]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - net/core/skbuff.c
Merge tag 'for-linus-20190112' of git://git.kernel.dk/linux-block
[mirror_ubuntu-eoan-kernel.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/tcp.h>
50 #include <linux/udp.h>
51 #include <linux/sctp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73
74 #include <linux/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79
80 struct kmem_cache *skbuff_head_cache __ro_after_init;
81 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
82 #ifdef CONFIG_SKB_EXTENSIONS
83 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
84 #endif
85 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
86 EXPORT_SYMBOL(sysctl_max_skb_frags);
87
88 /**
89 * skb_panic - private function for out-of-line support
90 * @skb: buffer
91 * @sz: size
92 * @addr: address
93 * @msg: skb_over_panic or skb_under_panic
94 *
95 * Out-of-line support for skb_put() and skb_push().
96 * Called via the wrapper skb_over_panic() or skb_under_panic().
97 * Keep out of line to prevent kernel bloat.
98 * __builtin_return_address is not used because it is not always reliable.
99 */
100 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
101 const char msg[])
102 {
103 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
104 msg, addr, skb->len, sz, skb->head, skb->data,
105 (unsigned long)skb->tail, (unsigned long)skb->end,
106 skb->dev ? skb->dev->name : "<NULL>");
107 BUG();
108 }
109
110 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
111 {
112 skb_panic(skb, sz, addr, __func__);
113 }
114
115 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
116 {
117 skb_panic(skb, sz, addr, __func__);
118 }
119
120 /*
121 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
122 * the caller if emergency pfmemalloc reserves are being used. If it is and
123 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
124 * may be used. Otherwise, the packet data may be discarded until enough
125 * memory is free
126 */
127 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
128 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
129
130 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
131 unsigned long ip, bool *pfmemalloc)
132 {
133 void *obj;
134 bool ret_pfmemalloc = false;
135
136 /*
137 * Try a regular allocation, when that fails and we're not entitled
138 * to the reserves, fail.
139 */
140 obj = kmalloc_node_track_caller(size,
141 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
142 node);
143 if (obj || !(gfp_pfmemalloc_allowed(flags)))
144 goto out;
145
146 /* Try again but now we are using pfmemalloc reserves */
147 ret_pfmemalloc = true;
148 obj = kmalloc_node_track_caller(size, flags, node);
149
150 out:
151 if (pfmemalloc)
152 *pfmemalloc = ret_pfmemalloc;
153
154 return obj;
155 }
156
157 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
158 * 'private' fields and also do memory statistics to find all the
159 * [BEEP] leaks.
160 *
161 */
162
163 /**
164 * __alloc_skb - allocate a network buffer
165 * @size: size to allocate
166 * @gfp_mask: allocation mask
167 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
168 * instead of head cache and allocate a cloned (child) skb.
169 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
170 * allocations in case the data is required for writeback
171 * @node: numa node to allocate memory on
172 *
173 * Allocate a new &sk_buff. The returned buffer has no headroom and a
174 * tail room of at least size bytes. The object has a reference count
175 * of one. The return is the buffer. On a failure the return is %NULL.
176 *
177 * Buffers may only be allocated from interrupts using a @gfp_mask of
178 * %GFP_ATOMIC.
179 */
180 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
181 int flags, int node)
182 {
183 struct kmem_cache *cache;
184 struct skb_shared_info *shinfo;
185 struct sk_buff *skb;
186 u8 *data;
187 bool pfmemalloc;
188
189 cache = (flags & SKB_ALLOC_FCLONE)
190 ? skbuff_fclone_cache : skbuff_head_cache;
191
192 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
193 gfp_mask |= __GFP_MEMALLOC;
194
195 /* Get the HEAD */
196 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
197 if (!skb)
198 goto out;
199 prefetchw(skb);
200
201 /* We do our best to align skb_shared_info on a separate cache
202 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
203 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
204 * Both skb->head and skb_shared_info are cache line aligned.
205 */
206 size = SKB_DATA_ALIGN(size);
207 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
208 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
209 if (!data)
210 goto nodata;
211 /* kmalloc(size) might give us more room than requested.
212 * Put skb_shared_info exactly at the end of allocated zone,
213 * to allow max possible filling before reallocation.
214 */
215 size = SKB_WITH_OVERHEAD(ksize(data));
216 prefetchw(data + size);
217
218 /*
219 * Only clear those fields we need to clear, not those that we will
220 * actually initialise below. Hence, don't put any more fields after
221 * the tail pointer in struct sk_buff!
222 */
223 memset(skb, 0, offsetof(struct sk_buff, tail));
224 /* Account for allocated memory : skb + skb->head */
225 skb->truesize = SKB_TRUESIZE(size);
226 skb->pfmemalloc = pfmemalloc;
227 refcount_set(&skb->users, 1);
228 skb->head = data;
229 skb->data = data;
230 skb_reset_tail_pointer(skb);
231 skb->end = skb->tail + size;
232 skb->mac_header = (typeof(skb->mac_header))~0U;
233 skb->transport_header = (typeof(skb->transport_header))~0U;
234
235 /* make sure we initialize shinfo sequentially */
236 shinfo = skb_shinfo(skb);
237 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
238 atomic_set(&shinfo->dataref, 1);
239
240 if (flags & SKB_ALLOC_FCLONE) {
241 struct sk_buff_fclones *fclones;
242
243 fclones = container_of(skb, struct sk_buff_fclones, skb1);
244
245 skb->fclone = SKB_FCLONE_ORIG;
246 refcount_set(&fclones->fclone_ref, 1);
247
248 fclones->skb2.fclone = SKB_FCLONE_CLONE;
249 }
250 out:
251 return skb;
252 nodata:
253 kmem_cache_free(cache, skb);
254 skb = NULL;
255 goto out;
256 }
257 EXPORT_SYMBOL(__alloc_skb);
258
259 /**
260 * __build_skb - build a network buffer
261 * @data: data buffer provided by caller
262 * @frag_size: size of data, or 0 if head was kmalloced
263 *
264 * Allocate a new &sk_buff. Caller provides space holding head and
265 * skb_shared_info. @data must have been allocated by kmalloc() only if
266 * @frag_size is 0, otherwise data should come from the page allocator
267 * or vmalloc()
268 * The return is the new skb buffer.
269 * On a failure the return is %NULL, and @data is not freed.
270 * Notes :
271 * Before IO, driver allocates only data buffer where NIC put incoming frame
272 * Driver should add room at head (NET_SKB_PAD) and
273 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
274 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
275 * before giving packet to stack.
276 * RX rings only contains data buffers, not full skbs.
277 */
278 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
279 {
280 struct skb_shared_info *shinfo;
281 struct sk_buff *skb;
282 unsigned int size = frag_size ? : ksize(data);
283
284 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
285 if (!skb)
286 return NULL;
287
288 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
289
290 memset(skb, 0, offsetof(struct sk_buff, tail));
291 skb->truesize = SKB_TRUESIZE(size);
292 refcount_set(&skb->users, 1);
293 skb->head = data;
294 skb->data = data;
295 skb_reset_tail_pointer(skb);
296 skb->end = skb->tail + size;
297 skb->mac_header = (typeof(skb->mac_header))~0U;
298 skb->transport_header = (typeof(skb->transport_header))~0U;
299
300 /* make sure we initialize shinfo sequentially */
301 shinfo = skb_shinfo(skb);
302 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
303 atomic_set(&shinfo->dataref, 1);
304
305 return skb;
306 }
307
308 /* build_skb() is wrapper over __build_skb(), that specifically
309 * takes care of skb->head and skb->pfmemalloc
310 * This means that if @frag_size is not zero, then @data must be backed
311 * by a page fragment, not kmalloc() or vmalloc()
312 */
313 struct sk_buff *build_skb(void *data, unsigned int frag_size)
314 {
315 struct sk_buff *skb = __build_skb(data, frag_size);
316
317 if (skb && frag_size) {
318 skb->head_frag = 1;
319 if (page_is_pfmemalloc(virt_to_head_page(data)))
320 skb->pfmemalloc = 1;
321 }
322 return skb;
323 }
324 EXPORT_SYMBOL(build_skb);
325
326 #define NAPI_SKB_CACHE_SIZE 64
327
328 struct napi_alloc_cache {
329 struct page_frag_cache page;
330 unsigned int skb_count;
331 void *skb_cache[NAPI_SKB_CACHE_SIZE];
332 };
333
334 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
335 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
336
337 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
338 {
339 struct page_frag_cache *nc;
340 unsigned long flags;
341 void *data;
342
343 local_irq_save(flags);
344 nc = this_cpu_ptr(&netdev_alloc_cache);
345 data = page_frag_alloc(nc, fragsz, gfp_mask);
346 local_irq_restore(flags);
347 return data;
348 }
349
350 /**
351 * netdev_alloc_frag - allocate a page fragment
352 * @fragsz: fragment size
353 *
354 * Allocates a frag from a page for receive buffer.
355 * Uses GFP_ATOMIC allocations.
356 */
357 void *netdev_alloc_frag(unsigned int fragsz)
358 {
359 return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
360 }
361 EXPORT_SYMBOL(netdev_alloc_frag);
362
363 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
364 {
365 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
366
367 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
368 }
369
370 void *napi_alloc_frag(unsigned int fragsz)
371 {
372 return __napi_alloc_frag(fragsz, GFP_ATOMIC);
373 }
374 EXPORT_SYMBOL(napi_alloc_frag);
375
376 /**
377 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
378 * @dev: network device to receive on
379 * @len: length to allocate
380 * @gfp_mask: get_free_pages mask, passed to alloc_skb
381 *
382 * Allocate a new &sk_buff and assign it a usage count of one. The
383 * buffer has NET_SKB_PAD headroom built in. Users should allocate
384 * the headroom they think they need without accounting for the
385 * built in space. The built in space is used for optimisations.
386 *
387 * %NULL is returned if there is no free memory.
388 */
389 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
390 gfp_t gfp_mask)
391 {
392 struct page_frag_cache *nc;
393 unsigned long flags;
394 struct sk_buff *skb;
395 bool pfmemalloc;
396 void *data;
397
398 len += NET_SKB_PAD;
399
400 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
401 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
402 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
403 if (!skb)
404 goto skb_fail;
405 goto skb_success;
406 }
407
408 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
409 len = SKB_DATA_ALIGN(len);
410
411 if (sk_memalloc_socks())
412 gfp_mask |= __GFP_MEMALLOC;
413
414 local_irq_save(flags);
415
416 nc = this_cpu_ptr(&netdev_alloc_cache);
417 data = page_frag_alloc(nc, len, gfp_mask);
418 pfmemalloc = nc->pfmemalloc;
419
420 local_irq_restore(flags);
421
422 if (unlikely(!data))
423 return NULL;
424
425 skb = __build_skb(data, len);
426 if (unlikely(!skb)) {
427 skb_free_frag(data);
428 return NULL;
429 }
430
431 /* use OR instead of assignment to avoid clearing of bits in mask */
432 if (pfmemalloc)
433 skb->pfmemalloc = 1;
434 skb->head_frag = 1;
435
436 skb_success:
437 skb_reserve(skb, NET_SKB_PAD);
438 skb->dev = dev;
439
440 skb_fail:
441 return skb;
442 }
443 EXPORT_SYMBOL(__netdev_alloc_skb);
444
445 /**
446 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
447 * @napi: napi instance this buffer was allocated for
448 * @len: length to allocate
449 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
450 *
451 * Allocate a new sk_buff for use in NAPI receive. This buffer will
452 * attempt to allocate the head from a special reserved region used
453 * only for NAPI Rx allocation. By doing this we can save several
454 * CPU cycles by avoiding having to disable and re-enable IRQs.
455 *
456 * %NULL is returned if there is no free memory.
457 */
458 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
459 gfp_t gfp_mask)
460 {
461 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
462 struct sk_buff *skb;
463 void *data;
464
465 len += NET_SKB_PAD + NET_IP_ALIGN;
466
467 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
468 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
469 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
470 if (!skb)
471 goto skb_fail;
472 goto skb_success;
473 }
474
475 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
476 len = SKB_DATA_ALIGN(len);
477
478 if (sk_memalloc_socks())
479 gfp_mask |= __GFP_MEMALLOC;
480
481 data = page_frag_alloc(&nc->page, len, gfp_mask);
482 if (unlikely(!data))
483 return NULL;
484
485 skb = __build_skb(data, len);
486 if (unlikely(!skb)) {
487 skb_free_frag(data);
488 return NULL;
489 }
490
491 /* use OR instead of assignment to avoid clearing of bits in mask */
492 if (nc->page.pfmemalloc)
493 skb->pfmemalloc = 1;
494 skb->head_frag = 1;
495
496 skb_success:
497 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
498 skb->dev = napi->dev;
499
500 skb_fail:
501 return skb;
502 }
503 EXPORT_SYMBOL(__napi_alloc_skb);
504
505 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
506 int size, unsigned int truesize)
507 {
508 skb_fill_page_desc(skb, i, page, off, size);
509 skb->len += size;
510 skb->data_len += size;
511 skb->truesize += truesize;
512 }
513 EXPORT_SYMBOL(skb_add_rx_frag);
514
515 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
516 unsigned int truesize)
517 {
518 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
519
520 skb_frag_size_add(frag, size);
521 skb->len += size;
522 skb->data_len += size;
523 skb->truesize += truesize;
524 }
525 EXPORT_SYMBOL(skb_coalesce_rx_frag);
526
527 static void skb_drop_list(struct sk_buff **listp)
528 {
529 kfree_skb_list(*listp);
530 *listp = NULL;
531 }
532
533 static inline void skb_drop_fraglist(struct sk_buff *skb)
534 {
535 skb_drop_list(&skb_shinfo(skb)->frag_list);
536 }
537
538 static void skb_clone_fraglist(struct sk_buff *skb)
539 {
540 struct sk_buff *list;
541
542 skb_walk_frags(skb, list)
543 skb_get(list);
544 }
545
546 static void skb_free_head(struct sk_buff *skb)
547 {
548 unsigned char *head = skb->head;
549
550 if (skb->head_frag)
551 skb_free_frag(head);
552 else
553 kfree(head);
554 }
555
556 static void skb_release_data(struct sk_buff *skb)
557 {
558 struct skb_shared_info *shinfo = skb_shinfo(skb);
559 int i;
560
561 if (skb->cloned &&
562 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
563 &shinfo->dataref))
564 return;
565
566 for (i = 0; i < shinfo->nr_frags; i++)
567 __skb_frag_unref(&shinfo->frags[i]);
568
569 if (shinfo->frag_list)
570 kfree_skb_list(shinfo->frag_list);
571
572 skb_zcopy_clear(skb, true);
573 skb_free_head(skb);
574 }
575
576 /*
577 * Free an skbuff by memory without cleaning the state.
578 */
579 static void kfree_skbmem(struct sk_buff *skb)
580 {
581 struct sk_buff_fclones *fclones;
582
583 switch (skb->fclone) {
584 case SKB_FCLONE_UNAVAILABLE:
585 kmem_cache_free(skbuff_head_cache, skb);
586 return;
587
588 case SKB_FCLONE_ORIG:
589 fclones = container_of(skb, struct sk_buff_fclones, skb1);
590
591 /* We usually free the clone (TX completion) before original skb
592 * This test would have no chance to be true for the clone,
593 * while here, branch prediction will be good.
594 */
595 if (refcount_read(&fclones->fclone_ref) == 1)
596 goto fastpath;
597 break;
598
599 default: /* SKB_FCLONE_CLONE */
600 fclones = container_of(skb, struct sk_buff_fclones, skb2);
601 break;
602 }
603 if (!refcount_dec_and_test(&fclones->fclone_ref))
604 return;
605 fastpath:
606 kmem_cache_free(skbuff_fclone_cache, fclones);
607 }
608
609 void skb_release_head_state(struct sk_buff *skb)
610 {
611 skb_dst_drop(skb);
612 if (skb->destructor) {
613 WARN_ON(in_irq());
614 skb->destructor(skb);
615 }
616 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
617 nf_conntrack_put(skb_nfct(skb));
618 #endif
619 skb_ext_put(skb);
620 }
621
622 /* Free everything but the sk_buff shell. */
623 static void skb_release_all(struct sk_buff *skb)
624 {
625 skb_release_head_state(skb);
626 if (likely(skb->head))
627 skb_release_data(skb);
628 }
629
630 /**
631 * __kfree_skb - private function
632 * @skb: buffer
633 *
634 * Free an sk_buff. Release anything attached to the buffer.
635 * Clean the state. This is an internal helper function. Users should
636 * always call kfree_skb
637 */
638
639 void __kfree_skb(struct sk_buff *skb)
640 {
641 skb_release_all(skb);
642 kfree_skbmem(skb);
643 }
644 EXPORT_SYMBOL(__kfree_skb);
645
646 /**
647 * kfree_skb - free an sk_buff
648 * @skb: buffer to free
649 *
650 * Drop a reference to the buffer and free it if the usage count has
651 * hit zero.
652 */
653 void kfree_skb(struct sk_buff *skb)
654 {
655 if (!skb_unref(skb))
656 return;
657
658 trace_kfree_skb(skb, __builtin_return_address(0));
659 __kfree_skb(skb);
660 }
661 EXPORT_SYMBOL(kfree_skb);
662
663 void kfree_skb_list(struct sk_buff *segs)
664 {
665 while (segs) {
666 struct sk_buff *next = segs->next;
667
668 kfree_skb(segs);
669 segs = next;
670 }
671 }
672 EXPORT_SYMBOL(kfree_skb_list);
673
674 /**
675 * skb_tx_error - report an sk_buff xmit error
676 * @skb: buffer that triggered an error
677 *
678 * Report xmit error if a device callback is tracking this skb.
679 * skb must be freed afterwards.
680 */
681 void skb_tx_error(struct sk_buff *skb)
682 {
683 skb_zcopy_clear(skb, true);
684 }
685 EXPORT_SYMBOL(skb_tx_error);
686
687 /**
688 * consume_skb - free an skbuff
689 * @skb: buffer to free
690 *
691 * Drop a ref to the buffer and free it if the usage count has hit zero
692 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
693 * is being dropped after a failure and notes that
694 */
695 void consume_skb(struct sk_buff *skb)
696 {
697 if (!skb_unref(skb))
698 return;
699
700 trace_consume_skb(skb);
701 __kfree_skb(skb);
702 }
703 EXPORT_SYMBOL(consume_skb);
704
705 /**
706 * consume_stateless_skb - free an skbuff, assuming it is stateless
707 * @skb: buffer to free
708 *
709 * Alike consume_skb(), but this variant assumes that this is the last
710 * skb reference and all the head states have been already dropped
711 */
712 void __consume_stateless_skb(struct sk_buff *skb)
713 {
714 trace_consume_skb(skb);
715 skb_release_data(skb);
716 kfree_skbmem(skb);
717 }
718
719 void __kfree_skb_flush(void)
720 {
721 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
722
723 /* flush skb_cache if containing objects */
724 if (nc->skb_count) {
725 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
726 nc->skb_cache);
727 nc->skb_count = 0;
728 }
729 }
730
731 static inline void _kfree_skb_defer(struct sk_buff *skb)
732 {
733 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
734
735 /* drop skb->head and call any destructors for packet */
736 skb_release_all(skb);
737
738 /* record skb to CPU local list */
739 nc->skb_cache[nc->skb_count++] = skb;
740
741 #ifdef CONFIG_SLUB
742 /* SLUB writes into objects when freeing */
743 prefetchw(skb);
744 #endif
745
746 /* flush skb_cache if it is filled */
747 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
748 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
749 nc->skb_cache);
750 nc->skb_count = 0;
751 }
752 }
753 void __kfree_skb_defer(struct sk_buff *skb)
754 {
755 _kfree_skb_defer(skb);
756 }
757
758 void napi_consume_skb(struct sk_buff *skb, int budget)
759 {
760 if (unlikely(!skb))
761 return;
762
763 /* Zero budget indicate non-NAPI context called us, like netpoll */
764 if (unlikely(!budget)) {
765 dev_consume_skb_any(skb);
766 return;
767 }
768
769 if (!skb_unref(skb))
770 return;
771
772 /* if reaching here SKB is ready to free */
773 trace_consume_skb(skb);
774
775 /* if SKB is a clone, don't handle this case */
776 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
777 __kfree_skb(skb);
778 return;
779 }
780
781 _kfree_skb_defer(skb);
782 }
783 EXPORT_SYMBOL(napi_consume_skb);
784
785 /* Make sure a field is enclosed inside headers_start/headers_end section */
786 #define CHECK_SKB_FIELD(field) \
787 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
788 offsetof(struct sk_buff, headers_start)); \
789 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
790 offsetof(struct sk_buff, headers_end)); \
791
792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
793 {
794 new->tstamp = old->tstamp;
795 /* We do not copy old->sk */
796 new->dev = old->dev;
797 memcpy(new->cb, old->cb, sizeof(old->cb));
798 skb_dst_copy(new, old);
799 __skb_ext_copy(new, old);
800 __nf_copy(new, old, false);
801
802 /* Note : this field could be in headers_start/headers_end section
803 * It is not yet because we do not want to have a 16 bit hole
804 */
805 new->queue_mapping = old->queue_mapping;
806
807 memcpy(&new->headers_start, &old->headers_start,
808 offsetof(struct sk_buff, headers_end) -
809 offsetof(struct sk_buff, headers_start));
810 CHECK_SKB_FIELD(protocol);
811 CHECK_SKB_FIELD(csum);
812 CHECK_SKB_FIELD(hash);
813 CHECK_SKB_FIELD(priority);
814 CHECK_SKB_FIELD(skb_iif);
815 CHECK_SKB_FIELD(vlan_proto);
816 CHECK_SKB_FIELD(vlan_tci);
817 CHECK_SKB_FIELD(transport_header);
818 CHECK_SKB_FIELD(network_header);
819 CHECK_SKB_FIELD(mac_header);
820 CHECK_SKB_FIELD(inner_protocol);
821 CHECK_SKB_FIELD(inner_transport_header);
822 CHECK_SKB_FIELD(inner_network_header);
823 CHECK_SKB_FIELD(inner_mac_header);
824 CHECK_SKB_FIELD(mark);
825 #ifdef CONFIG_NETWORK_SECMARK
826 CHECK_SKB_FIELD(secmark);
827 #endif
828 #ifdef CONFIG_NET_RX_BUSY_POLL
829 CHECK_SKB_FIELD(napi_id);
830 #endif
831 #ifdef CONFIG_XPS
832 CHECK_SKB_FIELD(sender_cpu);
833 #endif
834 #ifdef CONFIG_NET_SCHED
835 CHECK_SKB_FIELD(tc_index);
836 #endif
837
838 }
839
840 /*
841 * You should not add any new code to this function. Add it to
842 * __copy_skb_header above instead.
843 */
844 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
845 {
846 #define C(x) n->x = skb->x
847
848 n->next = n->prev = NULL;
849 n->sk = NULL;
850 __copy_skb_header(n, skb);
851
852 C(len);
853 C(data_len);
854 C(mac_len);
855 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
856 n->cloned = 1;
857 n->nohdr = 0;
858 n->peeked = 0;
859 C(pfmemalloc);
860 n->destructor = NULL;
861 C(tail);
862 C(end);
863 C(head);
864 C(head_frag);
865 C(data);
866 C(truesize);
867 refcount_set(&n->users, 1);
868
869 atomic_inc(&(skb_shinfo(skb)->dataref));
870 skb->cloned = 1;
871
872 return n;
873 #undef C
874 }
875
876 /**
877 * skb_morph - morph one skb into another
878 * @dst: the skb to receive the contents
879 * @src: the skb to supply the contents
880 *
881 * This is identical to skb_clone except that the target skb is
882 * supplied by the user.
883 *
884 * The target skb is returned upon exit.
885 */
886 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
887 {
888 skb_release_all(dst);
889 return __skb_clone(dst, src);
890 }
891 EXPORT_SYMBOL_GPL(skb_morph);
892
893 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
894 {
895 unsigned long max_pg, num_pg, new_pg, old_pg;
896 struct user_struct *user;
897
898 if (capable(CAP_IPC_LOCK) || !size)
899 return 0;
900
901 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
902 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
903 user = mmp->user ? : current_user();
904
905 do {
906 old_pg = atomic_long_read(&user->locked_vm);
907 new_pg = old_pg + num_pg;
908 if (new_pg > max_pg)
909 return -ENOBUFS;
910 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
911 old_pg);
912
913 if (!mmp->user) {
914 mmp->user = get_uid(user);
915 mmp->num_pg = num_pg;
916 } else {
917 mmp->num_pg += num_pg;
918 }
919
920 return 0;
921 }
922 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
923
924 void mm_unaccount_pinned_pages(struct mmpin *mmp)
925 {
926 if (mmp->user) {
927 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
928 free_uid(mmp->user);
929 }
930 }
931 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
932
933 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
934 {
935 struct ubuf_info *uarg;
936 struct sk_buff *skb;
937
938 WARN_ON_ONCE(!in_task());
939
940 skb = sock_omalloc(sk, 0, GFP_KERNEL);
941 if (!skb)
942 return NULL;
943
944 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
945 uarg = (void *)skb->cb;
946 uarg->mmp.user = NULL;
947
948 if (mm_account_pinned_pages(&uarg->mmp, size)) {
949 kfree_skb(skb);
950 return NULL;
951 }
952
953 uarg->callback = sock_zerocopy_callback;
954 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
955 uarg->len = 1;
956 uarg->bytelen = size;
957 uarg->zerocopy = 1;
958 refcount_set(&uarg->refcnt, 1);
959 sock_hold(sk);
960
961 return uarg;
962 }
963 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
964
965 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
966 {
967 return container_of((void *)uarg, struct sk_buff, cb);
968 }
969
970 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
971 struct ubuf_info *uarg)
972 {
973 if (uarg) {
974 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
975 u32 bytelen, next;
976
977 /* realloc only when socket is locked (TCP, UDP cork),
978 * so uarg->len and sk_zckey access is serialized
979 */
980 if (!sock_owned_by_user(sk)) {
981 WARN_ON_ONCE(1);
982 return NULL;
983 }
984
985 bytelen = uarg->bytelen + size;
986 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
987 /* TCP can create new skb to attach new uarg */
988 if (sk->sk_type == SOCK_STREAM)
989 goto new_alloc;
990 return NULL;
991 }
992
993 next = (u32)atomic_read(&sk->sk_zckey);
994 if ((u32)(uarg->id + uarg->len) == next) {
995 if (mm_account_pinned_pages(&uarg->mmp, size))
996 return NULL;
997 uarg->len++;
998 uarg->bytelen = bytelen;
999 atomic_set(&sk->sk_zckey, ++next);
1000 sock_zerocopy_get(uarg);
1001 return uarg;
1002 }
1003 }
1004
1005 new_alloc:
1006 return sock_zerocopy_alloc(sk, size);
1007 }
1008 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1009
1010 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1011 {
1012 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1013 u32 old_lo, old_hi;
1014 u64 sum_len;
1015
1016 old_lo = serr->ee.ee_info;
1017 old_hi = serr->ee.ee_data;
1018 sum_len = old_hi - old_lo + 1ULL + len;
1019
1020 if (sum_len >= (1ULL << 32))
1021 return false;
1022
1023 if (lo != old_hi + 1)
1024 return false;
1025
1026 serr->ee.ee_data += len;
1027 return true;
1028 }
1029
1030 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1031 {
1032 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1033 struct sock_exterr_skb *serr;
1034 struct sock *sk = skb->sk;
1035 struct sk_buff_head *q;
1036 unsigned long flags;
1037 u32 lo, hi;
1038 u16 len;
1039
1040 mm_unaccount_pinned_pages(&uarg->mmp);
1041
1042 /* if !len, there was only 1 call, and it was aborted
1043 * so do not queue a completion notification
1044 */
1045 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1046 goto release;
1047
1048 len = uarg->len;
1049 lo = uarg->id;
1050 hi = uarg->id + len - 1;
1051
1052 serr = SKB_EXT_ERR(skb);
1053 memset(serr, 0, sizeof(*serr));
1054 serr->ee.ee_errno = 0;
1055 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1056 serr->ee.ee_data = hi;
1057 serr->ee.ee_info = lo;
1058 if (!success)
1059 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1060
1061 q = &sk->sk_error_queue;
1062 spin_lock_irqsave(&q->lock, flags);
1063 tail = skb_peek_tail(q);
1064 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1065 !skb_zerocopy_notify_extend(tail, lo, len)) {
1066 __skb_queue_tail(q, skb);
1067 skb = NULL;
1068 }
1069 spin_unlock_irqrestore(&q->lock, flags);
1070
1071 sk->sk_error_report(sk);
1072
1073 release:
1074 consume_skb(skb);
1075 sock_put(sk);
1076 }
1077 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1078
1079 void sock_zerocopy_put(struct ubuf_info *uarg)
1080 {
1081 if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1082 if (uarg->callback)
1083 uarg->callback(uarg, uarg->zerocopy);
1084 else
1085 consume_skb(skb_from_uarg(uarg));
1086 }
1087 }
1088 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1089
1090 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1091 {
1092 if (uarg) {
1093 struct sock *sk = skb_from_uarg(uarg)->sk;
1094
1095 atomic_dec(&sk->sk_zckey);
1096 uarg->len--;
1097
1098 if (have_uref)
1099 sock_zerocopy_put(uarg);
1100 }
1101 }
1102 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1103
1104 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1105 struct iov_iter *from, size_t length);
1106
1107 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1108 {
1109 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1110 }
1111 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1112
1113 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1114 struct msghdr *msg, int len,
1115 struct ubuf_info *uarg)
1116 {
1117 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1118 struct iov_iter orig_iter = msg->msg_iter;
1119 int err, orig_len = skb->len;
1120
1121 /* An skb can only point to one uarg. This edge case happens when
1122 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1123 */
1124 if (orig_uarg && uarg != orig_uarg)
1125 return -EEXIST;
1126
1127 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1128 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1129 struct sock *save_sk = skb->sk;
1130
1131 /* Streams do not free skb on error. Reset to prev state. */
1132 msg->msg_iter = orig_iter;
1133 skb->sk = sk;
1134 ___pskb_trim(skb, orig_len);
1135 skb->sk = save_sk;
1136 return err;
1137 }
1138
1139 skb_zcopy_set(skb, uarg, NULL);
1140 return skb->len - orig_len;
1141 }
1142 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1143
1144 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1145 gfp_t gfp_mask)
1146 {
1147 if (skb_zcopy(orig)) {
1148 if (skb_zcopy(nskb)) {
1149 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1150 if (!gfp_mask) {
1151 WARN_ON_ONCE(1);
1152 return -ENOMEM;
1153 }
1154 if (skb_uarg(nskb) == skb_uarg(orig))
1155 return 0;
1156 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1157 return -EIO;
1158 }
1159 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1160 }
1161 return 0;
1162 }
1163
1164 /**
1165 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1166 * @skb: the skb to modify
1167 * @gfp_mask: allocation priority
1168 *
1169 * This must be called on SKBTX_DEV_ZEROCOPY skb.
1170 * It will copy all frags into kernel and drop the reference
1171 * to userspace pages.
1172 *
1173 * If this function is called from an interrupt gfp_mask() must be
1174 * %GFP_ATOMIC.
1175 *
1176 * Returns 0 on success or a negative error code on failure
1177 * to allocate kernel memory to copy to.
1178 */
1179 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1180 {
1181 int num_frags = skb_shinfo(skb)->nr_frags;
1182 struct page *page, *head = NULL;
1183 int i, new_frags;
1184 u32 d_off;
1185
1186 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1187 return -EINVAL;
1188
1189 if (!num_frags)
1190 goto release;
1191
1192 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1193 for (i = 0; i < new_frags; i++) {
1194 page = alloc_page(gfp_mask);
1195 if (!page) {
1196 while (head) {
1197 struct page *next = (struct page *)page_private(head);
1198 put_page(head);
1199 head = next;
1200 }
1201 return -ENOMEM;
1202 }
1203 set_page_private(page, (unsigned long)head);
1204 head = page;
1205 }
1206
1207 page = head;
1208 d_off = 0;
1209 for (i = 0; i < num_frags; i++) {
1210 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1211 u32 p_off, p_len, copied;
1212 struct page *p;
1213 u8 *vaddr;
1214
1215 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1216 p, p_off, p_len, copied) {
1217 u32 copy, done = 0;
1218 vaddr = kmap_atomic(p);
1219
1220 while (done < p_len) {
1221 if (d_off == PAGE_SIZE) {
1222 d_off = 0;
1223 page = (struct page *)page_private(page);
1224 }
1225 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1226 memcpy(page_address(page) + d_off,
1227 vaddr + p_off + done, copy);
1228 done += copy;
1229 d_off += copy;
1230 }
1231 kunmap_atomic(vaddr);
1232 }
1233 }
1234
1235 /* skb frags release userspace buffers */
1236 for (i = 0; i < num_frags; i++)
1237 skb_frag_unref(skb, i);
1238
1239 /* skb frags point to kernel buffers */
1240 for (i = 0; i < new_frags - 1; i++) {
1241 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1242 head = (struct page *)page_private(head);
1243 }
1244 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1245 skb_shinfo(skb)->nr_frags = new_frags;
1246
1247 release:
1248 skb_zcopy_clear(skb, false);
1249 return 0;
1250 }
1251 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1252
1253 /**
1254 * skb_clone - duplicate an sk_buff
1255 * @skb: buffer to clone
1256 * @gfp_mask: allocation priority
1257 *
1258 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1259 * copies share the same packet data but not structure. The new
1260 * buffer has a reference count of 1. If the allocation fails the
1261 * function returns %NULL otherwise the new buffer is returned.
1262 *
1263 * If this function is called from an interrupt gfp_mask() must be
1264 * %GFP_ATOMIC.
1265 */
1266
1267 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1268 {
1269 struct sk_buff_fclones *fclones = container_of(skb,
1270 struct sk_buff_fclones,
1271 skb1);
1272 struct sk_buff *n;
1273
1274 if (skb_orphan_frags(skb, gfp_mask))
1275 return NULL;
1276
1277 if (skb->fclone == SKB_FCLONE_ORIG &&
1278 refcount_read(&fclones->fclone_ref) == 1) {
1279 n = &fclones->skb2;
1280 refcount_set(&fclones->fclone_ref, 2);
1281 } else {
1282 if (skb_pfmemalloc(skb))
1283 gfp_mask |= __GFP_MEMALLOC;
1284
1285 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1286 if (!n)
1287 return NULL;
1288
1289 n->fclone = SKB_FCLONE_UNAVAILABLE;
1290 }
1291
1292 return __skb_clone(n, skb);
1293 }
1294 EXPORT_SYMBOL(skb_clone);
1295
1296 void skb_headers_offset_update(struct sk_buff *skb, int off)
1297 {
1298 /* Only adjust this if it actually is csum_start rather than csum */
1299 if (skb->ip_summed == CHECKSUM_PARTIAL)
1300 skb->csum_start += off;
1301 /* {transport,network,mac}_header and tail are relative to skb->head */
1302 skb->transport_header += off;
1303 skb->network_header += off;
1304 if (skb_mac_header_was_set(skb))
1305 skb->mac_header += off;
1306 skb->inner_transport_header += off;
1307 skb->inner_network_header += off;
1308 skb->inner_mac_header += off;
1309 }
1310 EXPORT_SYMBOL(skb_headers_offset_update);
1311
1312 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1313 {
1314 __copy_skb_header(new, old);
1315
1316 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1317 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1318 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1319 }
1320 EXPORT_SYMBOL(skb_copy_header);
1321
1322 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1323 {
1324 if (skb_pfmemalloc(skb))
1325 return SKB_ALLOC_RX;
1326 return 0;
1327 }
1328
1329 /**
1330 * skb_copy - create private copy of an sk_buff
1331 * @skb: buffer to copy
1332 * @gfp_mask: allocation priority
1333 *
1334 * Make a copy of both an &sk_buff and its data. This is used when the
1335 * caller wishes to modify the data and needs a private copy of the
1336 * data to alter. Returns %NULL on failure or the pointer to the buffer
1337 * on success. The returned buffer has a reference count of 1.
1338 *
1339 * As by-product this function converts non-linear &sk_buff to linear
1340 * one, so that &sk_buff becomes completely private and caller is allowed
1341 * to modify all the data of returned buffer. This means that this
1342 * function is not recommended for use in circumstances when only
1343 * header is going to be modified. Use pskb_copy() instead.
1344 */
1345
1346 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1347 {
1348 int headerlen = skb_headroom(skb);
1349 unsigned int size = skb_end_offset(skb) + skb->data_len;
1350 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1351 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1352
1353 if (!n)
1354 return NULL;
1355
1356 /* Set the data pointer */
1357 skb_reserve(n, headerlen);
1358 /* Set the tail pointer and length */
1359 skb_put(n, skb->len);
1360
1361 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1362
1363 skb_copy_header(n, skb);
1364 return n;
1365 }
1366 EXPORT_SYMBOL(skb_copy);
1367
1368 /**
1369 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1370 * @skb: buffer to copy
1371 * @headroom: headroom of new skb
1372 * @gfp_mask: allocation priority
1373 * @fclone: if true allocate the copy of the skb from the fclone
1374 * cache instead of the head cache; it is recommended to set this
1375 * to true for the cases where the copy will likely be cloned
1376 *
1377 * Make a copy of both an &sk_buff and part of its data, located
1378 * in header. Fragmented data remain shared. This is used when
1379 * the caller wishes to modify only header of &sk_buff and needs
1380 * private copy of the header to alter. Returns %NULL on failure
1381 * or the pointer to the buffer on success.
1382 * The returned buffer has a reference count of 1.
1383 */
1384
1385 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1386 gfp_t gfp_mask, bool fclone)
1387 {
1388 unsigned int size = skb_headlen(skb) + headroom;
1389 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1390 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1391
1392 if (!n)
1393 goto out;
1394
1395 /* Set the data pointer */
1396 skb_reserve(n, headroom);
1397 /* Set the tail pointer and length */
1398 skb_put(n, skb_headlen(skb));
1399 /* Copy the bytes */
1400 skb_copy_from_linear_data(skb, n->data, n->len);
1401
1402 n->truesize += skb->data_len;
1403 n->data_len = skb->data_len;
1404 n->len = skb->len;
1405
1406 if (skb_shinfo(skb)->nr_frags) {
1407 int i;
1408
1409 if (skb_orphan_frags(skb, gfp_mask) ||
1410 skb_zerocopy_clone(n, skb, gfp_mask)) {
1411 kfree_skb(n);
1412 n = NULL;
1413 goto out;
1414 }
1415 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1416 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1417 skb_frag_ref(skb, i);
1418 }
1419 skb_shinfo(n)->nr_frags = i;
1420 }
1421
1422 if (skb_has_frag_list(skb)) {
1423 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1424 skb_clone_fraglist(n);
1425 }
1426
1427 skb_copy_header(n, skb);
1428 out:
1429 return n;
1430 }
1431 EXPORT_SYMBOL(__pskb_copy_fclone);
1432
1433 /**
1434 * pskb_expand_head - reallocate header of &sk_buff
1435 * @skb: buffer to reallocate
1436 * @nhead: room to add at head
1437 * @ntail: room to add at tail
1438 * @gfp_mask: allocation priority
1439 *
1440 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1441 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1442 * reference count of 1. Returns zero in the case of success or error,
1443 * if expansion failed. In the last case, &sk_buff is not changed.
1444 *
1445 * All the pointers pointing into skb header may change and must be
1446 * reloaded after call to this function.
1447 */
1448
1449 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1450 gfp_t gfp_mask)
1451 {
1452 int i, osize = skb_end_offset(skb);
1453 int size = osize + nhead + ntail;
1454 long off;
1455 u8 *data;
1456
1457 BUG_ON(nhead < 0);
1458
1459 BUG_ON(skb_shared(skb));
1460
1461 size = SKB_DATA_ALIGN(size);
1462
1463 if (skb_pfmemalloc(skb))
1464 gfp_mask |= __GFP_MEMALLOC;
1465 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1466 gfp_mask, NUMA_NO_NODE, NULL);
1467 if (!data)
1468 goto nodata;
1469 size = SKB_WITH_OVERHEAD(ksize(data));
1470
1471 /* Copy only real data... and, alas, header. This should be
1472 * optimized for the cases when header is void.
1473 */
1474 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1475
1476 memcpy((struct skb_shared_info *)(data + size),
1477 skb_shinfo(skb),
1478 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1479
1480 /*
1481 * if shinfo is shared we must drop the old head gracefully, but if it
1482 * is not we can just drop the old head and let the existing refcount
1483 * be since all we did is relocate the values
1484 */
1485 if (skb_cloned(skb)) {
1486 if (skb_orphan_frags(skb, gfp_mask))
1487 goto nofrags;
1488 if (skb_zcopy(skb))
1489 refcount_inc(&skb_uarg(skb)->refcnt);
1490 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1491 skb_frag_ref(skb, i);
1492
1493 if (skb_has_frag_list(skb))
1494 skb_clone_fraglist(skb);
1495
1496 skb_release_data(skb);
1497 } else {
1498 skb_free_head(skb);
1499 }
1500 off = (data + nhead) - skb->head;
1501
1502 skb->head = data;
1503 skb->head_frag = 0;
1504 skb->data += off;
1505 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1506 skb->end = size;
1507 off = nhead;
1508 #else
1509 skb->end = skb->head + size;
1510 #endif
1511 skb->tail += off;
1512 skb_headers_offset_update(skb, nhead);
1513 skb->cloned = 0;
1514 skb->hdr_len = 0;
1515 skb->nohdr = 0;
1516 atomic_set(&skb_shinfo(skb)->dataref, 1);
1517
1518 skb_metadata_clear(skb);
1519
1520 /* It is not generally safe to change skb->truesize.
1521 * For the moment, we really care of rx path, or
1522 * when skb is orphaned (not attached to a socket).
1523 */
1524 if (!skb->sk || skb->destructor == sock_edemux)
1525 skb->truesize += size - osize;
1526
1527 return 0;
1528
1529 nofrags:
1530 kfree(data);
1531 nodata:
1532 return -ENOMEM;
1533 }
1534 EXPORT_SYMBOL(pskb_expand_head);
1535
1536 /* Make private copy of skb with writable head and some headroom */
1537
1538 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1539 {
1540 struct sk_buff *skb2;
1541 int delta = headroom - skb_headroom(skb);
1542
1543 if (delta <= 0)
1544 skb2 = pskb_copy(skb, GFP_ATOMIC);
1545 else {
1546 skb2 = skb_clone(skb, GFP_ATOMIC);
1547 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1548 GFP_ATOMIC)) {
1549 kfree_skb(skb2);
1550 skb2 = NULL;
1551 }
1552 }
1553 return skb2;
1554 }
1555 EXPORT_SYMBOL(skb_realloc_headroom);
1556
1557 /**
1558 * skb_copy_expand - copy and expand sk_buff
1559 * @skb: buffer to copy
1560 * @newheadroom: new free bytes at head
1561 * @newtailroom: new free bytes at tail
1562 * @gfp_mask: allocation priority
1563 *
1564 * Make a copy of both an &sk_buff and its data and while doing so
1565 * allocate additional space.
1566 *
1567 * This is used when the caller wishes to modify the data and needs a
1568 * private copy of the data to alter as well as more space for new fields.
1569 * Returns %NULL on failure or the pointer to the buffer
1570 * on success. The returned buffer has a reference count of 1.
1571 *
1572 * You must pass %GFP_ATOMIC as the allocation priority if this function
1573 * is called from an interrupt.
1574 */
1575 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1576 int newheadroom, int newtailroom,
1577 gfp_t gfp_mask)
1578 {
1579 /*
1580 * Allocate the copy buffer
1581 */
1582 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1583 gfp_mask, skb_alloc_rx_flag(skb),
1584 NUMA_NO_NODE);
1585 int oldheadroom = skb_headroom(skb);
1586 int head_copy_len, head_copy_off;
1587
1588 if (!n)
1589 return NULL;
1590
1591 skb_reserve(n, newheadroom);
1592
1593 /* Set the tail pointer and length */
1594 skb_put(n, skb->len);
1595
1596 head_copy_len = oldheadroom;
1597 head_copy_off = 0;
1598 if (newheadroom <= head_copy_len)
1599 head_copy_len = newheadroom;
1600 else
1601 head_copy_off = newheadroom - head_copy_len;
1602
1603 /* Copy the linear header and data. */
1604 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1605 skb->len + head_copy_len));
1606
1607 skb_copy_header(n, skb);
1608
1609 skb_headers_offset_update(n, newheadroom - oldheadroom);
1610
1611 return n;
1612 }
1613 EXPORT_SYMBOL(skb_copy_expand);
1614
1615 /**
1616 * __skb_pad - zero pad the tail of an skb
1617 * @skb: buffer to pad
1618 * @pad: space to pad
1619 * @free_on_error: free buffer on error
1620 *
1621 * Ensure that a buffer is followed by a padding area that is zero
1622 * filled. Used by network drivers which may DMA or transfer data
1623 * beyond the buffer end onto the wire.
1624 *
1625 * May return error in out of memory cases. The skb is freed on error
1626 * if @free_on_error is true.
1627 */
1628
1629 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1630 {
1631 int err;
1632 int ntail;
1633
1634 /* If the skbuff is non linear tailroom is always zero.. */
1635 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1636 memset(skb->data+skb->len, 0, pad);
1637 return 0;
1638 }
1639
1640 ntail = skb->data_len + pad - (skb->end - skb->tail);
1641 if (likely(skb_cloned(skb) || ntail > 0)) {
1642 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1643 if (unlikely(err))
1644 goto free_skb;
1645 }
1646
1647 /* FIXME: The use of this function with non-linear skb's really needs
1648 * to be audited.
1649 */
1650 err = skb_linearize(skb);
1651 if (unlikely(err))
1652 goto free_skb;
1653
1654 memset(skb->data + skb->len, 0, pad);
1655 return 0;
1656
1657 free_skb:
1658 if (free_on_error)
1659 kfree_skb(skb);
1660 return err;
1661 }
1662 EXPORT_SYMBOL(__skb_pad);
1663
1664 /**
1665 * pskb_put - add data to the tail of a potentially fragmented buffer
1666 * @skb: start of the buffer to use
1667 * @tail: tail fragment of the buffer to use
1668 * @len: amount of data to add
1669 *
1670 * This function extends the used data area of the potentially
1671 * fragmented buffer. @tail must be the last fragment of @skb -- or
1672 * @skb itself. If this would exceed the total buffer size the kernel
1673 * will panic. A pointer to the first byte of the extra data is
1674 * returned.
1675 */
1676
1677 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1678 {
1679 if (tail != skb) {
1680 skb->data_len += len;
1681 skb->len += len;
1682 }
1683 return skb_put(tail, len);
1684 }
1685 EXPORT_SYMBOL_GPL(pskb_put);
1686
1687 /**
1688 * skb_put - add data to a buffer
1689 * @skb: buffer to use
1690 * @len: amount of data to add
1691 *
1692 * This function extends the used data area of the buffer. If this would
1693 * exceed the total buffer size the kernel will panic. A pointer to the
1694 * first byte of the extra data is returned.
1695 */
1696 void *skb_put(struct sk_buff *skb, unsigned int len)
1697 {
1698 void *tmp = skb_tail_pointer(skb);
1699 SKB_LINEAR_ASSERT(skb);
1700 skb->tail += len;
1701 skb->len += len;
1702 if (unlikely(skb->tail > skb->end))
1703 skb_over_panic(skb, len, __builtin_return_address(0));
1704 return tmp;
1705 }
1706 EXPORT_SYMBOL(skb_put);
1707
1708 /**
1709 * skb_push - add data to the start of a buffer
1710 * @skb: buffer to use
1711 * @len: amount of data to add
1712 *
1713 * This function extends the used data area of the buffer at the buffer
1714 * start. If this would exceed the total buffer headroom the kernel will
1715 * panic. A pointer to the first byte of the extra data is returned.
1716 */
1717 void *skb_push(struct sk_buff *skb, unsigned int len)
1718 {
1719 skb->data -= len;
1720 skb->len += len;
1721 if (unlikely(skb->data < skb->head))
1722 skb_under_panic(skb, len, __builtin_return_address(0));
1723 return skb->data;
1724 }
1725 EXPORT_SYMBOL(skb_push);
1726
1727 /**
1728 * skb_pull - remove data from the start of a buffer
1729 * @skb: buffer to use
1730 * @len: amount of data to remove
1731 *
1732 * This function removes data from the start of a buffer, returning
1733 * the memory to the headroom. A pointer to the next data in the buffer
1734 * is returned. Once the data has been pulled future pushes will overwrite
1735 * the old data.
1736 */
1737 void *skb_pull(struct sk_buff *skb, unsigned int len)
1738 {
1739 return skb_pull_inline(skb, len);
1740 }
1741 EXPORT_SYMBOL(skb_pull);
1742
1743 /**
1744 * skb_trim - remove end from a buffer
1745 * @skb: buffer to alter
1746 * @len: new length
1747 *
1748 * Cut the length of a buffer down by removing data from the tail. If
1749 * the buffer is already under the length specified it is not modified.
1750 * The skb must be linear.
1751 */
1752 void skb_trim(struct sk_buff *skb, unsigned int len)
1753 {
1754 if (skb->len > len)
1755 __skb_trim(skb, len);
1756 }
1757 EXPORT_SYMBOL(skb_trim);
1758
1759 /* Trims skb to length len. It can change skb pointers.
1760 */
1761
1762 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1763 {
1764 struct sk_buff **fragp;
1765 struct sk_buff *frag;
1766 int offset = skb_headlen(skb);
1767 int nfrags = skb_shinfo(skb)->nr_frags;
1768 int i;
1769 int err;
1770
1771 if (skb_cloned(skb) &&
1772 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1773 return err;
1774
1775 i = 0;
1776 if (offset >= len)
1777 goto drop_pages;
1778
1779 for (; i < nfrags; i++) {
1780 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1781
1782 if (end < len) {
1783 offset = end;
1784 continue;
1785 }
1786
1787 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1788
1789 drop_pages:
1790 skb_shinfo(skb)->nr_frags = i;
1791
1792 for (; i < nfrags; i++)
1793 skb_frag_unref(skb, i);
1794
1795 if (skb_has_frag_list(skb))
1796 skb_drop_fraglist(skb);
1797 goto done;
1798 }
1799
1800 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1801 fragp = &frag->next) {
1802 int end = offset + frag->len;
1803
1804 if (skb_shared(frag)) {
1805 struct sk_buff *nfrag;
1806
1807 nfrag = skb_clone(frag, GFP_ATOMIC);
1808 if (unlikely(!nfrag))
1809 return -ENOMEM;
1810
1811 nfrag->next = frag->next;
1812 consume_skb(frag);
1813 frag = nfrag;
1814 *fragp = frag;
1815 }
1816
1817 if (end < len) {
1818 offset = end;
1819 continue;
1820 }
1821
1822 if (end > len &&
1823 unlikely((err = pskb_trim(frag, len - offset))))
1824 return err;
1825
1826 if (frag->next)
1827 skb_drop_list(&frag->next);
1828 break;
1829 }
1830
1831 done:
1832 if (len > skb_headlen(skb)) {
1833 skb->data_len -= skb->len - len;
1834 skb->len = len;
1835 } else {
1836 skb->len = len;
1837 skb->data_len = 0;
1838 skb_set_tail_pointer(skb, len);
1839 }
1840
1841 if (!skb->sk || skb->destructor == sock_edemux)
1842 skb_condense(skb);
1843 return 0;
1844 }
1845 EXPORT_SYMBOL(___pskb_trim);
1846
1847 /* Note : use pskb_trim_rcsum() instead of calling this directly
1848 */
1849 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
1850 {
1851 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1852 int delta = skb->len - len;
1853
1854 skb->csum = csum_block_sub(skb->csum,
1855 skb_checksum(skb, len, delta, 0),
1856 len);
1857 }
1858 return __pskb_trim(skb, len);
1859 }
1860 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
1861
1862 /**
1863 * __pskb_pull_tail - advance tail of skb header
1864 * @skb: buffer to reallocate
1865 * @delta: number of bytes to advance tail
1866 *
1867 * The function makes a sense only on a fragmented &sk_buff,
1868 * it expands header moving its tail forward and copying necessary
1869 * data from fragmented part.
1870 *
1871 * &sk_buff MUST have reference count of 1.
1872 *
1873 * Returns %NULL (and &sk_buff does not change) if pull failed
1874 * or value of new tail of skb in the case of success.
1875 *
1876 * All the pointers pointing into skb header may change and must be
1877 * reloaded after call to this function.
1878 */
1879
1880 /* Moves tail of skb head forward, copying data from fragmented part,
1881 * when it is necessary.
1882 * 1. It may fail due to malloc failure.
1883 * 2. It may change skb pointers.
1884 *
1885 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1886 */
1887 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1888 {
1889 /* If skb has not enough free space at tail, get new one
1890 * plus 128 bytes for future expansions. If we have enough
1891 * room at tail, reallocate without expansion only if skb is cloned.
1892 */
1893 int i, k, eat = (skb->tail + delta) - skb->end;
1894
1895 if (eat > 0 || skb_cloned(skb)) {
1896 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1897 GFP_ATOMIC))
1898 return NULL;
1899 }
1900
1901 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1902 skb_tail_pointer(skb), delta));
1903
1904 /* Optimization: no fragments, no reasons to preestimate
1905 * size of pulled pages. Superb.
1906 */
1907 if (!skb_has_frag_list(skb))
1908 goto pull_pages;
1909
1910 /* Estimate size of pulled pages. */
1911 eat = delta;
1912 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1913 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1914
1915 if (size >= eat)
1916 goto pull_pages;
1917 eat -= size;
1918 }
1919
1920 /* If we need update frag list, we are in troubles.
1921 * Certainly, it is possible to add an offset to skb data,
1922 * but taking into account that pulling is expected to
1923 * be very rare operation, it is worth to fight against
1924 * further bloating skb head and crucify ourselves here instead.
1925 * Pure masohism, indeed. 8)8)
1926 */
1927 if (eat) {
1928 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1929 struct sk_buff *clone = NULL;
1930 struct sk_buff *insp = NULL;
1931
1932 do {
1933 if (list->len <= eat) {
1934 /* Eaten as whole. */
1935 eat -= list->len;
1936 list = list->next;
1937 insp = list;
1938 } else {
1939 /* Eaten partially. */
1940
1941 if (skb_shared(list)) {
1942 /* Sucks! We need to fork list. :-( */
1943 clone = skb_clone(list, GFP_ATOMIC);
1944 if (!clone)
1945 return NULL;
1946 insp = list->next;
1947 list = clone;
1948 } else {
1949 /* This may be pulled without
1950 * problems. */
1951 insp = list;
1952 }
1953 if (!pskb_pull(list, eat)) {
1954 kfree_skb(clone);
1955 return NULL;
1956 }
1957 break;
1958 }
1959 } while (eat);
1960
1961 /* Free pulled out fragments. */
1962 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1963 skb_shinfo(skb)->frag_list = list->next;
1964 kfree_skb(list);
1965 }
1966 /* And insert new clone at head. */
1967 if (clone) {
1968 clone->next = list;
1969 skb_shinfo(skb)->frag_list = clone;
1970 }
1971 }
1972 /* Success! Now we may commit changes to skb data. */
1973
1974 pull_pages:
1975 eat = delta;
1976 k = 0;
1977 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1978 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1979
1980 if (size <= eat) {
1981 skb_frag_unref(skb, i);
1982 eat -= size;
1983 } else {
1984 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1985 if (eat) {
1986 skb_shinfo(skb)->frags[k].page_offset += eat;
1987 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1988 if (!i)
1989 goto end;
1990 eat = 0;
1991 }
1992 k++;
1993 }
1994 }
1995 skb_shinfo(skb)->nr_frags = k;
1996
1997 end:
1998 skb->tail += delta;
1999 skb->data_len -= delta;
2000
2001 if (!skb->data_len)
2002 skb_zcopy_clear(skb, false);
2003
2004 return skb_tail_pointer(skb);
2005 }
2006 EXPORT_SYMBOL(__pskb_pull_tail);
2007
2008 /**
2009 * skb_copy_bits - copy bits from skb to kernel buffer
2010 * @skb: source skb
2011 * @offset: offset in source
2012 * @to: destination buffer
2013 * @len: number of bytes to copy
2014 *
2015 * Copy the specified number of bytes from the source skb to the
2016 * destination buffer.
2017 *
2018 * CAUTION ! :
2019 * If its prototype is ever changed,
2020 * check arch/{*}/net/{*}.S files,
2021 * since it is called from BPF assembly code.
2022 */
2023 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2024 {
2025 int start = skb_headlen(skb);
2026 struct sk_buff *frag_iter;
2027 int i, copy;
2028
2029 if (offset > (int)skb->len - len)
2030 goto fault;
2031
2032 /* Copy header. */
2033 if ((copy = start - offset) > 0) {
2034 if (copy > len)
2035 copy = len;
2036 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2037 if ((len -= copy) == 0)
2038 return 0;
2039 offset += copy;
2040 to += copy;
2041 }
2042
2043 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2044 int end;
2045 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2046
2047 WARN_ON(start > offset + len);
2048
2049 end = start + skb_frag_size(f);
2050 if ((copy = end - offset) > 0) {
2051 u32 p_off, p_len, copied;
2052 struct page *p;
2053 u8 *vaddr;
2054
2055 if (copy > len)
2056 copy = len;
2057
2058 skb_frag_foreach_page(f,
2059 f->page_offset + offset - start,
2060 copy, p, p_off, p_len, copied) {
2061 vaddr = kmap_atomic(p);
2062 memcpy(to + copied, vaddr + p_off, p_len);
2063 kunmap_atomic(vaddr);
2064 }
2065
2066 if ((len -= copy) == 0)
2067 return 0;
2068 offset += copy;
2069 to += copy;
2070 }
2071 start = end;
2072 }
2073
2074 skb_walk_frags(skb, frag_iter) {
2075 int end;
2076
2077 WARN_ON(start > offset + len);
2078
2079 end = start + frag_iter->len;
2080 if ((copy = end - offset) > 0) {
2081 if (copy > len)
2082 copy = len;
2083 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2084 goto fault;
2085 if ((len -= copy) == 0)
2086 return 0;
2087 offset += copy;
2088 to += copy;
2089 }
2090 start = end;
2091 }
2092
2093 if (!len)
2094 return 0;
2095
2096 fault:
2097 return -EFAULT;
2098 }
2099 EXPORT_SYMBOL(skb_copy_bits);
2100
2101 /*
2102 * Callback from splice_to_pipe(), if we need to release some pages
2103 * at the end of the spd in case we error'ed out in filling the pipe.
2104 */
2105 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2106 {
2107 put_page(spd->pages[i]);
2108 }
2109
2110 static struct page *linear_to_page(struct page *page, unsigned int *len,
2111 unsigned int *offset,
2112 struct sock *sk)
2113 {
2114 struct page_frag *pfrag = sk_page_frag(sk);
2115
2116 if (!sk_page_frag_refill(sk, pfrag))
2117 return NULL;
2118
2119 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2120
2121 memcpy(page_address(pfrag->page) + pfrag->offset,
2122 page_address(page) + *offset, *len);
2123 *offset = pfrag->offset;
2124 pfrag->offset += *len;
2125
2126 return pfrag->page;
2127 }
2128
2129 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2130 struct page *page,
2131 unsigned int offset)
2132 {
2133 return spd->nr_pages &&
2134 spd->pages[spd->nr_pages - 1] == page &&
2135 (spd->partial[spd->nr_pages - 1].offset +
2136 spd->partial[spd->nr_pages - 1].len == offset);
2137 }
2138
2139 /*
2140 * Fill page/offset/length into spd, if it can hold more pages.
2141 */
2142 static bool spd_fill_page(struct splice_pipe_desc *spd,
2143 struct pipe_inode_info *pipe, struct page *page,
2144 unsigned int *len, unsigned int offset,
2145 bool linear,
2146 struct sock *sk)
2147 {
2148 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2149 return true;
2150
2151 if (linear) {
2152 page = linear_to_page(page, len, &offset, sk);
2153 if (!page)
2154 return true;
2155 }
2156 if (spd_can_coalesce(spd, page, offset)) {
2157 spd->partial[spd->nr_pages - 1].len += *len;
2158 return false;
2159 }
2160 get_page(page);
2161 spd->pages[spd->nr_pages] = page;
2162 spd->partial[spd->nr_pages].len = *len;
2163 spd->partial[spd->nr_pages].offset = offset;
2164 spd->nr_pages++;
2165
2166 return false;
2167 }
2168
2169 static bool __splice_segment(struct page *page, unsigned int poff,
2170 unsigned int plen, unsigned int *off,
2171 unsigned int *len,
2172 struct splice_pipe_desc *spd, bool linear,
2173 struct sock *sk,
2174 struct pipe_inode_info *pipe)
2175 {
2176 if (!*len)
2177 return true;
2178
2179 /* skip this segment if already processed */
2180 if (*off >= plen) {
2181 *off -= plen;
2182 return false;
2183 }
2184
2185 /* ignore any bits we already processed */
2186 poff += *off;
2187 plen -= *off;
2188 *off = 0;
2189
2190 do {
2191 unsigned int flen = min(*len, plen);
2192
2193 if (spd_fill_page(spd, pipe, page, &flen, poff,
2194 linear, sk))
2195 return true;
2196 poff += flen;
2197 plen -= flen;
2198 *len -= flen;
2199 } while (*len && plen);
2200
2201 return false;
2202 }
2203
2204 /*
2205 * Map linear and fragment data from the skb to spd. It reports true if the
2206 * pipe is full or if we already spliced the requested length.
2207 */
2208 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2209 unsigned int *offset, unsigned int *len,
2210 struct splice_pipe_desc *spd, struct sock *sk)
2211 {
2212 int seg;
2213 struct sk_buff *iter;
2214
2215 /* map the linear part :
2216 * If skb->head_frag is set, this 'linear' part is backed by a
2217 * fragment, and if the head is not shared with any clones then
2218 * we can avoid a copy since we own the head portion of this page.
2219 */
2220 if (__splice_segment(virt_to_page(skb->data),
2221 (unsigned long) skb->data & (PAGE_SIZE - 1),
2222 skb_headlen(skb),
2223 offset, len, spd,
2224 skb_head_is_locked(skb),
2225 sk, pipe))
2226 return true;
2227
2228 /*
2229 * then map the fragments
2230 */
2231 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2232 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2233
2234 if (__splice_segment(skb_frag_page(f),
2235 f->page_offset, skb_frag_size(f),
2236 offset, len, spd, false, sk, pipe))
2237 return true;
2238 }
2239
2240 skb_walk_frags(skb, iter) {
2241 if (*offset >= iter->len) {
2242 *offset -= iter->len;
2243 continue;
2244 }
2245 /* __skb_splice_bits() only fails if the output has no room
2246 * left, so no point in going over the frag_list for the error
2247 * case.
2248 */
2249 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2250 return true;
2251 }
2252
2253 return false;
2254 }
2255
2256 /*
2257 * Map data from the skb to a pipe. Should handle both the linear part,
2258 * the fragments, and the frag list.
2259 */
2260 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2261 struct pipe_inode_info *pipe, unsigned int tlen,
2262 unsigned int flags)
2263 {
2264 struct partial_page partial[MAX_SKB_FRAGS];
2265 struct page *pages[MAX_SKB_FRAGS];
2266 struct splice_pipe_desc spd = {
2267 .pages = pages,
2268 .partial = partial,
2269 .nr_pages_max = MAX_SKB_FRAGS,
2270 .ops = &nosteal_pipe_buf_ops,
2271 .spd_release = sock_spd_release,
2272 };
2273 int ret = 0;
2274
2275 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2276
2277 if (spd.nr_pages)
2278 ret = splice_to_pipe(pipe, &spd);
2279
2280 return ret;
2281 }
2282 EXPORT_SYMBOL_GPL(skb_splice_bits);
2283
2284 /* Send skb data on a socket. Socket must be locked. */
2285 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2286 int len)
2287 {
2288 unsigned int orig_len = len;
2289 struct sk_buff *head = skb;
2290 unsigned short fragidx;
2291 int slen, ret;
2292
2293 do_frag_list:
2294
2295 /* Deal with head data */
2296 while (offset < skb_headlen(skb) && len) {
2297 struct kvec kv;
2298 struct msghdr msg;
2299
2300 slen = min_t(int, len, skb_headlen(skb) - offset);
2301 kv.iov_base = skb->data + offset;
2302 kv.iov_len = slen;
2303 memset(&msg, 0, sizeof(msg));
2304
2305 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2306 if (ret <= 0)
2307 goto error;
2308
2309 offset += ret;
2310 len -= ret;
2311 }
2312
2313 /* All the data was skb head? */
2314 if (!len)
2315 goto out;
2316
2317 /* Make offset relative to start of frags */
2318 offset -= skb_headlen(skb);
2319
2320 /* Find where we are in frag list */
2321 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2322 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2323
2324 if (offset < frag->size)
2325 break;
2326
2327 offset -= frag->size;
2328 }
2329
2330 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2331 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2332
2333 slen = min_t(size_t, len, frag->size - offset);
2334
2335 while (slen) {
2336 ret = kernel_sendpage_locked(sk, frag->page.p,
2337 frag->page_offset + offset,
2338 slen, MSG_DONTWAIT);
2339 if (ret <= 0)
2340 goto error;
2341
2342 len -= ret;
2343 offset += ret;
2344 slen -= ret;
2345 }
2346
2347 offset = 0;
2348 }
2349
2350 if (len) {
2351 /* Process any frag lists */
2352
2353 if (skb == head) {
2354 if (skb_has_frag_list(skb)) {
2355 skb = skb_shinfo(skb)->frag_list;
2356 goto do_frag_list;
2357 }
2358 } else if (skb->next) {
2359 skb = skb->next;
2360 goto do_frag_list;
2361 }
2362 }
2363
2364 out:
2365 return orig_len - len;
2366
2367 error:
2368 return orig_len == len ? ret : orig_len - len;
2369 }
2370 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2371
2372 /**
2373 * skb_store_bits - store bits from kernel buffer to skb
2374 * @skb: destination buffer
2375 * @offset: offset in destination
2376 * @from: source buffer
2377 * @len: number of bytes to copy
2378 *
2379 * Copy the specified number of bytes from the source buffer to the
2380 * destination skb. This function handles all the messy bits of
2381 * traversing fragment lists and such.
2382 */
2383
2384 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2385 {
2386 int start = skb_headlen(skb);
2387 struct sk_buff *frag_iter;
2388 int i, copy;
2389
2390 if (offset > (int)skb->len - len)
2391 goto fault;
2392
2393 if ((copy = start - offset) > 0) {
2394 if (copy > len)
2395 copy = len;
2396 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2397 if ((len -= copy) == 0)
2398 return 0;
2399 offset += copy;
2400 from += copy;
2401 }
2402
2403 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2404 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2405 int end;
2406
2407 WARN_ON(start > offset + len);
2408
2409 end = start + skb_frag_size(frag);
2410 if ((copy = end - offset) > 0) {
2411 u32 p_off, p_len, copied;
2412 struct page *p;
2413 u8 *vaddr;
2414
2415 if (copy > len)
2416 copy = len;
2417
2418 skb_frag_foreach_page(frag,
2419 frag->page_offset + offset - start,
2420 copy, p, p_off, p_len, copied) {
2421 vaddr = kmap_atomic(p);
2422 memcpy(vaddr + p_off, from + copied, p_len);
2423 kunmap_atomic(vaddr);
2424 }
2425
2426 if ((len -= copy) == 0)
2427 return 0;
2428 offset += copy;
2429 from += copy;
2430 }
2431 start = end;
2432 }
2433
2434 skb_walk_frags(skb, frag_iter) {
2435 int end;
2436
2437 WARN_ON(start > offset + len);
2438
2439 end = start + frag_iter->len;
2440 if ((copy = end - offset) > 0) {
2441 if (copy > len)
2442 copy = len;
2443 if (skb_store_bits(frag_iter, offset - start,
2444 from, copy))
2445 goto fault;
2446 if ((len -= copy) == 0)
2447 return 0;
2448 offset += copy;
2449 from += copy;
2450 }
2451 start = end;
2452 }
2453 if (!len)
2454 return 0;
2455
2456 fault:
2457 return -EFAULT;
2458 }
2459 EXPORT_SYMBOL(skb_store_bits);
2460
2461 /* Checksum skb data. */
2462 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2463 __wsum csum, const struct skb_checksum_ops *ops)
2464 {
2465 int start = skb_headlen(skb);
2466 int i, copy = start - offset;
2467 struct sk_buff *frag_iter;
2468 int pos = 0;
2469
2470 /* Checksum header. */
2471 if (copy > 0) {
2472 if (copy > len)
2473 copy = len;
2474 csum = ops->update(skb->data + offset, copy, csum);
2475 if ((len -= copy) == 0)
2476 return csum;
2477 offset += copy;
2478 pos = copy;
2479 }
2480
2481 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2482 int end;
2483 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2484
2485 WARN_ON(start > offset + len);
2486
2487 end = start + skb_frag_size(frag);
2488 if ((copy = end - offset) > 0) {
2489 u32 p_off, p_len, copied;
2490 struct page *p;
2491 __wsum csum2;
2492 u8 *vaddr;
2493
2494 if (copy > len)
2495 copy = len;
2496
2497 skb_frag_foreach_page(frag,
2498 frag->page_offset + offset - start,
2499 copy, p, p_off, p_len, copied) {
2500 vaddr = kmap_atomic(p);
2501 csum2 = ops->update(vaddr + p_off, p_len, 0);
2502 kunmap_atomic(vaddr);
2503 csum = ops->combine(csum, csum2, pos, p_len);
2504 pos += p_len;
2505 }
2506
2507 if (!(len -= copy))
2508 return csum;
2509 offset += copy;
2510 }
2511 start = end;
2512 }
2513
2514 skb_walk_frags(skb, frag_iter) {
2515 int end;
2516
2517 WARN_ON(start > offset + len);
2518
2519 end = start + frag_iter->len;
2520 if ((copy = end - offset) > 0) {
2521 __wsum csum2;
2522 if (copy > len)
2523 copy = len;
2524 csum2 = __skb_checksum(frag_iter, offset - start,
2525 copy, 0, ops);
2526 csum = ops->combine(csum, csum2, pos, copy);
2527 if ((len -= copy) == 0)
2528 return csum;
2529 offset += copy;
2530 pos += copy;
2531 }
2532 start = end;
2533 }
2534 BUG_ON(len);
2535
2536 return csum;
2537 }
2538 EXPORT_SYMBOL(__skb_checksum);
2539
2540 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2541 int len, __wsum csum)
2542 {
2543 const struct skb_checksum_ops ops = {
2544 .update = csum_partial_ext,
2545 .combine = csum_block_add_ext,
2546 };
2547
2548 return __skb_checksum(skb, offset, len, csum, &ops);
2549 }
2550 EXPORT_SYMBOL(skb_checksum);
2551
2552 /* Both of above in one bottle. */
2553
2554 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2555 u8 *to, int len, __wsum csum)
2556 {
2557 int start = skb_headlen(skb);
2558 int i, copy = start - offset;
2559 struct sk_buff *frag_iter;
2560 int pos = 0;
2561
2562 /* Copy header. */
2563 if (copy > 0) {
2564 if (copy > len)
2565 copy = len;
2566 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2567 copy, csum);
2568 if ((len -= copy) == 0)
2569 return csum;
2570 offset += copy;
2571 to += copy;
2572 pos = copy;
2573 }
2574
2575 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2576 int end;
2577
2578 WARN_ON(start > offset + len);
2579
2580 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2581 if ((copy = end - offset) > 0) {
2582 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2583 u32 p_off, p_len, copied;
2584 struct page *p;
2585 __wsum csum2;
2586 u8 *vaddr;
2587
2588 if (copy > len)
2589 copy = len;
2590
2591 skb_frag_foreach_page(frag,
2592 frag->page_offset + offset - start,
2593 copy, p, p_off, p_len, copied) {
2594 vaddr = kmap_atomic(p);
2595 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2596 to + copied,
2597 p_len, 0);
2598 kunmap_atomic(vaddr);
2599 csum = csum_block_add(csum, csum2, pos);
2600 pos += p_len;
2601 }
2602
2603 if (!(len -= copy))
2604 return csum;
2605 offset += copy;
2606 to += copy;
2607 }
2608 start = end;
2609 }
2610
2611 skb_walk_frags(skb, frag_iter) {
2612 __wsum csum2;
2613 int end;
2614
2615 WARN_ON(start > offset + len);
2616
2617 end = start + frag_iter->len;
2618 if ((copy = end - offset) > 0) {
2619 if (copy > len)
2620 copy = len;
2621 csum2 = skb_copy_and_csum_bits(frag_iter,
2622 offset - start,
2623 to, copy, 0);
2624 csum = csum_block_add(csum, csum2, pos);
2625 if ((len -= copy) == 0)
2626 return csum;
2627 offset += copy;
2628 to += copy;
2629 pos += copy;
2630 }
2631 start = end;
2632 }
2633 BUG_ON(len);
2634 return csum;
2635 }
2636 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2637
2638 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2639 {
2640 __sum16 sum;
2641
2642 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2643 /* See comments in __skb_checksum_complete(). */
2644 if (likely(!sum)) {
2645 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2646 !skb->csum_complete_sw)
2647 netdev_rx_csum_fault(skb->dev, skb);
2648 }
2649 if (!skb_shared(skb))
2650 skb->csum_valid = !sum;
2651 return sum;
2652 }
2653 EXPORT_SYMBOL(__skb_checksum_complete_head);
2654
2655 /* This function assumes skb->csum already holds pseudo header's checksum,
2656 * which has been changed from the hardware checksum, for example, by
2657 * __skb_checksum_validate_complete(). And, the original skb->csum must
2658 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2659 *
2660 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2661 * zero. The new checksum is stored back into skb->csum unless the skb is
2662 * shared.
2663 */
2664 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2665 {
2666 __wsum csum;
2667 __sum16 sum;
2668
2669 csum = skb_checksum(skb, 0, skb->len, 0);
2670
2671 sum = csum_fold(csum_add(skb->csum, csum));
2672 /* This check is inverted, because we already knew the hardware
2673 * checksum is invalid before calling this function. So, if the
2674 * re-computed checksum is valid instead, then we have a mismatch
2675 * between the original skb->csum and skb_checksum(). This means either
2676 * the original hardware checksum is incorrect or we screw up skb->csum
2677 * when moving skb->data around.
2678 */
2679 if (likely(!sum)) {
2680 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2681 !skb->csum_complete_sw)
2682 netdev_rx_csum_fault(skb->dev, skb);
2683 }
2684
2685 if (!skb_shared(skb)) {
2686 /* Save full packet checksum */
2687 skb->csum = csum;
2688 skb->ip_summed = CHECKSUM_COMPLETE;
2689 skb->csum_complete_sw = 1;
2690 skb->csum_valid = !sum;
2691 }
2692
2693 return sum;
2694 }
2695 EXPORT_SYMBOL(__skb_checksum_complete);
2696
2697 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2698 {
2699 net_warn_ratelimited(
2700 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2701 __func__);
2702 return 0;
2703 }
2704
2705 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2706 int offset, int len)
2707 {
2708 net_warn_ratelimited(
2709 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2710 __func__);
2711 return 0;
2712 }
2713
2714 static const struct skb_checksum_ops default_crc32c_ops = {
2715 .update = warn_crc32c_csum_update,
2716 .combine = warn_crc32c_csum_combine,
2717 };
2718
2719 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2720 &default_crc32c_ops;
2721 EXPORT_SYMBOL(crc32c_csum_stub);
2722
2723 /**
2724 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2725 * @from: source buffer
2726 *
2727 * Calculates the amount of linear headroom needed in the 'to' skb passed
2728 * into skb_zerocopy().
2729 */
2730 unsigned int
2731 skb_zerocopy_headlen(const struct sk_buff *from)
2732 {
2733 unsigned int hlen = 0;
2734
2735 if (!from->head_frag ||
2736 skb_headlen(from) < L1_CACHE_BYTES ||
2737 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2738 hlen = skb_headlen(from);
2739
2740 if (skb_has_frag_list(from))
2741 hlen = from->len;
2742
2743 return hlen;
2744 }
2745 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2746
2747 /**
2748 * skb_zerocopy - Zero copy skb to skb
2749 * @to: destination buffer
2750 * @from: source buffer
2751 * @len: number of bytes to copy from source buffer
2752 * @hlen: size of linear headroom in destination buffer
2753 *
2754 * Copies up to `len` bytes from `from` to `to` by creating references
2755 * to the frags in the source buffer.
2756 *
2757 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2758 * headroom in the `to` buffer.
2759 *
2760 * Return value:
2761 * 0: everything is OK
2762 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2763 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2764 */
2765 int
2766 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2767 {
2768 int i, j = 0;
2769 int plen = 0; /* length of skb->head fragment */
2770 int ret;
2771 struct page *page;
2772 unsigned int offset;
2773
2774 BUG_ON(!from->head_frag && !hlen);
2775
2776 /* dont bother with small payloads */
2777 if (len <= skb_tailroom(to))
2778 return skb_copy_bits(from, 0, skb_put(to, len), len);
2779
2780 if (hlen) {
2781 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2782 if (unlikely(ret))
2783 return ret;
2784 len -= hlen;
2785 } else {
2786 plen = min_t(int, skb_headlen(from), len);
2787 if (plen) {
2788 page = virt_to_head_page(from->head);
2789 offset = from->data - (unsigned char *)page_address(page);
2790 __skb_fill_page_desc(to, 0, page, offset, plen);
2791 get_page(page);
2792 j = 1;
2793 len -= plen;
2794 }
2795 }
2796
2797 to->truesize += len + plen;
2798 to->len += len + plen;
2799 to->data_len += len + plen;
2800
2801 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2802 skb_tx_error(from);
2803 return -ENOMEM;
2804 }
2805 skb_zerocopy_clone(to, from, GFP_ATOMIC);
2806
2807 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2808 if (!len)
2809 break;
2810 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2811 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2812 len -= skb_shinfo(to)->frags[j].size;
2813 skb_frag_ref(to, j);
2814 j++;
2815 }
2816 skb_shinfo(to)->nr_frags = j;
2817
2818 return 0;
2819 }
2820 EXPORT_SYMBOL_GPL(skb_zerocopy);
2821
2822 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2823 {
2824 __wsum csum;
2825 long csstart;
2826
2827 if (skb->ip_summed == CHECKSUM_PARTIAL)
2828 csstart = skb_checksum_start_offset(skb);
2829 else
2830 csstart = skb_headlen(skb);
2831
2832 BUG_ON(csstart > skb_headlen(skb));
2833
2834 skb_copy_from_linear_data(skb, to, csstart);
2835
2836 csum = 0;
2837 if (csstart != skb->len)
2838 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2839 skb->len - csstart, 0);
2840
2841 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2842 long csstuff = csstart + skb->csum_offset;
2843
2844 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2845 }
2846 }
2847 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2848
2849 /**
2850 * skb_dequeue - remove from the head of the queue
2851 * @list: list to dequeue from
2852 *
2853 * Remove the head of the list. The list lock is taken so the function
2854 * may be used safely with other locking list functions. The head item is
2855 * returned or %NULL if the list is empty.
2856 */
2857
2858 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2859 {
2860 unsigned long flags;
2861 struct sk_buff *result;
2862
2863 spin_lock_irqsave(&list->lock, flags);
2864 result = __skb_dequeue(list);
2865 spin_unlock_irqrestore(&list->lock, flags);
2866 return result;
2867 }
2868 EXPORT_SYMBOL(skb_dequeue);
2869
2870 /**
2871 * skb_dequeue_tail - remove from the tail of the queue
2872 * @list: list to dequeue from
2873 *
2874 * Remove the tail of the list. The list lock is taken so the function
2875 * may be used safely with other locking list functions. The tail item is
2876 * returned or %NULL if the list is empty.
2877 */
2878 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2879 {
2880 unsigned long flags;
2881 struct sk_buff *result;
2882
2883 spin_lock_irqsave(&list->lock, flags);
2884 result = __skb_dequeue_tail(list);
2885 spin_unlock_irqrestore(&list->lock, flags);
2886 return result;
2887 }
2888 EXPORT_SYMBOL(skb_dequeue_tail);
2889
2890 /**
2891 * skb_queue_purge - empty a list
2892 * @list: list to empty
2893 *
2894 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2895 * the list and one reference dropped. This function takes the list
2896 * lock and is atomic with respect to other list locking functions.
2897 */
2898 void skb_queue_purge(struct sk_buff_head *list)
2899 {
2900 struct sk_buff *skb;
2901 while ((skb = skb_dequeue(list)) != NULL)
2902 kfree_skb(skb);
2903 }
2904 EXPORT_SYMBOL(skb_queue_purge);
2905
2906 /**
2907 * skb_rbtree_purge - empty a skb rbtree
2908 * @root: root of the rbtree to empty
2909 * Return value: the sum of truesizes of all purged skbs.
2910 *
2911 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2912 * the list and one reference dropped. This function does not take
2913 * any lock. Synchronization should be handled by the caller (e.g., TCP
2914 * out-of-order queue is protected by the socket lock).
2915 */
2916 unsigned int skb_rbtree_purge(struct rb_root *root)
2917 {
2918 struct rb_node *p = rb_first(root);
2919 unsigned int sum = 0;
2920
2921 while (p) {
2922 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2923
2924 p = rb_next(p);
2925 rb_erase(&skb->rbnode, root);
2926 sum += skb->truesize;
2927 kfree_skb(skb);
2928 }
2929 return sum;
2930 }
2931
2932 /**
2933 * skb_queue_head - queue a buffer at the list head
2934 * @list: list to use
2935 * @newsk: buffer to queue
2936 *
2937 * Queue a buffer at the start of the list. This function takes the
2938 * list lock and can be used safely with other locking &sk_buff functions
2939 * safely.
2940 *
2941 * A buffer cannot be placed on two lists at the same time.
2942 */
2943 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2944 {
2945 unsigned long flags;
2946
2947 spin_lock_irqsave(&list->lock, flags);
2948 __skb_queue_head(list, newsk);
2949 spin_unlock_irqrestore(&list->lock, flags);
2950 }
2951 EXPORT_SYMBOL(skb_queue_head);
2952
2953 /**
2954 * skb_queue_tail - queue a buffer at the list tail
2955 * @list: list to use
2956 * @newsk: buffer to queue
2957 *
2958 * Queue a buffer at the tail of the list. This function takes the
2959 * list lock and can be used safely with other locking &sk_buff functions
2960 * safely.
2961 *
2962 * A buffer cannot be placed on two lists at the same time.
2963 */
2964 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2965 {
2966 unsigned long flags;
2967
2968 spin_lock_irqsave(&list->lock, flags);
2969 __skb_queue_tail(list, newsk);
2970 spin_unlock_irqrestore(&list->lock, flags);
2971 }
2972 EXPORT_SYMBOL(skb_queue_tail);
2973
2974 /**
2975 * skb_unlink - remove a buffer from a list
2976 * @skb: buffer to remove
2977 * @list: list to use
2978 *
2979 * Remove a packet from a list. The list locks are taken and this
2980 * function is atomic with respect to other list locked calls
2981 *
2982 * You must know what list the SKB is on.
2983 */
2984 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2985 {
2986 unsigned long flags;
2987
2988 spin_lock_irqsave(&list->lock, flags);
2989 __skb_unlink(skb, list);
2990 spin_unlock_irqrestore(&list->lock, flags);
2991 }
2992 EXPORT_SYMBOL(skb_unlink);
2993
2994 /**
2995 * skb_append - append a buffer
2996 * @old: buffer to insert after
2997 * @newsk: buffer to insert
2998 * @list: list to use
2999 *
3000 * Place a packet after a given packet in a list. The list locks are taken
3001 * and this function is atomic with respect to other list locked calls.
3002 * A buffer cannot be placed on two lists at the same time.
3003 */
3004 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3005 {
3006 unsigned long flags;
3007
3008 spin_lock_irqsave(&list->lock, flags);
3009 __skb_queue_after(list, old, newsk);
3010 spin_unlock_irqrestore(&list->lock, flags);
3011 }
3012 EXPORT_SYMBOL(skb_append);
3013
3014 static inline void skb_split_inside_header(struct sk_buff *skb,
3015 struct sk_buff* skb1,
3016 const u32 len, const int pos)
3017 {
3018 int i;
3019
3020 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3021 pos - len);
3022 /* And move data appendix as is. */
3023 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3024 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3025
3026 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3027 skb_shinfo(skb)->nr_frags = 0;
3028 skb1->data_len = skb->data_len;
3029 skb1->len += skb1->data_len;
3030 skb->data_len = 0;
3031 skb->len = len;
3032 skb_set_tail_pointer(skb, len);
3033 }
3034
3035 static inline void skb_split_no_header(struct sk_buff *skb,
3036 struct sk_buff* skb1,
3037 const u32 len, int pos)
3038 {
3039 int i, k = 0;
3040 const int nfrags = skb_shinfo(skb)->nr_frags;
3041
3042 skb_shinfo(skb)->nr_frags = 0;
3043 skb1->len = skb1->data_len = skb->len - len;
3044 skb->len = len;
3045 skb->data_len = len - pos;
3046
3047 for (i = 0; i < nfrags; i++) {
3048 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3049
3050 if (pos + size > len) {
3051 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3052
3053 if (pos < len) {
3054 /* Split frag.
3055 * We have two variants in this case:
3056 * 1. Move all the frag to the second
3057 * part, if it is possible. F.e.
3058 * this approach is mandatory for TUX,
3059 * where splitting is expensive.
3060 * 2. Split is accurately. We make this.
3061 */
3062 skb_frag_ref(skb, i);
3063 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3064 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3065 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3066 skb_shinfo(skb)->nr_frags++;
3067 }
3068 k++;
3069 } else
3070 skb_shinfo(skb)->nr_frags++;
3071 pos += size;
3072 }
3073 skb_shinfo(skb1)->nr_frags = k;
3074 }
3075
3076 /**
3077 * skb_split - Split fragmented skb to two parts at length len.
3078 * @skb: the buffer to split
3079 * @skb1: the buffer to receive the second part
3080 * @len: new length for skb
3081 */
3082 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3083 {
3084 int pos = skb_headlen(skb);
3085
3086 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3087 SKBTX_SHARED_FRAG;
3088 skb_zerocopy_clone(skb1, skb, 0);
3089 if (len < pos) /* Split line is inside header. */
3090 skb_split_inside_header(skb, skb1, len, pos);
3091 else /* Second chunk has no header, nothing to copy. */
3092 skb_split_no_header(skb, skb1, len, pos);
3093 }
3094 EXPORT_SYMBOL(skb_split);
3095
3096 /* Shifting from/to a cloned skb is a no-go.
3097 *
3098 * Caller cannot keep skb_shinfo related pointers past calling here!
3099 */
3100 static int skb_prepare_for_shift(struct sk_buff *skb)
3101 {
3102 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3103 }
3104
3105 /**
3106 * skb_shift - Shifts paged data partially from skb to another
3107 * @tgt: buffer into which tail data gets added
3108 * @skb: buffer from which the paged data comes from
3109 * @shiftlen: shift up to this many bytes
3110 *
3111 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3112 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3113 * It's up to caller to free skb if everything was shifted.
3114 *
3115 * If @tgt runs out of frags, the whole operation is aborted.
3116 *
3117 * Skb cannot include anything else but paged data while tgt is allowed
3118 * to have non-paged data as well.
3119 *
3120 * TODO: full sized shift could be optimized but that would need
3121 * specialized skb free'er to handle frags without up-to-date nr_frags.
3122 */
3123 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3124 {
3125 int from, to, merge, todo;
3126 struct skb_frag_struct *fragfrom, *fragto;
3127
3128 BUG_ON(shiftlen > skb->len);
3129
3130 if (skb_headlen(skb))
3131 return 0;
3132 if (skb_zcopy(tgt) || skb_zcopy(skb))
3133 return 0;
3134
3135 todo = shiftlen;
3136 from = 0;
3137 to = skb_shinfo(tgt)->nr_frags;
3138 fragfrom = &skb_shinfo(skb)->frags[from];
3139
3140 /* Actual merge is delayed until the point when we know we can
3141 * commit all, so that we don't have to undo partial changes
3142 */
3143 if (!to ||
3144 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3145 fragfrom->page_offset)) {
3146 merge = -1;
3147 } else {
3148 merge = to - 1;
3149
3150 todo -= skb_frag_size(fragfrom);
3151 if (todo < 0) {
3152 if (skb_prepare_for_shift(skb) ||
3153 skb_prepare_for_shift(tgt))
3154 return 0;
3155
3156 /* All previous frag pointers might be stale! */
3157 fragfrom = &skb_shinfo(skb)->frags[from];
3158 fragto = &skb_shinfo(tgt)->frags[merge];
3159
3160 skb_frag_size_add(fragto, shiftlen);
3161 skb_frag_size_sub(fragfrom, shiftlen);
3162 fragfrom->page_offset += shiftlen;
3163
3164 goto onlymerged;
3165 }
3166
3167 from++;
3168 }
3169
3170 /* Skip full, not-fitting skb to avoid expensive operations */
3171 if ((shiftlen == skb->len) &&
3172 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3173 return 0;
3174
3175 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3176 return 0;
3177
3178 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3179 if (to == MAX_SKB_FRAGS)
3180 return 0;
3181
3182 fragfrom = &skb_shinfo(skb)->frags[from];
3183 fragto = &skb_shinfo(tgt)->frags[to];
3184
3185 if (todo >= skb_frag_size(fragfrom)) {
3186 *fragto = *fragfrom;
3187 todo -= skb_frag_size(fragfrom);
3188 from++;
3189 to++;
3190
3191 } else {
3192 __skb_frag_ref(fragfrom);
3193 fragto->page = fragfrom->page;
3194 fragto->page_offset = fragfrom->page_offset;
3195 skb_frag_size_set(fragto, todo);
3196
3197 fragfrom->page_offset += todo;
3198 skb_frag_size_sub(fragfrom, todo);
3199 todo = 0;
3200
3201 to++;
3202 break;
3203 }
3204 }
3205
3206 /* Ready to "commit" this state change to tgt */
3207 skb_shinfo(tgt)->nr_frags = to;
3208
3209 if (merge >= 0) {
3210 fragfrom = &skb_shinfo(skb)->frags[0];
3211 fragto = &skb_shinfo(tgt)->frags[merge];
3212
3213 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3214 __skb_frag_unref(fragfrom);
3215 }
3216
3217 /* Reposition in the original skb */
3218 to = 0;
3219 while (from < skb_shinfo(skb)->nr_frags)
3220 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3221 skb_shinfo(skb)->nr_frags = to;
3222
3223 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3224
3225 onlymerged:
3226 /* Most likely the tgt won't ever need its checksum anymore, skb on
3227 * the other hand might need it if it needs to be resent
3228 */
3229 tgt->ip_summed = CHECKSUM_PARTIAL;
3230 skb->ip_summed = CHECKSUM_PARTIAL;
3231
3232 /* Yak, is it really working this way? Some helper please? */
3233 skb->len -= shiftlen;
3234 skb->data_len -= shiftlen;
3235 skb->truesize -= shiftlen;
3236 tgt->len += shiftlen;
3237 tgt->data_len += shiftlen;
3238 tgt->truesize += shiftlen;
3239
3240 return shiftlen;
3241 }
3242
3243 /**
3244 * skb_prepare_seq_read - Prepare a sequential read of skb data
3245 * @skb: the buffer to read
3246 * @from: lower offset of data to be read
3247 * @to: upper offset of data to be read
3248 * @st: state variable
3249 *
3250 * Initializes the specified state variable. Must be called before
3251 * invoking skb_seq_read() for the first time.
3252 */
3253 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3254 unsigned int to, struct skb_seq_state *st)
3255 {
3256 st->lower_offset = from;
3257 st->upper_offset = to;
3258 st->root_skb = st->cur_skb = skb;
3259 st->frag_idx = st->stepped_offset = 0;
3260 st->frag_data = NULL;
3261 }
3262 EXPORT_SYMBOL(skb_prepare_seq_read);
3263
3264 /**
3265 * skb_seq_read - Sequentially read skb data
3266 * @consumed: number of bytes consumed by the caller so far
3267 * @data: destination pointer for data to be returned
3268 * @st: state variable
3269 *
3270 * Reads a block of skb data at @consumed relative to the
3271 * lower offset specified to skb_prepare_seq_read(). Assigns
3272 * the head of the data block to @data and returns the length
3273 * of the block or 0 if the end of the skb data or the upper
3274 * offset has been reached.
3275 *
3276 * The caller is not required to consume all of the data
3277 * returned, i.e. @consumed is typically set to the number
3278 * of bytes already consumed and the next call to
3279 * skb_seq_read() will return the remaining part of the block.
3280 *
3281 * Note 1: The size of each block of data returned can be arbitrary,
3282 * this limitation is the cost for zerocopy sequential
3283 * reads of potentially non linear data.
3284 *
3285 * Note 2: Fragment lists within fragments are not implemented
3286 * at the moment, state->root_skb could be replaced with
3287 * a stack for this purpose.
3288 */
3289 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3290 struct skb_seq_state *st)
3291 {
3292 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3293 skb_frag_t *frag;
3294
3295 if (unlikely(abs_offset >= st->upper_offset)) {
3296 if (st->frag_data) {
3297 kunmap_atomic(st->frag_data);
3298 st->frag_data = NULL;
3299 }
3300 return 0;
3301 }
3302
3303 next_skb:
3304 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3305
3306 if (abs_offset < block_limit && !st->frag_data) {
3307 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3308 return block_limit - abs_offset;
3309 }
3310
3311 if (st->frag_idx == 0 && !st->frag_data)
3312 st->stepped_offset += skb_headlen(st->cur_skb);
3313
3314 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3315 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3316 block_limit = skb_frag_size(frag) + st->stepped_offset;
3317
3318 if (abs_offset < block_limit) {
3319 if (!st->frag_data)
3320 st->frag_data = kmap_atomic(skb_frag_page(frag));
3321
3322 *data = (u8 *) st->frag_data + frag->page_offset +
3323 (abs_offset - st->stepped_offset);
3324
3325 return block_limit - abs_offset;
3326 }
3327
3328 if (st->frag_data) {
3329 kunmap_atomic(st->frag_data);
3330 st->frag_data = NULL;
3331 }
3332
3333 st->frag_idx++;
3334 st->stepped_offset += skb_frag_size(frag);
3335 }
3336
3337 if (st->frag_data) {
3338 kunmap_atomic(st->frag_data);
3339 st->frag_data = NULL;
3340 }
3341
3342 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3343 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3344 st->frag_idx = 0;
3345 goto next_skb;
3346 } else if (st->cur_skb->next) {
3347 st->cur_skb = st->cur_skb->next;
3348 st->frag_idx = 0;
3349 goto next_skb;
3350 }
3351
3352 return 0;
3353 }
3354 EXPORT_SYMBOL(skb_seq_read);
3355
3356 /**
3357 * skb_abort_seq_read - Abort a sequential read of skb data
3358 * @st: state variable
3359 *
3360 * Must be called if skb_seq_read() was not called until it
3361 * returned 0.
3362 */
3363 void skb_abort_seq_read(struct skb_seq_state *st)
3364 {
3365 if (st->frag_data)
3366 kunmap_atomic(st->frag_data);
3367 }
3368 EXPORT_SYMBOL(skb_abort_seq_read);
3369
3370 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3371
3372 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3373 struct ts_config *conf,
3374 struct ts_state *state)
3375 {
3376 return skb_seq_read(offset, text, TS_SKB_CB(state));
3377 }
3378
3379 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3380 {
3381 skb_abort_seq_read(TS_SKB_CB(state));
3382 }
3383
3384 /**
3385 * skb_find_text - Find a text pattern in skb data
3386 * @skb: the buffer to look in
3387 * @from: search offset
3388 * @to: search limit
3389 * @config: textsearch configuration
3390 *
3391 * Finds a pattern in the skb data according to the specified
3392 * textsearch configuration. Use textsearch_next() to retrieve
3393 * subsequent occurrences of the pattern. Returns the offset
3394 * to the first occurrence or UINT_MAX if no match was found.
3395 */
3396 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3397 unsigned int to, struct ts_config *config)
3398 {
3399 struct ts_state state;
3400 unsigned int ret;
3401
3402 config->get_next_block = skb_ts_get_next_block;
3403 config->finish = skb_ts_finish;
3404
3405 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3406
3407 ret = textsearch_find(config, &state);
3408 return (ret <= to - from ? ret : UINT_MAX);
3409 }
3410 EXPORT_SYMBOL(skb_find_text);
3411
3412 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3413 int offset, size_t size)
3414 {
3415 int i = skb_shinfo(skb)->nr_frags;
3416
3417 if (skb_can_coalesce(skb, i, page, offset)) {
3418 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3419 } else if (i < MAX_SKB_FRAGS) {
3420 get_page(page);
3421 skb_fill_page_desc(skb, i, page, offset, size);
3422 } else {
3423 return -EMSGSIZE;
3424 }
3425
3426 return 0;
3427 }
3428 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3429
3430 /**
3431 * skb_pull_rcsum - pull skb and update receive checksum
3432 * @skb: buffer to update
3433 * @len: length of data pulled
3434 *
3435 * This function performs an skb_pull on the packet and updates
3436 * the CHECKSUM_COMPLETE checksum. It should be used on
3437 * receive path processing instead of skb_pull unless you know
3438 * that the checksum difference is zero (e.g., a valid IP header)
3439 * or you are setting ip_summed to CHECKSUM_NONE.
3440 */
3441 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3442 {
3443 unsigned char *data = skb->data;
3444
3445 BUG_ON(len > skb->len);
3446 __skb_pull(skb, len);
3447 skb_postpull_rcsum(skb, data, len);
3448 return skb->data;
3449 }
3450 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3451
3452 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3453 {
3454 skb_frag_t head_frag;
3455 struct page *page;
3456
3457 page = virt_to_head_page(frag_skb->head);
3458 head_frag.page.p = page;
3459 head_frag.page_offset = frag_skb->data -
3460 (unsigned char *)page_address(page);
3461 head_frag.size = skb_headlen(frag_skb);
3462 return head_frag;
3463 }
3464
3465 /**
3466 * skb_segment - Perform protocol segmentation on skb.
3467 * @head_skb: buffer to segment
3468 * @features: features for the output path (see dev->features)
3469 *
3470 * This function performs segmentation on the given skb. It returns
3471 * a pointer to the first in a list of new skbs for the segments.
3472 * In case of error it returns ERR_PTR(err).
3473 */
3474 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3475 netdev_features_t features)
3476 {
3477 struct sk_buff *segs = NULL;
3478 struct sk_buff *tail = NULL;
3479 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3480 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3481 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3482 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3483 struct sk_buff *frag_skb = head_skb;
3484 unsigned int offset = doffset;
3485 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3486 unsigned int partial_segs = 0;
3487 unsigned int headroom;
3488 unsigned int len = head_skb->len;
3489 __be16 proto;
3490 bool csum, sg;
3491 int nfrags = skb_shinfo(head_skb)->nr_frags;
3492 int err = -ENOMEM;
3493 int i = 0;
3494 int pos;
3495 int dummy;
3496
3497 __skb_push(head_skb, doffset);
3498 proto = skb_network_protocol(head_skb, &dummy);
3499 if (unlikely(!proto))
3500 return ERR_PTR(-EINVAL);
3501
3502 sg = !!(features & NETIF_F_SG);
3503 csum = !!can_checksum_protocol(features, proto);
3504
3505 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3506 if (!(features & NETIF_F_GSO_PARTIAL)) {
3507 struct sk_buff *iter;
3508 unsigned int frag_len;
3509
3510 if (!list_skb ||
3511 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3512 goto normal;
3513
3514 /* If we get here then all the required
3515 * GSO features except frag_list are supported.
3516 * Try to split the SKB to multiple GSO SKBs
3517 * with no frag_list.
3518 * Currently we can do that only when the buffers don't
3519 * have a linear part and all the buffers except
3520 * the last are of the same length.
3521 */
3522 frag_len = list_skb->len;
3523 skb_walk_frags(head_skb, iter) {
3524 if (frag_len != iter->len && iter->next)
3525 goto normal;
3526 if (skb_headlen(iter) && !iter->head_frag)
3527 goto normal;
3528
3529 len -= iter->len;
3530 }
3531
3532 if (len != frag_len)
3533 goto normal;
3534 }
3535
3536 /* GSO partial only requires that we trim off any excess that
3537 * doesn't fit into an MSS sized block, so take care of that
3538 * now.
3539 */
3540 partial_segs = len / mss;
3541 if (partial_segs > 1)
3542 mss *= partial_segs;
3543 else
3544 partial_segs = 0;
3545 }
3546
3547 normal:
3548 headroom = skb_headroom(head_skb);
3549 pos = skb_headlen(head_skb);
3550
3551 do {
3552 struct sk_buff *nskb;
3553 skb_frag_t *nskb_frag;
3554 int hsize;
3555 int size;
3556
3557 if (unlikely(mss == GSO_BY_FRAGS)) {
3558 len = list_skb->len;
3559 } else {
3560 len = head_skb->len - offset;
3561 if (len > mss)
3562 len = mss;
3563 }
3564
3565 hsize = skb_headlen(head_skb) - offset;
3566 if (hsize < 0)
3567 hsize = 0;
3568 if (hsize > len || !sg)
3569 hsize = len;
3570
3571 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3572 (skb_headlen(list_skb) == len || sg)) {
3573 BUG_ON(skb_headlen(list_skb) > len);
3574
3575 i = 0;
3576 nfrags = skb_shinfo(list_skb)->nr_frags;
3577 frag = skb_shinfo(list_skb)->frags;
3578 frag_skb = list_skb;
3579 pos += skb_headlen(list_skb);
3580
3581 while (pos < offset + len) {
3582 BUG_ON(i >= nfrags);
3583
3584 size = skb_frag_size(frag);
3585 if (pos + size > offset + len)
3586 break;
3587
3588 i++;
3589 pos += size;
3590 frag++;
3591 }
3592
3593 nskb = skb_clone(list_skb, GFP_ATOMIC);
3594 list_skb = list_skb->next;
3595
3596 if (unlikely(!nskb))
3597 goto err;
3598
3599 if (unlikely(pskb_trim(nskb, len))) {
3600 kfree_skb(nskb);
3601 goto err;
3602 }
3603
3604 hsize = skb_end_offset(nskb);
3605 if (skb_cow_head(nskb, doffset + headroom)) {
3606 kfree_skb(nskb);
3607 goto err;
3608 }
3609
3610 nskb->truesize += skb_end_offset(nskb) - hsize;
3611 skb_release_head_state(nskb);
3612 __skb_push(nskb, doffset);
3613 } else {
3614 nskb = __alloc_skb(hsize + doffset + headroom,
3615 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3616 NUMA_NO_NODE);
3617
3618 if (unlikely(!nskb))
3619 goto err;
3620
3621 skb_reserve(nskb, headroom);
3622 __skb_put(nskb, doffset);
3623 }
3624
3625 if (segs)
3626 tail->next = nskb;
3627 else
3628 segs = nskb;
3629 tail = nskb;
3630
3631 __copy_skb_header(nskb, head_skb);
3632
3633 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3634 skb_reset_mac_len(nskb);
3635
3636 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3637 nskb->data - tnl_hlen,
3638 doffset + tnl_hlen);
3639
3640 if (nskb->len == len + doffset)
3641 goto perform_csum_check;
3642
3643 if (!sg) {
3644 if (!nskb->remcsum_offload)
3645 nskb->ip_summed = CHECKSUM_NONE;
3646 SKB_GSO_CB(nskb)->csum =
3647 skb_copy_and_csum_bits(head_skb, offset,
3648 skb_put(nskb, len),
3649 len, 0);
3650 SKB_GSO_CB(nskb)->csum_start =
3651 skb_headroom(nskb) + doffset;
3652 continue;
3653 }
3654
3655 nskb_frag = skb_shinfo(nskb)->frags;
3656
3657 skb_copy_from_linear_data_offset(head_skb, offset,
3658 skb_put(nskb, hsize), hsize);
3659
3660 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3661 SKBTX_SHARED_FRAG;
3662
3663 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3664 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3665 goto err;
3666
3667 while (pos < offset + len) {
3668 if (i >= nfrags) {
3669 i = 0;
3670 nfrags = skb_shinfo(list_skb)->nr_frags;
3671 frag = skb_shinfo(list_skb)->frags;
3672 frag_skb = list_skb;
3673 if (!skb_headlen(list_skb)) {
3674 BUG_ON(!nfrags);
3675 } else {
3676 BUG_ON(!list_skb->head_frag);
3677
3678 /* to make room for head_frag. */
3679 i--;
3680 frag--;
3681 }
3682 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3683 skb_zerocopy_clone(nskb, frag_skb,
3684 GFP_ATOMIC))
3685 goto err;
3686
3687 list_skb = list_skb->next;
3688 }
3689
3690 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3691 MAX_SKB_FRAGS)) {
3692 net_warn_ratelimited(
3693 "skb_segment: too many frags: %u %u\n",
3694 pos, mss);
3695 err = -EINVAL;
3696 goto err;
3697 }
3698
3699 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3700 __skb_frag_ref(nskb_frag);
3701 size = skb_frag_size(nskb_frag);
3702
3703 if (pos < offset) {
3704 nskb_frag->page_offset += offset - pos;
3705 skb_frag_size_sub(nskb_frag, offset - pos);
3706 }
3707
3708 skb_shinfo(nskb)->nr_frags++;
3709
3710 if (pos + size <= offset + len) {
3711 i++;
3712 frag++;
3713 pos += size;
3714 } else {
3715 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3716 goto skip_fraglist;
3717 }
3718
3719 nskb_frag++;
3720 }
3721
3722 skip_fraglist:
3723 nskb->data_len = len - hsize;
3724 nskb->len += nskb->data_len;
3725 nskb->truesize += nskb->data_len;
3726
3727 perform_csum_check:
3728 if (!csum) {
3729 if (skb_has_shared_frag(nskb) &&
3730 __skb_linearize(nskb))
3731 goto err;
3732
3733 if (!nskb->remcsum_offload)
3734 nskb->ip_summed = CHECKSUM_NONE;
3735 SKB_GSO_CB(nskb)->csum =
3736 skb_checksum(nskb, doffset,
3737 nskb->len - doffset, 0);
3738 SKB_GSO_CB(nskb)->csum_start =
3739 skb_headroom(nskb) + doffset;
3740 }
3741 } while ((offset += len) < head_skb->len);
3742
3743 /* Some callers want to get the end of the list.
3744 * Put it in segs->prev to avoid walking the list.
3745 * (see validate_xmit_skb_list() for example)
3746 */
3747 segs->prev = tail;
3748
3749 if (partial_segs) {
3750 struct sk_buff *iter;
3751 int type = skb_shinfo(head_skb)->gso_type;
3752 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3753
3754 /* Update type to add partial and then remove dodgy if set */
3755 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3756 type &= ~SKB_GSO_DODGY;
3757
3758 /* Update GSO info and prepare to start updating headers on
3759 * our way back down the stack of protocols.
3760 */
3761 for (iter = segs; iter; iter = iter->next) {
3762 skb_shinfo(iter)->gso_size = gso_size;
3763 skb_shinfo(iter)->gso_segs = partial_segs;
3764 skb_shinfo(iter)->gso_type = type;
3765 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3766 }
3767
3768 if (tail->len - doffset <= gso_size)
3769 skb_shinfo(tail)->gso_size = 0;
3770 else if (tail != segs)
3771 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3772 }
3773
3774 /* Following permits correct backpressure, for protocols
3775 * using skb_set_owner_w().
3776 * Idea is to tranfert ownership from head_skb to last segment.
3777 */
3778 if (head_skb->destructor == sock_wfree) {
3779 swap(tail->truesize, head_skb->truesize);
3780 swap(tail->destructor, head_skb->destructor);
3781 swap(tail->sk, head_skb->sk);
3782 }
3783 return segs;
3784
3785 err:
3786 kfree_skb_list(segs);
3787 return ERR_PTR(err);
3788 }
3789 EXPORT_SYMBOL_GPL(skb_segment);
3790
3791 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
3792 {
3793 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3794 unsigned int offset = skb_gro_offset(skb);
3795 unsigned int headlen = skb_headlen(skb);
3796 unsigned int len = skb_gro_len(skb);
3797 unsigned int delta_truesize;
3798 struct sk_buff *lp;
3799
3800 if (unlikely(p->len + len >= 65536))
3801 return -E2BIG;
3802
3803 lp = NAPI_GRO_CB(p)->last;
3804 pinfo = skb_shinfo(lp);
3805
3806 if (headlen <= offset) {
3807 skb_frag_t *frag;
3808 skb_frag_t *frag2;
3809 int i = skbinfo->nr_frags;
3810 int nr_frags = pinfo->nr_frags + i;
3811
3812 if (nr_frags > MAX_SKB_FRAGS)
3813 goto merge;
3814
3815 offset -= headlen;
3816 pinfo->nr_frags = nr_frags;
3817 skbinfo->nr_frags = 0;
3818
3819 frag = pinfo->frags + nr_frags;
3820 frag2 = skbinfo->frags + i;
3821 do {
3822 *--frag = *--frag2;
3823 } while (--i);
3824
3825 frag->page_offset += offset;
3826 skb_frag_size_sub(frag, offset);
3827
3828 /* all fragments truesize : remove (head size + sk_buff) */
3829 delta_truesize = skb->truesize -
3830 SKB_TRUESIZE(skb_end_offset(skb));
3831
3832 skb->truesize -= skb->data_len;
3833 skb->len -= skb->data_len;
3834 skb->data_len = 0;
3835
3836 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3837 goto done;
3838 } else if (skb->head_frag) {
3839 int nr_frags = pinfo->nr_frags;
3840 skb_frag_t *frag = pinfo->frags + nr_frags;
3841 struct page *page = virt_to_head_page(skb->head);
3842 unsigned int first_size = headlen - offset;
3843 unsigned int first_offset;
3844
3845 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3846 goto merge;
3847
3848 first_offset = skb->data -
3849 (unsigned char *)page_address(page) +
3850 offset;
3851
3852 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3853
3854 frag->page.p = page;
3855 frag->page_offset = first_offset;
3856 skb_frag_size_set(frag, first_size);
3857
3858 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3859 /* We dont need to clear skbinfo->nr_frags here */
3860
3861 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3862 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3863 goto done;
3864 }
3865
3866 merge:
3867 delta_truesize = skb->truesize;
3868 if (offset > headlen) {
3869 unsigned int eat = offset - headlen;
3870
3871 skbinfo->frags[0].page_offset += eat;
3872 skb_frag_size_sub(&skbinfo->frags[0], eat);
3873 skb->data_len -= eat;
3874 skb->len -= eat;
3875 offset = headlen;
3876 }
3877
3878 __skb_pull(skb, offset);
3879
3880 if (NAPI_GRO_CB(p)->last == p)
3881 skb_shinfo(p)->frag_list = skb;
3882 else
3883 NAPI_GRO_CB(p)->last->next = skb;
3884 NAPI_GRO_CB(p)->last = skb;
3885 __skb_header_release(skb);
3886 lp = p;
3887
3888 done:
3889 NAPI_GRO_CB(p)->count++;
3890 p->data_len += len;
3891 p->truesize += delta_truesize;
3892 p->len += len;
3893 if (lp != p) {
3894 lp->data_len += len;
3895 lp->truesize += delta_truesize;
3896 lp->len += len;
3897 }
3898 NAPI_GRO_CB(skb)->same_flow = 1;
3899 return 0;
3900 }
3901 EXPORT_SYMBOL_GPL(skb_gro_receive);
3902
3903 #ifdef CONFIG_SKB_EXTENSIONS
3904 #define SKB_EXT_ALIGN_VALUE 8
3905 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
3906
3907 static const u8 skb_ext_type_len[] = {
3908 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3909 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
3910 #endif
3911 #ifdef CONFIG_XFRM
3912 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
3913 #endif
3914 };
3915
3916 static __always_inline unsigned int skb_ext_total_length(void)
3917 {
3918 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
3919 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3920 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
3921 #endif
3922 #ifdef CONFIG_XFRM
3923 skb_ext_type_len[SKB_EXT_SEC_PATH] +
3924 #endif
3925 0;
3926 }
3927
3928 static void skb_extensions_init(void)
3929 {
3930 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
3931 BUILD_BUG_ON(skb_ext_total_length() > 255);
3932
3933 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
3934 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
3935 0,
3936 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3937 NULL);
3938 }
3939 #else
3940 static void skb_extensions_init(void) {}
3941 #endif
3942
3943 void __init skb_init(void)
3944 {
3945 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
3946 sizeof(struct sk_buff),
3947 0,
3948 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3949 offsetof(struct sk_buff, cb),
3950 sizeof_field(struct sk_buff, cb),
3951 NULL);
3952 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3953 sizeof(struct sk_buff_fclones),
3954 0,
3955 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3956 NULL);
3957 skb_extensions_init();
3958 }
3959
3960 static int
3961 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3962 unsigned int recursion_level)
3963 {
3964 int start = skb_headlen(skb);
3965 int i, copy = start - offset;
3966 struct sk_buff *frag_iter;
3967 int elt = 0;
3968
3969 if (unlikely(recursion_level >= 24))
3970 return -EMSGSIZE;
3971
3972 if (copy > 0) {
3973 if (copy > len)
3974 copy = len;
3975 sg_set_buf(sg, skb->data + offset, copy);
3976 elt++;
3977 if ((len -= copy) == 0)
3978 return elt;
3979 offset += copy;
3980 }
3981
3982 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3983 int end;
3984
3985 WARN_ON(start > offset + len);
3986
3987 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3988 if ((copy = end - offset) > 0) {
3989 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3990 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3991 return -EMSGSIZE;
3992
3993 if (copy > len)
3994 copy = len;
3995 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3996 frag->page_offset+offset-start);
3997 elt++;
3998 if (!(len -= copy))
3999 return elt;
4000 offset += copy;
4001 }
4002 start = end;
4003 }
4004
4005 skb_walk_frags(skb, frag_iter) {
4006 int end, ret;
4007
4008 WARN_ON(start > offset + len);
4009
4010 end = start + frag_iter->len;
4011 if ((copy = end - offset) > 0) {
4012 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4013 return -EMSGSIZE;
4014
4015 if (copy > len)
4016 copy = len;
4017 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4018 copy, recursion_level + 1);
4019 if (unlikely(ret < 0))
4020 return ret;
4021 elt += ret;
4022 if ((len -= copy) == 0)
4023 return elt;
4024 offset += copy;
4025 }
4026 start = end;
4027 }
4028 BUG_ON(len);
4029 return elt;
4030 }
4031
4032 /**
4033 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4034 * @skb: Socket buffer containing the buffers to be mapped
4035 * @sg: The scatter-gather list to map into
4036 * @offset: The offset into the buffer's contents to start mapping
4037 * @len: Length of buffer space to be mapped
4038 *
4039 * Fill the specified scatter-gather list with mappings/pointers into a
4040 * region of the buffer space attached to a socket buffer. Returns either
4041 * the number of scatterlist items used, or -EMSGSIZE if the contents
4042 * could not fit.
4043 */
4044 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4045 {
4046 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4047
4048 if (nsg <= 0)
4049 return nsg;
4050
4051 sg_mark_end(&sg[nsg - 1]);
4052
4053 return nsg;
4054 }
4055 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4056
4057 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4058 * sglist without mark the sg which contain last skb data as the end.
4059 * So the caller can mannipulate sg list as will when padding new data after
4060 * the first call without calling sg_unmark_end to expend sg list.
4061 *
4062 * Scenario to use skb_to_sgvec_nomark:
4063 * 1. sg_init_table
4064 * 2. skb_to_sgvec_nomark(payload1)
4065 * 3. skb_to_sgvec_nomark(payload2)
4066 *
4067 * This is equivalent to:
4068 * 1. sg_init_table
4069 * 2. skb_to_sgvec(payload1)
4070 * 3. sg_unmark_end
4071 * 4. skb_to_sgvec(payload2)
4072 *
4073 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4074 * is more preferable.
4075 */
4076 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4077 int offset, int len)
4078 {
4079 return __skb_to_sgvec(skb, sg, offset, len, 0);
4080 }
4081 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4082
4083
4084
4085 /**
4086 * skb_cow_data - Check that a socket buffer's data buffers are writable
4087 * @skb: The socket buffer to check.
4088 * @tailbits: Amount of trailing space to be added
4089 * @trailer: Returned pointer to the skb where the @tailbits space begins
4090 *
4091 * Make sure that the data buffers attached to a socket buffer are
4092 * writable. If they are not, private copies are made of the data buffers
4093 * and the socket buffer is set to use these instead.
4094 *
4095 * If @tailbits is given, make sure that there is space to write @tailbits
4096 * bytes of data beyond current end of socket buffer. @trailer will be
4097 * set to point to the skb in which this space begins.
4098 *
4099 * The number of scatterlist elements required to completely map the
4100 * COW'd and extended socket buffer will be returned.
4101 */
4102 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4103 {
4104 int copyflag;
4105 int elt;
4106 struct sk_buff *skb1, **skb_p;
4107
4108 /* If skb is cloned or its head is paged, reallocate
4109 * head pulling out all the pages (pages are considered not writable
4110 * at the moment even if they are anonymous).
4111 */
4112 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4113 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4114 return -ENOMEM;
4115
4116 /* Easy case. Most of packets will go this way. */
4117 if (!skb_has_frag_list(skb)) {
4118 /* A little of trouble, not enough of space for trailer.
4119 * This should not happen, when stack is tuned to generate
4120 * good frames. OK, on miss we reallocate and reserve even more
4121 * space, 128 bytes is fair. */
4122
4123 if (skb_tailroom(skb) < tailbits &&
4124 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4125 return -ENOMEM;
4126
4127 /* Voila! */
4128 *trailer = skb;
4129 return 1;
4130 }
4131
4132 /* Misery. We are in troubles, going to mincer fragments... */
4133
4134 elt = 1;
4135 skb_p = &skb_shinfo(skb)->frag_list;
4136 copyflag = 0;
4137
4138 while ((skb1 = *skb_p) != NULL) {
4139 int ntail = 0;
4140
4141 /* The fragment is partially pulled by someone,
4142 * this can happen on input. Copy it and everything
4143 * after it. */
4144
4145 if (skb_shared(skb1))
4146 copyflag = 1;
4147
4148 /* If the skb is the last, worry about trailer. */
4149
4150 if (skb1->next == NULL && tailbits) {
4151 if (skb_shinfo(skb1)->nr_frags ||
4152 skb_has_frag_list(skb1) ||
4153 skb_tailroom(skb1) < tailbits)
4154 ntail = tailbits + 128;
4155 }
4156
4157 if (copyflag ||
4158 skb_cloned(skb1) ||
4159 ntail ||
4160 skb_shinfo(skb1)->nr_frags ||
4161 skb_has_frag_list(skb1)) {
4162 struct sk_buff *skb2;
4163
4164 /* Fuck, we are miserable poor guys... */
4165 if (ntail == 0)
4166 skb2 = skb_copy(skb1, GFP_ATOMIC);
4167 else
4168 skb2 = skb_copy_expand(skb1,
4169 skb_headroom(skb1),
4170 ntail,
4171 GFP_ATOMIC);
4172 if (unlikely(skb2 == NULL))
4173 return -ENOMEM;
4174
4175 if (skb1->sk)
4176 skb_set_owner_w(skb2, skb1->sk);
4177
4178 /* Looking around. Are we still alive?
4179 * OK, link new skb, drop old one */
4180
4181 skb2->next = skb1->next;
4182 *skb_p = skb2;
4183 kfree_skb(skb1);
4184 skb1 = skb2;
4185 }
4186 elt++;
4187 *trailer = skb1;
4188 skb_p = &skb1->next;
4189 }
4190
4191 return elt;
4192 }
4193 EXPORT_SYMBOL_GPL(skb_cow_data);
4194
4195 static void sock_rmem_free(struct sk_buff *skb)
4196 {
4197 struct sock *sk = skb->sk;
4198
4199 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4200 }
4201
4202 static void skb_set_err_queue(struct sk_buff *skb)
4203 {
4204 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4205 * So, it is safe to (mis)use it to mark skbs on the error queue.
4206 */
4207 skb->pkt_type = PACKET_OUTGOING;
4208 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4209 }
4210
4211 /*
4212 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4213 */
4214 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4215 {
4216 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4217 (unsigned int)sk->sk_rcvbuf)
4218 return -ENOMEM;
4219
4220 skb_orphan(skb);
4221 skb->sk = sk;
4222 skb->destructor = sock_rmem_free;
4223 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4224 skb_set_err_queue(skb);
4225
4226 /* before exiting rcu section, make sure dst is refcounted */
4227 skb_dst_force(skb);
4228
4229 skb_queue_tail(&sk->sk_error_queue, skb);
4230 if (!sock_flag(sk, SOCK_DEAD))
4231 sk->sk_error_report(sk);
4232 return 0;
4233 }
4234 EXPORT_SYMBOL(sock_queue_err_skb);
4235
4236 static bool is_icmp_err_skb(const struct sk_buff *skb)
4237 {
4238 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4239 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4240 }
4241
4242 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4243 {
4244 struct sk_buff_head *q = &sk->sk_error_queue;
4245 struct sk_buff *skb, *skb_next = NULL;
4246 bool icmp_next = false;
4247 unsigned long flags;
4248
4249 spin_lock_irqsave(&q->lock, flags);
4250 skb = __skb_dequeue(q);
4251 if (skb && (skb_next = skb_peek(q))) {
4252 icmp_next = is_icmp_err_skb(skb_next);
4253 if (icmp_next)
4254 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4255 }
4256 spin_unlock_irqrestore(&q->lock, flags);
4257
4258 if (is_icmp_err_skb(skb) && !icmp_next)
4259 sk->sk_err = 0;
4260
4261 if (skb_next)
4262 sk->sk_error_report(sk);
4263
4264 return skb;
4265 }
4266 EXPORT_SYMBOL(sock_dequeue_err_skb);
4267
4268 /**
4269 * skb_clone_sk - create clone of skb, and take reference to socket
4270 * @skb: the skb to clone
4271 *
4272 * This function creates a clone of a buffer that holds a reference on
4273 * sk_refcnt. Buffers created via this function are meant to be
4274 * returned using sock_queue_err_skb, or free via kfree_skb.
4275 *
4276 * When passing buffers allocated with this function to sock_queue_err_skb
4277 * it is necessary to wrap the call with sock_hold/sock_put in order to
4278 * prevent the socket from being released prior to being enqueued on
4279 * the sk_error_queue.
4280 */
4281 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4282 {
4283 struct sock *sk = skb->sk;
4284 struct sk_buff *clone;
4285
4286 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4287 return NULL;
4288
4289 clone = skb_clone(skb, GFP_ATOMIC);
4290 if (!clone) {
4291 sock_put(sk);
4292 return NULL;
4293 }
4294
4295 clone->sk = sk;
4296 clone->destructor = sock_efree;
4297
4298 return clone;
4299 }
4300 EXPORT_SYMBOL(skb_clone_sk);
4301
4302 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4303 struct sock *sk,
4304 int tstype,
4305 bool opt_stats)
4306 {
4307 struct sock_exterr_skb *serr;
4308 int err;
4309
4310 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4311
4312 serr = SKB_EXT_ERR(skb);
4313 memset(serr, 0, sizeof(*serr));
4314 serr->ee.ee_errno = ENOMSG;
4315 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4316 serr->ee.ee_info = tstype;
4317 serr->opt_stats = opt_stats;
4318 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4319 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4320 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4321 if (sk->sk_protocol == IPPROTO_TCP &&
4322 sk->sk_type == SOCK_STREAM)
4323 serr->ee.ee_data -= sk->sk_tskey;
4324 }
4325
4326 err = sock_queue_err_skb(sk, skb);
4327
4328 if (err)
4329 kfree_skb(skb);
4330 }
4331
4332 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4333 {
4334 bool ret;
4335
4336 if (likely(sysctl_tstamp_allow_data || tsonly))
4337 return true;
4338
4339 read_lock_bh(&sk->sk_callback_lock);
4340 ret = sk->sk_socket && sk->sk_socket->file &&
4341 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4342 read_unlock_bh(&sk->sk_callback_lock);
4343 return ret;
4344 }
4345
4346 void skb_complete_tx_timestamp(struct sk_buff *skb,
4347 struct skb_shared_hwtstamps *hwtstamps)
4348 {
4349 struct sock *sk = skb->sk;
4350
4351 if (!skb_may_tx_timestamp(sk, false))
4352 goto err;
4353
4354 /* Take a reference to prevent skb_orphan() from freeing the socket,
4355 * but only if the socket refcount is not zero.
4356 */
4357 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4358 *skb_hwtstamps(skb) = *hwtstamps;
4359 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4360 sock_put(sk);
4361 return;
4362 }
4363
4364 err:
4365 kfree_skb(skb);
4366 }
4367 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4368
4369 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4370 struct skb_shared_hwtstamps *hwtstamps,
4371 struct sock *sk, int tstype)
4372 {
4373 struct sk_buff *skb;
4374 bool tsonly, opt_stats = false;
4375
4376 if (!sk)
4377 return;
4378
4379 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4380 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4381 return;
4382
4383 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4384 if (!skb_may_tx_timestamp(sk, tsonly))
4385 return;
4386
4387 if (tsonly) {
4388 #ifdef CONFIG_INET
4389 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4390 sk->sk_protocol == IPPROTO_TCP &&
4391 sk->sk_type == SOCK_STREAM) {
4392 skb = tcp_get_timestamping_opt_stats(sk);
4393 opt_stats = true;
4394 } else
4395 #endif
4396 skb = alloc_skb(0, GFP_ATOMIC);
4397 } else {
4398 skb = skb_clone(orig_skb, GFP_ATOMIC);
4399 }
4400 if (!skb)
4401 return;
4402
4403 if (tsonly) {
4404 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4405 SKBTX_ANY_TSTAMP;
4406 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4407 }
4408
4409 if (hwtstamps)
4410 *skb_hwtstamps(skb) = *hwtstamps;
4411 else
4412 skb->tstamp = ktime_get_real();
4413
4414 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4415 }
4416 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4417
4418 void skb_tstamp_tx(struct sk_buff *orig_skb,
4419 struct skb_shared_hwtstamps *hwtstamps)
4420 {
4421 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4422 SCM_TSTAMP_SND);
4423 }
4424 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4425
4426 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4427 {
4428 struct sock *sk = skb->sk;
4429 struct sock_exterr_skb *serr;
4430 int err = 1;
4431
4432 skb->wifi_acked_valid = 1;
4433 skb->wifi_acked = acked;
4434
4435 serr = SKB_EXT_ERR(skb);
4436 memset(serr, 0, sizeof(*serr));
4437 serr->ee.ee_errno = ENOMSG;
4438 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4439
4440 /* Take a reference to prevent skb_orphan() from freeing the socket,
4441 * but only if the socket refcount is not zero.
4442 */
4443 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4444 err = sock_queue_err_skb(sk, skb);
4445 sock_put(sk);
4446 }
4447 if (err)
4448 kfree_skb(skb);
4449 }
4450 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4451
4452 /**
4453 * skb_partial_csum_set - set up and verify partial csum values for packet
4454 * @skb: the skb to set
4455 * @start: the number of bytes after skb->data to start checksumming.
4456 * @off: the offset from start to place the checksum.
4457 *
4458 * For untrusted partially-checksummed packets, we need to make sure the values
4459 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4460 *
4461 * This function checks and sets those values and skb->ip_summed: if this
4462 * returns false you should drop the packet.
4463 */
4464 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4465 {
4466 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4467 u32 csum_start = skb_headroom(skb) + (u32)start;
4468
4469 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4470 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4471 start, off, skb_headroom(skb), skb_headlen(skb));
4472 return false;
4473 }
4474 skb->ip_summed = CHECKSUM_PARTIAL;
4475 skb->csum_start = csum_start;
4476 skb->csum_offset = off;
4477 skb_set_transport_header(skb, start);
4478 return true;
4479 }
4480 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4481
4482 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4483 unsigned int max)
4484 {
4485 if (skb_headlen(skb) >= len)
4486 return 0;
4487
4488 /* If we need to pullup then pullup to the max, so we
4489 * won't need to do it again.
4490 */
4491 if (max > skb->len)
4492 max = skb->len;
4493
4494 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4495 return -ENOMEM;
4496
4497 if (skb_headlen(skb) < len)
4498 return -EPROTO;
4499
4500 return 0;
4501 }
4502
4503 #define MAX_TCP_HDR_LEN (15 * 4)
4504
4505 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4506 typeof(IPPROTO_IP) proto,
4507 unsigned int off)
4508 {
4509 switch (proto) {
4510 int err;
4511
4512 case IPPROTO_TCP:
4513 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4514 off + MAX_TCP_HDR_LEN);
4515 if (!err && !skb_partial_csum_set(skb, off,
4516 offsetof(struct tcphdr,
4517 check)))
4518 err = -EPROTO;
4519 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4520
4521 case IPPROTO_UDP:
4522 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4523 off + sizeof(struct udphdr));
4524 if (!err && !skb_partial_csum_set(skb, off,
4525 offsetof(struct udphdr,
4526 check)))
4527 err = -EPROTO;
4528 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4529 }
4530
4531 return ERR_PTR(-EPROTO);
4532 }
4533
4534 /* This value should be large enough to cover a tagged ethernet header plus
4535 * maximally sized IP and TCP or UDP headers.
4536 */
4537 #define MAX_IP_HDR_LEN 128
4538
4539 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4540 {
4541 unsigned int off;
4542 bool fragment;
4543 __sum16 *csum;
4544 int err;
4545
4546 fragment = false;
4547
4548 err = skb_maybe_pull_tail(skb,
4549 sizeof(struct iphdr),
4550 MAX_IP_HDR_LEN);
4551 if (err < 0)
4552 goto out;
4553
4554 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4555 fragment = true;
4556
4557 off = ip_hdrlen(skb);
4558
4559 err = -EPROTO;
4560
4561 if (fragment)
4562 goto out;
4563
4564 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4565 if (IS_ERR(csum))
4566 return PTR_ERR(csum);
4567
4568 if (recalculate)
4569 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4570 ip_hdr(skb)->daddr,
4571 skb->len - off,
4572 ip_hdr(skb)->protocol, 0);
4573 err = 0;
4574
4575 out:
4576 return err;
4577 }
4578
4579 /* This value should be large enough to cover a tagged ethernet header plus
4580 * an IPv6 header, all options, and a maximal TCP or UDP header.
4581 */
4582 #define MAX_IPV6_HDR_LEN 256
4583
4584 #define OPT_HDR(type, skb, off) \
4585 (type *)(skb_network_header(skb) + (off))
4586
4587 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4588 {
4589 int err;
4590 u8 nexthdr;
4591 unsigned int off;
4592 unsigned int len;
4593 bool fragment;
4594 bool done;
4595 __sum16 *csum;
4596
4597 fragment = false;
4598 done = false;
4599
4600 off = sizeof(struct ipv6hdr);
4601
4602 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4603 if (err < 0)
4604 goto out;
4605
4606 nexthdr = ipv6_hdr(skb)->nexthdr;
4607
4608 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4609 while (off <= len && !done) {
4610 switch (nexthdr) {
4611 case IPPROTO_DSTOPTS:
4612 case IPPROTO_HOPOPTS:
4613 case IPPROTO_ROUTING: {
4614 struct ipv6_opt_hdr *hp;
4615
4616 err = skb_maybe_pull_tail(skb,
4617 off +
4618 sizeof(struct ipv6_opt_hdr),
4619 MAX_IPV6_HDR_LEN);
4620 if (err < 0)
4621 goto out;
4622
4623 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4624 nexthdr = hp->nexthdr;
4625 off += ipv6_optlen(hp);
4626 break;
4627 }
4628 case IPPROTO_AH: {
4629 struct ip_auth_hdr *hp;
4630
4631 err = skb_maybe_pull_tail(skb,
4632 off +
4633 sizeof(struct ip_auth_hdr),
4634 MAX_IPV6_HDR_LEN);
4635 if (err < 0)
4636 goto out;
4637
4638 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4639 nexthdr = hp->nexthdr;
4640 off += ipv6_authlen(hp);
4641 break;
4642 }
4643 case IPPROTO_FRAGMENT: {
4644 struct frag_hdr *hp;
4645
4646 err = skb_maybe_pull_tail(skb,
4647 off +
4648 sizeof(struct frag_hdr),
4649 MAX_IPV6_HDR_LEN);
4650 if (err < 0)
4651 goto out;
4652
4653 hp = OPT_HDR(struct frag_hdr, skb, off);
4654
4655 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4656 fragment = true;
4657
4658 nexthdr = hp->nexthdr;
4659 off += sizeof(struct frag_hdr);
4660 break;
4661 }
4662 default:
4663 done = true;
4664 break;
4665 }
4666 }
4667
4668 err = -EPROTO;
4669
4670 if (!done || fragment)
4671 goto out;
4672
4673 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4674 if (IS_ERR(csum))
4675 return PTR_ERR(csum);
4676
4677 if (recalculate)
4678 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4679 &ipv6_hdr(skb)->daddr,
4680 skb->len - off, nexthdr, 0);
4681 err = 0;
4682
4683 out:
4684 return err;
4685 }
4686
4687 /**
4688 * skb_checksum_setup - set up partial checksum offset
4689 * @skb: the skb to set up
4690 * @recalculate: if true the pseudo-header checksum will be recalculated
4691 */
4692 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4693 {
4694 int err;
4695
4696 switch (skb->protocol) {
4697 case htons(ETH_P_IP):
4698 err = skb_checksum_setup_ipv4(skb, recalculate);
4699 break;
4700
4701 case htons(ETH_P_IPV6):
4702 err = skb_checksum_setup_ipv6(skb, recalculate);
4703 break;
4704
4705 default:
4706 err = -EPROTO;
4707 break;
4708 }
4709
4710 return err;
4711 }
4712 EXPORT_SYMBOL(skb_checksum_setup);
4713
4714 /**
4715 * skb_checksum_maybe_trim - maybe trims the given skb
4716 * @skb: the skb to check
4717 * @transport_len: the data length beyond the network header
4718 *
4719 * Checks whether the given skb has data beyond the given transport length.
4720 * If so, returns a cloned skb trimmed to this transport length.
4721 * Otherwise returns the provided skb. Returns NULL in error cases
4722 * (e.g. transport_len exceeds skb length or out-of-memory).
4723 *
4724 * Caller needs to set the skb transport header and free any returned skb if it
4725 * differs from the provided skb.
4726 */
4727 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4728 unsigned int transport_len)
4729 {
4730 struct sk_buff *skb_chk;
4731 unsigned int len = skb_transport_offset(skb) + transport_len;
4732 int ret;
4733
4734 if (skb->len < len)
4735 return NULL;
4736 else if (skb->len == len)
4737 return skb;
4738
4739 skb_chk = skb_clone(skb, GFP_ATOMIC);
4740 if (!skb_chk)
4741 return NULL;
4742
4743 ret = pskb_trim_rcsum(skb_chk, len);
4744 if (ret) {
4745 kfree_skb(skb_chk);
4746 return NULL;
4747 }
4748
4749 return skb_chk;
4750 }
4751
4752 /**
4753 * skb_checksum_trimmed - validate checksum of an skb
4754 * @skb: the skb to check
4755 * @transport_len: the data length beyond the network header
4756 * @skb_chkf: checksum function to use
4757 *
4758 * Applies the given checksum function skb_chkf to the provided skb.
4759 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4760 *
4761 * If the skb has data beyond the given transport length, then a
4762 * trimmed & cloned skb is checked and returned.
4763 *
4764 * Caller needs to set the skb transport header and free any returned skb if it
4765 * differs from the provided skb.
4766 */
4767 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4768 unsigned int transport_len,
4769 __sum16(*skb_chkf)(struct sk_buff *skb))
4770 {
4771 struct sk_buff *skb_chk;
4772 unsigned int offset = skb_transport_offset(skb);
4773 __sum16 ret;
4774
4775 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4776 if (!skb_chk)
4777 goto err;
4778
4779 if (!pskb_may_pull(skb_chk, offset))
4780 goto err;
4781
4782 skb_pull_rcsum(skb_chk, offset);
4783 ret = skb_chkf(skb_chk);
4784 skb_push_rcsum(skb_chk, offset);
4785
4786 if (ret)
4787 goto err;
4788
4789 return skb_chk;
4790
4791 err:
4792 if (skb_chk && skb_chk != skb)
4793 kfree_skb(skb_chk);
4794
4795 return NULL;
4796
4797 }
4798 EXPORT_SYMBOL(skb_checksum_trimmed);
4799
4800 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4801 {
4802 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4803 skb->dev->name);
4804 }
4805 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4806
4807 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4808 {
4809 if (head_stolen) {
4810 skb_release_head_state(skb);
4811 kmem_cache_free(skbuff_head_cache, skb);
4812 } else {
4813 __kfree_skb(skb);
4814 }
4815 }
4816 EXPORT_SYMBOL(kfree_skb_partial);
4817
4818 /**
4819 * skb_try_coalesce - try to merge skb to prior one
4820 * @to: prior buffer
4821 * @from: buffer to add
4822 * @fragstolen: pointer to boolean
4823 * @delta_truesize: how much more was allocated than was requested
4824 */
4825 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4826 bool *fragstolen, int *delta_truesize)
4827 {
4828 struct skb_shared_info *to_shinfo, *from_shinfo;
4829 int i, delta, len = from->len;
4830
4831 *fragstolen = false;
4832
4833 if (skb_cloned(to))
4834 return false;
4835
4836 if (len <= skb_tailroom(to)) {
4837 if (len)
4838 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4839 *delta_truesize = 0;
4840 return true;
4841 }
4842
4843 to_shinfo = skb_shinfo(to);
4844 from_shinfo = skb_shinfo(from);
4845 if (to_shinfo->frag_list || from_shinfo->frag_list)
4846 return false;
4847 if (skb_zcopy(to) || skb_zcopy(from))
4848 return false;
4849
4850 if (skb_headlen(from) != 0) {
4851 struct page *page;
4852 unsigned int offset;
4853
4854 if (to_shinfo->nr_frags +
4855 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4856 return false;
4857
4858 if (skb_head_is_locked(from))
4859 return false;
4860
4861 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4862
4863 page = virt_to_head_page(from->head);
4864 offset = from->data - (unsigned char *)page_address(page);
4865
4866 skb_fill_page_desc(to, to_shinfo->nr_frags,
4867 page, offset, skb_headlen(from));
4868 *fragstolen = true;
4869 } else {
4870 if (to_shinfo->nr_frags +
4871 from_shinfo->nr_frags > MAX_SKB_FRAGS)
4872 return false;
4873
4874 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4875 }
4876
4877 WARN_ON_ONCE(delta < len);
4878
4879 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4880 from_shinfo->frags,
4881 from_shinfo->nr_frags * sizeof(skb_frag_t));
4882 to_shinfo->nr_frags += from_shinfo->nr_frags;
4883
4884 if (!skb_cloned(from))
4885 from_shinfo->nr_frags = 0;
4886
4887 /* if the skb is not cloned this does nothing
4888 * since we set nr_frags to 0.
4889 */
4890 for (i = 0; i < from_shinfo->nr_frags; i++)
4891 __skb_frag_ref(&from_shinfo->frags[i]);
4892
4893 to->truesize += delta;
4894 to->len += len;
4895 to->data_len += len;
4896
4897 *delta_truesize = delta;
4898 return true;
4899 }
4900 EXPORT_SYMBOL(skb_try_coalesce);
4901
4902 /**
4903 * skb_scrub_packet - scrub an skb
4904 *
4905 * @skb: buffer to clean
4906 * @xnet: packet is crossing netns
4907 *
4908 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4909 * into/from a tunnel. Some information have to be cleared during these
4910 * operations.
4911 * skb_scrub_packet can also be used to clean a skb before injecting it in
4912 * another namespace (@xnet == true). We have to clear all information in the
4913 * skb that could impact namespace isolation.
4914 */
4915 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4916 {
4917 skb->pkt_type = PACKET_HOST;
4918 skb->skb_iif = 0;
4919 skb->ignore_df = 0;
4920 skb_dst_drop(skb);
4921 secpath_reset(skb);
4922 nf_reset(skb);
4923 nf_reset_trace(skb);
4924
4925 #ifdef CONFIG_NET_SWITCHDEV
4926 skb->offload_fwd_mark = 0;
4927 skb->offload_l3_fwd_mark = 0;
4928 #endif
4929
4930 if (!xnet)
4931 return;
4932
4933 ipvs_reset(skb);
4934 skb->mark = 0;
4935 skb->tstamp = 0;
4936 }
4937 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4938
4939 /**
4940 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4941 *
4942 * @skb: GSO skb
4943 *
4944 * skb_gso_transport_seglen is used to determine the real size of the
4945 * individual segments, including Layer4 headers (TCP/UDP).
4946 *
4947 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4948 */
4949 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4950 {
4951 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4952 unsigned int thlen = 0;
4953
4954 if (skb->encapsulation) {
4955 thlen = skb_inner_transport_header(skb) -
4956 skb_transport_header(skb);
4957
4958 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4959 thlen += inner_tcp_hdrlen(skb);
4960 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4961 thlen = tcp_hdrlen(skb);
4962 } else if (unlikely(skb_is_gso_sctp(skb))) {
4963 thlen = sizeof(struct sctphdr);
4964 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4965 thlen = sizeof(struct udphdr);
4966 }
4967 /* UFO sets gso_size to the size of the fragmentation
4968 * payload, i.e. the size of the L4 (UDP) header is already
4969 * accounted for.
4970 */
4971 return thlen + shinfo->gso_size;
4972 }
4973
4974 /**
4975 * skb_gso_network_seglen - Return length of individual segments of a gso packet
4976 *
4977 * @skb: GSO skb
4978 *
4979 * skb_gso_network_seglen is used to determine the real size of the
4980 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4981 *
4982 * The MAC/L2 header is not accounted for.
4983 */
4984 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4985 {
4986 unsigned int hdr_len = skb_transport_header(skb) -
4987 skb_network_header(skb);
4988
4989 return hdr_len + skb_gso_transport_seglen(skb);
4990 }
4991
4992 /**
4993 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4994 *
4995 * @skb: GSO skb
4996 *
4997 * skb_gso_mac_seglen is used to determine the real size of the
4998 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
4999 * headers (TCP/UDP).
5000 */
5001 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5002 {
5003 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5004
5005 return hdr_len + skb_gso_transport_seglen(skb);
5006 }
5007
5008 /**
5009 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5010 *
5011 * There are a couple of instances where we have a GSO skb, and we
5012 * want to determine what size it would be after it is segmented.
5013 *
5014 * We might want to check:
5015 * - L3+L4+payload size (e.g. IP forwarding)
5016 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5017 *
5018 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5019 *
5020 * @skb: GSO skb
5021 *
5022 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5023 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5024 *
5025 * @max_len: The maximum permissible length.
5026 *
5027 * Returns true if the segmented length <= max length.
5028 */
5029 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5030 unsigned int seg_len,
5031 unsigned int max_len) {
5032 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5033 const struct sk_buff *iter;
5034
5035 if (shinfo->gso_size != GSO_BY_FRAGS)
5036 return seg_len <= max_len;
5037
5038 /* Undo this so we can re-use header sizes */
5039 seg_len -= GSO_BY_FRAGS;
5040
5041 skb_walk_frags(skb, iter) {
5042 if (seg_len + skb_headlen(iter) > max_len)
5043 return false;
5044 }
5045
5046 return true;
5047 }
5048
5049 /**
5050 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5051 *
5052 * @skb: GSO skb
5053 * @mtu: MTU to validate against
5054 *
5055 * skb_gso_validate_network_len validates if a given skb will fit a
5056 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5057 * payload.
5058 */
5059 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5060 {
5061 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5062 }
5063 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5064
5065 /**
5066 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5067 *
5068 * @skb: GSO skb
5069 * @len: length to validate against
5070 *
5071 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5072 * length once split, including L2, L3 and L4 headers and the payload.
5073 */
5074 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5075 {
5076 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5077 }
5078 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5079
5080 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5081 {
5082 int mac_len;
5083
5084 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5085 kfree_skb(skb);
5086 return NULL;
5087 }
5088
5089 mac_len = skb->data - skb_mac_header(skb);
5090 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5091 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5092 mac_len - VLAN_HLEN - ETH_TLEN);
5093 }
5094 skb->mac_header += VLAN_HLEN;
5095 return skb;
5096 }
5097
5098 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5099 {
5100 struct vlan_hdr *vhdr;
5101 u16 vlan_tci;
5102
5103 if (unlikely(skb_vlan_tag_present(skb))) {
5104 /* vlan_tci is already set-up so leave this for another time */
5105 return skb;
5106 }
5107
5108 skb = skb_share_check(skb, GFP_ATOMIC);
5109 if (unlikely(!skb))
5110 goto err_free;
5111
5112 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5113 goto err_free;
5114
5115 vhdr = (struct vlan_hdr *)skb->data;
5116 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5117 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5118
5119 skb_pull_rcsum(skb, VLAN_HLEN);
5120 vlan_set_encap_proto(skb, vhdr);
5121
5122 skb = skb_reorder_vlan_header(skb);
5123 if (unlikely(!skb))
5124 goto err_free;
5125
5126 skb_reset_network_header(skb);
5127 skb_reset_transport_header(skb);
5128 skb_reset_mac_len(skb);
5129
5130 return skb;
5131
5132 err_free:
5133 kfree_skb(skb);
5134 return NULL;
5135 }
5136 EXPORT_SYMBOL(skb_vlan_untag);
5137
5138 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5139 {
5140 if (!pskb_may_pull(skb, write_len))
5141 return -ENOMEM;
5142
5143 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5144 return 0;
5145
5146 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5147 }
5148 EXPORT_SYMBOL(skb_ensure_writable);
5149
5150 /* remove VLAN header from packet and update csum accordingly.
5151 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5152 */
5153 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5154 {
5155 struct vlan_hdr *vhdr;
5156 int offset = skb->data - skb_mac_header(skb);
5157 int err;
5158
5159 if (WARN_ONCE(offset,
5160 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5161 offset)) {
5162 return -EINVAL;
5163 }
5164
5165 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5166 if (unlikely(err))
5167 return err;
5168
5169 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5170
5171 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5172 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5173
5174 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5175 __skb_pull(skb, VLAN_HLEN);
5176
5177 vlan_set_encap_proto(skb, vhdr);
5178 skb->mac_header += VLAN_HLEN;
5179
5180 if (skb_network_offset(skb) < ETH_HLEN)
5181 skb_set_network_header(skb, ETH_HLEN);
5182
5183 skb_reset_mac_len(skb);
5184
5185 return err;
5186 }
5187 EXPORT_SYMBOL(__skb_vlan_pop);
5188
5189 /* Pop a vlan tag either from hwaccel or from payload.
5190 * Expects skb->data at mac header.
5191 */
5192 int skb_vlan_pop(struct sk_buff *skb)
5193 {
5194 u16 vlan_tci;
5195 __be16 vlan_proto;
5196 int err;
5197
5198 if (likely(skb_vlan_tag_present(skb))) {
5199 __vlan_hwaccel_clear_tag(skb);
5200 } else {
5201 if (unlikely(!eth_type_vlan(skb->protocol)))
5202 return 0;
5203
5204 err = __skb_vlan_pop(skb, &vlan_tci);
5205 if (err)
5206 return err;
5207 }
5208 /* move next vlan tag to hw accel tag */
5209 if (likely(!eth_type_vlan(skb->protocol)))
5210 return 0;
5211
5212 vlan_proto = skb->protocol;
5213 err = __skb_vlan_pop(skb, &vlan_tci);
5214 if (unlikely(err))
5215 return err;
5216
5217 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5218 return 0;
5219 }
5220 EXPORT_SYMBOL(skb_vlan_pop);
5221
5222 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5223 * Expects skb->data at mac header.
5224 */
5225 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5226 {
5227 if (skb_vlan_tag_present(skb)) {
5228 int offset = skb->data - skb_mac_header(skb);
5229 int err;
5230
5231 if (WARN_ONCE(offset,
5232 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5233 offset)) {
5234 return -EINVAL;
5235 }
5236
5237 err = __vlan_insert_tag(skb, skb->vlan_proto,
5238 skb_vlan_tag_get(skb));
5239 if (err)
5240 return err;
5241
5242 skb->protocol = skb->vlan_proto;
5243 skb->mac_len += VLAN_HLEN;
5244
5245 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5246 }
5247 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5248 return 0;
5249 }
5250 EXPORT_SYMBOL(skb_vlan_push);
5251
5252 /**
5253 * alloc_skb_with_frags - allocate skb with page frags
5254 *
5255 * @header_len: size of linear part
5256 * @data_len: needed length in frags
5257 * @max_page_order: max page order desired.
5258 * @errcode: pointer to error code if any
5259 * @gfp_mask: allocation mask
5260 *
5261 * This can be used to allocate a paged skb, given a maximal order for frags.
5262 */
5263 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5264 unsigned long data_len,
5265 int max_page_order,
5266 int *errcode,
5267 gfp_t gfp_mask)
5268 {
5269 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5270 unsigned long chunk;
5271 struct sk_buff *skb;
5272 struct page *page;
5273 gfp_t gfp_head;
5274 int i;
5275
5276 *errcode = -EMSGSIZE;
5277 /* Note this test could be relaxed, if we succeed to allocate
5278 * high order pages...
5279 */
5280 if (npages > MAX_SKB_FRAGS)
5281 return NULL;
5282
5283 gfp_head = gfp_mask;
5284 if (gfp_head & __GFP_DIRECT_RECLAIM)
5285 gfp_head |= __GFP_RETRY_MAYFAIL;
5286
5287 *errcode = -ENOBUFS;
5288 skb = alloc_skb(header_len, gfp_head);
5289 if (!skb)
5290 return NULL;
5291
5292 skb->truesize += npages << PAGE_SHIFT;
5293
5294 for (i = 0; npages > 0; i++) {
5295 int order = max_page_order;
5296
5297 while (order) {
5298 if (npages >= 1 << order) {
5299 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5300 __GFP_COMP |
5301 __GFP_NOWARN,
5302 order);
5303 if (page)
5304 goto fill_page;
5305 /* Do not retry other high order allocations */
5306 order = 1;
5307 max_page_order = 0;
5308 }
5309 order--;
5310 }
5311 page = alloc_page(gfp_mask);
5312 if (!page)
5313 goto failure;
5314 fill_page:
5315 chunk = min_t(unsigned long, data_len,
5316 PAGE_SIZE << order);
5317 skb_fill_page_desc(skb, i, page, 0, chunk);
5318 data_len -= chunk;
5319 npages -= 1 << order;
5320 }
5321 return skb;
5322
5323 failure:
5324 kfree_skb(skb);
5325 return NULL;
5326 }
5327 EXPORT_SYMBOL(alloc_skb_with_frags);
5328
5329 /* carve out the first off bytes from skb when off < headlen */
5330 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5331 const int headlen, gfp_t gfp_mask)
5332 {
5333 int i;
5334 int size = skb_end_offset(skb);
5335 int new_hlen = headlen - off;
5336 u8 *data;
5337
5338 size = SKB_DATA_ALIGN(size);
5339
5340 if (skb_pfmemalloc(skb))
5341 gfp_mask |= __GFP_MEMALLOC;
5342 data = kmalloc_reserve(size +
5343 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5344 gfp_mask, NUMA_NO_NODE, NULL);
5345 if (!data)
5346 return -ENOMEM;
5347
5348 size = SKB_WITH_OVERHEAD(ksize(data));
5349
5350 /* Copy real data, and all frags */
5351 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5352 skb->len -= off;
5353
5354 memcpy((struct skb_shared_info *)(data + size),
5355 skb_shinfo(skb),
5356 offsetof(struct skb_shared_info,
5357 frags[skb_shinfo(skb)->nr_frags]));
5358 if (skb_cloned(skb)) {
5359 /* drop the old head gracefully */
5360 if (skb_orphan_frags(skb, gfp_mask)) {
5361 kfree(data);
5362 return -ENOMEM;
5363 }
5364 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5365 skb_frag_ref(skb, i);
5366 if (skb_has_frag_list(skb))
5367 skb_clone_fraglist(skb);
5368 skb_release_data(skb);
5369 } else {
5370 /* we can reuse existing recount- all we did was
5371 * relocate values
5372 */
5373 skb_free_head(skb);
5374 }
5375
5376 skb->head = data;
5377 skb->data = data;
5378 skb->head_frag = 0;
5379 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5380 skb->end = size;
5381 #else
5382 skb->end = skb->head + size;
5383 #endif
5384 skb_set_tail_pointer(skb, skb_headlen(skb));
5385 skb_headers_offset_update(skb, 0);
5386 skb->cloned = 0;
5387 skb->hdr_len = 0;
5388 skb->nohdr = 0;
5389 atomic_set(&skb_shinfo(skb)->dataref, 1);
5390
5391 return 0;
5392 }
5393
5394 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5395
5396 /* carve out the first eat bytes from skb's frag_list. May recurse into
5397 * pskb_carve()
5398 */
5399 static int pskb_carve_frag_list(struct sk_buff *skb,
5400 struct skb_shared_info *shinfo, int eat,
5401 gfp_t gfp_mask)
5402 {
5403 struct sk_buff *list = shinfo->frag_list;
5404 struct sk_buff *clone = NULL;
5405 struct sk_buff *insp = NULL;
5406
5407 do {
5408 if (!list) {
5409 pr_err("Not enough bytes to eat. Want %d\n", eat);
5410 return -EFAULT;
5411 }
5412 if (list->len <= eat) {
5413 /* Eaten as whole. */
5414 eat -= list->len;
5415 list = list->next;
5416 insp = list;
5417 } else {
5418 /* Eaten partially. */
5419 if (skb_shared(list)) {
5420 clone = skb_clone(list, gfp_mask);
5421 if (!clone)
5422 return -ENOMEM;
5423 insp = list->next;
5424 list = clone;
5425 } else {
5426 /* This may be pulled without problems. */
5427 insp = list;
5428 }
5429 if (pskb_carve(list, eat, gfp_mask) < 0) {
5430 kfree_skb(clone);
5431 return -ENOMEM;
5432 }
5433 break;
5434 }
5435 } while (eat);
5436
5437 /* Free pulled out fragments. */
5438 while ((list = shinfo->frag_list) != insp) {
5439 shinfo->frag_list = list->next;
5440 kfree_skb(list);
5441 }
5442 /* And insert new clone at head. */
5443 if (clone) {
5444 clone->next = list;
5445 shinfo->frag_list = clone;
5446 }
5447 return 0;
5448 }
5449
5450 /* carve off first len bytes from skb. Split line (off) is in the
5451 * non-linear part of skb
5452 */
5453 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5454 int pos, gfp_t gfp_mask)
5455 {
5456 int i, k = 0;
5457 int size = skb_end_offset(skb);
5458 u8 *data;
5459 const int nfrags = skb_shinfo(skb)->nr_frags;
5460 struct skb_shared_info *shinfo;
5461
5462 size = SKB_DATA_ALIGN(size);
5463
5464 if (skb_pfmemalloc(skb))
5465 gfp_mask |= __GFP_MEMALLOC;
5466 data = kmalloc_reserve(size +
5467 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5468 gfp_mask, NUMA_NO_NODE, NULL);
5469 if (!data)
5470 return -ENOMEM;
5471
5472 size = SKB_WITH_OVERHEAD(ksize(data));
5473
5474 memcpy((struct skb_shared_info *)(data + size),
5475 skb_shinfo(skb), offsetof(struct skb_shared_info,
5476 frags[skb_shinfo(skb)->nr_frags]));
5477 if (skb_orphan_frags(skb, gfp_mask)) {
5478 kfree(data);
5479 return -ENOMEM;
5480 }
5481 shinfo = (struct skb_shared_info *)(data + size);
5482 for (i = 0; i < nfrags; i++) {
5483 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5484
5485 if (pos + fsize > off) {
5486 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5487
5488 if (pos < off) {
5489 /* Split frag.
5490 * We have two variants in this case:
5491 * 1. Move all the frag to the second
5492 * part, if it is possible. F.e.
5493 * this approach is mandatory for TUX,
5494 * where splitting is expensive.
5495 * 2. Split is accurately. We make this.
5496 */
5497 shinfo->frags[0].page_offset += off - pos;
5498 skb_frag_size_sub(&shinfo->frags[0], off - pos);
5499 }
5500 skb_frag_ref(skb, i);
5501 k++;
5502 }
5503 pos += fsize;
5504 }
5505 shinfo->nr_frags = k;
5506 if (skb_has_frag_list(skb))
5507 skb_clone_fraglist(skb);
5508
5509 if (k == 0) {
5510 /* split line is in frag list */
5511 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5512 }
5513 skb_release_data(skb);
5514
5515 skb->head = data;
5516 skb->head_frag = 0;
5517 skb->data = data;
5518 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5519 skb->end = size;
5520 #else
5521 skb->end = skb->head + size;
5522 #endif
5523 skb_reset_tail_pointer(skb);
5524 skb_headers_offset_update(skb, 0);
5525 skb->cloned = 0;
5526 skb->hdr_len = 0;
5527 skb->nohdr = 0;
5528 skb->len -= off;
5529 skb->data_len = skb->len;
5530 atomic_set(&skb_shinfo(skb)->dataref, 1);
5531 return 0;
5532 }
5533
5534 /* remove len bytes from the beginning of the skb */
5535 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5536 {
5537 int headlen = skb_headlen(skb);
5538
5539 if (len < headlen)
5540 return pskb_carve_inside_header(skb, len, headlen, gfp);
5541 else
5542 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5543 }
5544
5545 /* Extract to_copy bytes starting at off from skb, and return this in
5546 * a new skb
5547 */
5548 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5549 int to_copy, gfp_t gfp)
5550 {
5551 struct sk_buff *clone = skb_clone(skb, gfp);
5552
5553 if (!clone)
5554 return NULL;
5555
5556 if (pskb_carve(clone, off, gfp) < 0 ||
5557 pskb_trim(clone, to_copy)) {
5558 kfree_skb(clone);
5559 return NULL;
5560 }
5561 return clone;
5562 }
5563 EXPORT_SYMBOL(pskb_extract);
5564
5565 /**
5566 * skb_condense - try to get rid of fragments/frag_list if possible
5567 * @skb: buffer
5568 *
5569 * Can be used to save memory before skb is added to a busy queue.
5570 * If packet has bytes in frags and enough tail room in skb->head,
5571 * pull all of them, so that we can free the frags right now and adjust
5572 * truesize.
5573 * Notes:
5574 * We do not reallocate skb->head thus can not fail.
5575 * Caller must re-evaluate skb->truesize if needed.
5576 */
5577 void skb_condense(struct sk_buff *skb)
5578 {
5579 if (skb->data_len) {
5580 if (skb->data_len > skb->end - skb->tail ||
5581 skb_cloned(skb))
5582 return;
5583
5584 /* Nice, we can free page frag(s) right now */
5585 __pskb_pull_tail(skb, skb->data_len);
5586 }
5587 /* At this point, skb->truesize might be over estimated,
5588 * because skb had a fragment, and fragments do not tell
5589 * their truesize.
5590 * When we pulled its content into skb->head, fragment
5591 * was freed, but __pskb_pull_tail() could not possibly
5592 * adjust skb->truesize, not knowing the frag truesize.
5593 */
5594 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5595 }
5596
5597 #ifdef CONFIG_SKB_EXTENSIONS
5598 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
5599 {
5600 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
5601 }
5602
5603 static struct skb_ext *skb_ext_alloc(void)
5604 {
5605 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
5606
5607 if (new) {
5608 memset(new->offset, 0, sizeof(new->offset));
5609 refcount_set(&new->refcnt, 1);
5610 }
5611
5612 return new;
5613 }
5614
5615 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
5616 unsigned int old_active)
5617 {
5618 struct skb_ext *new;
5619
5620 if (refcount_read(&old->refcnt) == 1)
5621 return old;
5622
5623 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
5624 if (!new)
5625 return NULL;
5626
5627 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
5628 refcount_set(&new->refcnt, 1);
5629
5630 #ifdef CONFIG_XFRM
5631 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
5632 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
5633 unsigned int i;
5634
5635 for (i = 0; i < sp->len; i++)
5636 xfrm_state_hold(sp->xvec[i]);
5637 }
5638 #endif
5639 __skb_ext_put(old);
5640 return new;
5641 }
5642
5643 /**
5644 * skb_ext_add - allocate space for given extension, COW if needed
5645 * @skb: buffer
5646 * @id: extension to allocate space for
5647 *
5648 * Allocates enough space for the given extension.
5649 * If the extension is already present, a pointer to that extension
5650 * is returned.
5651 *
5652 * If the skb was cloned, COW applies and the returned memory can be
5653 * modified without changing the extension space of clones buffers.
5654 *
5655 * Returns pointer to the extension or NULL on allocation failure.
5656 */
5657 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
5658 {
5659 struct skb_ext *new, *old = NULL;
5660 unsigned int newlen, newoff;
5661
5662 if (skb->active_extensions) {
5663 old = skb->extensions;
5664
5665 new = skb_ext_maybe_cow(old, skb->active_extensions);
5666 if (!new)
5667 return NULL;
5668
5669 if (__skb_ext_exist(new, id))
5670 goto set_active;
5671
5672 newoff = new->chunks;
5673 } else {
5674 newoff = SKB_EXT_CHUNKSIZEOF(*new);
5675
5676 new = skb_ext_alloc();
5677 if (!new)
5678 return NULL;
5679 }
5680
5681 newlen = newoff + skb_ext_type_len[id];
5682 new->chunks = newlen;
5683 new->offset[id] = newoff;
5684 set_active:
5685 skb->extensions = new;
5686 skb->active_extensions |= 1 << id;
5687 return skb_ext_get_ptr(new, id);
5688 }
5689 EXPORT_SYMBOL(skb_ext_add);
5690
5691 #ifdef CONFIG_XFRM
5692 static void skb_ext_put_sp(struct sec_path *sp)
5693 {
5694 unsigned int i;
5695
5696 for (i = 0; i < sp->len; i++)
5697 xfrm_state_put(sp->xvec[i]);
5698 }
5699 #endif
5700
5701 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
5702 {
5703 struct skb_ext *ext = skb->extensions;
5704
5705 skb->active_extensions &= ~(1 << id);
5706 if (skb->active_extensions == 0) {
5707 skb->extensions = NULL;
5708 __skb_ext_put(ext);
5709 #ifdef CONFIG_XFRM
5710 } else if (id == SKB_EXT_SEC_PATH &&
5711 refcount_read(&ext->refcnt) == 1) {
5712 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
5713
5714 skb_ext_put_sp(sp);
5715 sp->len = 0;
5716 #endif
5717 }
5718 }
5719 EXPORT_SYMBOL(__skb_ext_del);
5720
5721 void __skb_ext_put(struct skb_ext *ext)
5722 {
5723 /* If this is last clone, nothing can increment
5724 * it after check passes. Avoids one atomic op.
5725 */
5726 if (refcount_read(&ext->refcnt) == 1)
5727 goto free_now;
5728
5729 if (!refcount_dec_and_test(&ext->refcnt))
5730 return;
5731 free_now:
5732 #ifdef CONFIG_XFRM
5733 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
5734 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
5735 #endif
5736
5737 kmem_cache_free(skbuff_ext_cache, ext);
5738 }
5739 EXPORT_SYMBOL(__skb_ext_put);
5740 #endif /* CONFIG_SKB_EXTENSIONS */