuff = csstart + skb->csum_offset;
1830
1831 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1832 }
1833 }
1834 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1835
1836 /**
1837 * skb_dequeue - remove from the head of the queue
1838 * @list: list to dequeue from
1839 *
1840 * Remove the head of the list. The list lock is taken so the function
1841 * may be used safely with other locking list functions. The head item is
1842 * returned or %NULL if the list is empty.
1843 */
1844
1845 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1846 {
1847 unsigned long flags;
1848 struct sk_buff *result;
1849
1850 spin_lock_irqsave(&list->lock, flags);
1851 result = __skb_dequeue(list);
1852 spin_unlock_irqrestore(&list->lock, flags);
1853 return result;
1854 }
1855 EXPORT_SYMBOL(skb_dequeue);
1856
1857 /**
1858 * skb_dequeue_tail - remove from the tail of the queue
1859 * @list: list to dequeue from
1860 *
1861 * Remove the tail of the list. The list lock is taken so the function
1862 * may be used safely with other locking list functions. The tail item is
1863 * returned or %NULL if the list is empty.
1864 */
1865 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1866 {
1867 unsigned long flags;
1868 struct sk_buff *result;
1869
1870 spin_lock_irqsave(&list->lock, flags);
1871 result = __skb_dequeue_tail(list);
1872 spin_unlock_irqrestore(&list->lock, flags);
1873 return result;
1874 }
1875 EXPORT_SYMBOL(skb_dequeue_tail);
1876
1877 /**
1878 * skb_queue_purge - empty a list
1879 * @list: list to empty
1880 *
1881 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1882 * the list and one reference dropped. This function takes the list
1883 * lock and is atomic with respect to other list locking functions.
1884 */
1885 void skb_queue_purge(struct sk_buff_head *list)
1886 {
1887 struct sk_buff *skb;
1888 while ((skb = skb_dequeue(list)) != NULL)
1889 kfree_skb(skb);
1890 }
1891 EXPORT_SYMBOL(skb_queue_purge);
1892
1893 /**
1894 * skb_queue_head - queue a buffer at the list head
1895 * @list: list to use
1896 * @newsk: buffer to queue
1897 *
1898 * Queue a buffer at the start of the list. This function takes the
1899 * list lock and can be used safely with other locking &sk_buff functions
1900 * safely.
1901 *
1902 * A buffer cannot be placed on two lists at the same time.
1903 */
1904 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1905 {
1906 unsigned long flags;
1907
1908 spin_lock_irqsave(&list->lock, flags);
1909 __skb_queue_head(list, newsk);
1910 spin_unlock_irqrestore(&list->lock, flags);
1911 }
1912 EXPORT_SYMBOL(skb_queue_head);
1913
1914 /**
1915 * skb_queue_tail - queue a buffer at the list tail
1916 * @list: list to use
1917 * @newsk: buffer to queue
1918 *
1919 * Queue a buffer at the tail of the list. This function takes the
1920 * list lock and can be used safely with other locking &sk_buff functions
1921 * safely.
1922 *
1923 * A buffer cannot be placed on two lists at the same time.
1924 */
1925 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1926 {
1927 unsigned long flags;
1928
1929 spin_lock_irqsave(&list->lock, flags);
1930 __skb_queue_tail(list, newsk);
1931 spin_unlock_irqrestore(&list->lock, flags);
1932 }
1933 EXPORT_SYMBOL(skb_queue_tail);
1934
1935 /**
1936 * skb_unlink - remove a buffer from a list
1937 * @skb: buffer to remove
1938 * @list: list to use
1939 *
1940 * Remove a packet from a list. The list locks are taken and this
1941 * function is atomic with respect to other list locked calls
1942 *
1943 * You must know what list the SKB is on.
1944 */
1945 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1946 {
1947 unsigned long flags;
1948
1949 spin_lock_irqsave(&list->lock, flags);
1950 __skb_unlink(skb, list);
1951 spin_unlock_irqrestore(&list->lock, flags);
1952 }
1953 EXPORT_SYMBOL(skb_unlink);
1954
1955 /**
1956 * skb_append - append a buffer
1957 * @old: buffer to insert after
1958 * @newsk: buffer to insert
1959 * @list: list to use
1960 *
1961 * Place a packet after a given packet in a list. The list locks are taken
1962 * and this function is atomic with respect to other list locked calls.
1963 * A buffer cannot be placed on two lists at the same time.
1964 */
1965 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1966 {
1967 unsigned long flags;
1968
1969 spin_lock_irqsave(&list->lock, flags);
1970 __skb_queue_after(list, old, newsk);
1971 spin_unlock_irqrestore(&list->lock, flags);
1972 }
1973 EXPORT_SYMBOL(skb_append);
1974
1975 /**
1976 * skb_insert - insert a buffer
1977 * @old: buffer to insert before
1978 * @newsk: buffer to insert
1979 * @list: list to use
1980 *
1981 * Place a packet before a given packet in a list. The list locks are
1982 * taken and this function is atomic with respect to other list locked
1983 * calls.
1984 *
1985 * A buffer cannot be placed on two lists at the same time.
1986 */
1987 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1988 {
1989 unsigned long flags;
1990
1991 spin_lock_irqsave(&list->lock, flags);
1992 __skb_insert(newsk, old->prev, old, list);
1993 spin_unlock_irqrestore(&list->lock, flags);
1994 }
1995 EXPORT_SYMBOL(skb_insert);
1996
1997 static inline void skb_split_inside_header(struct sk_buff *skb,
1998 struct sk_buff* skb1,
1999 const u32 len, const int pos)
2000 {
2001 int i;
2002
2003 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2004 pos - len);
2005 /* And move data appendix as is. */
2006 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2007 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2008
2009 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2010 skb_shinfo(skb)->nr_frags = 0;
2011 skb1->data_len = skb->data_len;
2012 skb1->len += skb1->data_len;
2013 skb->data_len = 0;
2014 skb->len = len;
2015 skb_set_tail_pointer(skb, len);
2016 }
2017
2018 static inline void skb_split_no_header(struct sk_buff *skb,
2019 struct sk_buff* skb1,
2020 const u32 len, int pos)
2021 {
2022 int i, k = 0;
2023 const int nfrags = skb_shinfo(skb)->nr_frags;
2024
2025 skb_shinfo(skb)->nr_frags = 0;
2026 skb1->len = skb1->data_len = skb->len - len;
2027 skb->len = len;
2028 skb->data_len = len - pos;
2029
2030 for (i = 0; i < nfrags; i++) {
2031 int size = skb_shinfo(skb)->frags[i].size;
2032
2033 if (pos + size > len) {
2034 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2035
2036 if (pos < len) {
2037 /* Split frag.
2038 * We have two variants in this case:
2039 * 1. Move all the frag to the second
2040 * part, if it is possible. F.e.
2041 * this approach is mandatory for TUX,
2042 * where splitting is expensive.
2043 * 2. Split is accurately. We make this.
2044 */
2045 get_page(skb_shinfo(skb)->frags[i].page);
2046 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2047 skb_shinfo(skb1)->frags[0].size -= len - pos;
2048 skb_shinfo(skb)->frags[i].size = len - pos;
2049 skb_shinfo(skb)->nr_frags++;
2050 }
2051 k++;
2052 } else
2053 skb_shinfo(skb)->nr_frags++;
2054 pos += size;
2055 }
2056 skb_shinfo(skb1)->nr_frags = k;
2057 }
2058
2059 /**
2060 * skb_split - Split fragmented skb to two parts at length len.
2061 * @skb: the buffer to split
2062 * @skb1: the buffer to receive the second part
2063 * @len: new length for skb
2064 */
2065 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2066 {
2067 int pos = skb_headlen(skb);
2068
2069 if (len < pos) /* Split line is inside header. */
2070 skb_split_inside_header(skb, skb1, len, pos);
2071 else /* Second chunk has no header, nothing to copy. */
2072 skb_split_no_header(skb, skb1, len, pos);
2073 }
2074 EXPORT_SYMBOL(skb_split);
2075
2076 /* Shifting from/to a cloned skb is a no-go.
2077 *
2078 * Caller cannot keep skb_shinfo related pointers past calling here!
2079 */
2080 static int skb_prepare_for_shift(struct sk_buff *skb)
2081 {
2082 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2083 }
2084
2085 /**
2086 * skb_shift - Shifts paged data partially from skb to another
2087 * @tgt: buffer into which tail data gets added
2088 * @skb: buffer from which the paged data comes from
2089 * @shiftlen: shift up to this many bytes
2090 *
2091 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2092 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2093 * It's up to caller to free skb if everything was shifted.
2094 *
2095 * If @tgt runs out of frags, the whole operation is aborted.
2096 *
2097 * Skb cannot include anything else but paged data while tgt is allowed
2098 * to have non-paged data as well.
2099 *
2100 * TODO: full sized shift could be optimized but that would need
2101 * specialized skb free'er to handle frags without up-to-date nr_frags.
2102 */
2103 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2104 {
2105 int from, to, merge, todo;
2106 struct skb_frag_struct *fragfrom, *fragto;
2107
2108 BUG_ON(shiftlen > skb->len);
2109 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2110
2111 todo = shiftlen;
2112 from = 0;
2113 to = skb_shinfo(tgt)->nr_frags;
2114 fragfrom = &skb_shinfo(skb)->frags[from];
2115
2116 /* Actual merge is delayed until the point when we know we can
2117 * commit all, so that we don't have to undo partial changes
2118 */
2119 if (!to ||
2120 !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2121 merge = -1;
2122 } else {
2123 merge = to - 1;
2124
2125 todo -= fragfrom->size;
2126 if (todo < 0) {
2127 if (skb_prepare_for_shift(skb) ||
2128 skb_prepare_for_shift(tgt))
2129 return 0;
2130
2131 /* All previous frag pointers might be stale! */
2132 fragfrom = &skb_shinfo(skb)->frags[from];
2133 fragto = &skb_shinfo(tgt)->frags[merge];
2134
2135 fragto->size += shiftlen;
2136 fragfrom->size -= shiftlen;
2137 fragfrom->page_offset += shiftlen;
2138
2139 goto onlymerged;
2140 }
2141
2142 from++;
2143 }
2144
2145 /* Skip full, not-fitting skb to avoid expensive operations */
2146 if ((shiftlen == skb->len) &&
2147 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2148 return 0;
2149
2150 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2151 return 0;
2152
2153 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2154 if (to == MAX_SKB_FRAGS)
2155 return 0;
2156
2157 fragfrom = &skb_shinfo(skb)->frags[from];
2158 fragto = &skb_shinfo(tgt)->frags[to];
2159
2160 if (todo >= fragfrom->size) {
2161 *fragto = *fragfrom;
2162 todo -= fragfrom->size;
2163 from++;
2164 to++;
2165
2166 } else {
2167 get_page(fragfrom->page);
2168 fragto->page = fragfrom->page;
2169 fragto->page_offset = fragfrom->page_offset;
2170 fragto->size = todo;
2171
2172 fragfrom->page_offset += todo;
2173 fragfrom->size -= todo;
2174 todo = 0;
2175
2176 to++;
2177 break;
2178 }
2179 }
2180
2181 /* Ready to "commit" this state change to tgt */
2182 skb_shinfo(tgt)->nr_frags = to;
2183
2184 if (merge >= 0) {
2185 fragfrom = &skb_shinfo(skb)->frags[0];
2186 fragto = &skb_shinfo(tgt)->frags[merge];
2187
2188 fragto->size += fragfrom->size;
2189 put_page(fragfrom->page);
2190 }
2191
2192 /* Reposition in the original skb */
2193 to = 0;
2194 while (from < skb_shinfo(skb)->nr_frags)
2195 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2196 skb_shinfo(skb)->nr_frags = to;
2197
2198 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2199
2200 onlymerged:
2201 /* Most likely the tgt won't ever need its checksum anymore, skb on
2202 * the other hand might need it if it needs to be resent
2203 */
2204 tgt->ip_summed = CHECKSUM_PARTIAL;
2205 skb->ip_summed = CHECKSUM_PARTIAL;
2206
2207 /* Yak, is it really working this way? Some helper please? */
2208 skb->len -= shiftlen;
2209 skb->data_len -= shiftlen;
2210 skb->truesize -= shiftlen;
2211 tgt->len += shiftlen;
2212 tgt->data_len += shiftlen;
2213 tgt->truesize += shiftlen;
2214
2215 return shiftlen;
2216 }
2217
2218 /**
2219 * skb_prepare_seq_read - Prepare a sequential read of skb data
2220 * @skb: the buffer to read
2221 * @from: lower offset of data to be read
2222 * @to: upper offset of data to be read
2223 * @st: state variable
2224 *
2225 * Initializes the specified state variable. Must be called before
2226 * invoking skb_seq_read() for the first time.
2227 */
2228 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2229 unsigned int to, struct skb_seq_state *st)
2230 {
2231 st->lower_offset = from;
2232 st->upper_offset = to;
2233 st->root_skb = st->cur_skb = skb;
2234 st->frag_idx = st->stepped_offset = 0;
2235 st->frag_data = NULL;
2236 }
2237 EXPORT_SYMBOL(skb_prepare_seq_read);
2238
2239 /**
2240 * skb_seq_read - Sequentially read skb data
2241 * @consumed: number of bytes consumed by the caller so far
2242 * @data: destination pointer for data to be returned
2243 * @st: state variable
2244 *
2245 * Reads a block of skb data at &consumed relative to the
2246 * lower offset specified to skb_prepare_seq_read(). Assigns
2247 * the head of the data block to &data and returns the length
2248 * of the block or 0 if the end of the skb data or the upper
2249 * offset has been reached.
2250 *
2251 * The caller is not required to consume all of the data
2252 * returned, i.e. &consumed is typically set to the number
2253 * of bytes already consumed and the next call to
2254 * skb_seq_read() will return the remaining part of the block.
2255 *
2256 * Note 1: The size of each block of data returned can be arbitary,
2257 * this limitation is the cost for zerocopy seqeuental
2258 * reads of potentially non linear data.
2259 *
2260 * Note 2: Fragment lists within fragments are not implemented
2261 * at the moment, state->root_skb could be replaced with
2262 * a stack for this purpose.
2263 */
2264 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2265 struct skb_seq_state *st)
2266 {
2267 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2268 skb_frag_t *frag;
2269
2270 if (unlikely(abs_offset >= st->upper_offset))
2271 return 0;
2272
2273 next_skb:
2274 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2275
2276 if (abs_offset < block_limit && !st->frag_data) {
2277 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2278 return block_limit - abs_offset;
2279 }
2280
2281 if (st->frag_idx == 0 && !st->frag_data)
2282 st->stepped_offset += skb_headlen(st->cur_skb);
2283
2284 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2285 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2286 block_limit = frag->size + st->stepped_offset;
2287
2288 if (abs_offset < block_limit) {
2289 if (!st->frag_data)
2290 st->frag_data = kmap_skb_frag(frag);
2291
2292 *data = (u8 *) st->frag_data + frag->page_offset +
2293 (abs_offset - st->stepped_offset);
2294
2295 return block_limit - abs_offset;
2296 }
2297
2298 if (st->frag_data) {
2299 kunmap_skb_frag(st->frag_data);
2300 st->frag_data = NULL;
2301 }
2302
2303 st->frag_idx++;
2304 st->stepped_offset += frag->size;
2305 }
2306
2307 if (st->frag_data) {
2308 kunmap_skb_frag(st->frag_data);
2309 st->frag_data = NULL;
2310 }
2311
2312 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2313 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2314 st->frag_idx = 0;
2315 goto next_skb;
2316 } else if (st->cur_skb->next) {
2317 st->cur_skb = st->cur_skb->next;
2318 st->frag_idx = 0;
2319 goto next_skb;
2320 }
2321
2322 return 0;
2323 }
2324 EXPORT_SYMBOL(skb_seq_read);
2325
2326 /**
2327 * skb_abort_seq_read - Abort a sequential read of skb data
2328 * @st: state variable
2329 *
2330 * Must be called if skb_seq_read() was not called until it
2331 * returned 0.
2332 */
2333 void skb_abort_seq_read(struct skb_seq_state *st)
2334 {
2335 if (st->frag_data)
2336 kunmap_skb_frag(st->frag_data);
2337 }
2338 EXPORT_SYMBOL(skb_abort_seq_read);
2339
2340 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2341
2342 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2343 struct ts_config *conf,
2344 struct ts_state *state)
2345 {
2346 return skb_seq_read(offset, text, TS_SKB_CB(state));
2347 }
2348
2349 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2350 {
2351 skb_abort_seq_read(TS_SKB_CB(state));
2352 }
2353
2354 /**
2355 * skb_find_text - Find a text pattern in skb data
2356 * @skb: the buffer to look in
2357 * @from: search offset
2358 * @to: search limit
2359 * @config: textsearch configuration
2360 * @state: uninitialized textsearch state variable
2361 *
2362 * Finds a pattern in the skb data according to the specified
2363 * textsearch configuration. Use textsearch_next() to retrieve
2364 * subsequent occurrences of the pattern. Returns the offset
2365 * to the first occurrence or UINT_MAX if no match was found.
2366 */
2367 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2368 unsigned int to, struct ts_config *config,
2369 struct ts_state *state)
2370 {
2371 unsigned int ret;
2372
2373 config->get_next_block = skb_ts_get_next_block;
2374 config->finish = skb_ts_finish;
2375
2376 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2377
2378 ret = textsearch_find(config, state);
2379 return (ret <= to - from ? ret : UINT_MAX);
2380 }
2381 EXPORT_SYMBOL(skb_find_text);
2382
2383 /**
2384 * skb_append_datato_frags: - append the user data to a skb
2385 * @sk: sock structure
2386 * @skb: skb structure to be appened with user data.
2387 * @getfrag: call back function to be used for getting the user data
2388 * @from: pointer to user message iov
2389 * @length: length of the iov message
2390 *
2391 * Description: This procedure append the user data in the fragment part
2392 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2393 */
2394 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2395 int (*getfrag)(void *from, char *to, int offset,
2396 int len, int odd, struct sk_buff *skb),
2397 void *from, int length)
2398 {
2399 int frg_cnt = 0;
2400 skb_frag_t *frag = NULL;
2401 struct page *page = NULL;
2402 int copy, left;
2403 int offset = 0;
2404 int ret;
2405
2406 do {
2407 /* Return error if we don't have space for new frag */
2408 frg_cnt = skb_shinfo(skb)->nr_frags;
2409 if (frg_cnt >= MAX_SKB_FRAGS)
2410 return -EFAULT;
2411
2412 /* allocate a new page for next frag */
2413 page = alloc_pages(sk->sk_allocation, 0);
2414
2415 /* If alloc_page fails just return failure and caller will
2416 * free previous allocated pages by doing kfree_skb()
2417 */
2418 if (page == NULL)
2419 return -ENOMEM;
2420
2421 /* initialize the next frag */
2422 sk->sk_sndmsg_page = page;
2423 sk->sk_sndmsg_off = 0;
2424 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2425 skb->truesize += PAGE_SIZE;
2426 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2427
2428 /* get the new initialized frag */
2429 frg_cnt = skb_shinfo(skb)->nr_frags;
2430 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2431
2432 /* copy the user data to page */
2433 left = PAGE_SIZE - frag->page_offset;
2434 copy = (length > left)? left : length;
2435
2436 ret = getfrag(from, (page_address(frag->page) +
2437 frag->page_offset + frag->size),
2438 offset, copy, 0, skb);
2439 if (ret < 0)
2440 return -EFAULT;
2441
2442 /* copy was successful so update the size parameters */
2443 sk->sk_sndmsg_off += copy;
2444 frag->size += copy;
2445 skb->len += copy;
2446 skb->data_len += copy;
2447 offset += copy;
2448 length -= copy;
2449
2450 } while (length > 0);
2451
2452 return 0;
2453 }
2454 EXPORT_SYMBOL(skb_append_datato_frags);
2455
2456 /**
2457 * skb_pull_rcsum - pull skb and update receive checksum
2458 * @skb: buffer to update
2459 * @len: length of data pulled
2460 *
2461 * This function performs an skb_pull on the packet and updates
2462 * the CHECKSUM_COMPLETE checksum. It should be used on
2463 * receive path processing instead of skb_pull unless you know
2464 * that the checksum difference is zero (e.g., a valid IP header)
2465 * or you are setting ip_summed to CHECKSUM_NONE.
2466 */
2467 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2468 {
2469 BUG_ON(len > skb->len);
2470 skb->len -= len;
2471 BUG_ON(skb->len < skb->data_len);
2472 skb_postpull_rcsum(skb, skb->data, len);
2473 return skb->data += len;
2474 }
2475 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2476
2477 /**
2478 * skb_segment - Perform protocol segmentation on skb.
2479 * @skb: buffer to segment
2480 * @features: features for the output path (see dev->features)
2481 *
2482 * This function performs segmentation on the given skb. It returns
2483 * a pointer to the first in a list of new skbs for the segments.
2484 * In case of error it returns ERR_PTR(err).
2485 */
2486 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2487 {
2488 struct sk_buff *segs = NULL;
2489 struct sk_buff *tail = NULL;
2490 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2491 unsigned int mss = skb_shinfo(skb)->gso_size;
2492 unsigned int doffset = skb->data - skb_mac_header(skb);
2493 unsigned int offset = doffset;
2494 unsigned int headroom;
2495 unsigned int len;
2496 int sg = features & NETIF_F_SG;
2497 int nfrags = skb_shinfo(skb)->nr_frags;
2498 int err = -ENOMEM;
2499 int i = 0;
2500 int pos;
2501
2502 __skb_push(skb, doffset);
2503 headroom = skb_headroom(skb);
2504 pos = skb_headlen(skb);
2505
2506 do {
2507 struct sk_buff *nskb;
2508 skb_frag_t *frag;
2509 int hsize;
2510 int size;
2511
2512 len = skb->len - offset;
2513 if (len > mss)
2514 len = mss;
2515
2516 hsize = skb_headlen(skb) - offset;
2517 if (hsize < 0)
2518 hsize = 0;
2519 if (hsize > len || !sg)
2520 hsize = len;
2521
2522 if (!hsize && i >= nfrags) {
2523 BUG_ON(fskb->len != len);
2524
2525 pos += len;
2526 nskb = skb_clone(fskb, GFP_ATOMIC);
2527 fskb = fskb->next;
2528
2529 if (unlikely(!nskb))
2530 goto err;
2531
2532 hsize = skb_end_pointer(nskb) - nskb->head;
2533 if (skb_cow_head(nskb, doffset + headroom)) {
2534 kfree_skb(nskb);
2535 goto err;
2536 }
2537
2538 nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2539 hsize;
2540 skb_release_head_state(nskb);
2541 __skb_push(nskb, doffset);
2542 } else {
2543 nskb = alloc_skb(hsize + doffset + headroom,
2544 GFP_ATOMIC);
2545
2546 if (unlikely(!nskb))
2547 goto err;
2548
2549 skb_reserve(nskb, headroom);
2550 __skb_put(nskb, doffset);
2551 }
2552
2553 if (segs)
2554 tail->next = nskb;
2555 else
2556 segs = nskb;
2557 tail = nskb;
2558
2559 __copy_skb_header(nskb, skb);
2560 nskb->mac_len = skb->mac_len;
2561
2562 /* nskb and skb might have different headroom */
2563 if (nskb->ip_summed == CHECKSUM_PARTIAL)
2564 nskb->csum_start += skb_headroom(nskb) - headroom;
2565
2566 skb_reset_mac_header(nskb);
2567 skb_set_network_header(nskb, skb->mac_len);
2568 nskb->transport_header = (nskb->network_header +
2569 skb_network_header_len(skb));
2570 skb_copy_from_linear_data(skb, nskb->data, doffset);
2571
2572 if (fskb != skb_shinfo(skb)->frag_list)
2573 continue;
2574
2575 if (!sg) {
2576 nskb->ip_summed = CHECKSUM_NONE;
2577 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2578 skb_put(nskb, len),
2579 len, 0);
2580 continue;
2581 }
2582
2583 frag = skb_shinfo(nskb)->frags;
2584
2585 skb_copy_from_linear_data_offset(skb, offset,
2586 skb_put(nskb, hsize), hsize);
2587
2588 while (pos < offset + len && i < nfrags) {
2589 *frag = skb_shinfo(skb)->frags[i];
2590 get_page(frag->page);
2591 size = frag->size;
2592
2593 if (pos < offset) {
2594 frag->page_offset += offset - pos;
2595 frag->size -= offset - pos;
2596 }
2597
2598 skb_shinfo(nskb)->nr_frags++;
2599
2600 if (pos + size <= offset + len) {
2601 i++;
2602 pos += size;
2603 } else {
2604 frag->size -= pos + size - (offset + len);
2605 goto skip_fraglist;
2606 }
2607
2608 frag++;
2609 }
2610
2611 if (pos < offset + len) {
2612 struct sk_buff *fskb2 = fskb;
2613
2614 BUG_ON(pos + fskb->len != offset + len);
2615
2616 pos += fskb->len;
2617 fskb = fskb->next;
2618
2619 if (fskb2->next) {
2620 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2621 if (!fskb2)
2622 goto err;
2623 } else
2624 skb_get(fskb2);
2625
2626 SKB_FRAG_ASSERT(nskb);
2627 skb_shinfo(nskb)->frag_list = fskb2;
2628 }
2629
2630 skip_fraglist:
2631 nskb->data_len = len - hsize;
2632 nskb->len += nskb->data_len;
2633 nskb->truesize += nskb->data_len;
2634 } while ((offset += len) < skb->len);
2635
2636 return segs;
2637
2638 err:
2639 while ((skb = segs)) {
2640 segs = skb->next;
2641 kfree_skb(skb);
2642 }
2643 return ERR_PTR(err);
2644 }
2645 EXPORT_SYMBOL_GPL(skb_segment);
2646
2647 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2648 {
2649 struct sk_buff *p = *head;
2650 struct sk_buff *nskb;
2651 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2652 struct skb_shared_info *pinfo = skb_shinfo(p);
2653 unsigned int headroom;
2654 unsigned int len = skb_gro_len(skb);
2655 unsigned int offset = skb_gro_offset(skb);
2656 unsigned int headlen = skb_headlen(skb);
2657
2658 if (p->len + len >= 65536)
2659 return -E2BIG;
2660
2661 if (pinfo->frag_list)
2662 goto merge;
2663 else if (headlen <= offset) {
2664 skb_frag_t *frag;
2665 skb_frag_t *frag2;
2666 int i = skbinfo->nr_frags;
2667 int nr_frags = pinfo->nr_frags + i;
2668
2669 offset -= headlen;
2670
2671 if (nr_frags > MAX_SKB_FRAGS)
2672 return -E2BIG;
2673
2674 pinfo->nr_frags = nr_frags;
2675 skbinfo->nr_frags = 0;
2676
2677 frag = pinfo->frags + nr_frags;
2678 frag2 = skbinfo->frags + i;
2679 do {
2680 *--frag = *--frag2;
2681 } while (--i);
2682
2683 frag->page_offset += offset;
2684 frag->size -= offset;
2685
2686 skb->truesize -= skb->data_len;
2687 skb->len -= skb->data_len;
2688 skb->data_len = 0;
2689
2690 NAPI_GRO_CB(skb)->free = 1;
2691 goto done;
2692 } else if (skb_gro_len(p) != pinfo->gso_size)
2693 return -E2BIG;
2694
2695 headroom = skb_headroom(p);
2696 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2697 if (unlikely(!nskb))
2698 return -ENOMEM;
2699
2700 __copy_skb_header(nskb, p);
2701 nskb->mac_len = p->mac_len;
2702
2703 skb_reserve(nskb, headroom);
2704 __skb_put(nskb, skb_gro_offset(p));
2705
2706 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2707 skb_set_network_header(nskb, skb_network_offset(p));
2708 skb_set_transport_header(nskb, skb_transport_offset(p));
2709
2710 __skb_pull(p, skb_gro_offset(p));
2711 memcpy(skb_mac_header(nskb), skb_mac_header(p),
2712 p->data - skb_mac_header(p));
2713
2714 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2715 skb_shinfo(nskb)->frag_list = p;
2716 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2717 pinfo->gso_size = 0;
2718 skb_header_release(p);
2719 nskb->prev = p;
2720
2721 nskb->data_len += p->len;
2722 nskb->truesize += p->len;
2723 nskb->len += p->len;
2724
2725 *head = nskb;
2726 nskb->next = p->next;
2727 p->next = NULL;
2728
2729 p = nskb;
2730
2731 merge:
2732 if (offset > headlen) {
2733 skbinfo->frags[0].page_offset += offset - headlen;
2734 skbinfo->frags[0].size -= offset - headlen;
2735 offset = headlen;
2736 }
2737
2738 __skb_pull(skb, offset);
2739
2740 p->prev->next = skb;
2741 p->prev = skb;
2742 skb_header_release(skb);
2743
2744 done:
2745 NAPI_GRO_CB(p)->count++;
2746 p->data_len += len;
2747 p->truesize += len;
2748 p->len += len;
2749
2750 NAPI_GRO_CB(skb)->same_flow = 1;
2751 return 0;
2752 }
2753 EXPORT_SYMBOL_GPL(skb_gro_receive);
2754
2755 void __init skb_init(void)
2756 {
2757 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2758 sizeof(struct sk_buff),
2759 0,
2760 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2761 NULL);
2762 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2763 (2*sizeof(struct sk_buff)) +
2764 sizeof(atomic_t),
2765 0,
2766 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2767 NULL);
2768 }
2769
2770 /**
2771 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2772 * @skb: Socket buffer containing the buffers to be mapped
2773 * @sg: The scatter-gather list to map into
2774 * @offset: The offset into the buffer's contents to start mapping
2775 * @len: Length of buffer space to be mapped
2776 *
2777 * Fill the specified scatter-gather list with mappings/pointers into a
2778 * region of the buffer space attached to a socket buffer.
2779 */
2780 static int
2781 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2782 {
2783 int start = skb_headlen(skb);
2784 int i, copy = start - offset;
2785 struct sk_buff *frag_iter;
2786 int elt = 0;
2787
2788 if (copy > 0) {
2789 if (copy > len)
2790 copy = len;
2791 sg_set_buf(sg, skb->data + offset, copy);
2792 elt++;
2793 if ((len -= copy) == 0)
2794 return elt;
2795 offset += copy;
2796 }
2797
2798 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2799 int end;
2800
2801 WARN_ON(start > offset + len);
2802
2803 end = start + skb_shinfo(skb)->frags[i].size;
2804 if ((copy = end - offset) > 0) {
2805 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2806
2807 if (copy > len)
2808 copy = len;
2809 sg_set_page(&sg[elt], frag->page, copy,
2810 frag->page_offset+offset-start);
2811 elt++;
2812 if (!(len -= copy))
2813 return elt;
2814 offset += copy;
2815 }
2816 start = end;
2817 }
2818
2819 skb_walk_frags(skb, frag_iter) {
2820 int end;
2821
2822 WARN_ON(start > offset + len);
2823
2824 end = start + frag_iter->len;
2825 if ((copy = end - offset) > 0) {
2826 if (copy > len)
2827 copy = len;
2828 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
2829 copy);
2830 if ((len -= copy) == 0)
2831 return elt;
2832 offset += copy;
2833 }
2834 start = end;
2835 }
2836 BUG_ON(len);
2837 return elt;
2838 }
2839
2840 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2841 {
2842 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2843
2844 sg_mark_end(&sg[nsg - 1]);
2845
2846 return nsg;
2847 }
2848 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2849
2850 /**
2851 * skb_cow_data - Check that a socket buffer's data buffers are writable
2852 * @skb: The socket buffer to check.
2853 * @tailbits: Amount of trailing space to be added
2854 * @trailer: Returned pointer to the skb where the @tailbits space begins
2855 *
2856 * Make sure that the data buffers attached to a socket buffer are
2857 * writable. If they are not, private copies are made of the data buffers
2858 * and the socket buffer is set to use these instead.
2859 *
2860 * If @tailbits is given, make sure that there is space to write @tailbits
2861 * bytes of data beyond current end of socket buffer. @trailer will be
2862 * set to point to the skb in which this space begins.
2863 *
2864 * The number of scatterlist elements required to completely map the
2865 * COW'd and extended socket buffer will be returned.
2866 */
2867 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2868 {
2869 int copyflag;
2870 int elt;
2871 struct sk_buff *skb1, **skb_p;
2872
2873 /* If skb is cloned or its head is paged, reallocate
2874 * head pulling out all the pages (pages are considered not writable
2875 * at the moment even if they are anonymous).
2876 */
2877 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2878 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2879 return -ENOMEM;
2880
2881 /* Easy case. Most of packets will go this way. */
2882 if (!skb_has_frag_list(skb)) {
2883 /* A little of trouble, not enough of space for trailer.
2884 * This should not happen, when stack is tuned to generate
2885 * good frames. OK, on miss we reallocate and reserve even more
2886 * space, 128 bytes is fair. */
2887
2888 if (skb_tailroom(skb) < tailbits &&
2889 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2890 return -ENOMEM;
2891
2892 /* Voila! */
2893 *trailer = skb;
2894 return 1;
2895 }
2896
2897 /* Misery. We are in troubles, going to mincer fragments... */
2898
2899 elt = 1;
2900 skb_p = &skb_shinfo(skb)->frag_list;
2901 copyflag = 0;
2902
2903 while ((skb1 = *skb_p) != NULL) {
2904 int ntail = 0;
2905
2906 /* The fragment is partially pulled by someone,
2907 * this can happen on input. Copy it and everything
2908 * after it. */
2909
2910 if (skb_shared(skb1))
2911 copyflag = 1;
2912
2913 /* If the skb is the last, worry about trailer. */
2914
2915 if (skb1->next == NULL && tailbits) {
2916 if (skb_shinfo(skb1)->nr_frags ||
2917 skb_has_frag_list(skb1) ||
2918 skb_tailroom(skb1) < tailbits)
2919 ntail = tailbits + 128;
2920 }
2921
2922 if (copyflag ||
2923 skb_cloned(skb1) ||
2924 ntail ||
2925 skb_shinfo(skb1)->nr_frags ||
2926 skb_has_frag_list(skb1)) {
2927 struct sk_buff *skb2;
2928
2929 /* Fuck, we are miserable poor guys... */
2930 if (ntail == 0)
2931 skb2 = skb_copy(skb1, GFP_ATOMIC);
2932 else
2933 skb2 = skb_copy_expand(skb1,
2934 skb_headroom(skb1),
2935 ntail,
2936 GFP_ATOMIC);
2937 if (unlikely(skb2 == NULL))
2938 return -ENOMEM;
2939
2940 if (skb1->sk)
2941 skb_set_owner_w(skb2, skb1->sk);
2942
2943 /* Looking around. Are we still alive?
2944 * OK, link new skb, drop old one */
2945
2946 skb2->next = skb1->next;
2947 *skb_p = skb2;
2948 kfree_skb(skb1);
2949 skb1 = skb2;
2950 }
2951 elt++;
2952 *trailer = skb1;
2953 skb_p = &skb1->next;
2954 }
2955
2956 return elt;
2957 }
2958 EXPORT_SYMBOL_GPL(skb_cow_data);
2959
2960 static void sock_rmem_free(struct sk_buff *skb)
2961 {
2962 struct sock *sk = skb->sk;
2963
2964 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
2965 }
2966
2967 /*
2968 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
2969 */
2970 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
2971 {
2972 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
2973 (unsigned)sk->sk_rcvbuf)
2974 return -ENOMEM;
2975
2976 skb_orphan(skb);
2977 skb->sk = sk;
2978 skb->destructor = sock_rmem_free;
2979 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2980
2981 skb_queue_tail(&sk->sk_error_queue, skb);
2982 if (!sock_flag(sk, SOCK_DEAD))
2983 sk->sk_data_ready(sk, skb->len);
2984 return 0;
2985 }
2986 EXPORT_SYMBOL(sock_queue_err_skb);
2987
2988 void skb_tstamp_tx(struct sk_buff *orig_skb,
2989 struct skb_shared_hwtstamps *hwtstamps)
2990 {
2991 struct sock *sk = orig_skb->sk;
2992 struct sock_exterr_skb *serr;
2993 struct sk_buff *skb;
2994 int err;
2995
2996 if (!sk)
2997 return;
2998
2999 skb = skb_clone(orig_skb, GFP_ATOMIC);
3000 if (!skb)
3001 return;
3002
3003 if (hwtstamps) {
3004 *skb_hwtstamps(skb) =
3005 *hwtstamps;
3006 } else {
3007 /*
3008 * no hardware time stamps available,
3009 * so keep the shared tx_flags and only
3010 * store software time stamp
3011 */
3012 skb->tstamp = ktime_get_real();
3013 }
3014
3015 serr = SKB_EXT_ERR(skb);
3016 memset(serr, 0, sizeof(*serr));
3017 serr->ee.ee_errno = ENOMSG;
3018 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3019
3020 err = sock_queue_err_skb(sk, skb);
3021
3022 if (err)
3023 kfree_skb(skb);
3024 }
3025 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3026
3027
3028 /**
3029 * skb_partial_csum_set - set up and verify partial csum values for packet
3030 * @skb: the skb to set
3031 * @start: the number of bytes after skb->data to start checksumming.
3032 * @off: the offset from start to place the checksum.
3033 *
3034 * For untrusted partially-checksummed packets, we need to make sure the values
3035 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3036 *
3037 * This function checks and sets those values and skb->ip_summed: if this
3038 * returns false you should drop the packet.
3039 */
3040 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3041 {
3042 if (unlikely(start > skb_headlen(skb)) ||
3043 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3044 if (net_ratelimit())
3045 printk(KERN_WARNING
3046 "bad partial csum: csum=%u/%u len=%u\n",
3047 start, off, skb_headlen(skb));
3048 return false;
3049 }
3050 skb->ip_summed = CHECKSUM_PARTIAL;
3051 skb->csum_start = skb_headroom(skb) + start;
3052 skb->csum_offset = off;
3053 return true;
3054 }
3055 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3056
3057 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3058 {
3059 if (net_ratelimit())
3060 pr_warning("%s: received packets cannot be forwarded"
3061 " while LRO is enabled\n", skb->dev->name);
3062 }
3063 EXPORT_SYMBOL(__skb_warn_lro_forwarding);