]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/core/skbuff.c
bcm2835-camera: Correct port_parameter_get return value
[mirror_ubuntu-zesty-kernel.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/sctp.h>
53 #include <linux/netdevice.h>
54 #ifdef CONFIG_NET_CLS_ACT
55 #include <net/pkt_sched.h>
56 #endif
57 #include <linux/string.h>
58 #include <linux/skbuff.h>
59 #include <linux/splice.h>
60 #include <linux/cache.h>
61 #include <linux/rtnetlink.h>
62 #include <linux/init.h>
63 #include <linux/scatterlist.h>
64 #include <linux/errqueue.h>
65 #include <linux/prefetch.h>
66 #include <linux/if_vlan.h>
67
68 #include <net/protocol.h>
69 #include <net/dst.h>
70 #include <net/sock.h>
71 #include <net/checksum.h>
72 #include <net/ip6_checksum.h>
73 #include <net/xfrm.h>
74
75 #include <linux/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
80
81 struct kmem_cache *skbuff_head_cache __read_mostly;
82 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
83 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
84 EXPORT_SYMBOL(sysctl_max_skb_frags);
85
86 /**
87 * skb_panic - private function for out-of-line support
88 * @skb: buffer
89 * @sz: size
90 * @addr: address
91 * @msg: skb_over_panic or skb_under_panic
92 *
93 * Out-of-line support for skb_put() and skb_push().
94 * Called via the wrapper skb_over_panic() or skb_under_panic().
95 * Keep out of line to prevent kernel bloat.
96 * __builtin_return_address is not used because it is not always reliable.
97 */
98 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
99 const char msg[])
100 {
101 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
102 msg, addr, skb->len, sz, skb->head, skb->data,
103 (unsigned long)skb->tail, (unsigned long)skb->end,
104 skb->dev ? skb->dev->name : "<NULL>");
105 BUG();
106 }
107
108 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
109 {
110 skb_panic(skb, sz, addr, __func__);
111 }
112
113 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
114 {
115 skb_panic(skb, sz, addr, __func__);
116 }
117
118 /*
119 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
120 * the caller if emergency pfmemalloc reserves are being used. If it is and
121 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
122 * may be used. Otherwise, the packet data may be discarded until enough
123 * memory is free
124 */
125 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
126 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
127
128 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
129 unsigned long ip, bool *pfmemalloc)
130 {
131 void *obj;
132 bool ret_pfmemalloc = false;
133
134 /*
135 * Try a regular allocation, when that fails and we're not entitled
136 * to the reserves, fail.
137 */
138 obj = kmalloc_node_track_caller(size,
139 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
140 node);
141 if (obj || !(gfp_pfmemalloc_allowed(flags)))
142 goto out;
143
144 /* Try again but now we are using pfmemalloc reserves */
145 ret_pfmemalloc = true;
146 obj = kmalloc_node_track_caller(size, flags, node);
147
148 out:
149 if (pfmemalloc)
150 *pfmemalloc = ret_pfmemalloc;
151
152 return obj;
153 }
154
155 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
156 * 'private' fields and also do memory statistics to find all the
157 * [BEEP] leaks.
158 *
159 */
160
161 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
162 {
163 struct sk_buff *skb;
164
165 /* Get the HEAD */
166 skb = kmem_cache_alloc_node(skbuff_head_cache,
167 gfp_mask & ~__GFP_DMA, node);
168 if (!skb)
169 goto out;
170
171 /*
172 * Only clear those fields we need to clear, not those that we will
173 * actually initialise below. Hence, don't put any more fields after
174 * the tail pointer in struct sk_buff!
175 */
176 memset(skb, 0, offsetof(struct sk_buff, tail));
177 skb->head = NULL;
178 skb->truesize = sizeof(struct sk_buff);
179 atomic_set(&skb->users, 1);
180
181 skb->mac_header = (typeof(skb->mac_header))~0U;
182 out:
183 return skb;
184 }
185
186 /**
187 * __alloc_skb - allocate a network buffer
188 * @size: size to allocate
189 * @gfp_mask: allocation mask
190 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
191 * instead of head cache and allocate a cloned (child) skb.
192 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
193 * allocations in case the data is required for writeback
194 * @node: numa node to allocate memory on
195 *
196 * Allocate a new &sk_buff. The returned buffer has no headroom and a
197 * tail room of at least size bytes. The object has a reference count
198 * of one. The return is the buffer. On a failure the return is %NULL.
199 *
200 * Buffers may only be allocated from interrupts using a @gfp_mask of
201 * %GFP_ATOMIC.
202 */
203 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
204 int flags, int node)
205 {
206 struct kmem_cache *cache;
207 struct skb_shared_info *shinfo;
208 struct sk_buff *skb;
209 u8 *data;
210 bool pfmemalloc;
211
212 cache = (flags & SKB_ALLOC_FCLONE)
213 ? skbuff_fclone_cache : skbuff_head_cache;
214
215 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
216 gfp_mask |= __GFP_MEMALLOC;
217
218 /* Get the HEAD */
219 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
220 if (!skb)
221 goto out;
222 prefetchw(skb);
223
224 /* We do our best to align skb_shared_info on a separate cache
225 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
226 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
227 * Both skb->head and skb_shared_info are cache line aligned.
228 */
229 size = SKB_DATA_ALIGN(size);
230 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
231 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
232 if (!data)
233 goto nodata;
234 /* kmalloc(size) might give us more room than requested.
235 * Put skb_shared_info exactly at the end of allocated zone,
236 * to allow max possible filling before reallocation.
237 */
238 size = SKB_WITH_OVERHEAD(ksize(data));
239 prefetchw(data + size);
240
241 /*
242 * Only clear those fields we need to clear, not those that we will
243 * actually initialise below. Hence, don't put any more fields after
244 * the tail pointer in struct sk_buff!
245 */
246 memset(skb, 0, offsetof(struct sk_buff, tail));
247 /* Account for allocated memory : skb + skb->head */
248 skb->truesize = SKB_TRUESIZE(size);
249 skb->pfmemalloc = pfmemalloc;
250 atomic_set(&skb->users, 1);
251 skb->head = data;
252 skb->data = data;
253 skb_reset_tail_pointer(skb);
254 skb->end = skb->tail + size;
255 skb->mac_header = (typeof(skb->mac_header))~0U;
256 skb->transport_header = (typeof(skb->transport_header))~0U;
257
258 /* make sure we initialize shinfo sequentially */
259 shinfo = skb_shinfo(skb);
260 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
261 atomic_set(&shinfo->dataref, 1);
262 kmemcheck_annotate_variable(shinfo->destructor_arg);
263
264 if (flags & SKB_ALLOC_FCLONE) {
265 struct sk_buff_fclones *fclones;
266
267 fclones = container_of(skb, struct sk_buff_fclones, skb1);
268
269 kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
270 skb->fclone = SKB_FCLONE_ORIG;
271 atomic_set(&fclones->fclone_ref, 1);
272
273 fclones->skb2.fclone = SKB_FCLONE_CLONE;
274 fclones->skb2.pfmemalloc = pfmemalloc;
275 }
276 out:
277 return skb;
278 nodata:
279 kmem_cache_free(cache, skb);
280 skb = NULL;
281 goto out;
282 }
283 EXPORT_SYMBOL(__alloc_skb);
284
285 /**
286 * __build_skb - build a network buffer
287 * @data: data buffer provided by caller
288 * @frag_size: size of data, or 0 if head was kmalloced
289 *
290 * Allocate a new &sk_buff. Caller provides space holding head and
291 * skb_shared_info. @data must have been allocated by kmalloc() only if
292 * @frag_size is 0, otherwise data should come from the page allocator
293 * or vmalloc()
294 * The return is the new skb buffer.
295 * On a failure the return is %NULL, and @data is not freed.
296 * Notes :
297 * Before IO, driver allocates only data buffer where NIC put incoming frame
298 * Driver should add room at head (NET_SKB_PAD) and
299 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
300 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
301 * before giving packet to stack.
302 * RX rings only contains data buffers, not full skbs.
303 */
304 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
305 {
306 struct skb_shared_info *shinfo;
307 struct sk_buff *skb;
308 unsigned int size = frag_size ? : ksize(data);
309
310 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
311 if (!skb)
312 return NULL;
313
314 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
315
316 memset(skb, 0, offsetof(struct sk_buff, tail));
317 skb->truesize = SKB_TRUESIZE(size);
318 atomic_set(&skb->users, 1);
319 skb->head = data;
320 skb->data = data;
321 skb_reset_tail_pointer(skb);
322 skb->end = skb->tail + size;
323 skb->mac_header = (typeof(skb->mac_header))~0U;
324 skb->transport_header = (typeof(skb->transport_header))~0U;
325
326 /* make sure we initialize shinfo sequentially */
327 shinfo = skb_shinfo(skb);
328 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
329 atomic_set(&shinfo->dataref, 1);
330 kmemcheck_annotate_variable(shinfo->destructor_arg);
331
332 return skb;
333 }
334
335 /* build_skb() is wrapper over __build_skb(), that specifically
336 * takes care of skb->head and skb->pfmemalloc
337 * This means that if @frag_size is not zero, then @data must be backed
338 * by a page fragment, not kmalloc() or vmalloc()
339 */
340 struct sk_buff *build_skb(void *data, unsigned int frag_size)
341 {
342 struct sk_buff *skb = __build_skb(data, frag_size);
343
344 if (skb && frag_size) {
345 skb->head_frag = 1;
346 if (page_is_pfmemalloc(virt_to_head_page(data)))
347 skb->pfmemalloc = 1;
348 }
349 return skb;
350 }
351 EXPORT_SYMBOL(build_skb);
352
353 #define NAPI_SKB_CACHE_SIZE 64
354
355 struct napi_alloc_cache {
356 struct page_frag_cache page;
357 unsigned int skb_count;
358 void *skb_cache[NAPI_SKB_CACHE_SIZE];
359 };
360
361 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
362 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
363
364 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
365 {
366 struct page_frag_cache *nc;
367 unsigned long flags;
368 void *data;
369
370 local_irq_save(flags);
371 nc = this_cpu_ptr(&netdev_alloc_cache);
372 data = page_frag_alloc(nc, fragsz, gfp_mask);
373 local_irq_restore(flags);
374 return data;
375 }
376
377 /**
378 * netdev_alloc_frag - allocate a page fragment
379 * @fragsz: fragment size
380 *
381 * Allocates a frag from a page for receive buffer.
382 * Uses GFP_ATOMIC allocations.
383 */
384 void *netdev_alloc_frag(unsigned int fragsz)
385 {
386 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
387 }
388 EXPORT_SYMBOL(netdev_alloc_frag);
389
390 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
391 {
392 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
393
394 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
395 }
396
397 void *napi_alloc_frag(unsigned int fragsz)
398 {
399 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
400 }
401 EXPORT_SYMBOL(napi_alloc_frag);
402
403 /**
404 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
405 * @dev: network device to receive on
406 * @len: length to allocate
407 * @gfp_mask: get_free_pages mask, passed to alloc_skb
408 *
409 * Allocate a new &sk_buff and assign it a usage count of one. The
410 * buffer has NET_SKB_PAD headroom built in. Users should allocate
411 * the headroom they think they need without accounting for the
412 * built in space. The built in space is used for optimisations.
413 *
414 * %NULL is returned if there is no free memory.
415 */
416 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
417 gfp_t gfp_mask)
418 {
419 struct page_frag_cache *nc;
420 unsigned long flags;
421 struct sk_buff *skb;
422 bool pfmemalloc;
423 void *data;
424
425 len += NET_SKB_PAD;
426
427 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
428 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
429 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
430 if (!skb)
431 goto skb_fail;
432 goto skb_success;
433 }
434
435 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
436 len = SKB_DATA_ALIGN(len);
437
438 if (sk_memalloc_socks())
439 gfp_mask |= __GFP_MEMALLOC;
440
441 local_irq_save(flags);
442
443 nc = this_cpu_ptr(&netdev_alloc_cache);
444 data = page_frag_alloc(nc, len, gfp_mask);
445 pfmemalloc = nc->pfmemalloc;
446
447 local_irq_restore(flags);
448
449 if (unlikely(!data))
450 return NULL;
451
452 skb = __build_skb(data, len);
453 if (unlikely(!skb)) {
454 skb_free_frag(data);
455 return NULL;
456 }
457
458 /* use OR instead of assignment to avoid clearing of bits in mask */
459 if (pfmemalloc)
460 skb->pfmemalloc = 1;
461 skb->head_frag = 1;
462
463 skb_success:
464 skb_reserve(skb, NET_SKB_PAD);
465 skb->dev = dev;
466
467 skb_fail:
468 return skb;
469 }
470 EXPORT_SYMBOL(__netdev_alloc_skb);
471
472 /**
473 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
474 * @napi: napi instance this buffer was allocated for
475 * @len: length to allocate
476 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
477 *
478 * Allocate a new sk_buff for use in NAPI receive. This buffer will
479 * attempt to allocate the head from a special reserved region used
480 * only for NAPI Rx allocation. By doing this we can save several
481 * CPU cycles by avoiding having to disable and re-enable IRQs.
482 *
483 * %NULL is returned if there is no free memory.
484 */
485 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
486 gfp_t gfp_mask)
487 {
488 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
489 struct sk_buff *skb;
490 void *data;
491
492 len += NET_SKB_PAD + NET_IP_ALIGN;
493
494 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
495 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
496 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
497 if (!skb)
498 goto skb_fail;
499 goto skb_success;
500 }
501
502 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
503 len = SKB_DATA_ALIGN(len);
504
505 if (sk_memalloc_socks())
506 gfp_mask |= __GFP_MEMALLOC;
507
508 data = page_frag_alloc(&nc->page, len, gfp_mask);
509 if (unlikely(!data))
510 return NULL;
511
512 skb = __build_skb(data, len);
513 if (unlikely(!skb)) {
514 skb_free_frag(data);
515 return NULL;
516 }
517
518 /* use OR instead of assignment to avoid clearing of bits in mask */
519 if (nc->page.pfmemalloc)
520 skb->pfmemalloc = 1;
521 skb->head_frag = 1;
522
523 skb_success:
524 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
525 skb->dev = napi->dev;
526
527 skb_fail:
528 return skb;
529 }
530 EXPORT_SYMBOL(__napi_alloc_skb);
531
532 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
533 int size, unsigned int truesize)
534 {
535 skb_fill_page_desc(skb, i, page, off, size);
536 skb->len += size;
537 skb->data_len += size;
538 skb->truesize += truesize;
539 }
540 EXPORT_SYMBOL(skb_add_rx_frag);
541
542 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
543 unsigned int truesize)
544 {
545 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
546
547 skb_frag_size_add(frag, size);
548 skb->len += size;
549 skb->data_len += size;
550 skb->truesize += truesize;
551 }
552 EXPORT_SYMBOL(skb_coalesce_rx_frag);
553
554 static void skb_drop_list(struct sk_buff **listp)
555 {
556 kfree_skb_list(*listp);
557 *listp = NULL;
558 }
559
560 static inline void skb_drop_fraglist(struct sk_buff *skb)
561 {
562 skb_drop_list(&skb_shinfo(skb)->frag_list);
563 }
564
565 static void skb_clone_fraglist(struct sk_buff *skb)
566 {
567 struct sk_buff *list;
568
569 skb_walk_frags(skb, list)
570 skb_get(list);
571 }
572
573 static void skb_free_head(struct sk_buff *skb)
574 {
575 unsigned char *head = skb->head;
576
577 if (skb->head_frag)
578 skb_free_frag(head);
579 else
580 kfree(head);
581 }
582
583 static void skb_release_data(struct sk_buff *skb)
584 {
585 struct skb_shared_info *shinfo = skb_shinfo(skb);
586 int i;
587
588 if (skb->cloned &&
589 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
590 &shinfo->dataref))
591 return;
592
593 for (i = 0; i < shinfo->nr_frags; i++)
594 __skb_frag_unref(&shinfo->frags[i]);
595
596 /*
597 * If skb buf is from userspace, we need to notify the caller
598 * the lower device DMA has done;
599 */
600 if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
601 struct ubuf_info *uarg;
602
603 uarg = shinfo->destructor_arg;
604 if (uarg->callback)
605 uarg->callback(uarg, true);
606 }
607
608 if (shinfo->frag_list)
609 kfree_skb_list(shinfo->frag_list);
610
611 skb_free_head(skb);
612 }
613
614 /*
615 * Free an skbuff by memory without cleaning the state.
616 */
617 static void kfree_skbmem(struct sk_buff *skb)
618 {
619 struct sk_buff_fclones *fclones;
620
621 switch (skb->fclone) {
622 case SKB_FCLONE_UNAVAILABLE:
623 kmem_cache_free(skbuff_head_cache, skb);
624 return;
625
626 case SKB_FCLONE_ORIG:
627 fclones = container_of(skb, struct sk_buff_fclones, skb1);
628
629 /* We usually free the clone (TX completion) before original skb
630 * This test would have no chance to be true for the clone,
631 * while here, branch prediction will be good.
632 */
633 if (atomic_read(&fclones->fclone_ref) == 1)
634 goto fastpath;
635 break;
636
637 default: /* SKB_FCLONE_CLONE */
638 fclones = container_of(skb, struct sk_buff_fclones, skb2);
639 break;
640 }
641 if (!atomic_dec_and_test(&fclones->fclone_ref))
642 return;
643 fastpath:
644 kmem_cache_free(skbuff_fclone_cache, fclones);
645 }
646
647 static void skb_release_head_state(struct sk_buff *skb)
648 {
649 skb_dst_drop(skb);
650 #ifdef CONFIG_XFRM
651 secpath_put(skb->sp);
652 #endif
653 if (skb->destructor) {
654 WARN_ON(in_irq());
655 skb->destructor(skb);
656 }
657 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
658 nf_conntrack_put(skb->nfct);
659 #endif
660 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
661 nf_bridge_put(skb->nf_bridge);
662 #endif
663 }
664
665 /* Free everything but the sk_buff shell. */
666 static void skb_release_all(struct sk_buff *skb)
667 {
668 skb_release_head_state(skb);
669 if (likely(skb->head))
670 skb_release_data(skb);
671 }
672
673 /**
674 * __kfree_skb - private function
675 * @skb: buffer
676 *
677 * Free an sk_buff. Release anything attached to the buffer.
678 * Clean the state. This is an internal helper function. Users should
679 * always call kfree_skb
680 */
681
682 void __kfree_skb(struct sk_buff *skb)
683 {
684 skb_release_all(skb);
685 kfree_skbmem(skb);
686 }
687 EXPORT_SYMBOL(__kfree_skb);
688
689 /**
690 * kfree_skb - free an sk_buff
691 * @skb: buffer to free
692 *
693 * Drop a reference to the buffer and free it if the usage count has
694 * hit zero.
695 */
696 void kfree_skb(struct sk_buff *skb)
697 {
698 if (unlikely(!skb))
699 return;
700 if (likely(atomic_read(&skb->users) == 1))
701 smp_rmb();
702 else if (likely(!atomic_dec_and_test(&skb->users)))
703 return;
704 trace_kfree_skb(skb, __builtin_return_address(0));
705 __kfree_skb(skb);
706 }
707 EXPORT_SYMBOL(kfree_skb);
708
709 void kfree_skb_list(struct sk_buff *segs)
710 {
711 while (segs) {
712 struct sk_buff *next = segs->next;
713
714 kfree_skb(segs);
715 segs = next;
716 }
717 }
718 EXPORT_SYMBOL(kfree_skb_list);
719
720 /**
721 * skb_tx_error - report an sk_buff xmit error
722 * @skb: buffer that triggered an error
723 *
724 * Report xmit error if a device callback is tracking this skb.
725 * skb must be freed afterwards.
726 */
727 void skb_tx_error(struct sk_buff *skb)
728 {
729 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
730 struct ubuf_info *uarg;
731
732 uarg = skb_shinfo(skb)->destructor_arg;
733 if (uarg->callback)
734 uarg->callback(uarg, false);
735 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
736 }
737 }
738 EXPORT_SYMBOL(skb_tx_error);
739
740 /**
741 * consume_skb - free an skbuff
742 * @skb: buffer to free
743 *
744 * Drop a ref to the buffer and free it if the usage count has hit zero
745 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
746 * is being dropped after a failure and notes that
747 */
748 void consume_skb(struct sk_buff *skb)
749 {
750 if (unlikely(!skb))
751 return;
752 if (likely(atomic_read(&skb->users) == 1))
753 smp_rmb();
754 else if (likely(!atomic_dec_and_test(&skb->users)))
755 return;
756 trace_consume_skb(skb);
757 __kfree_skb(skb);
758 }
759 EXPORT_SYMBOL(consume_skb);
760
761 void __kfree_skb_flush(void)
762 {
763 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
764
765 /* flush skb_cache if containing objects */
766 if (nc->skb_count) {
767 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
768 nc->skb_cache);
769 nc->skb_count = 0;
770 }
771 }
772
773 static inline void _kfree_skb_defer(struct sk_buff *skb)
774 {
775 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
776
777 /* drop skb->head and call any destructors for packet */
778 skb_release_all(skb);
779
780 /* record skb to CPU local list */
781 nc->skb_cache[nc->skb_count++] = skb;
782
783 #ifdef CONFIG_SLUB
784 /* SLUB writes into objects when freeing */
785 prefetchw(skb);
786 #endif
787
788 /* flush skb_cache if it is filled */
789 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
790 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
791 nc->skb_cache);
792 nc->skb_count = 0;
793 }
794 }
795 void __kfree_skb_defer(struct sk_buff *skb)
796 {
797 _kfree_skb_defer(skb);
798 }
799
800 void napi_consume_skb(struct sk_buff *skb, int budget)
801 {
802 if (unlikely(!skb))
803 return;
804
805 /* Zero budget indicate non-NAPI context called us, like netpoll */
806 if (unlikely(!budget)) {
807 dev_consume_skb_any(skb);
808 return;
809 }
810
811 if (likely(atomic_read(&skb->users) == 1))
812 smp_rmb();
813 else if (likely(!atomic_dec_and_test(&skb->users)))
814 return;
815 /* if reaching here SKB is ready to free */
816 trace_consume_skb(skb);
817
818 /* if SKB is a clone, don't handle this case */
819 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
820 __kfree_skb(skb);
821 return;
822 }
823
824 _kfree_skb_defer(skb);
825 }
826 EXPORT_SYMBOL(napi_consume_skb);
827
828 /* Make sure a field is enclosed inside headers_start/headers_end section */
829 #define CHECK_SKB_FIELD(field) \
830 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
831 offsetof(struct sk_buff, headers_start)); \
832 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
833 offsetof(struct sk_buff, headers_end)); \
834
835 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
836 {
837 new->tstamp = old->tstamp;
838 /* We do not copy old->sk */
839 new->dev = old->dev;
840 memcpy(new->cb, old->cb, sizeof(old->cb));
841 skb_dst_copy(new, old);
842 #ifdef CONFIG_XFRM
843 new->sp = secpath_get(old->sp);
844 #endif
845 __nf_copy(new, old, false);
846
847 /* Note : this field could be in headers_start/headers_end section
848 * It is not yet because we do not want to have a 16 bit hole
849 */
850 new->queue_mapping = old->queue_mapping;
851
852 memcpy(&new->headers_start, &old->headers_start,
853 offsetof(struct sk_buff, headers_end) -
854 offsetof(struct sk_buff, headers_start));
855 CHECK_SKB_FIELD(protocol);
856 CHECK_SKB_FIELD(csum);
857 CHECK_SKB_FIELD(hash);
858 CHECK_SKB_FIELD(priority);
859 CHECK_SKB_FIELD(skb_iif);
860 CHECK_SKB_FIELD(vlan_proto);
861 CHECK_SKB_FIELD(vlan_tci);
862 CHECK_SKB_FIELD(transport_header);
863 CHECK_SKB_FIELD(network_header);
864 CHECK_SKB_FIELD(mac_header);
865 CHECK_SKB_FIELD(inner_protocol);
866 CHECK_SKB_FIELD(inner_transport_header);
867 CHECK_SKB_FIELD(inner_network_header);
868 CHECK_SKB_FIELD(inner_mac_header);
869 CHECK_SKB_FIELD(mark);
870 #ifdef CONFIG_NETWORK_SECMARK
871 CHECK_SKB_FIELD(secmark);
872 #endif
873 #ifdef CONFIG_NET_RX_BUSY_POLL
874 CHECK_SKB_FIELD(napi_id);
875 #endif
876 #ifdef CONFIG_XPS
877 CHECK_SKB_FIELD(sender_cpu);
878 #endif
879 #ifdef CONFIG_NET_SCHED
880 CHECK_SKB_FIELD(tc_index);
881 #ifdef CONFIG_NET_CLS_ACT
882 CHECK_SKB_FIELD(tc_verd);
883 #endif
884 #endif
885
886 }
887
888 /*
889 * You should not add any new code to this function. Add it to
890 * __copy_skb_header above instead.
891 */
892 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
893 {
894 #define C(x) n->x = skb->x
895
896 n->next = n->prev = NULL;
897 n->sk = NULL;
898 __copy_skb_header(n, skb);
899
900 C(len);
901 C(data_len);
902 C(mac_len);
903 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
904 n->cloned = 1;
905 n->nohdr = 0;
906 n->destructor = NULL;
907 C(tail);
908 C(end);
909 C(head);
910 C(head_frag);
911 C(data);
912 C(truesize);
913 atomic_set(&n->users, 1);
914
915 atomic_inc(&(skb_shinfo(skb)->dataref));
916 skb->cloned = 1;
917
918 return n;
919 #undef C
920 }
921
922 /**
923 * skb_morph - morph one skb into another
924 * @dst: the skb to receive the contents
925 * @src: the skb to supply the contents
926 *
927 * This is identical to skb_clone except that the target skb is
928 * supplied by the user.
929 *
930 * The target skb is returned upon exit.
931 */
932 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
933 {
934 skb_release_all(dst);
935 return __skb_clone(dst, src);
936 }
937 EXPORT_SYMBOL_GPL(skb_morph);
938
939 /**
940 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
941 * @skb: the skb to modify
942 * @gfp_mask: allocation priority
943 *
944 * This must be called on SKBTX_DEV_ZEROCOPY skb.
945 * It will copy all frags into kernel and drop the reference
946 * to userspace pages.
947 *
948 * If this function is called from an interrupt gfp_mask() must be
949 * %GFP_ATOMIC.
950 *
951 * Returns 0 on success or a negative error code on failure
952 * to allocate kernel memory to copy to.
953 */
954 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
955 {
956 int i;
957 int num_frags = skb_shinfo(skb)->nr_frags;
958 struct page *page, *head = NULL;
959 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
960
961 for (i = 0; i < num_frags; i++) {
962 u8 *vaddr;
963 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
964
965 page = alloc_page(gfp_mask);
966 if (!page) {
967 while (head) {
968 struct page *next = (struct page *)page_private(head);
969 put_page(head);
970 head = next;
971 }
972 return -ENOMEM;
973 }
974 vaddr = kmap_atomic(skb_frag_page(f));
975 memcpy(page_address(page),
976 vaddr + f->page_offset, skb_frag_size(f));
977 kunmap_atomic(vaddr);
978 set_page_private(page, (unsigned long)head);
979 head = page;
980 }
981
982 /* skb frags release userspace buffers */
983 for (i = 0; i < num_frags; i++)
984 skb_frag_unref(skb, i);
985
986 uarg->callback(uarg, false);
987
988 /* skb frags point to kernel buffers */
989 for (i = num_frags - 1; i >= 0; i--) {
990 __skb_fill_page_desc(skb, i, head, 0,
991 skb_shinfo(skb)->frags[i].size);
992 head = (struct page *)page_private(head);
993 }
994
995 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
996 return 0;
997 }
998 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
999
1000 /**
1001 * skb_clone - duplicate an sk_buff
1002 * @skb: buffer to clone
1003 * @gfp_mask: allocation priority
1004 *
1005 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1006 * copies share the same packet data but not structure. The new
1007 * buffer has a reference count of 1. If the allocation fails the
1008 * function returns %NULL otherwise the new buffer is returned.
1009 *
1010 * If this function is called from an interrupt gfp_mask() must be
1011 * %GFP_ATOMIC.
1012 */
1013
1014 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1015 {
1016 struct sk_buff_fclones *fclones = container_of(skb,
1017 struct sk_buff_fclones,
1018 skb1);
1019 struct sk_buff *n;
1020
1021 if (skb_orphan_frags(skb, gfp_mask))
1022 return NULL;
1023
1024 if (skb->fclone == SKB_FCLONE_ORIG &&
1025 atomic_read(&fclones->fclone_ref) == 1) {
1026 n = &fclones->skb2;
1027 atomic_set(&fclones->fclone_ref, 2);
1028 } else {
1029 if (skb_pfmemalloc(skb))
1030 gfp_mask |= __GFP_MEMALLOC;
1031
1032 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1033 if (!n)
1034 return NULL;
1035
1036 kmemcheck_annotate_bitfield(n, flags1);
1037 n->fclone = SKB_FCLONE_UNAVAILABLE;
1038 }
1039
1040 return __skb_clone(n, skb);
1041 }
1042 EXPORT_SYMBOL(skb_clone);
1043
1044 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1045 {
1046 /* Only adjust this if it actually is csum_start rather than csum */
1047 if (skb->ip_summed == CHECKSUM_PARTIAL)
1048 skb->csum_start += off;
1049 /* {transport,network,mac}_header and tail are relative to skb->head */
1050 skb->transport_header += off;
1051 skb->network_header += off;
1052 if (skb_mac_header_was_set(skb))
1053 skb->mac_header += off;
1054 skb->inner_transport_header += off;
1055 skb->inner_network_header += off;
1056 skb->inner_mac_header += off;
1057 }
1058
1059 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1060 {
1061 __copy_skb_header(new, old);
1062
1063 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1064 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1065 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1066 }
1067
1068 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1069 {
1070 if (skb_pfmemalloc(skb))
1071 return SKB_ALLOC_RX;
1072 return 0;
1073 }
1074
1075 /**
1076 * skb_copy - create private copy of an sk_buff
1077 * @skb: buffer to copy
1078 * @gfp_mask: allocation priority
1079 *
1080 * Make a copy of both an &sk_buff and its data. This is used when the
1081 * caller wishes to modify the data and needs a private copy of the
1082 * data to alter. Returns %NULL on failure or the pointer to the buffer
1083 * on success. The returned buffer has a reference count of 1.
1084 *
1085 * As by-product this function converts non-linear &sk_buff to linear
1086 * one, so that &sk_buff becomes completely private and caller is allowed
1087 * to modify all the data of returned buffer. This means that this
1088 * function is not recommended for use in circumstances when only
1089 * header is going to be modified. Use pskb_copy() instead.
1090 */
1091
1092 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1093 {
1094 int headerlen = skb_headroom(skb);
1095 unsigned int size = skb_end_offset(skb) + skb->data_len;
1096 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1097 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1098
1099 if (!n)
1100 return NULL;
1101
1102 /* Set the data pointer */
1103 skb_reserve(n, headerlen);
1104 /* Set the tail pointer and length */
1105 skb_put(n, skb->len);
1106
1107 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1108 BUG();
1109
1110 copy_skb_header(n, skb);
1111 return n;
1112 }
1113 EXPORT_SYMBOL(skb_copy);
1114
1115 /**
1116 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1117 * @skb: buffer to copy
1118 * @headroom: headroom of new skb
1119 * @gfp_mask: allocation priority
1120 * @fclone: if true allocate the copy of the skb from the fclone
1121 * cache instead of the head cache; it is recommended to set this
1122 * to true for the cases where the copy will likely be cloned
1123 *
1124 * Make a copy of both an &sk_buff and part of its data, located
1125 * in header. Fragmented data remain shared. This is used when
1126 * the caller wishes to modify only header of &sk_buff and needs
1127 * private copy of the header to alter. Returns %NULL on failure
1128 * or the pointer to the buffer on success.
1129 * The returned buffer has a reference count of 1.
1130 */
1131
1132 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1133 gfp_t gfp_mask, bool fclone)
1134 {
1135 unsigned int size = skb_headlen(skb) + headroom;
1136 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1137 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1138
1139 if (!n)
1140 goto out;
1141
1142 /* Set the data pointer */
1143 skb_reserve(n, headroom);
1144 /* Set the tail pointer and length */
1145 skb_put(n, skb_headlen(skb));
1146 /* Copy the bytes */
1147 skb_copy_from_linear_data(skb, n->data, n->len);
1148
1149 n->truesize += skb->data_len;
1150 n->data_len = skb->data_len;
1151 n->len = skb->len;
1152
1153 if (skb_shinfo(skb)->nr_frags) {
1154 int i;
1155
1156 if (skb_orphan_frags(skb, gfp_mask)) {
1157 kfree_skb(n);
1158 n = NULL;
1159 goto out;
1160 }
1161 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1162 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1163 skb_frag_ref(skb, i);
1164 }
1165 skb_shinfo(n)->nr_frags = i;
1166 }
1167
1168 if (skb_has_frag_list(skb)) {
1169 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1170 skb_clone_fraglist(n);
1171 }
1172
1173 copy_skb_header(n, skb);
1174 out:
1175 return n;
1176 }
1177 EXPORT_SYMBOL(__pskb_copy_fclone);
1178
1179 /**
1180 * pskb_expand_head - reallocate header of &sk_buff
1181 * @skb: buffer to reallocate
1182 * @nhead: room to add at head
1183 * @ntail: room to add at tail
1184 * @gfp_mask: allocation priority
1185 *
1186 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1187 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1188 * reference count of 1. Returns zero in the case of success or error,
1189 * if expansion failed. In the last case, &sk_buff is not changed.
1190 *
1191 * All the pointers pointing into skb header may change and must be
1192 * reloaded after call to this function.
1193 */
1194
1195 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1196 gfp_t gfp_mask)
1197 {
1198 int i;
1199 u8 *data;
1200 int size = nhead + skb_end_offset(skb) + ntail;
1201 long off;
1202
1203 BUG_ON(nhead < 0);
1204
1205 if (skb_shared(skb))
1206 BUG();
1207
1208 size = SKB_DATA_ALIGN(size);
1209
1210 if (skb_pfmemalloc(skb))
1211 gfp_mask |= __GFP_MEMALLOC;
1212 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1213 gfp_mask, NUMA_NO_NODE, NULL);
1214 if (!data)
1215 goto nodata;
1216 size = SKB_WITH_OVERHEAD(ksize(data));
1217
1218 /* Copy only real data... and, alas, header. This should be
1219 * optimized for the cases when header is void.
1220 */
1221 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1222
1223 memcpy((struct skb_shared_info *)(data + size),
1224 skb_shinfo(skb),
1225 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1226
1227 /*
1228 * if shinfo is shared we must drop the old head gracefully, but if it
1229 * is not we can just drop the old head and let the existing refcount
1230 * be since all we did is relocate the values
1231 */
1232 if (skb_cloned(skb)) {
1233 /* copy this zero copy skb frags */
1234 if (skb_orphan_frags(skb, gfp_mask))
1235 goto nofrags;
1236 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1237 skb_frag_ref(skb, i);
1238
1239 if (skb_has_frag_list(skb))
1240 skb_clone_fraglist(skb);
1241
1242 skb_release_data(skb);
1243 } else {
1244 skb_free_head(skb);
1245 }
1246 off = (data + nhead) - skb->head;
1247
1248 skb->head = data;
1249 skb->head_frag = 0;
1250 skb->data += off;
1251 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1252 skb->end = size;
1253 off = nhead;
1254 #else
1255 skb->end = skb->head + size;
1256 #endif
1257 skb->tail += off;
1258 skb_headers_offset_update(skb, nhead);
1259 skb->cloned = 0;
1260 skb->hdr_len = 0;
1261 skb->nohdr = 0;
1262 atomic_set(&skb_shinfo(skb)->dataref, 1);
1263 return 0;
1264
1265 nofrags:
1266 kfree(data);
1267 nodata:
1268 return -ENOMEM;
1269 }
1270 EXPORT_SYMBOL(pskb_expand_head);
1271
1272 /* Make private copy of skb with writable head and some headroom */
1273
1274 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1275 {
1276 struct sk_buff *skb2;
1277 int delta = headroom - skb_headroom(skb);
1278
1279 if (delta <= 0)
1280 skb2 = pskb_copy(skb, GFP_ATOMIC);
1281 else {
1282 skb2 = skb_clone(skb, GFP_ATOMIC);
1283 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1284 GFP_ATOMIC)) {
1285 kfree_skb(skb2);
1286 skb2 = NULL;
1287 }
1288 }
1289 return skb2;
1290 }
1291 EXPORT_SYMBOL(skb_realloc_headroom);
1292
1293 /**
1294 * skb_copy_expand - copy and expand sk_buff
1295 * @skb: buffer to copy
1296 * @newheadroom: new free bytes at head
1297 * @newtailroom: new free bytes at tail
1298 * @gfp_mask: allocation priority
1299 *
1300 * Make a copy of both an &sk_buff and its data and while doing so
1301 * allocate additional space.
1302 *
1303 * This is used when the caller wishes to modify the data and needs a
1304 * private copy of the data to alter as well as more space for new fields.
1305 * Returns %NULL on failure or the pointer to the buffer
1306 * on success. The returned buffer has a reference count of 1.
1307 *
1308 * You must pass %GFP_ATOMIC as the allocation priority if this function
1309 * is called from an interrupt.
1310 */
1311 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1312 int newheadroom, int newtailroom,
1313 gfp_t gfp_mask)
1314 {
1315 /*
1316 * Allocate the copy buffer
1317 */
1318 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1319 gfp_mask, skb_alloc_rx_flag(skb),
1320 NUMA_NO_NODE);
1321 int oldheadroom = skb_headroom(skb);
1322 int head_copy_len, head_copy_off;
1323
1324 if (!n)
1325 return NULL;
1326
1327 skb_reserve(n, newheadroom);
1328
1329 /* Set the tail pointer and length */
1330 skb_put(n, skb->len);
1331
1332 head_copy_len = oldheadroom;
1333 head_copy_off = 0;
1334 if (newheadroom <= head_copy_len)
1335 head_copy_len = newheadroom;
1336 else
1337 head_copy_off = newheadroom - head_copy_len;
1338
1339 /* Copy the linear header and data. */
1340 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1341 skb->len + head_copy_len))
1342 BUG();
1343
1344 copy_skb_header(n, skb);
1345
1346 skb_headers_offset_update(n, newheadroom - oldheadroom);
1347
1348 return n;
1349 }
1350 EXPORT_SYMBOL(skb_copy_expand);
1351
1352 /**
1353 * skb_pad - zero pad the tail of an skb
1354 * @skb: buffer to pad
1355 * @pad: space to pad
1356 *
1357 * Ensure that a buffer is followed by a padding area that is zero
1358 * filled. Used by network drivers which may DMA or transfer data
1359 * beyond the buffer end onto the wire.
1360 *
1361 * May return error in out of memory cases. The skb is freed on error.
1362 */
1363
1364 int skb_pad(struct sk_buff *skb, int pad)
1365 {
1366 int err;
1367 int ntail;
1368
1369 /* If the skbuff is non linear tailroom is always zero.. */
1370 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1371 memset(skb->data+skb->len, 0, pad);
1372 return 0;
1373 }
1374
1375 ntail = skb->data_len + pad - (skb->end - skb->tail);
1376 if (likely(skb_cloned(skb) || ntail > 0)) {
1377 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1378 if (unlikely(err))
1379 goto free_skb;
1380 }
1381
1382 /* FIXME: The use of this function with non-linear skb's really needs
1383 * to be audited.
1384 */
1385 err = skb_linearize(skb);
1386 if (unlikely(err))
1387 goto free_skb;
1388
1389 memset(skb->data + skb->len, 0, pad);
1390 return 0;
1391
1392 free_skb:
1393 kfree_skb(skb);
1394 return err;
1395 }
1396 EXPORT_SYMBOL(skb_pad);
1397
1398 /**
1399 * pskb_put - add data to the tail of a potentially fragmented buffer
1400 * @skb: start of the buffer to use
1401 * @tail: tail fragment of the buffer to use
1402 * @len: amount of data to add
1403 *
1404 * This function extends the used data area of the potentially
1405 * fragmented buffer. @tail must be the last fragment of @skb -- or
1406 * @skb itself. If this would exceed the total buffer size the kernel
1407 * will panic. A pointer to the first byte of the extra data is
1408 * returned.
1409 */
1410
1411 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1412 {
1413 if (tail != skb) {
1414 skb->data_len += len;
1415 skb->len += len;
1416 }
1417 return skb_put(tail, len);
1418 }
1419 EXPORT_SYMBOL_GPL(pskb_put);
1420
1421 /**
1422 * skb_put - add data to a buffer
1423 * @skb: buffer to use
1424 * @len: amount of data to add
1425 *
1426 * This function extends the used data area of the buffer. If this would
1427 * exceed the total buffer size the kernel will panic. A pointer to the
1428 * first byte of the extra data is returned.
1429 */
1430 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1431 {
1432 unsigned char *tmp = skb_tail_pointer(skb);
1433 SKB_LINEAR_ASSERT(skb);
1434 skb->tail += len;
1435 skb->len += len;
1436 if (unlikely(skb->tail > skb->end))
1437 skb_over_panic(skb, len, __builtin_return_address(0));
1438 return tmp;
1439 }
1440 EXPORT_SYMBOL(skb_put);
1441
1442 /**
1443 * skb_push - add data to the start of a buffer
1444 * @skb: buffer to use
1445 * @len: amount of data to add
1446 *
1447 * This function extends the used data area of the buffer at the buffer
1448 * start. If this would exceed the total buffer headroom the kernel will
1449 * panic. A pointer to the first byte of the extra data is returned.
1450 */
1451 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1452 {
1453 skb->data -= len;
1454 skb->len += len;
1455 if (unlikely(skb->data<skb->head))
1456 skb_under_panic(skb, len, __builtin_return_address(0));
1457 return skb->data;
1458 }
1459 EXPORT_SYMBOL(skb_push);
1460
1461 /**
1462 * skb_pull - remove data from the start of a buffer
1463 * @skb: buffer to use
1464 * @len: amount of data to remove
1465 *
1466 * This function removes data from the start of a buffer, returning
1467 * the memory to the headroom. A pointer to the next data in the buffer
1468 * is returned. Once the data has been pulled future pushes will overwrite
1469 * the old data.
1470 */
1471 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1472 {
1473 return skb_pull_inline(skb, len);
1474 }
1475 EXPORT_SYMBOL(skb_pull);
1476
1477 /**
1478 * skb_trim - remove end from a buffer
1479 * @skb: buffer to alter
1480 * @len: new length
1481 *
1482 * Cut the length of a buffer down by removing data from the tail. If
1483 * the buffer is already under the length specified it is not modified.
1484 * The skb must be linear.
1485 */
1486 void skb_trim(struct sk_buff *skb, unsigned int len)
1487 {
1488 if (skb->len > len)
1489 __skb_trim(skb, len);
1490 }
1491 EXPORT_SYMBOL(skb_trim);
1492
1493 /* Trims skb to length len. It can change skb pointers.
1494 */
1495
1496 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1497 {
1498 struct sk_buff **fragp;
1499 struct sk_buff *frag;
1500 int offset = skb_headlen(skb);
1501 int nfrags = skb_shinfo(skb)->nr_frags;
1502 int i;
1503 int err;
1504
1505 if (skb_cloned(skb) &&
1506 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1507 return err;
1508
1509 i = 0;
1510 if (offset >= len)
1511 goto drop_pages;
1512
1513 for (; i < nfrags; i++) {
1514 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1515
1516 if (end < len) {
1517 offset = end;
1518 continue;
1519 }
1520
1521 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1522
1523 drop_pages:
1524 skb_shinfo(skb)->nr_frags = i;
1525
1526 for (; i < nfrags; i++)
1527 skb_frag_unref(skb, i);
1528
1529 if (skb_has_frag_list(skb))
1530 skb_drop_fraglist(skb);
1531 goto done;
1532 }
1533
1534 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1535 fragp = &frag->next) {
1536 int end = offset + frag->len;
1537
1538 if (skb_shared(frag)) {
1539 struct sk_buff *nfrag;
1540
1541 nfrag = skb_clone(frag, GFP_ATOMIC);
1542 if (unlikely(!nfrag))
1543 return -ENOMEM;
1544
1545 nfrag->next = frag->next;
1546 consume_skb(frag);
1547 frag = nfrag;
1548 *fragp = frag;
1549 }
1550
1551 if (end < len) {
1552 offset = end;
1553 continue;
1554 }
1555
1556 if (end > len &&
1557 unlikely((err = pskb_trim(frag, len - offset))))
1558 return err;
1559
1560 if (frag->next)
1561 skb_drop_list(&frag->next);
1562 break;
1563 }
1564
1565 done:
1566 if (len > skb_headlen(skb)) {
1567 skb->data_len -= skb->len - len;
1568 skb->len = len;
1569 } else {
1570 skb->len = len;
1571 skb->data_len = 0;
1572 skb_set_tail_pointer(skb, len);
1573 }
1574
1575 if (!skb->sk || skb->destructor == sock_edemux)
1576 skb_condense(skb);
1577 return 0;
1578 }
1579 EXPORT_SYMBOL(___pskb_trim);
1580
1581 /**
1582 * __pskb_pull_tail - advance tail of skb header
1583 * @skb: buffer to reallocate
1584 * @delta: number of bytes to advance tail
1585 *
1586 * The function makes a sense only on a fragmented &sk_buff,
1587 * it expands header moving its tail forward and copying necessary
1588 * data from fragmented part.
1589 *
1590 * &sk_buff MUST have reference count of 1.
1591 *
1592 * Returns %NULL (and &sk_buff does not change) if pull failed
1593 * or value of new tail of skb in the case of success.
1594 *
1595 * All the pointers pointing into skb header may change and must be
1596 * reloaded after call to this function.
1597 */
1598
1599 /* Moves tail of skb head forward, copying data from fragmented part,
1600 * when it is necessary.
1601 * 1. It may fail due to malloc failure.
1602 * 2. It may change skb pointers.
1603 *
1604 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1605 */
1606 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1607 {
1608 /* If skb has not enough free space at tail, get new one
1609 * plus 128 bytes for future expansions. If we have enough
1610 * room at tail, reallocate without expansion only if skb is cloned.
1611 */
1612 int i, k, eat = (skb->tail + delta) - skb->end;
1613
1614 if (eat > 0 || skb_cloned(skb)) {
1615 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1616 GFP_ATOMIC))
1617 return NULL;
1618 }
1619
1620 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1621 BUG();
1622
1623 /* Optimization: no fragments, no reasons to preestimate
1624 * size of pulled pages. Superb.
1625 */
1626 if (!skb_has_frag_list(skb))
1627 goto pull_pages;
1628
1629 /* Estimate size of pulled pages. */
1630 eat = delta;
1631 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1632 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1633
1634 if (size >= eat)
1635 goto pull_pages;
1636 eat -= size;
1637 }
1638
1639 /* If we need update frag list, we are in troubles.
1640 * Certainly, it possible to add an offset to skb data,
1641 * but taking into account that pulling is expected to
1642 * be very rare operation, it is worth to fight against
1643 * further bloating skb head and crucify ourselves here instead.
1644 * Pure masohism, indeed. 8)8)
1645 */
1646 if (eat) {
1647 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1648 struct sk_buff *clone = NULL;
1649 struct sk_buff *insp = NULL;
1650
1651 do {
1652 BUG_ON(!list);
1653
1654 if (list->len <= eat) {
1655 /* Eaten as whole. */
1656 eat -= list->len;
1657 list = list->next;
1658 insp = list;
1659 } else {
1660 /* Eaten partially. */
1661
1662 if (skb_shared(list)) {
1663 /* Sucks! We need to fork list. :-( */
1664 clone = skb_clone(list, GFP_ATOMIC);
1665 if (!clone)
1666 return NULL;
1667 insp = list->next;
1668 list = clone;
1669 } else {
1670 /* This may be pulled without
1671 * problems. */
1672 insp = list;
1673 }
1674 if (!pskb_pull(list, eat)) {
1675 kfree_skb(clone);
1676 return NULL;
1677 }
1678 break;
1679 }
1680 } while (eat);
1681
1682 /* Free pulled out fragments. */
1683 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1684 skb_shinfo(skb)->frag_list = list->next;
1685 kfree_skb(list);
1686 }
1687 /* And insert new clone at head. */
1688 if (clone) {
1689 clone->next = list;
1690 skb_shinfo(skb)->frag_list = clone;
1691 }
1692 }
1693 /* Success! Now we may commit changes to skb data. */
1694
1695 pull_pages:
1696 eat = delta;
1697 k = 0;
1698 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1699 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1700
1701 if (size <= eat) {
1702 skb_frag_unref(skb, i);
1703 eat -= size;
1704 } else {
1705 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1706 if (eat) {
1707 skb_shinfo(skb)->frags[k].page_offset += eat;
1708 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1709 eat = 0;
1710 }
1711 k++;
1712 }
1713 }
1714 skb_shinfo(skb)->nr_frags = k;
1715
1716 skb->tail += delta;
1717 skb->data_len -= delta;
1718
1719 return skb_tail_pointer(skb);
1720 }
1721 EXPORT_SYMBOL(__pskb_pull_tail);
1722
1723 /**
1724 * skb_copy_bits - copy bits from skb to kernel buffer
1725 * @skb: source skb
1726 * @offset: offset in source
1727 * @to: destination buffer
1728 * @len: number of bytes to copy
1729 *
1730 * Copy the specified number of bytes from the source skb to the
1731 * destination buffer.
1732 *
1733 * CAUTION ! :
1734 * If its prototype is ever changed,
1735 * check arch/{*}/net/{*}.S files,
1736 * since it is called from BPF assembly code.
1737 */
1738 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1739 {
1740 int start = skb_headlen(skb);
1741 struct sk_buff *frag_iter;
1742 int i, copy;
1743
1744 if (offset > (int)skb->len - len)
1745 goto fault;
1746
1747 /* Copy header. */
1748 if ((copy = start - offset) > 0) {
1749 if (copy > len)
1750 copy = len;
1751 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1752 if ((len -= copy) == 0)
1753 return 0;
1754 offset += copy;
1755 to += copy;
1756 }
1757
1758 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1759 int end;
1760 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1761
1762 WARN_ON(start > offset + len);
1763
1764 end = start + skb_frag_size(f);
1765 if ((copy = end - offset) > 0) {
1766 u8 *vaddr;
1767
1768 if (copy > len)
1769 copy = len;
1770
1771 vaddr = kmap_atomic(skb_frag_page(f));
1772 memcpy(to,
1773 vaddr + f->page_offset + offset - start,
1774 copy);
1775 kunmap_atomic(vaddr);
1776
1777 if ((len -= copy) == 0)
1778 return 0;
1779 offset += copy;
1780 to += copy;
1781 }
1782 start = end;
1783 }
1784
1785 skb_walk_frags(skb, frag_iter) {
1786 int end;
1787
1788 WARN_ON(start > offset + len);
1789
1790 end = start + frag_iter->len;
1791 if ((copy = end - offset) > 0) {
1792 if (copy > len)
1793 copy = len;
1794 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1795 goto fault;
1796 if ((len -= copy) == 0)
1797 return 0;
1798 offset += copy;
1799 to += copy;
1800 }
1801 start = end;
1802 }
1803
1804 if (!len)
1805 return 0;
1806
1807 fault:
1808 return -EFAULT;
1809 }
1810 EXPORT_SYMBOL(skb_copy_bits);
1811
1812 /*
1813 * Callback from splice_to_pipe(), if we need to release some pages
1814 * at the end of the spd in case we error'ed out in filling the pipe.
1815 */
1816 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1817 {
1818 put_page(spd->pages[i]);
1819 }
1820
1821 static struct page *linear_to_page(struct page *page, unsigned int *len,
1822 unsigned int *offset,
1823 struct sock *sk)
1824 {
1825 struct page_frag *pfrag = sk_page_frag(sk);
1826
1827 if (!sk_page_frag_refill(sk, pfrag))
1828 return NULL;
1829
1830 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1831
1832 memcpy(page_address(pfrag->page) + pfrag->offset,
1833 page_address(page) + *offset, *len);
1834 *offset = pfrag->offset;
1835 pfrag->offset += *len;
1836
1837 return pfrag->page;
1838 }
1839
1840 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1841 struct page *page,
1842 unsigned int offset)
1843 {
1844 return spd->nr_pages &&
1845 spd->pages[spd->nr_pages - 1] == page &&
1846 (spd->partial[spd->nr_pages - 1].offset +
1847 spd->partial[spd->nr_pages - 1].len == offset);
1848 }
1849
1850 /*
1851 * Fill page/offset/length into spd, if it can hold more pages.
1852 */
1853 static bool spd_fill_page(struct splice_pipe_desc *spd,
1854 struct pipe_inode_info *pipe, struct page *page,
1855 unsigned int *len, unsigned int offset,
1856 bool linear,
1857 struct sock *sk)
1858 {
1859 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1860 return true;
1861
1862 if (linear) {
1863 page = linear_to_page(page, len, &offset, sk);
1864 if (!page)
1865 return true;
1866 }
1867 if (spd_can_coalesce(spd, page, offset)) {
1868 spd->partial[spd->nr_pages - 1].len += *len;
1869 return false;
1870 }
1871 get_page(page);
1872 spd->pages[spd->nr_pages] = page;
1873 spd->partial[spd->nr_pages].len = *len;
1874 spd->partial[spd->nr_pages].offset = offset;
1875 spd->nr_pages++;
1876
1877 return false;
1878 }
1879
1880 static bool __splice_segment(struct page *page, unsigned int poff,
1881 unsigned int plen, unsigned int *off,
1882 unsigned int *len,
1883 struct splice_pipe_desc *spd, bool linear,
1884 struct sock *sk,
1885 struct pipe_inode_info *pipe)
1886 {
1887 if (!*len)
1888 return true;
1889
1890 /* skip this segment if already processed */
1891 if (*off >= plen) {
1892 *off -= plen;
1893 return false;
1894 }
1895
1896 /* ignore any bits we already processed */
1897 poff += *off;
1898 plen -= *off;
1899 *off = 0;
1900
1901 do {
1902 unsigned int flen = min(*len, plen);
1903
1904 if (spd_fill_page(spd, pipe, page, &flen, poff,
1905 linear, sk))
1906 return true;
1907 poff += flen;
1908 plen -= flen;
1909 *len -= flen;
1910 } while (*len && plen);
1911
1912 return false;
1913 }
1914
1915 /*
1916 * Map linear and fragment data from the skb to spd. It reports true if the
1917 * pipe is full or if we already spliced the requested length.
1918 */
1919 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1920 unsigned int *offset, unsigned int *len,
1921 struct splice_pipe_desc *spd, struct sock *sk)
1922 {
1923 int seg;
1924 struct sk_buff *iter;
1925
1926 /* map the linear part :
1927 * If skb->head_frag is set, this 'linear' part is backed by a
1928 * fragment, and if the head is not shared with any clones then
1929 * we can avoid a copy since we own the head portion of this page.
1930 */
1931 if (__splice_segment(virt_to_page(skb->data),
1932 (unsigned long) skb->data & (PAGE_SIZE - 1),
1933 skb_headlen(skb),
1934 offset, len, spd,
1935 skb_head_is_locked(skb),
1936 sk, pipe))
1937 return true;
1938
1939 /*
1940 * then map the fragments
1941 */
1942 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1943 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1944
1945 if (__splice_segment(skb_frag_page(f),
1946 f->page_offset, skb_frag_size(f),
1947 offset, len, spd, false, sk, pipe))
1948 return true;
1949 }
1950
1951 skb_walk_frags(skb, iter) {
1952 if (*offset >= iter->len) {
1953 *offset -= iter->len;
1954 continue;
1955 }
1956 /* __skb_splice_bits() only fails if the output has no room
1957 * left, so no point in going over the frag_list for the error
1958 * case.
1959 */
1960 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
1961 return true;
1962 }
1963
1964 return false;
1965 }
1966
1967 /*
1968 * Map data from the skb to a pipe. Should handle both the linear part,
1969 * the fragments, and the frag list.
1970 */
1971 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1972 struct pipe_inode_info *pipe, unsigned int tlen,
1973 unsigned int flags)
1974 {
1975 struct partial_page partial[MAX_SKB_FRAGS];
1976 struct page *pages[MAX_SKB_FRAGS];
1977 struct splice_pipe_desc spd = {
1978 .pages = pages,
1979 .partial = partial,
1980 .nr_pages_max = MAX_SKB_FRAGS,
1981 .flags = flags,
1982 .ops = &nosteal_pipe_buf_ops,
1983 .spd_release = sock_spd_release,
1984 };
1985 int ret = 0;
1986
1987 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
1988
1989 if (spd.nr_pages)
1990 ret = splice_to_pipe(pipe, &spd);
1991
1992 return ret;
1993 }
1994 EXPORT_SYMBOL_GPL(skb_splice_bits);
1995
1996 /**
1997 * skb_store_bits - store bits from kernel buffer to skb
1998 * @skb: destination buffer
1999 * @offset: offset in destination
2000 * @from: source buffer
2001 * @len: number of bytes to copy
2002 *
2003 * Copy the specified number of bytes from the source buffer to the
2004 * destination skb. This function handles all the messy bits of
2005 * traversing fragment lists and such.
2006 */
2007
2008 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2009 {
2010 int start = skb_headlen(skb);
2011 struct sk_buff *frag_iter;
2012 int i, copy;
2013
2014 if (offset > (int)skb->len - len)
2015 goto fault;
2016
2017 if ((copy = start - offset) > 0) {
2018 if (copy > len)
2019 copy = len;
2020 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2021 if ((len -= copy) == 0)
2022 return 0;
2023 offset += copy;
2024 from += copy;
2025 }
2026
2027 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2028 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2029 int end;
2030
2031 WARN_ON(start > offset + len);
2032
2033 end = start + skb_frag_size(frag);
2034 if ((copy = end - offset) > 0) {
2035 u8 *vaddr;
2036
2037 if (copy > len)
2038 copy = len;
2039
2040 vaddr = kmap_atomic(skb_frag_page(frag));
2041 memcpy(vaddr + frag->page_offset + offset - start,
2042 from, copy);
2043 kunmap_atomic(vaddr);
2044
2045 if ((len -= copy) == 0)
2046 return 0;
2047 offset += copy;
2048 from += copy;
2049 }
2050 start = end;
2051 }
2052
2053 skb_walk_frags(skb, frag_iter) {
2054 int end;
2055
2056 WARN_ON(start > offset + len);
2057
2058 end = start + frag_iter->len;
2059 if ((copy = end - offset) > 0) {
2060 if (copy > len)
2061 copy = len;
2062 if (skb_store_bits(frag_iter, offset - start,
2063 from, copy))
2064 goto fault;
2065 if ((len -= copy) == 0)
2066 return 0;
2067 offset += copy;
2068 from += copy;
2069 }
2070 start = end;
2071 }
2072 if (!len)
2073 return 0;
2074
2075 fault:
2076 return -EFAULT;
2077 }
2078 EXPORT_SYMBOL(skb_store_bits);
2079
2080 /* Checksum skb data. */
2081 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2082 __wsum csum, const struct skb_checksum_ops *ops)
2083 {
2084 int start = skb_headlen(skb);
2085 int i, copy = start - offset;
2086 struct sk_buff *frag_iter;
2087 int pos = 0;
2088
2089 /* Checksum header. */
2090 if (copy > 0) {
2091 if (copy > len)
2092 copy = len;
2093 csum = ops->update(skb->data + offset, copy, csum);
2094 if ((len -= copy) == 0)
2095 return csum;
2096 offset += copy;
2097 pos = copy;
2098 }
2099
2100 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2101 int end;
2102 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2103
2104 WARN_ON(start > offset + len);
2105
2106 end = start + skb_frag_size(frag);
2107 if ((copy = end - offset) > 0) {
2108 __wsum csum2;
2109 u8 *vaddr;
2110
2111 if (copy > len)
2112 copy = len;
2113 vaddr = kmap_atomic(skb_frag_page(frag));
2114 csum2 = ops->update(vaddr + frag->page_offset +
2115 offset - start, copy, 0);
2116 kunmap_atomic(vaddr);
2117 csum = ops->combine(csum, csum2, pos, copy);
2118 if (!(len -= copy))
2119 return csum;
2120 offset += copy;
2121 pos += copy;
2122 }
2123 start = end;
2124 }
2125
2126 skb_walk_frags(skb, frag_iter) {
2127 int end;
2128
2129 WARN_ON(start > offset + len);
2130
2131 end = start + frag_iter->len;
2132 if ((copy = end - offset) > 0) {
2133 __wsum csum2;
2134 if (copy > len)
2135 copy = len;
2136 csum2 = __skb_checksum(frag_iter, offset - start,
2137 copy, 0, ops);
2138 csum = ops->combine(csum, csum2, pos, copy);
2139 if ((len -= copy) == 0)
2140 return csum;
2141 offset += copy;
2142 pos += copy;
2143 }
2144 start = end;
2145 }
2146 BUG_ON(len);
2147
2148 return csum;
2149 }
2150 EXPORT_SYMBOL(__skb_checksum);
2151
2152 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2153 int len, __wsum csum)
2154 {
2155 const struct skb_checksum_ops ops = {
2156 .update = csum_partial_ext,
2157 .combine = csum_block_add_ext,
2158 };
2159
2160 return __skb_checksum(skb, offset, len, csum, &ops);
2161 }
2162 EXPORT_SYMBOL(skb_checksum);
2163
2164 /* Both of above in one bottle. */
2165
2166 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2167 u8 *to, int len, __wsum csum)
2168 {
2169 int start = skb_headlen(skb);
2170 int i, copy = start - offset;
2171 struct sk_buff *frag_iter;
2172 int pos = 0;
2173
2174 /* Copy header. */
2175 if (copy > 0) {
2176 if (copy > len)
2177 copy = len;
2178 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2179 copy, csum);
2180 if ((len -= copy) == 0)
2181 return csum;
2182 offset += copy;
2183 to += copy;
2184 pos = copy;
2185 }
2186
2187 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2188 int end;
2189
2190 WARN_ON(start > offset + len);
2191
2192 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2193 if ((copy = end - offset) > 0) {
2194 __wsum csum2;
2195 u8 *vaddr;
2196 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2197
2198 if (copy > len)
2199 copy = len;
2200 vaddr = kmap_atomic(skb_frag_page(frag));
2201 csum2 = csum_partial_copy_nocheck(vaddr +
2202 frag->page_offset +
2203 offset - start, to,
2204 copy, 0);
2205 kunmap_atomic(vaddr);
2206 csum = csum_block_add(csum, csum2, pos);
2207 if (!(len -= copy))
2208 return csum;
2209 offset += copy;
2210 to += copy;
2211 pos += copy;
2212 }
2213 start = end;
2214 }
2215
2216 skb_walk_frags(skb, frag_iter) {
2217 __wsum csum2;
2218 int end;
2219
2220 WARN_ON(start > offset + len);
2221
2222 end = start + frag_iter->len;
2223 if ((copy = end - offset) > 0) {
2224 if (copy > len)
2225 copy = len;
2226 csum2 = skb_copy_and_csum_bits(frag_iter,
2227 offset - start,
2228 to, copy, 0);
2229 csum = csum_block_add(csum, csum2, pos);
2230 if ((len -= copy) == 0)
2231 return csum;
2232 offset += copy;
2233 to += copy;
2234 pos += copy;
2235 }
2236 start = end;
2237 }
2238 BUG_ON(len);
2239 return csum;
2240 }
2241 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2242
2243 /**
2244 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2245 * @from: source buffer
2246 *
2247 * Calculates the amount of linear headroom needed in the 'to' skb passed
2248 * into skb_zerocopy().
2249 */
2250 unsigned int
2251 skb_zerocopy_headlen(const struct sk_buff *from)
2252 {
2253 unsigned int hlen = 0;
2254
2255 if (!from->head_frag ||
2256 skb_headlen(from) < L1_CACHE_BYTES ||
2257 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2258 hlen = skb_headlen(from);
2259
2260 if (skb_has_frag_list(from))
2261 hlen = from->len;
2262
2263 return hlen;
2264 }
2265 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2266
2267 /**
2268 * skb_zerocopy - Zero copy skb to skb
2269 * @to: destination buffer
2270 * @from: source buffer
2271 * @len: number of bytes to copy from source buffer
2272 * @hlen: size of linear headroom in destination buffer
2273 *
2274 * Copies up to `len` bytes from `from` to `to` by creating references
2275 * to the frags in the source buffer.
2276 *
2277 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2278 * headroom in the `to` buffer.
2279 *
2280 * Return value:
2281 * 0: everything is OK
2282 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2283 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2284 */
2285 int
2286 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2287 {
2288 int i, j = 0;
2289 int plen = 0; /* length of skb->head fragment */
2290 int ret;
2291 struct page *page;
2292 unsigned int offset;
2293
2294 BUG_ON(!from->head_frag && !hlen);
2295
2296 /* dont bother with small payloads */
2297 if (len <= skb_tailroom(to))
2298 return skb_copy_bits(from, 0, skb_put(to, len), len);
2299
2300 if (hlen) {
2301 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2302 if (unlikely(ret))
2303 return ret;
2304 len -= hlen;
2305 } else {
2306 plen = min_t(int, skb_headlen(from), len);
2307 if (plen) {
2308 page = virt_to_head_page(from->head);
2309 offset = from->data - (unsigned char *)page_address(page);
2310 __skb_fill_page_desc(to, 0, page, offset, plen);
2311 get_page(page);
2312 j = 1;
2313 len -= plen;
2314 }
2315 }
2316
2317 to->truesize += len + plen;
2318 to->len += len + plen;
2319 to->data_len += len + plen;
2320
2321 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2322 skb_tx_error(from);
2323 return -ENOMEM;
2324 }
2325
2326 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2327 if (!len)
2328 break;
2329 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2330 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2331 len -= skb_shinfo(to)->frags[j].size;
2332 skb_frag_ref(to, j);
2333 j++;
2334 }
2335 skb_shinfo(to)->nr_frags = j;
2336
2337 return 0;
2338 }
2339 EXPORT_SYMBOL_GPL(skb_zerocopy);
2340
2341 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2342 {
2343 __wsum csum;
2344 long csstart;
2345
2346 if (skb->ip_summed == CHECKSUM_PARTIAL)
2347 csstart = skb_checksum_start_offset(skb);
2348 else
2349 csstart = skb_headlen(skb);
2350
2351 BUG_ON(csstart > skb_headlen(skb));
2352
2353 skb_copy_from_linear_data(skb, to, csstart);
2354
2355 csum = 0;
2356 if (csstart != skb->len)
2357 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2358 skb->len - csstart, 0);
2359
2360 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2361 long csstuff = csstart + skb->csum_offset;
2362
2363 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2364 }
2365 }
2366 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2367
2368 /**
2369 * skb_dequeue - remove from the head of the queue
2370 * @list: list to dequeue from
2371 *
2372 * Remove the head of the list. The list lock is taken so the function
2373 * may be used safely with other locking list functions. The head item is
2374 * returned or %NULL if the list is empty.
2375 */
2376
2377 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2378 {
2379 unsigned long flags;
2380 struct sk_buff *result;
2381
2382 spin_lock_irqsave(&list->lock, flags);
2383 result = __skb_dequeue(list);
2384 spin_unlock_irqrestore(&list->lock, flags);
2385 return result;
2386 }
2387 EXPORT_SYMBOL(skb_dequeue);
2388
2389 /**
2390 * skb_dequeue_tail - remove from the tail of the queue
2391 * @list: list to dequeue from
2392 *
2393 * Remove the tail of the list. The list lock is taken so the function
2394 * may be used safely with other locking list functions. The tail item is
2395 * returned or %NULL if the list is empty.
2396 */
2397 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2398 {
2399 unsigned long flags;
2400 struct sk_buff *result;
2401
2402 spin_lock_irqsave(&list->lock, flags);
2403 result = __skb_dequeue_tail(list);
2404 spin_unlock_irqrestore(&list->lock, flags);
2405 return result;
2406 }
2407 EXPORT_SYMBOL(skb_dequeue_tail);
2408
2409 /**
2410 * skb_queue_purge - empty a list
2411 * @list: list to empty
2412 *
2413 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2414 * the list and one reference dropped. This function takes the list
2415 * lock and is atomic with respect to other list locking functions.
2416 */
2417 void skb_queue_purge(struct sk_buff_head *list)
2418 {
2419 struct sk_buff *skb;
2420 while ((skb = skb_dequeue(list)) != NULL)
2421 kfree_skb(skb);
2422 }
2423 EXPORT_SYMBOL(skb_queue_purge);
2424
2425 /**
2426 * skb_rbtree_purge - empty a skb rbtree
2427 * @root: root of the rbtree to empty
2428 *
2429 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2430 * the list and one reference dropped. This function does not take
2431 * any lock. Synchronization should be handled by the caller (e.g., TCP
2432 * out-of-order queue is protected by the socket lock).
2433 */
2434 void skb_rbtree_purge(struct rb_root *root)
2435 {
2436 struct sk_buff *skb, *next;
2437
2438 rbtree_postorder_for_each_entry_safe(skb, next, root, rbnode)
2439 kfree_skb(skb);
2440
2441 *root = RB_ROOT;
2442 }
2443
2444 /**
2445 * skb_queue_head - queue a buffer at the list head
2446 * @list: list to use
2447 * @newsk: buffer to queue
2448 *
2449 * Queue a buffer at the start of the list. This function takes the
2450 * list lock and can be used safely with other locking &sk_buff functions
2451 * safely.
2452 *
2453 * A buffer cannot be placed on two lists at the same time.
2454 */
2455 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2456 {
2457 unsigned long flags;
2458
2459 spin_lock_irqsave(&list->lock, flags);
2460 __skb_queue_head(list, newsk);
2461 spin_unlock_irqrestore(&list->lock, flags);
2462 }
2463 EXPORT_SYMBOL(skb_queue_head);
2464
2465 /**
2466 * skb_queue_tail - queue a buffer at the list tail
2467 * @list: list to use
2468 * @newsk: buffer to queue
2469 *
2470 * Queue a buffer at the tail of the list. This function takes the
2471 * list lock and can be used safely with other locking &sk_buff functions
2472 * safely.
2473 *
2474 * A buffer cannot be placed on two lists at the same time.
2475 */
2476 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2477 {
2478 unsigned long flags;
2479
2480 spin_lock_irqsave(&list->lock, flags);
2481 __skb_queue_tail(list, newsk);
2482 spin_unlock_irqrestore(&list->lock, flags);
2483 }
2484 EXPORT_SYMBOL(skb_queue_tail);
2485
2486 /**
2487 * skb_unlink - remove a buffer from a list
2488 * @skb: buffer to remove
2489 * @list: list to use
2490 *
2491 * Remove a packet from a list. The list locks are taken and this
2492 * function is atomic with respect to other list locked calls
2493 *
2494 * You must know what list the SKB is on.
2495 */
2496 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2497 {
2498 unsigned long flags;
2499
2500 spin_lock_irqsave(&list->lock, flags);
2501 __skb_unlink(skb, list);
2502 spin_unlock_irqrestore(&list->lock, flags);
2503 }
2504 EXPORT_SYMBOL(skb_unlink);
2505
2506 /**
2507 * skb_append - append a buffer
2508 * @old: buffer to insert after
2509 * @newsk: buffer to insert
2510 * @list: list to use
2511 *
2512 * Place a packet after a given packet in a list. The list locks are taken
2513 * and this function is atomic with respect to other list locked calls.
2514 * A buffer cannot be placed on two lists at the same time.
2515 */
2516 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2517 {
2518 unsigned long flags;
2519
2520 spin_lock_irqsave(&list->lock, flags);
2521 __skb_queue_after(list, old, newsk);
2522 spin_unlock_irqrestore(&list->lock, flags);
2523 }
2524 EXPORT_SYMBOL(skb_append);
2525
2526 /**
2527 * skb_insert - insert a buffer
2528 * @old: buffer to insert before
2529 * @newsk: buffer to insert
2530 * @list: list to use
2531 *
2532 * Place a packet before a given packet in a list. The list locks are
2533 * taken and this function is atomic with respect to other list locked
2534 * calls.
2535 *
2536 * A buffer cannot be placed on two lists at the same time.
2537 */
2538 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2539 {
2540 unsigned long flags;
2541
2542 spin_lock_irqsave(&list->lock, flags);
2543 __skb_insert(newsk, old->prev, old, list);
2544 spin_unlock_irqrestore(&list->lock, flags);
2545 }
2546 EXPORT_SYMBOL(skb_insert);
2547
2548 static inline void skb_split_inside_header(struct sk_buff *skb,
2549 struct sk_buff* skb1,
2550 const u32 len, const int pos)
2551 {
2552 int i;
2553
2554 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2555 pos - len);
2556 /* And move data appendix as is. */
2557 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2558 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2559
2560 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2561 skb_shinfo(skb)->nr_frags = 0;
2562 skb1->data_len = skb->data_len;
2563 skb1->len += skb1->data_len;
2564 skb->data_len = 0;
2565 skb->len = len;
2566 skb_set_tail_pointer(skb, len);
2567 }
2568
2569 static inline void skb_split_no_header(struct sk_buff *skb,
2570 struct sk_buff* skb1,
2571 const u32 len, int pos)
2572 {
2573 int i, k = 0;
2574 const int nfrags = skb_shinfo(skb)->nr_frags;
2575
2576 skb_shinfo(skb)->nr_frags = 0;
2577 skb1->len = skb1->data_len = skb->len - len;
2578 skb->len = len;
2579 skb->data_len = len - pos;
2580
2581 for (i = 0; i < nfrags; i++) {
2582 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2583
2584 if (pos + size > len) {
2585 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2586
2587 if (pos < len) {
2588 /* Split frag.
2589 * We have two variants in this case:
2590 * 1. Move all the frag to the second
2591 * part, if it is possible. F.e.
2592 * this approach is mandatory for TUX,
2593 * where splitting is expensive.
2594 * 2. Split is accurately. We make this.
2595 */
2596 skb_frag_ref(skb, i);
2597 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2598 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2599 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2600 skb_shinfo(skb)->nr_frags++;
2601 }
2602 k++;
2603 } else
2604 skb_shinfo(skb)->nr_frags++;
2605 pos += size;
2606 }
2607 skb_shinfo(skb1)->nr_frags = k;
2608 }
2609
2610 /**
2611 * skb_split - Split fragmented skb to two parts at length len.
2612 * @skb: the buffer to split
2613 * @skb1: the buffer to receive the second part
2614 * @len: new length for skb
2615 */
2616 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2617 {
2618 int pos = skb_headlen(skb);
2619
2620 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2621 if (len < pos) /* Split line is inside header. */
2622 skb_split_inside_header(skb, skb1, len, pos);
2623 else /* Second chunk has no header, nothing to copy. */
2624 skb_split_no_header(skb, skb1, len, pos);
2625 }
2626 EXPORT_SYMBOL(skb_split);
2627
2628 /* Shifting from/to a cloned skb is a no-go.
2629 *
2630 * Caller cannot keep skb_shinfo related pointers past calling here!
2631 */
2632 static int skb_prepare_for_shift(struct sk_buff *skb)
2633 {
2634 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2635 }
2636
2637 /**
2638 * skb_shift - Shifts paged data partially from skb to another
2639 * @tgt: buffer into which tail data gets added
2640 * @skb: buffer from which the paged data comes from
2641 * @shiftlen: shift up to this many bytes
2642 *
2643 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2644 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2645 * It's up to caller to free skb if everything was shifted.
2646 *
2647 * If @tgt runs out of frags, the whole operation is aborted.
2648 *
2649 * Skb cannot include anything else but paged data while tgt is allowed
2650 * to have non-paged data as well.
2651 *
2652 * TODO: full sized shift could be optimized but that would need
2653 * specialized skb free'er to handle frags without up-to-date nr_frags.
2654 */
2655 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2656 {
2657 int from, to, merge, todo;
2658 struct skb_frag_struct *fragfrom, *fragto;
2659
2660 BUG_ON(shiftlen > skb->len);
2661
2662 if (skb_headlen(skb))
2663 return 0;
2664
2665 todo = shiftlen;
2666 from = 0;
2667 to = skb_shinfo(tgt)->nr_frags;
2668 fragfrom = &skb_shinfo(skb)->frags[from];
2669
2670 /* Actual merge is delayed until the point when we know we can
2671 * commit all, so that we don't have to undo partial changes
2672 */
2673 if (!to ||
2674 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2675 fragfrom->page_offset)) {
2676 merge = -1;
2677 } else {
2678 merge = to - 1;
2679
2680 todo -= skb_frag_size(fragfrom);
2681 if (todo < 0) {
2682 if (skb_prepare_for_shift(skb) ||
2683 skb_prepare_for_shift(tgt))
2684 return 0;
2685
2686 /* All previous frag pointers might be stale! */
2687 fragfrom = &skb_shinfo(skb)->frags[from];
2688 fragto = &skb_shinfo(tgt)->frags[merge];
2689
2690 skb_frag_size_add(fragto, shiftlen);
2691 skb_frag_size_sub(fragfrom, shiftlen);
2692 fragfrom->page_offset += shiftlen;
2693
2694 goto onlymerged;
2695 }
2696
2697 from++;
2698 }
2699
2700 /* Skip full, not-fitting skb to avoid expensive operations */
2701 if ((shiftlen == skb->len) &&
2702 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2703 return 0;
2704
2705 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2706 return 0;
2707
2708 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2709 if (to == MAX_SKB_FRAGS)
2710 return 0;
2711
2712 fragfrom = &skb_shinfo(skb)->frags[from];
2713 fragto = &skb_shinfo(tgt)->frags[to];
2714
2715 if (todo >= skb_frag_size(fragfrom)) {
2716 *fragto = *fragfrom;
2717 todo -= skb_frag_size(fragfrom);
2718 from++;
2719 to++;
2720
2721 } else {
2722 __skb_frag_ref(fragfrom);
2723 fragto->page = fragfrom->page;
2724 fragto->page_offset = fragfrom->page_offset;
2725 skb_frag_size_set(fragto, todo);
2726
2727 fragfrom->page_offset += todo;
2728 skb_frag_size_sub(fragfrom, todo);
2729 todo = 0;
2730
2731 to++;
2732 break;
2733 }
2734 }
2735
2736 /* Ready to "commit" this state change to tgt */
2737 skb_shinfo(tgt)->nr_frags = to;
2738
2739 if (merge >= 0) {
2740 fragfrom = &skb_shinfo(skb)->frags[0];
2741 fragto = &skb_shinfo(tgt)->frags[merge];
2742
2743 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2744 __skb_frag_unref(fragfrom);
2745 }
2746
2747 /* Reposition in the original skb */
2748 to = 0;
2749 while (from < skb_shinfo(skb)->nr_frags)
2750 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2751 skb_shinfo(skb)->nr_frags = to;
2752
2753 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2754
2755 onlymerged:
2756 /* Most likely the tgt won't ever need its checksum anymore, skb on
2757 * the other hand might need it if it needs to be resent
2758 */
2759 tgt->ip_summed = CHECKSUM_PARTIAL;
2760 skb->ip_summed = CHECKSUM_PARTIAL;
2761
2762 /* Yak, is it really working this way? Some helper please? */
2763 skb->len -= shiftlen;
2764 skb->data_len -= shiftlen;
2765 skb->truesize -= shiftlen;
2766 tgt->len += shiftlen;
2767 tgt->data_len += shiftlen;
2768 tgt->truesize += shiftlen;
2769
2770 return shiftlen;
2771 }
2772
2773 /**
2774 * skb_prepare_seq_read - Prepare a sequential read of skb data
2775 * @skb: the buffer to read
2776 * @from: lower offset of data to be read
2777 * @to: upper offset of data to be read
2778 * @st: state variable
2779 *
2780 * Initializes the specified state variable. Must be called before
2781 * invoking skb_seq_read() for the first time.
2782 */
2783 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2784 unsigned int to, struct skb_seq_state *st)
2785 {
2786 st->lower_offset = from;
2787 st->upper_offset = to;
2788 st->root_skb = st->cur_skb = skb;
2789 st->frag_idx = st->stepped_offset = 0;
2790 st->frag_data = NULL;
2791 }
2792 EXPORT_SYMBOL(skb_prepare_seq_read);
2793
2794 /**
2795 * skb_seq_read - Sequentially read skb data
2796 * @consumed: number of bytes consumed by the caller so far
2797 * @data: destination pointer for data to be returned
2798 * @st: state variable
2799 *
2800 * Reads a block of skb data at @consumed relative to the
2801 * lower offset specified to skb_prepare_seq_read(). Assigns
2802 * the head of the data block to @data and returns the length
2803 * of the block or 0 if the end of the skb data or the upper
2804 * offset has been reached.
2805 *
2806 * The caller is not required to consume all of the data
2807 * returned, i.e. @consumed is typically set to the number
2808 * of bytes already consumed and the next call to
2809 * skb_seq_read() will return the remaining part of the block.
2810 *
2811 * Note 1: The size of each block of data returned can be arbitrary,
2812 * this limitation is the cost for zerocopy sequential
2813 * reads of potentially non linear data.
2814 *
2815 * Note 2: Fragment lists within fragments are not implemented
2816 * at the moment, state->root_skb could be replaced with
2817 * a stack for this purpose.
2818 */
2819 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2820 struct skb_seq_state *st)
2821 {
2822 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2823 skb_frag_t *frag;
2824
2825 if (unlikely(abs_offset >= st->upper_offset)) {
2826 if (st->frag_data) {
2827 kunmap_atomic(st->frag_data);
2828 st->frag_data = NULL;
2829 }
2830 return 0;
2831 }
2832
2833 next_skb:
2834 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2835
2836 if (abs_offset < block_limit && !st->frag_data) {
2837 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2838 return block_limit - abs_offset;
2839 }
2840
2841 if (st->frag_idx == 0 && !st->frag_data)
2842 st->stepped_offset += skb_headlen(st->cur_skb);
2843
2844 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2845 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2846 block_limit = skb_frag_size(frag) + st->stepped_offset;
2847
2848 if (abs_offset < block_limit) {
2849 if (!st->frag_data)
2850 st->frag_data = kmap_atomic(skb_frag_page(frag));
2851
2852 *data = (u8 *) st->frag_data + frag->page_offset +
2853 (abs_offset - st->stepped_offset);
2854
2855 return block_limit - abs_offset;
2856 }
2857
2858 if (st->frag_data) {
2859 kunmap_atomic(st->frag_data);
2860 st->frag_data = NULL;
2861 }
2862
2863 st->frag_idx++;
2864 st->stepped_offset += skb_frag_size(frag);
2865 }
2866
2867 if (st->frag_data) {
2868 kunmap_atomic(st->frag_data);
2869 st->frag_data = NULL;
2870 }
2871
2872 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2873 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2874 st->frag_idx = 0;
2875 goto next_skb;
2876 } else if (st->cur_skb->next) {
2877 st->cur_skb = st->cur_skb->next;
2878 st->frag_idx = 0;
2879 goto next_skb;
2880 }
2881
2882 return 0;
2883 }
2884 EXPORT_SYMBOL(skb_seq_read);
2885
2886 /**
2887 * skb_abort_seq_read - Abort a sequential read of skb data
2888 * @st: state variable
2889 *
2890 * Must be called if skb_seq_read() was not called until it
2891 * returned 0.
2892 */
2893 void skb_abort_seq_read(struct skb_seq_state *st)
2894 {
2895 if (st->frag_data)
2896 kunmap_atomic(st->frag_data);
2897 }
2898 EXPORT_SYMBOL(skb_abort_seq_read);
2899
2900 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2901
2902 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2903 struct ts_config *conf,
2904 struct ts_state *state)
2905 {
2906 return skb_seq_read(offset, text, TS_SKB_CB(state));
2907 }
2908
2909 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2910 {
2911 skb_abort_seq_read(TS_SKB_CB(state));
2912 }
2913
2914 /**
2915 * skb_find_text - Find a text pattern in skb data
2916 * @skb: the buffer to look in
2917 * @from: search offset
2918 * @to: search limit
2919 * @config: textsearch configuration
2920 *
2921 * Finds a pattern in the skb data according to the specified
2922 * textsearch configuration. Use textsearch_next() to retrieve
2923 * subsequent occurrences of the pattern. Returns the offset
2924 * to the first occurrence or UINT_MAX if no match was found.
2925 */
2926 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2927 unsigned int to, struct ts_config *config)
2928 {
2929 struct ts_state state;
2930 unsigned int ret;
2931
2932 config->get_next_block = skb_ts_get_next_block;
2933 config->finish = skb_ts_finish;
2934
2935 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2936
2937 ret = textsearch_find(config, &state);
2938 return (ret <= to - from ? ret : UINT_MAX);
2939 }
2940 EXPORT_SYMBOL(skb_find_text);
2941
2942 /**
2943 * skb_append_datato_frags - append the user data to a skb
2944 * @sk: sock structure
2945 * @skb: skb structure to be appended with user data.
2946 * @getfrag: call back function to be used for getting the user data
2947 * @from: pointer to user message iov
2948 * @length: length of the iov message
2949 *
2950 * Description: This procedure append the user data in the fragment part
2951 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2952 */
2953 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2954 int (*getfrag)(void *from, char *to, int offset,
2955 int len, int odd, struct sk_buff *skb),
2956 void *from, int length)
2957 {
2958 int frg_cnt = skb_shinfo(skb)->nr_frags;
2959 int copy;
2960 int offset = 0;
2961 int ret;
2962 struct page_frag *pfrag = &current->task_frag;
2963
2964 do {
2965 /* Return error if we don't have space for new frag */
2966 if (frg_cnt >= MAX_SKB_FRAGS)
2967 return -EMSGSIZE;
2968
2969 if (!sk_page_frag_refill(sk, pfrag))
2970 return -ENOMEM;
2971
2972 /* copy the user data to page */
2973 copy = min_t(int, length, pfrag->size - pfrag->offset);
2974
2975 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2976 offset, copy, 0, skb);
2977 if (ret < 0)
2978 return -EFAULT;
2979
2980 /* copy was successful so update the size parameters */
2981 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2982 copy);
2983 frg_cnt++;
2984 pfrag->offset += copy;
2985 get_page(pfrag->page);
2986
2987 skb->truesize += copy;
2988 atomic_add(copy, &sk->sk_wmem_alloc);
2989 skb->len += copy;
2990 skb->data_len += copy;
2991 offset += copy;
2992 length -= copy;
2993
2994 } while (length > 0);
2995
2996 return 0;
2997 }
2998 EXPORT_SYMBOL(skb_append_datato_frags);
2999
3000 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3001 int offset, size_t size)
3002 {
3003 int i = skb_shinfo(skb)->nr_frags;
3004
3005 if (skb_can_coalesce(skb, i, page, offset)) {
3006 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3007 } else if (i < MAX_SKB_FRAGS) {
3008 get_page(page);
3009 skb_fill_page_desc(skb, i, page, offset, size);
3010 } else {
3011 return -EMSGSIZE;
3012 }
3013
3014 return 0;
3015 }
3016 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3017
3018 /**
3019 * skb_pull_rcsum - pull skb and update receive checksum
3020 * @skb: buffer to update
3021 * @len: length of data pulled
3022 *
3023 * This function performs an skb_pull on the packet and updates
3024 * the CHECKSUM_COMPLETE checksum. It should be used on
3025 * receive path processing instead of skb_pull unless you know
3026 * that the checksum difference is zero (e.g., a valid IP header)
3027 * or you are setting ip_summed to CHECKSUM_NONE.
3028 */
3029 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3030 {
3031 unsigned char *data = skb->data;
3032
3033 BUG_ON(len > skb->len);
3034 __skb_pull(skb, len);
3035 skb_postpull_rcsum(skb, data, len);
3036 return skb->data;
3037 }
3038 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3039
3040 /**
3041 * skb_segment - Perform protocol segmentation on skb.
3042 * @head_skb: buffer to segment
3043 * @features: features for the output path (see dev->features)
3044 *
3045 * This function performs segmentation on the given skb. It returns
3046 * a pointer to the first in a list of new skbs for the segments.
3047 * In case of error it returns ERR_PTR(err).
3048 */
3049 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3050 netdev_features_t features)
3051 {
3052 struct sk_buff *segs = NULL;
3053 struct sk_buff *tail = NULL;
3054 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3055 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3056 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3057 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3058 struct sk_buff *frag_skb = head_skb;
3059 unsigned int offset = doffset;
3060 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3061 unsigned int partial_segs = 0;
3062 unsigned int headroom;
3063 unsigned int len = head_skb->len;
3064 __be16 proto;
3065 bool csum, sg;
3066 int nfrags = skb_shinfo(head_skb)->nr_frags;
3067 int err = -ENOMEM;
3068 int i = 0;
3069 int pos;
3070 int dummy;
3071
3072 __skb_push(head_skb, doffset);
3073 proto = skb_network_protocol(head_skb, &dummy);
3074 if (unlikely(!proto))
3075 return ERR_PTR(-EINVAL);
3076
3077 sg = !!(features & NETIF_F_SG);
3078 csum = !!can_checksum_protocol(features, proto);
3079
3080 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3081 if (!(features & NETIF_F_GSO_PARTIAL)) {
3082 struct sk_buff *iter;
3083 unsigned int frag_len;
3084
3085 if (!list_skb ||
3086 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3087 goto normal;
3088
3089 /* If we get here then all the required
3090 * GSO features except frag_list are supported.
3091 * Try to split the SKB to multiple GSO SKBs
3092 * with no frag_list.
3093 * Currently we can do that only when the buffers don't
3094 * have a linear part and all the buffers except
3095 * the last are of the same length.
3096 */
3097 frag_len = list_skb->len;
3098 skb_walk_frags(head_skb, iter) {
3099 if (frag_len != iter->len && iter->next)
3100 goto normal;
3101 if (skb_headlen(iter))
3102 goto normal;
3103
3104 len -= iter->len;
3105 }
3106
3107 if (len != frag_len)
3108 goto normal;
3109 }
3110
3111 /* GSO partial only requires that we trim off any excess that
3112 * doesn't fit into an MSS sized block, so take care of that
3113 * now.
3114 */
3115 partial_segs = len / mss;
3116 if (partial_segs > 1)
3117 mss *= partial_segs;
3118 else
3119 partial_segs = 0;
3120 }
3121
3122 normal:
3123 headroom = skb_headroom(head_skb);
3124 pos = skb_headlen(head_skb);
3125
3126 do {
3127 struct sk_buff *nskb;
3128 skb_frag_t *nskb_frag;
3129 int hsize;
3130 int size;
3131
3132 if (unlikely(mss == GSO_BY_FRAGS)) {
3133 len = list_skb->len;
3134 } else {
3135 len = head_skb->len - offset;
3136 if (len > mss)
3137 len = mss;
3138 }
3139
3140 hsize = skb_headlen(head_skb) - offset;
3141 if (hsize < 0)
3142 hsize = 0;
3143 if (hsize > len || !sg)
3144 hsize = len;
3145
3146 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3147 (skb_headlen(list_skb) == len || sg)) {
3148 BUG_ON(skb_headlen(list_skb) > len);
3149
3150 i = 0;
3151 nfrags = skb_shinfo(list_skb)->nr_frags;
3152 frag = skb_shinfo(list_skb)->frags;
3153 frag_skb = list_skb;
3154 pos += skb_headlen(list_skb);
3155
3156 while (pos < offset + len) {
3157 BUG_ON(i >= nfrags);
3158
3159 size = skb_frag_size(frag);
3160 if (pos + size > offset + len)
3161 break;
3162
3163 i++;
3164 pos += size;
3165 frag++;
3166 }
3167
3168 nskb = skb_clone(list_skb, GFP_ATOMIC);
3169 list_skb = list_skb->next;
3170
3171 if (unlikely(!nskb))
3172 goto err;
3173
3174 if (unlikely(pskb_trim(nskb, len))) {
3175 kfree_skb(nskb);
3176 goto err;
3177 }
3178
3179 hsize = skb_end_offset(nskb);
3180 if (skb_cow_head(nskb, doffset + headroom)) {
3181 kfree_skb(nskb);
3182 goto err;
3183 }
3184
3185 nskb->truesize += skb_end_offset(nskb) - hsize;
3186 skb_release_head_state(nskb);
3187 __skb_push(nskb, doffset);
3188 } else {
3189 nskb = __alloc_skb(hsize + doffset + headroom,
3190 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3191 NUMA_NO_NODE);
3192
3193 if (unlikely(!nskb))
3194 goto err;
3195
3196 skb_reserve(nskb, headroom);
3197 __skb_put(nskb, doffset);
3198 }
3199
3200 if (segs)
3201 tail->next = nskb;
3202 else
3203 segs = nskb;
3204 tail = nskb;
3205
3206 __copy_skb_header(nskb, head_skb);
3207
3208 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3209 skb_reset_mac_len(nskb);
3210
3211 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3212 nskb->data - tnl_hlen,
3213 doffset + tnl_hlen);
3214
3215 if (nskb->len == len + doffset)
3216 goto perform_csum_check;
3217
3218 if (!sg) {
3219 if (!nskb->remcsum_offload)
3220 nskb->ip_summed = CHECKSUM_NONE;
3221 SKB_GSO_CB(nskb)->csum =
3222 skb_copy_and_csum_bits(head_skb, offset,
3223 skb_put(nskb, len),
3224 len, 0);
3225 SKB_GSO_CB(nskb)->csum_start =
3226 skb_headroom(nskb) + doffset;
3227 continue;
3228 }
3229
3230 nskb_frag = skb_shinfo(nskb)->frags;
3231
3232 skb_copy_from_linear_data_offset(head_skb, offset,
3233 skb_put(nskb, hsize), hsize);
3234
3235 skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3236 SKBTX_SHARED_FRAG;
3237
3238 while (pos < offset + len) {
3239 if (i >= nfrags) {
3240 BUG_ON(skb_headlen(list_skb));
3241
3242 i = 0;
3243 nfrags = skb_shinfo(list_skb)->nr_frags;
3244 frag = skb_shinfo(list_skb)->frags;
3245 frag_skb = list_skb;
3246
3247 BUG_ON(!nfrags);
3248
3249 list_skb = list_skb->next;
3250 }
3251
3252 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3253 MAX_SKB_FRAGS)) {
3254 net_warn_ratelimited(
3255 "skb_segment: too many frags: %u %u\n",
3256 pos, mss);
3257 goto err;
3258 }
3259
3260 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3261 goto err;
3262
3263 *nskb_frag = *frag;
3264 __skb_frag_ref(nskb_frag);
3265 size = skb_frag_size(nskb_frag);
3266
3267 if (pos < offset) {
3268 nskb_frag->page_offset += offset - pos;
3269 skb_frag_size_sub(nskb_frag, offset - pos);
3270 }
3271
3272 skb_shinfo(nskb)->nr_frags++;
3273
3274 if (pos + size <= offset + len) {
3275 i++;
3276 frag++;
3277 pos += size;
3278 } else {
3279 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3280 goto skip_fraglist;
3281 }
3282
3283 nskb_frag++;
3284 }
3285
3286 skip_fraglist:
3287 nskb->data_len = len - hsize;
3288 nskb->len += nskb->data_len;
3289 nskb->truesize += nskb->data_len;
3290
3291 perform_csum_check:
3292 if (!csum) {
3293 if (skb_has_shared_frag(nskb)) {
3294 err = __skb_linearize(nskb);
3295 if (err)
3296 goto err;
3297 }
3298 if (!nskb->remcsum_offload)
3299 nskb->ip_summed = CHECKSUM_NONE;
3300 SKB_GSO_CB(nskb)->csum =
3301 skb_checksum(nskb, doffset,
3302 nskb->len - doffset, 0);
3303 SKB_GSO_CB(nskb)->csum_start =
3304 skb_headroom(nskb) + doffset;
3305 }
3306 } while ((offset += len) < head_skb->len);
3307
3308 /* Some callers want to get the end of the list.
3309 * Put it in segs->prev to avoid walking the list.
3310 * (see validate_xmit_skb_list() for example)
3311 */
3312 segs->prev = tail;
3313
3314 if (partial_segs) {
3315 struct sk_buff *iter;
3316 int type = skb_shinfo(head_skb)->gso_type;
3317 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3318
3319 /* Update type to add partial and then remove dodgy if set */
3320 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3321 type &= ~SKB_GSO_DODGY;
3322
3323 /* Update GSO info and prepare to start updating headers on
3324 * our way back down the stack of protocols.
3325 */
3326 for (iter = segs; iter; iter = iter->next) {
3327 skb_shinfo(iter)->gso_size = gso_size;
3328 skb_shinfo(iter)->gso_segs = partial_segs;
3329 skb_shinfo(iter)->gso_type = type;
3330 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3331 }
3332
3333 if (tail->len - doffset <= gso_size)
3334 skb_shinfo(tail)->gso_size = 0;
3335 else if (tail != segs)
3336 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3337 }
3338
3339 /* Following permits correct backpressure, for protocols
3340 * using skb_set_owner_w().
3341 * Idea is to tranfert ownership from head_skb to last segment.
3342 */
3343 if (head_skb->destructor == sock_wfree) {
3344 swap(tail->truesize, head_skb->truesize);
3345 swap(tail->destructor, head_skb->destructor);
3346 swap(tail->sk, head_skb->sk);
3347 }
3348 return segs;
3349
3350 err:
3351 kfree_skb_list(segs);
3352 return ERR_PTR(err);
3353 }
3354 EXPORT_SYMBOL_GPL(skb_segment);
3355
3356 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3357 {
3358 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3359 unsigned int offset = skb_gro_offset(skb);
3360 unsigned int headlen = skb_headlen(skb);
3361 unsigned int len = skb_gro_len(skb);
3362 struct sk_buff *lp, *p = *head;
3363 unsigned int delta_truesize;
3364
3365 if (unlikely(p->len + len >= 65536))
3366 return -E2BIG;
3367
3368 lp = NAPI_GRO_CB(p)->last;
3369 pinfo = skb_shinfo(lp);
3370
3371 if (headlen <= offset) {
3372 skb_frag_t *frag;
3373 skb_frag_t *frag2;
3374 int i = skbinfo->nr_frags;
3375 int nr_frags = pinfo->nr_frags + i;
3376
3377 if (nr_frags > MAX_SKB_FRAGS)
3378 goto merge;
3379
3380 offset -= headlen;
3381 pinfo->nr_frags = nr_frags;
3382 skbinfo->nr_frags = 0;
3383
3384 frag = pinfo->frags + nr_frags;
3385 frag2 = skbinfo->frags + i;
3386 do {
3387 *--frag = *--frag2;
3388 } while (--i);
3389
3390 frag->page_offset += offset;
3391 skb_frag_size_sub(frag, offset);
3392
3393 /* all fragments truesize : remove (head size + sk_buff) */
3394 delta_truesize = skb->truesize -
3395 SKB_TRUESIZE(skb_end_offset(skb));
3396
3397 skb->truesize -= skb->data_len;
3398 skb->len -= skb->data_len;
3399 skb->data_len = 0;
3400
3401 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3402 goto done;
3403 } else if (skb->head_frag) {
3404 int nr_frags = pinfo->nr_frags;
3405 skb_frag_t *frag = pinfo->frags + nr_frags;
3406 struct page *page = virt_to_head_page(skb->head);
3407 unsigned int first_size = headlen - offset;
3408 unsigned int first_offset;
3409
3410 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3411 goto merge;
3412
3413 first_offset = skb->data -
3414 (unsigned char *)page_address(page) +
3415 offset;
3416
3417 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3418
3419 frag->page.p = page;
3420 frag->page_offset = first_offset;
3421 skb_frag_size_set(frag, first_size);
3422
3423 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3424 /* We dont need to clear skbinfo->nr_frags here */
3425
3426 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3427 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3428 goto done;
3429 }
3430
3431 merge:
3432 delta_truesize = skb->truesize;
3433 if (offset > headlen) {
3434 unsigned int eat = offset - headlen;
3435
3436 skbinfo->frags[0].page_offset += eat;
3437 skb_frag_size_sub(&skbinfo->frags[0], eat);
3438 skb->data_len -= eat;
3439 skb->len -= eat;
3440 offset = headlen;
3441 }
3442
3443 __skb_pull(skb, offset);
3444
3445 if (NAPI_GRO_CB(p)->last == p)
3446 skb_shinfo(p)->frag_list = skb;
3447 else
3448 NAPI_GRO_CB(p)->last->next = skb;
3449 NAPI_GRO_CB(p)->last = skb;
3450 __skb_header_release(skb);
3451 lp = p;
3452
3453 done:
3454 NAPI_GRO_CB(p)->count++;
3455 p->data_len += len;
3456 p->truesize += delta_truesize;
3457 p->len += len;
3458 if (lp != p) {
3459 lp->data_len += len;
3460 lp->truesize += delta_truesize;
3461 lp->len += len;
3462 }
3463 NAPI_GRO_CB(skb)->same_flow = 1;
3464 return 0;
3465 }
3466 EXPORT_SYMBOL_GPL(skb_gro_receive);
3467
3468 void __init skb_init(void)
3469 {
3470 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3471 sizeof(struct sk_buff),
3472 0,
3473 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3474 NULL);
3475 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3476 sizeof(struct sk_buff_fclones),
3477 0,
3478 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3479 NULL);
3480 }
3481
3482 /**
3483 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3484 * @skb: Socket buffer containing the buffers to be mapped
3485 * @sg: The scatter-gather list to map into
3486 * @offset: The offset into the buffer's contents to start mapping
3487 * @len: Length of buffer space to be mapped
3488 *
3489 * Fill the specified scatter-gather list with mappings/pointers into a
3490 * region of the buffer space attached to a socket buffer.
3491 */
3492 static int
3493 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3494 {
3495 int start = skb_headlen(skb);
3496 int i, copy = start - offset;
3497 struct sk_buff *frag_iter;
3498 int elt = 0;
3499
3500 if (copy > 0) {
3501 if (copy > len)
3502 copy = len;
3503 sg_set_buf(sg, skb->data + offset, copy);
3504 elt++;
3505 if ((len -= copy) == 0)
3506 return elt;
3507 offset += copy;
3508 }
3509
3510 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3511 int end;
3512
3513 WARN_ON(start > offset + len);
3514
3515 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3516 if ((copy = end - offset) > 0) {
3517 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3518
3519 if (copy > len)
3520 copy = len;
3521 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3522 frag->page_offset+offset-start);
3523 elt++;
3524 if (!(len -= copy))
3525 return elt;
3526 offset += copy;
3527 }
3528 start = end;
3529 }
3530
3531 skb_walk_frags(skb, frag_iter) {
3532 int end;
3533
3534 WARN_ON(start > offset + len);
3535
3536 end = start + frag_iter->len;
3537 if ((copy = end - offset) > 0) {
3538 if (copy > len)
3539 copy = len;
3540 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3541 copy);
3542 if ((len -= copy) == 0)
3543 return elt;
3544 offset += copy;
3545 }
3546 start = end;
3547 }
3548 BUG_ON(len);
3549 return elt;
3550 }
3551
3552 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3553 * sglist without mark the sg which contain last skb data as the end.
3554 * So the caller can mannipulate sg list as will when padding new data after
3555 * the first call without calling sg_unmark_end to expend sg list.
3556 *
3557 * Scenario to use skb_to_sgvec_nomark:
3558 * 1. sg_init_table
3559 * 2. skb_to_sgvec_nomark(payload1)
3560 * 3. skb_to_sgvec_nomark(payload2)
3561 *
3562 * This is equivalent to:
3563 * 1. sg_init_table
3564 * 2. skb_to_sgvec(payload1)
3565 * 3. sg_unmark_end
3566 * 4. skb_to_sgvec(payload2)
3567 *
3568 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3569 * is more preferable.
3570 */
3571 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3572 int offset, int len)
3573 {
3574 return __skb_to_sgvec(skb, sg, offset, len);
3575 }
3576 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3577
3578 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3579 {
3580 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3581
3582 sg_mark_end(&sg[nsg - 1]);
3583
3584 return nsg;
3585 }
3586 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3587
3588 /**
3589 * skb_cow_data - Check that a socket buffer's data buffers are writable
3590 * @skb: The socket buffer to check.
3591 * @tailbits: Amount of trailing space to be added
3592 * @trailer: Returned pointer to the skb where the @tailbits space begins
3593 *
3594 * Make sure that the data buffers attached to a socket buffer are
3595 * writable. If they are not, private copies are made of the data buffers
3596 * and the socket buffer is set to use these instead.
3597 *
3598 * If @tailbits is given, make sure that there is space to write @tailbits
3599 * bytes of data beyond current end of socket buffer. @trailer will be
3600 * set to point to the skb in which this space begins.
3601 *
3602 * The number of scatterlist elements required to completely map the
3603 * COW'd and extended socket buffer will be returned.
3604 */
3605 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3606 {
3607 int copyflag;
3608 int elt;
3609 struct sk_buff *skb1, **skb_p;
3610
3611 /* If skb is cloned or its head is paged, reallocate
3612 * head pulling out all the pages (pages are considered not writable
3613 * at the moment even if they are anonymous).
3614 */
3615 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3616 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3617 return -ENOMEM;
3618
3619 /* Easy case. Most of packets will go this way. */
3620 if (!skb_has_frag_list(skb)) {
3621 /* A little of trouble, not enough of space for trailer.
3622 * This should not happen, when stack is tuned to generate
3623 * good frames. OK, on miss we reallocate and reserve even more
3624 * space, 128 bytes is fair. */
3625
3626 if (skb_tailroom(skb) < tailbits &&
3627 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3628 return -ENOMEM;
3629
3630 /* Voila! */
3631 *trailer = skb;
3632 return 1;
3633 }
3634
3635 /* Misery. We are in troubles, going to mincer fragments... */
3636
3637 elt = 1;
3638 skb_p = &skb_shinfo(skb)->frag_list;
3639 copyflag = 0;
3640
3641 while ((skb1 = *skb_p) != NULL) {
3642 int ntail = 0;
3643
3644 /* The fragment is partially pulled by someone,
3645 * this can happen on input. Copy it and everything
3646 * after it. */
3647
3648 if (skb_shared(skb1))
3649 copyflag = 1;
3650
3651 /* If the skb is the last, worry about trailer. */
3652
3653 if (skb1->next == NULL && tailbits) {
3654 if (skb_shinfo(skb1)->nr_frags ||
3655 skb_has_frag_list(skb1) ||
3656 skb_tailroom(skb1) < tailbits)
3657 ntail = tailbits + 128;
3658 }
3659
3660 if (copyflag ||
3661 skb_cloned(skb1) ||
3662 ntail ||
3663 skb_shinfo(skb1)->nr_frags ||
3664 skb_has_frag_list(skb1)) {
3665 struct sk_buff *skb2;
3666
3667 /* Fuck, we are miserable poor guys... */
3668 if (ntail == 0)
3669 skb2 = skb_copy(skb1, GFP_ATOMIC);
3670 else
3671 skb2 = skb_copy_expand(skb1,
3672 skb_headroom(skb1),
3673 ntail,
3674 GFP_ATOMIC);
3675 if (unlikely(skb2 == NULL))
3676 return -ENOMEM;
3677
3678 if (skb1->sk)
3679 skb_set_owner_w(skb2, skb1->sk);
3680
3681 /* Looking around. Are we still alive?
3682 * OK, link new skb, drop old one */
3683
3684 skb2->next = skb1->next;
3685 *skb_p = skb2;
3686 kfree_skb(skb1);
3687 skb1 = skb2;
3688 }
3689 elt++;
3690 *trailer = skb1;
3691 skb_p = &skb1->next;
3692 }
3693
3694 return elt;
3695 }
3696 EXPORT_SYMBOL_GPL(skb_cow_data);
3697
3698 static void sock_rmem_free(struct sk_buff *skb)
3699 {
3700 struct sock *sk = skb->sk;
3701
3702 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3703 }
3704
3705 static void skb_set_err_queue(struct sk_buff *skb)
3706 {
3707 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
3708 * So, it is safe to (mis)use it to mark skbs on the error queue.
3709 */
3710 skb->pkt_type = PACKET_OUTGOING;
3711 BUILD_BUG_ON(PACKET_OUTGOING == 0);
3712 }
3713
3714 /*
3715 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3716 */
3717 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3718 {
3719 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3720 (unsigned int)sk->sk_rcvbuf)
3721 return -ENOMEM;
3722
3723 skb_orphan(skb);
3724 skb->sk = sk;
3725 skb->destructor = sock_rmem_free;
3726 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3727 skb_set_err_queue(skb);
3728
3729 /* before exiting rcu section, make sure dst is refcounted */
3730 skb_dst_force(skb);
3731
3732 skb_queue_tail(&sk->sk_error_queue, skb);
3733 if (!sock_flag(sk, SOCK_DEAD))
3734 sk->sk_data_ready(sk);
3735 return 0;
3736 }
3737 EXPORT_SYMBOL(sock_queue_err_skb);
3738
3739 static bool is_icmp_err_skb(const struct sk_buff *skb)
3740 {
3741 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
3742 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
3743 }
3744
3745 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3746 {
3747 struct sk_buff_head *q = &sk->sk_error_queue;
3748 struct sk_buff *skb, *skb_next = NULL;
3749 bool icmp_next = false;
3750 unsigned long flags;
3751
3752 spin_lock_irqsave(&q->lock, flags);
3753 skb = __skb_dequeue(q);
3754 if (skb && (skb_next = skb_peek(q)))
3755 icmp_next = is_icmp_err_skb(skb_next);
3756 spin_unlock_irqrestore(&q->lock, flags);
3757
3758 if (is_icmp_err_skb(skb) && !icmp_next)
3759 sk->sk_err = 0;
3760
3761 if (skb_next)
3762 sk->sk_error_report(sk);
3763
3764 return skb;
3765 }
3766 EXPORT_SYMBOL(sock_dequeue_err_skb);
3767
3768 /**
3769 * skb_clone_sk - create clone of skb, and take reference to socket
3770 * @skb: the skb to clone
3771 *
3772 * This function creates a clone of a buffer that holds a reference on
3773 * sk_refcnt. Buffers created via this function are meant to be
3774 * returned using sock_queue_err_skb, or free via kfree_skb.
3775 *
3776 * When passing buffers allocated with this function to sock_queue_err_skb
3777 * it is necessary to wrap the call with sock_hold/sock_put in order to
3778 * prevent the socket from being released prior to being enqueued on
3779 * the sk_error_queue.
3780 */
3781 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3782 {
3783 struct sock *sk = skb->sk;
3784 struct sk_buff *clone;
3785
3786 if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3787 return NULL;
3788
3789 clone = skb_clone(skb, GFP_ATOMIC);
3790 if (!clone) {
3791 sock_put(sk);
3792 return NULL;
3793 }
3794
3795 clone->sk = sk;
3796 clone->destructor = sock_efree;
3797
3798 return clone;
3799 }
3800 EXPORT_SYMBOL(skb_clone_sk);
3801
3802 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3803 struct sock *sk,
3804 int tstype,
3805 bool opt_stats)
3806 {
3807 struct sock_exterr_skb *serr;
3808 int err;
3809
3810 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
3811
3812 serr = SKB_EXT_ERR(skb);
3813 memset(serr, 0, sizeof(*serr));
3814 serr->ee.ee_errno = ENOMSG;
3815 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3816 serr->ee.ee_info = tstype;
3817 serr->opt_stats = opt_stats;
3818 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
3819 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3820 serr->ee.ee_data = skb_shinfo(skb)->tskey;
3821 if (sk->sk_protocol == IPPROTO_TCP &&
3822 sk->sk_type == SOCK_STREAM)
3823 serr->ee.ee_data -= sk->sk_tskey;
3824 }
3825
3826 err = sock_queue_err_skb(sk, skb);
3827
3828 if (err)
3829 kfree_skb(skb);
3830 }
3831
3832 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3833 {
3834 bool ret;
3835
3836 if (likely(sysctl_tstamp_allow_data || tsonly))
3837 return true;
3838
3839 read_lock_bh(&sk->sk_callback_lock);
3840 ret = sk->sk_socket && sk->sk_socket->file &&
3841 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3842 read_unlock_bh(&sk->sk_callback_lock);
3843 return ret;
3844 }
3845
3846 void skb_complete_tx_timestamp(struct sk_buff *skb,
3847 struct skb_shared_hwtstamps *hwtstamps)
3848 {
3849 struct sock *sk = skb->sk;
3850
3851 if (!skb_may_tx_timestamp(sk, false))
3852 return;
3853
3854 /* Take a reference to prevent skb_orphan() from freeing the socket,
3855 * but only if the socket refcount is not zero.
3856 */
3857 if (likely(atomic_inc_not_zero(&sk->sk_refcnt))) {
3858 *skb_hwtstamps(skb) = *hwtstamps;
3859 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
3860 sock_put(sk);
3861 }
3862 }
3863 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3864
3865 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3866 struct skb_shared_hwtstamps *hwtstamps,
3867 struct sock *sk, int tstype)
3868 {
3869 struct sk_buff *skb;
3870 bool tsonly, opt_stats = false;
3871
3872 if (!sk)
3873 return;
3874
3875 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3876 if (!skb_may_tx_timestamp(sk, tsonly))
3877 return;
3878
3879 if (tsonly) {
3880 #ifdef CONFIG_INET
3881 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
3882 sk->sk_protocol == IPPROTO_TCP &&
3883 sk->sk_type == SOCK_STREAM) {
3884 skb = tcp_get_timestamping_opt_stats(sk);
3885 opt_stats = true;
3886 } else
3887 #endif
3888 skb = alloc_skb(0, GFP_ATOMIC);
3889 } else {
3890 skb = skb_clone(orig_skb, GFP_ATOMIC);
3891 }
3892 if (!skb)
3893 return;
3894
3895 if (tsonly) {
3896 skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3897 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3898 }
3899
3900 if (hwtstamps)
3901 *skb_hwtstamps(skb) = *hwtstamps;
3902 else
3903 skb->tstamp = ktime_get_real();
3904
3905 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
3906 }
3907 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3908
3909 void skb_tstamp_tx(struct sk_buff *orig_skb,
3910 struct skb_shared_hwtstamps *hwtstamps)
3911 {
3912 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3913 SCM_TSTAMP_SND);
3914 }
3915 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3916
3917 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3918 {
3919 struct sock *sk = skb->sk;
3920 struct sock_exterr_skb *serr;
3921 int err = 1;
3922
3923 skb->wifi_acked_valid = 1;
3924 skb->wifi_acked = acked;
3925
3926 serr = SKB_EXT_ERR(skb);
3927 memset(serr, 0, sizeof(*serr));
3928 serr->ee.ee_errno = ENOMSG;
3929 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3930
3931 /* Take a reference to prevent skb_orphan() from freeing the socket,
3932 * but only if the socket refcount is not zero.
3933 */
3934 if (likely(atomic_inc_not_zero(&sk->sk_refcnt))) {
3935 err = sock_queue_err_skb(sk, skb);
3936 sock_put(sk);
3937 }
3938 if (err)
3939 kfree_skb(skb);
3940 }
3941 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3942
3943 /**
3944 * skb_partial_csum_set - set up and verify partial csum values for packet
3945 * @skb: the skb to set
3946 * @start: the number of bytes after skb->data to start checksumming.
3947 * @off: the offset from start to place the checksum.
3948 *
3949 * For untrusted partially-checksummed packets, we need to make sure the values
3950 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3951 *
3952 * This function checks and sets those values and skb->ip_summed: if this
3953 * returns false you should drop the packet.
3954 */
3955 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3956 {
3957 if (unlikely(start > skb_headlen(skb)) ||
3958 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3959 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3960 start, off, skb_headlen(skb));
3961 return false;
3962 }
3963 skb->ip_summed = CHECKSUM_PARTIAL;
3964 skb->csum_start = skb_headroom(skb) + start;
3965 skb->csum_offset = off;
3966 skb_set_transport_header(skb, start);
3967 return true;
3968 }
3969 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3970
3971 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3972 unsigned int max)
3973 {
3974 if (skb_headlen(skb) >= len)
3975 return 0;
3976
3977 /* If we need to pullup then pullup to the max, so we
3978 * won't need to do it again.
3979 */
3980 if (max > skb->len)
3981 max = skb->len;
3982
3983 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3984 return -ENOMEM;
3985
3986 if (skb_headlen(skb) < len)
3987 return -EPROTO;
3988
3989 return 0;
3990 }
3991
3992 #define MAX_TCP_HDR_LEN (15 * 4)
3993
3994 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3995 typeof(IPPROTO_IP) proto,
3996 unsigned int off)
3997 {
3998 switch (proto) {
3999 int err;
4000
4001 case IPPROTO_TCP:
4002 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4003 off + MAX_TCP_HDR_LEN);
4004 if (!err && !skb_partial_csum_set(skb, off,
4005 offsetof(struct tcphdr,
4006 check)))
4007 err = -EPROTO;
4008 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4009
4010 case IPPROTO_UDP:
4011 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4012 off + sizeof(struct udphdr));
4013 if (!err && !skb_partial_csum_set(skb, off,
4014 offsetof(struct udphdr,
4015 check)))
4016 err = -EPROTO;
4017 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4018 }
4019
4020 return ERR_PTR(-EPROTO);
4021 }
4022
4023 /* This value should be large enough to cover a tagged ethernet header plus
4024 * maximally sized IP and TCP or UDP headers.
4025 */
4026 #define MAX_IP_HDR_LEN 128
4027
4028 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4029 {
4030 unsigned int off;
4031 bool fragment;
4032 __sum16 *csum;
4033 int err;
4034
4035 fragment = false;
4036
4037 err = skb_maybe_pull_tail(skb,
4038 sizeof(struct iphdr),
4039 MAX_IP_HDR_LEN);
4040 if (err < 0)
4041 goto out;
4042
4043 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4044 fragment = true;
4045
4046 off = ip_hdrlen(skb);
4047
4048 err = -EPROTO;
4049
4050 if (fragment)
4051 goto out;
4052
4053 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4054 if (IS_ERR(csum))
4055 return PTR_ERR(csum);
4056
4057 if (recalculate)
4058 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4059 ip_hdr(skb)->daddr,
4060 skb->len - off,
4061 ip_hdr(skb)->protocol, 0);
4062 err = 0;
4063
4064 out:
4065 return err;
4066 }
4067
4068 /* This value should be large enough to cover a tagged ethernet header plus
4069 * an IPv6 header, all options, and a maximal TCP or UDP header.
4070 */
4071 #define MAX_IPV6_HDR_LEN 256
4072
4073 #define OPT_HDR(type, skb, off) \
4074 (type *)(skb_network_header(skb) + (off))
4075
4076 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4077 {
4078 int err;
4079 u8 nexthdr;
4080 unsigned int off;
4081 unsigned int len;
4082 bool fragment;
4083 bool done;
4084 __sum16 *csum;
4085
4086 fragment = false;
4087 done = false;
4088
4089 off = sizeof(struct ipv6hdr);
4090
4091 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4092 if (err < 0)
4093 goto out;
4094
4095 nexthdr = ipv6_hdr(skb)->nexthdr;
4096
4097 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4098 while (off <= len && !done) {
4099 switch (nexthdr) {
4100 case IPPROTO_DSTOPTS:
4101 case IPPROTO_HOPOPTS:
4102 case IPPROTO_ROUTING: {
4103 struct ipv6_opt_hdr *hp;
4104
4105 err = skb_maybe_pull_tail(skb,
4106 off +
4107 sizeof(struct ipv6_opt_hdr),
4108 MAX_IPV6_HDR_LEN);
4109 if (err < 0)
4110 goto out;
4111
4112 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4113 nexthdr = hp->nexthdr;
4114 off += ipv6_optlen(hp);
4115 break;
4116 }
4117 case IPPROTO_AH: {
4118 struct ip_auth_hdr *hp;
4119
4120 err = skb_maybe_pull_tail(skb,
4121 off +
4122 sizeof(struct ip_auth_hdr),
4123 MAX_IPV6_HDR_LEN);
4124 if (err < 0)
4125 goto out;
4126
4127 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4128 nexthdr = hp->nexthdr;
4129 off += ipv6_authlen(hp);
4130 break;
4131 }
4132 case IPPROTO_FRAGMENT: {
4133 struct frag_hdr *hp;
4134
4135 err = skb_maybe_pull_tail(skb,
4136 off +
4137 sizeof(struct frag_hdr),
4138 MAX_IPV6_HDR_LEN);
4139 if (err < 0)
4140 goto out;
4141
4142 hp = OPT_HDR(struct frag_hdr, skb, off);
4143
4144 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4145 fragment = true;
4146
4147 nexthdr = hp->nexthdr;
4148 off += sizeof(struct frag_hdr);
4149 break;
4150 }
4151 default:
4152 done = true;
4153 break;
4154 }
4155 }
4156
4157 err = -EPROTO;
4158
4159 if (!done || fragment)
4160 goto out;
4161
4162 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4163 if (IS_ERR(csum))
4164 return PTR_ERR(csum);
4165
4166 if (recalculate)
4167 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4168 &ipv6_hdr(skb)->daddr,
4169 skb->len - off, nexthdr, 0);
4170 err = 0;
4171
4172 out:
4173 return err;
4174 }
4175
4176 /**
4177 * skb_checksum_setup - set up partial checksum offset
4178 * @skb: the skb to set up
4179 * @recalculate: if true the pseudo-header checksum will be recalculated
4180 */
4181 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4182 {
4183 int err;
4184
4185 switch (skb->protocol) {
4186 case htons(ETH_P_IP):
4187 err = skb_checksum_setup_ipv4(skb, recalculate);
4188 break;
4189
4190 case htons(ETH_P_IPV6):
4191 err = skb_checksum_setup_ipv6(skb, recalculate);
4192 break;
4193
4194 default:
4195 err = -EPROTO;
4196 break;
4197 }
4198
4199 return err;
4200 }
4201 EXPORT_SYMBOL(skb_checksum_setup);
4202
4203 /**
4204 * skb_checksum_maybe_trim - maybe trims the given skb
4205 * @skb: the skb to check
4206 * @transport_len: the data length beyond the network header
4207 *
4208 * Checks whether the given skb has data beyond the given transport length.
4209 * If so, returns a cloned skb trimmed to this transport length.
4210 * Otherwise returns the provided skb. Returns NULL in error cases
4211 * (e.g. transport_len exceeds skb length or out-of-memory).
4212 *
4213 * Caller needs to set the skb transport header and free any returned skb if it
4214 * differs from the provided skb.
4215 */
4216 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4217 unsigned int transport_len)
4218 {
4219 struct sk_buff *skb_chk;
4220 unsigned int len = skb_transport_offset(skb) + transport_len;
4221 int ret;
4222
4223 if (skb->len < len)
4224 return NULL;
4225 else if (skb->len == len)
4226 return skb;
4227
4228 skb_chk = skb_clone(skb, GFP_ATOMIC);
4229 if (!skb_chk)
4230 return NULL;
4231
4232 ret = pskb_trim_rcsum(skb_chk, len);
4233 if (ret) {
4234 kfree_skb(skb_chk);
4235 return NULL;
4236 }
4237
4238 return skb_chk;
4239 }
4240
4241 /**
4242 * skb_checksum_trimmed - validate checksum of an skb
4243 * @skb: the skb to check
4244 * @transport_len: the data length beyond the network header
4245 * @skb_chkf: checksum function to use
4246 *
4247 * Applies the given checksum function skb_chkf to the provided skb.
4248 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4249 *
4250 * If the skb has data beyond the given transport length, then a
4251 * trimmed & cloned skb is checked and returned.
4252 *
4253 * Caller needs to set the skb transport header and free any returned skb if it
4254 * differs from the provided skb.
4255 */
4256 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4257 unsigned int transport_len,
4258 __sum16(*skb_chkf)(struct sk_buff *skb))
4259 {
4260 struct sk_buff *skb_chk;
4261 unsigned int offset = skb_transport_offset(skb);
4262 __sum16 ret;
4263
4264 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4265 if (!skb_chk)
4266 goto err;
4267
4268 if (!pskb_may_pull(skb_chk, offset))
4269 goto err;
4270
4271 skb_pull_rcsum(skb_chk, offset);
4272 ret = skb_chkf(skb_chk);
4273 skb_push_rcsum(skb_chk, offset);
4274
4275 if (ret)
4276 goto err;
4277
4278 return skb_chk;
4279
4280 err:
4281 if (skb_chk && skb_chk != skb)
4282 kfree_skb(skb_chk);
4283
4284 return NULL;
4285
4286 }
4287 EXPORT_SYMBOL(skb_checksum_trimmed);
4288
4289 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4290 {
4291 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4292 skb->dev->name);
4293 }
4294 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4295
4296 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4297 {
4298 if (head_stolen) {
4299 skb_release_head_state(skb);
4300 kmem_cache_free(skbuff_head_cache, skb);
4301 } else {
4302 __kfree_skb(skb);
4303 }
4304 }
4305 EXPORT_SYMBOL(kfree_skb_partial);
4306
4307 /**
4308 * skb_try_coalesce - try to merge skb to prior one
4309 * @to: prior buffer
4310 * @from: buffer to add
4311 * @fragstolen: pointer to boolean
4312 * @delta_truesize: how much more was allocated than was requested
4313 */
4314 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4315 bool *fragstolen, int *delta_truesize)
4316 {
4317 int i, delta, len = from->len;
4318
4319 *fragstolen = false;
4320
4321 if (skb_cloned(to))
4322 return false;
4323
4324 if (len <= skb_tailroom(to)) {
4325 if (len)
4326 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4327 *delta_truesize = 0;
4328 return true;
4329 }
4330
4331 if (skb_has_frag_list(to) || skb_has_frag_list(from))
4332 return false;
4333
4334 if (skb_headlen(from) != 0) {
4335 struct page *page;
4336 unsigned int offset;
4337
4338 if (skb_shinfo(to)->nr_frags +
4339 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4340 return false;
4341
4342 if (skb_head_is_locked(from))
4343 return false;
4344
4345 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4346
4347 page = virt_to_head_page(from->head);
4348 offset = from->data - (unsigned char *)page_address(page);
4349
4350 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4351 page, offset, skb_headlen(from));
4352 *fragstolen = true;
4353 } else {
4354 if (skb_shinfo(to)->nr_frags +
4355 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4356 return false;
4357
4358 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4359 }
4360
4361 WARN_ON_ONCE(delta < len);
4362
4363 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4364 skb_shinfo(from)->frags,
4365 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4366 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4367
4368 if (!skb_cloned(from))
4369 skb_shinfo(from)->nr_frags = 0;
4370
4371 /* if the skb is not cloned this does nothing
4372 * since we set nr_frags to 0.
4373 */
4374 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4375 skb_frag_ref(from, i);
4376
4377 to->truesize += delta;
4378 to->len += len;
4379 to->data_len += len;
4380
4381 *delta_truesize = delta;
4382 return true;
4383 }
4384 EXPORT_SYMBOL(skb_try_coalesce);
4385
4386 /**
4387 * skb_scrub_packet - scrub an skb
4388 *
4389 * @skb: buffer to clean
4390 * @xnet: packet is crossing netns
4391 *
4392 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4393 * into/from a tunnel. Some information have to be cleared during these
4394 * operations.
4395 * skb_scrub_packet can also be used to clean a skb before injecting it in
4396 * another namespace (@xnet == true). We have to clear all information in the
4397 * skb that could impact namespace isolation.
4398 */
4399 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4400 {
4401 skb->tstamp = 0;
4402 skb->pkt_type = PACKET_HOST;
4403 skb->skb_iif = 0;
4404 skb->ignore_df = 0;
4405 skb_dst_drop(skb);
4406 secpath_reset(skb);
4407 nf_reset(skb);
4408 nf_reset_trace(skb);
4409
4410 if (!xnet)
4411 return;
4412
4413 skb_orphan(skb);
4414 skb->mark = 0;
4415 }
4416 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4417
4418 /**
4419 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4420 *
4421 * @skb: GSO skb
4422 *
4423 * skb_gso_transport_seglen is used to determine the real size of the
4424 * individual segments, including Layer4 headers (TCP/UDP).
4425 *
4426 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4427 */
4428 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4429 {
4430 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4431 unsigned int thlen = 0;
4432
4433 if (skb->encapsulation) {
4434 thlen = skb_inner_transport_header(skb) -
4435 skb_transport_header(skb);
4436
4437 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4438 thlen += inner_tcp_hdrlen(skb);
4439 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4440 thlen = tcp_hdrlen(skb);
4441 } else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) {
4442 thlen = sizeof(struct sctphdr);
4443 }
4444 /* UFO sets gso_size to the size of the fragmentation
4445 * payload, i.e. the size of the L4 (UDP) header is already
4446 * accounted for.
4447 */
4448 return thlen + shinfo->gso_size;
4449 }
4450 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4451
4452 /**
4453 * skb_gso_validate_mtu - Return in case such skb fits a given MTU
4454 *
4455 * @skb: GSO skb
4456 * @mtu: MTU to validate against
4457 *
4458 * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
4459 * once split.
4460 */
4461 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu)
4462 {
4463 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4464 const struct sk_buff *iter;
4465 unsigned int hlen;
4466
4467 hlen = skb_gso_network_seglen(skb);
4468
4469 if (shinfo->gso_size != GSO_BY_FRAGS)
4470 return hlen <= mtu;
4471
4472 /* Undo this so we can re-use header sizes */
4473 hlen -= GSO_BY_FRAGS;
4474
4475 skb_walk_frags(skb, iter) {
4476 if (hlen + skb_headlen(iter) > mtu)
4477 return false;
4478 }
4479
4480 return true;
4481 }
4482 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu);
4483
4484 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4485 {
4486 if (skb_cow(skb, skb_headroom(skb)) < 0) {
4487 kfree_skb(skb);
4488 return NULL;
4489 }
4490
4491 memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4492 2 * ETH_ALEN);
4493 skb->mac_header += VLAN_HLEN;
4494 return skb;
4495 }
4496
4497 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4498 {
4499 struct vlan_hdr *vhdr;
4500 u16 vlan_tci;
4501
4502 if (unlikely(skb_vlan_tag_present(skb))) {
4503 /* vlan_tci is already set-up so leave this for another time */
4504 return skb;
4505 }
4506
4507 skb = skb_share_check(skb, GFP_ATOMIC);
4508 if (unlikely(!skb))
4509 goto err_free;
4510
4511 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4512 goto err_free;
4513
4514 vhdr = (struct vlan_hdr *)skb->data;
4515 vlan_tci = ntohs(vhdr->h_vlan_TCI);
4516 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4517
4518 skb_pull_rcsum(skb, VLAN_HLEN);
4519 vlan_set_encap_proto(skb, vhdr);
4520
4521 skb = skb_reorder_vlan_header(skb);
4522 if (unlikely(!skb))
4523 goto err_free;
4524
4525 skb_reset_network_header(skb);
4526 skb_reset_transport_header(skb);
4527 skb_reset_mac_len(skb);
4528
4529 return skb;
4530
4531 err_free:
4532 kfree_skb(skb);
4533 return NULL;
4534 }
4535 EXPORT_SYMBOL(skb_vlan_untag);
4536
4537 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4538 {
4539 if (!pskb_may_pull(skb, write_len))
4540 return -ENOMEM;
4541
4542 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4543 return 0;
4544
4545 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4546 }
4547 EXPORT_SYMBOL(skb_ensure_writable);
4548
4549 /* remove VLAN header from packet and update csum accordingly.
4550 * expects a non skb_vlan_tag_present skb with a vlan tag payload
4551 */
4552 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4553 {
4554 struct vlan_hdr *vhdr;
4555 int offset = skb->data - skb_mac_header(skb);
4556 int err;
4557
4558 if (WARN_ONCE(offset,
4559 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
4560 offset)) {
4561 return -EINVAL;
4562 }
4563
4564 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4565 if (unlikely(err))
4566 return err;
4567
4568 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4569
4570 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4571 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
4572
4573 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4574 __skb_pull(skb, VLAN_HLEN);
4575
4576 vlan_set_encap_proto(skb, vhdr);
4577 skb->mac_header += VLAN_HLEN;
4578
4579 if (skb_network_offset(skb) < ETH_HLEN)
4580 skb_set_network_header(skb, ETH_HLEN);
4581
4582 skb_reset_mac_len(skb);
4583
4584 return err;
4585 }
4586 EXPORT_SYMBOL(__skb_vlan_pop);
4587
4588 /* Pop a vlan tag either from hwaccel or from payload.
4589 * Expects skb->data at mac header.
4590 */
4591 int skb_vlan_pop(struct sk_buff *skb)
4592 {
4593 u16 vlan_tci;
4594 __be16 vlan_proto;
4595 int err;
4596
4597 if (likely(skb_vlan_tag_present(skb))) {
4598 skb->vlan_tci = 0;
4599 } else {
4600 if (unlikely(!eth_type_vlan(skb->protocol)))
4601 return 0;
4602
4603 err = __skb_vlan_pop(skb, &vlan_tci);
4604 if (err)
4605 return err;
4606 }
4607 /* move next vlan tag to hw accel tag */
4608 if (likely(!eth_type_vlan(skb->protocol)))
4609 return 0;
4610
4611 vlan_proto = skb->protocol;
4612 err = __skb_vlan_pop(skb, &vlan_tci);
4613 if (unlikely(err))
4614 return err;
4615
4616 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4617 return 0;
4618 }
4619 EXPORT_SYMBOL(skb_vlan_pop);
4620
4621 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
4622 * Expects skb->data at mac header.
4623 */
4624 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4625 {
4626 if (skb_vlan_tag_present(skb)) {
4627 int offset = skb->data - skb_mac_header(skb);
4628 int err;
4629
4630 if (WARN_ONCE(offset,
4631 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
4632 offset)) {
4633 return -EINVAL;
4634 }
4635
4636 err = __vlan_insert_tag(skb, skb->vlan_proto,
4637 skb_vlan_tag_get(skb));
4638 if (err)
4639 return err;
4640
4641 skb->protocol = skb->vlan_proto;
4642 skb->mac_len += VLAN_HLEN;
4643
4644 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4645 }
4646 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4647 return 0;
4648 }
4649 EXPORT_SYMBOL(skb_vlan_push);
4650
4651 /**
4652 * alloc_skb_with_frags - allocate skb with page frags
4653 *
4654 * @header_len: size of linear part
4655 * @data_len: needed length in frags
4656 * @max_page_order: max page order desired.
4657 * @errcode: pointer to error code if any
4658 * @gfp_mask: allocation mask
4659 *
4660 * This can be used to allocate a paged skb, given a maximal order for frags.
4661 */
4662 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4663 unsigned long data_len,
4664 int max_page_order,
4665 int *errcode,
4666 gfp_t gfp_mask)
4667 {
4668 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4669 unsigned long chunk;
4670 struct sk_buff *skb;
4671 struct page *page;
4672 gfp_t gfp_head;
4673 int i;
4674
4675 *errcode = -EMSGSIZE;
4676 /* Note this test could be relaxed, if we succeed to allocate
4677 * high order pages...
4678 */
4679 if (npages > MAX_SKB_FRAGS)
4680 return NULL;
4681
4682 gfp_head = gfp_mask;
4683 if (gfp_head & __GFP_DIRECT_RECLAIM)
4684 gfp_head |= __GFP_REPEAT;
4685
4686 *errcode = -ENOBUFS;
4687 skb = alloc_skb(header_len, gfp_head);
4688 if (!skb)
4689 return NULL;
4690
4691 skb->truesize += npages << PAGE_SHIFT;
4692
4693 for (i = 0; npages > 0; i++) {
4694 int order = max_page_order;
4695
4696 while (order) {
4697 if (npages >= 1 << order) {
4698 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4699 __GFP_COMP |
4700 __GFP_NOWARN |
4701 __GFP_NORETRY,
4702 order);
4703 if (page)
4704 goto fill_page;
4705 /* Do not retry other high order allocations */
4706 order = 1;
4707 max_page_order = 0;
4708 }
4709 order--;
4710 }
4711 page = alloc_page(gfp_mask);
4712 if (!page)
4713 goto failure;
4714 fill_page:
4715 chunk = min_t(unsigned long, data_len,
4716 PAGE_SIZE << order);
4717 skb_fill_page_desc(skb, i, page, 0, chunk);
4718 data_len -= chunk;
4719 npages -= 1 << order;
4720 }
4721 return skb;
4722
4723 failure:
4724 kfree_skb(skb);
4725 return NULL;
4726 }
4727 EXPORT_SYMBOL(alloc_skb_with_frags);
4728
4729 /* carve out the first off bytes from skb when off < headlen */
4730 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
4731 const int headlen, gfp_t gfp_mask)
4732 {
4733 int i;
4734 int size = skb_end_offset(skb);
4735 int new_hlen = headlen - off;
4736 u8 *data;
4737
4738 size = SKB_DATA_ALIGN(size);
4739
4740 if (skb_pfmemalloc(skb))
4741 gfp_mask |= __GFP_MEMALLOC;
4742 data = kmalloc_reserve(size +
4743 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4744 gfp_mask, NUMA_NO_NODE, NULL);
4745 if (!data)
4746 return -ENOMEM;
4747
4748 size = SKB_WITH_OVERHEAD(ksize(data));
4749
4750 /* Copy real data, and all frags */
4751 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
4752 skb->len -= off;
4753
4754 memcpy((struct skb_shared_info *)(data + size),
4755 skb_shinfo(skb),
4756 offsetof(struct skb_shared_info,
4757 frags[skb_shinfo(skb)->nr_frags]));
4758 if (skb_cloned(skb)) {
4759 /* drop the old head gracefully */
4760 if (skb_orphan_frags(skb, gfp_mask)) {
4761 kfree(data);
4762 return -ENOMEM;
4763 }
4764 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4765 skb_frag_ref(skb, i);
4766 if (skb_has_frag_list(skb))
4767 skb_clone_fraglist(skb);
4768 skb_release_data(skb);
4769 } else {
4770 /* we can reuse existing recount- all we did was
4771 * relocate values
4772 */
4773 skb_free_head(skb);
4774 }
4775
4776 skb->head = data;
4777 skb->data = data;
4778 skb->head_frag = 0;
4779 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4780 skb->end = size;
4781 #else
4782 skb->end = skb->head + size;
4783 #endif
4784 skb_set_tail_pointer(skb, skb_headlen(skb));
4785 skb_headers_offset_update(skb, 0);
4786 skb->cloned = 0;
4787 skb->hdr_len = 0;
4788 skb->nohdr = 0;
4789 atomic_set(&skb_shinfo(skb)->dataref, 1);
4790
4791 return 0;
4792 }
4793
4794 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
4795
4796 /* carve out the first eat bytes from skb's frag_list. May recurse into
4797 * pskb_carve()
4798 */
4799 static int pskb_carve_frag_list(struct sk_buff *skb,
4800 struct skb_shared_info *shinfo, int eat,
4801 gfp_t gfp_mask)
4802 {
4803 struct sk_buff *list = shinfo->frag_list;
4804 struct sk_buff *clone = NULL;
4805 struct sk_buff *insp = NULL;
4806
4807 do {
4808 if (!list) {
4809 pr_err("Not enough bytes to eat. Want %d\n", eat);
4810 return -EFAULT;
4811 }
4812 if (list->len <= eat) {
4813 /* Eaten as whole. */
4814 eat -= list->len;
4815 list = list->next;
4816 insp = list;
4817 } else {
4818 /* Eaten partially. */
4819 if (skb_shared(list)) {
4820 clone = skb_clone(list, gfp_mask);
4821 if (!clone)
4822 return -ENOMEM;
4823 insp = list->next;
4824 list = clone;
4825 } else {
4826 /* This may be pulled without problems. */
4827 insp = list;
4828 }
4829 if (pskb_carve(list, eat, gfp_mask) < 0) {
4830 kfree_skb(clone);
4831 return -ENOMEM;
4832 }
4833 break;
4834 }
4835 } while (eat);
4836
4837 /* Free pulled out fragments. */
4838 while ((list = shinfo->frag_list) != insp) {
4839 shinfo->frag_list = list->next;
4840 kfree_skb(list);
4841 }
4842 /* And insert new clone at head. */
4843 if (clone) {
4844 clone->next = list;
4845 shinfo->frag_list = clone;
4846 }
4847 return 0;
4848 }
4849
4850 /* carve off first len bytes from skb. Split line (off) is in the
4851 * non-linear part of skb
4852 */
4853 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
4854 int pos, gfp_t gfp_mask)
4855 {
4856 int i, k = 0;
4857 int size = skb_end_offset(skb);
4858 u8 *data;
4859 const int nfrags = skb_shinfo(skb)->nr_frags;
4860 struct skb_shared_info *shinfo;
4861
4862 size = SKB_DATA_ALIGN(size);
4863
4864 if (skb_pfmemalloc(skb))
4865 gfp_mask |= __GFP_MEMALLOC;
4866 data = kmalloc_reserve(size +
4867 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4868 gfp_mask, NUMA_NO_NODE, NULL);
4869 if (!data)
4870 return -ENOMEM;
4871
4872 size = SKB_WITH_OVERHEAD(ksize(data));
4873
4874 memcpy((struct skb_shared_info *)(data + size),
4875 skb_shinfo(skb), offsetof(struct skb_shared_info,
4876 frags[skb_shinfo(skb)->nr_frags]));
4877 if (skb_orphan_frags(skb, gfp_mask)) {
4878 kfree(data);
4879 return -ENOMEM;
4880 }
4881 shinfo = (struct skb_shared_info *)(data + size);
4882 for (i = 0; i < nfrags; i++) {
4883 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4884
4885 if (pos + fsize > off) {
4886 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
4887
4888 if (pos < off) {
4889 /* Split frag.
4890 * We have two variants in this case:
4891 * 1. Move all the frag to the second
4892 * part, if it is possible. F.e.
4893 * this approach is mandatory for TUX,
4894 * where splitting is expensive.
4895 * 2. Split is accurately. We make this.
4896 */
4897 shinfo->frags[0].page_offset += off - pos;
4898 skb_frag_size_sub(&shinfo->frags[0], off - pos);
4899 }
4900 skb_frag_ref(skb, i);
4901 k++;
4902 }
4903 pos += fsize;
4904 }
4905 shinfo->nr_frags = k;
4906 if (skb_has_frag_list(skb))
4907 skb_clone_fraglist(skb);
4908
4909 if (k == 0) {
4910 /* split line is in frag list */
4911 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
4912 }
4913 skb_release_data(skb);
4914
4915 skb->head = data;
4916 skb->head_frag = 0;
4917 skb->data = data;
4918 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4919 skb->end = size;
4920 #else
4921 skb->end = skb->head + size;
4922 #endif
4923 skb_reset_tail_pointer(skb);
4924 skb_headers_offset_update(skb, 0);
4925 skb->cloned = 0;
4926 skb->hdr_len = 0;
4927 skb->nohdr = 0;
4928 skb->len -= off;
4929 skb->data_len = skb->len;
4930 atomic_set(&skb_shinfo(skb)->dataref, 1);
4931 return 0;
4932 }
4933
4934 /* remove len bytes from the beginning of the skb */
4935 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
4936 {
4937 int headlen = skb_headlen(skb);
4938
4939 if (len < headlen)
4940 return pskb_carve_inside_header(skb, len, headlen, gfp);
4941 else
4942 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
4943 }
4944
4945 /* Extract to_copy bytes starting at off from skb, and return this in
4946 * a new skb
4947 */
4948 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
4949 int to_copy, gfp_t gfp)
4950 {
4951 struct sk_buff *clone = skb_clone(skb, gfp);
4952
4953 if (!clone)
4954 return NULL;
4955
4956 if (pskb_carve(clone, off, gfp) < 0 ||
4957 pskb_trim(clone, to_copy)) {
4958 kfree_skb(clone);
4959 return NULL;
4960 }
4961 return clone;
4962 }
4963 EXPORT_SYMBOL(pskb_extract);
4964
4965 /**
4966 * skb_condense - try to get rid of fragments/frag_list if possible
4967 * @skb: buffer
4968 *
4969 * Can be used to save memory before skb is added to a busy queue.
4970 * If packet has bytes in frags and enough tail room in skb->head,
4971 * pull all of them, so that we can free the frags right now and adjust
4972 * truesize.
4973 * Notes:
4974 * We do not reallocate skb->head thus can not fail.
4975 * Caller must re-evaluate skb->truesize if needed.
4976 */
4977 void skb_condense(struct sk_buff *skb)
4978 {
4979 if (skb->data_len) {
4980 if (skb->data_len > skb->end - skb->tail ||
4981 skb_cloned(skb))
4982 return;
4983
4984 /* Nice, we can free page frag(s) right now */
4985 __pskb_pull_tail(skb, skb->data_len);
4986 }
4987 /* At this point, skb->truesize might be over estimated,
4988 * because skb had a fragment, and fragments do not tell
4989 * their truesize.
4990 * When we pulled its content into skb->head, fragment
4991 * was freed, but __pskb_pull_tail() could not possibly
4992 * adjust skb->truesize, not knowing the frag truesize.
4993 */
4994 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4995 }