]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/core/skbuff.c
Fix common misspellings
[mirror_ubuntu-zesty-kernel.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/mm.h>
44 #include <linux/interrupt.h>
45 #include <linux/in.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60
61 #include <net/protocol.h>
62 #include <net/dst.h>
63 #include <net/sock.h>
64 #include <net/checksum.h>
65 #include <net/xfrm.h>
66
67 #include <asm/uaccess.h>
68 #include <asm/system.h>
69 #include <trace/events/skb.h>
70
71 #include "kmap_skb.h"
72
73 static struct kmem_cache *skbuff_head_cache __read_mostly;
74 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
75
76 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
77 struct pipe_buffer *buf)
78 {
79 put_page(buf->page);
80 }
81
82 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
83 struct pipe_buffer *buf)
84 {
85 get_page(buf->page);
86 }
87
88 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
90 {
91 return 1;
92 }
93
94
95 /* Pipe buffer operations for a socket. */
96 static const struct pipe_buf_operations sock_pipe_buf_ops = {
97 .can_merge = 0,
98 .map = generic_pipe_buf_map,
99 .unmap = generic_pipe_buf_unmap,
100 .confirm = generic_pipe_buf_confirm,
101 .release = sock_pipe_buf_release,
102 .steal = sock_pipe_buf_steal,
103 .get = sock_pipe_buf_get,
104 };
105
106 /*
107 * Keep out-of-line to prevent kernel bloat.
108 * __builtin_return_address is not used because it is not always
109 * reliable.
110 */
111
112 /**
113 * skb_over_panic - private function
114 * @skb: buffer
115 * @sz: size
116 * @here: address
117 *
118 * Out of line support code for skb_put(). Not user callable.
119 */
120 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
121 {
122 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
123 "data:%p tail:%#lx end:%#lx dev:%s\n",
124 here, skb->len, sz, skb->head, skb->data,
125 (unsigned long)skb->tail, (unsigned long)skb->end,
126 skb->dev ? skb->dev->name : "<NULL>");
127 BUG();
128 }
129
130 /**
131 * skb_under_panic - private function
132 * @skb: buffer
133 * @sz: size
134 * @here: address
135 *
136 * Out of line support code for skb_push(). Not user callable.
137 */
138
139 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
140 {
141 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
142 "data:%p tail:%#lx end:%#lx dev:%s\n",
143 here, skb->len, sz, skb->head, skb->data,
144 (unsigned long)skb->tail, (unsigned long)skb->end,
145 skb->dev ? skb->dev->name : "<NULL>");
146 BUG();
147 }
148
149 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
150 * 'private' fields and also do memory statistics to find all the
151 * [BEEP] leaks.
152 *
153 */
154
155 /**
156 * __alloc_skb - allocate a network buffer
157 * @size: size to allocate
158 * @gfp_mask: allocation mask
159 * @fclone: allocate from fclone cache instead of head cache
160 * and allocate a cloned (child) skb
161 * @node: numa node to allocate memory on
162 *
163 * Allocate a new &sk_buff. The returned buffer has no headroom and a
164 * tail room of size bytes. The object has a reference count of one.
165 * The return is the buffer. On a failure the return is %NULL.
166 *
167 * Buffers may only be allocated from interrupts using a @gfp_mask of
168 * %GFP_ATOMIC.
169 */
170 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
171 int fclone, int node)
172 {
173 struct kmem_cache *cache;
174 struct skb_shared_info *shinfo;
175 struct sk_buff *skb;
176 u8 *data;
177
178 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
179
180 /* Get the HEAD */
181 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
182 if (!skb)
183 goto out;
184 prefetchw(skb);
185
186 size = SKB_DATA_ALIGN(size);
187 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
188 gfp_mask, node);
189 if (!data)
190 goto nodata;
191 prefetchw(data + size);
192
193 /*
194 * Only clear those fields we need to clear, not those that we will
195 * actually initialise below. Hence, don't put any more fields after
196 * the tail pointer in struct sk_buff!
197 */
198 memset(skb, 0, offsetof(struct sk_buff, tail));
199 skb->truesize = size + sizeof(struct sk_buff);
200 atomic_set(&skb->users, 1);
201 skb->head = data;
202 skb->data = data;
203 skb_reset_tail_pointer(skb);
204 skb->end = skb->tail + size;
205 #ifdef NET_SKBUFF_DATA_USES_OFFSET
206 skb->mac_header = ~0U;
207 #endif
208
209 /* make sure we initialize shinfo sequentially */
210 shinfo = skb_shinfo(skb);
211 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
212 atomic_set(&shinfo->dataref, 1);
213 kmemcheck_annotate_variable(shinfo->destructor_arg);
214
215 if (fclone) {
216 struct sk_buff *child = skb + 1;
217 atomic_t *fclone_ref = (atomic_t *) (child + 1);
218
219 kmemcheck_annotate_bitfield(child, flags1);
220 kmemcheck_annotate_bitfield(child, flags2);
221 skb->fclone = SKB_FCLONE_ORIG;
222 atomic_set(fclone_ref, 1);
223
224 child->fclone = SKB_FCLONE_UNAVAILABLE;
225 }
226 out:
227 return skb;
228 nodata:
229 kmem_cache_free(cache, skb);
230 skb = NULL;
231 goto out;
232 }
233 EXPORT_SYMBOL(__alloc_skb);
234
235 /**
236 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
237 * @dev: network device to receive on
238 * @length: length to allocate
239 * @gfp_mask: get_free_pages mask, passed to alloc_skb
240 *
241 * Allocate a new &sk_buff and assign it a usage count of one. The
242 * buffer has unspecified headroom built in. Users should allocate
243 * the headroom they think they need without accounting for the
244 * built in space. The built in space is used for optimisations.
245 *
246 * %NULL is returned if there is no free memory.
247 */
248 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
249 unsigned int length, gfp_t gfp_mask)
250 {
251 struct sk_buff *skb;
252
253 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
254 if (likely(skb)) {
255 skb_reserve(skb, NET_SKB_PAD);
256 skb->dev = dev;
257 }
258 return skb;
259 }
260 EXPORT_SYMBOL(__netdev_alloc_skb);
261
262 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
263 int size)
264 {
265 skb_fill_page_desc(skb, i, page, off, size);
266 skb->len += size;
267 skb->data_len += size;
268 skb->truesize += size;
269 }
270 EXPORT_SYMBOL(skb_add_rx_frag);
271
272 /**
273 * dev_alloc_skb - allocate an skbuff for receiving
274 * @length: length to allocate
275 *
276 * Allocate a new &sk_buff and assign it a usage count of one. The
277 * buffer has unspecified headroom built in. Users should allocate
278 * the headroom they think they need without accounting for the
279 * built in space. The built in space is used for optimisations.
280 *
281 * %NULL is returned if there is no free memory. Although this function
282 * allocates memory it can be called from an interrupt.
283 */
284 struct sk_buff *dev_alloc_skb(unsigned int length)
285 {
286 /*
287 * There is more code here than it seems:
288 * __dev_alloc_skb is an inline
289 */
290 return __dev_alloc_skb(length, GFP_ATOMIC);
291 }
292 EXPORT_SYMBOL(dev_alloc_skb);
293
294 static void skb_drop_list(struct sk_buff **listp)
295 {
296 struct sk_buff *list = *listp;
297
298 *listp = NULL;
299
300 do {
301 struct sk_buff *this = list;
302 list = list->next;
303 kfree_skb(this);
304 } while (list);
305 }
306
307 static inline void skb_drop_fraglist(struct sk_buff *skb)
308 {
309 skb_drop_list(&skb_shinfo(skb)->frag_list);
310 }
311
312 static void skb_clone_fraglist(struct sk_buff *skb)
313 {
314 struct sk_buff *list;
315
316 skb_walk_frags(skb, list)
317 skb_get(list);
318 }
319
320 static void skb_release_data(struct sk_buff *skb)
321 {
322 if (!skb->cloned ||
323 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
324 &skb_shinfo(skb)->dataref)) {
325 if (skb_shinfo(skb)->nr_frags) {
326 int i;
327 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
328 put_page(skb_shinfo(skb)->frags[i].page);
329 }
330
331 if (skb_has_frag_list(skb))
332 skb_drop_fraglist(skb);
333
334 kfree(skb->head);
335 }
336 }
337
338 /*
339 * Free an skbuff by memory without cleaning the state.
340 */
341 static void kfree_skbmem(struct sk_buff *skb)
342 {
343 struct sk_buff *other;
344 atomic_t *fclone_ref;
345
346 switch (skb->fclone) {
347 case SKB_FCLONE_UNAVAILABLE:
348 kmem_cache_free(skbuff_head_cache, skb);
349 break;
350
351 case SKB_FCLONE_ORIG:
352 fclone_ref = (atomic_t *) (skb + 2);
353 if (atomic_dec_and_test(fclone_ref))
354 kmem_cache_free(skbuff_fclone_cache, skb);
355 break;
356
357 case SKB_FCLONE_CLONE:
358 fclone_ref = (atomic_t *) (skb + 1);
359 other = skb - 1;
360
361 /* The clone portion is available for
362 * fast-cloning again.
363 */
364 skb->fclone = SKB_FCLONE_UNAVAILABLE;
365
366 if (atomic_dec_and_test(fclone_ref))
367 kmem_cache_free(skbuff_fclone_cache, other);
368 break;
369 }
370 }
371
372 static void skb_release_head_state(struct sk_buff *skb)
373 {
374 skb_dst_drop(skb);
375 #ifdef CONFIG_XFRM
376 secpath_put(skb->sp);
377 #endif
378 if (skb->destructor) {
379 WARN_ON(in_irq());
380 skb->destructor(skb);
381 }
382 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
383 nf_conntrack_put(skb->nfct);
384 #endif
385 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
386 nf_conntrack_put_reasm(skb->nfct_reasm);
387 #endif
388 #ifdef CONFIG_BRIDGE_NETFILTER
389 nf_bridge_put(skb->nf_bridge);
390 #endif
391 /* XXX: IS this still necessary? - JHS */
392 #ifdef CONFIG_NET_SCHED
393 skb->tc_index = 0;
394 #ifdef CONFIG_NET_CLS_ACT
395 skb->tc_verd = 0;
396 #endif
397 #endif
398 }
399
400 /* Free everything but the sk_buff shell. */
401 static void skb_release_all(struct sk_buff *skb)
402 {
403 skb_release_head_state(skb);
404 skb_release_data(skb);
405 }
406
407 /**
408 * __kfree_skb - private function
409 * @skb: buffer
410 *
411 * Free an sk_buff. Release anything attached to the buffer.
412 * Clean the state. This is an internal helper function. Users should
413 * always call kfree_skb
414 */
415
416 void __kfree_skb(struct sk_buff *skb)
417 {
418 skb_release_all(skb);
419 kfree_skbmem(skb);
420 }
421 EXPORT_SYMBOL(__kfree_skb);
422
423 /**
424 * kfree_skb - free an sk_buff
425 * @skb: buffer to free
426 *
427 * Drop a reference to the buffer and free it if the usage count has
428 * hit zero.
429 */
430 void kfree_skb(struct sk_buff *skb)
431 {
432 if (unlikely(!skb))
433 return;
434 if (likely(atomic_read(&skb->users) == 1))
435 smp_rmb();
436 else if (likely(!atomic_dec_and_test(&skb->users)))
437 return;
438 trace_kfree_skb(skb, __builtin_return_address(0));
439 __kfree_skb(skb);
440 }
441 EXPORT_SYMBOL(kfree_skb);
442
443 /**
444 * consume_skb - free an skbuff
445 * @skb: buffer to free
446 *
447 * Drop a ref to the buffer and free it if the usage count has hit zero
448 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
449 * is being dropped after a failure and notes that
450 */
451 void consume_skb(struct sk_buff *skb)
452 {
453 if (unlikely(!skb))
454 return;
455 if (likely(atomic_read(&skb->users) == 1))
456 smp_rmb();
457 else if (likely(!atomic_dec_and_test(&skb->users)))
458 return;
459 trace_consume_skb(skb);
460 __kfree_skb(skb);
461 }
462 EXPORT_SYMBOL(consume_skb);
463
464 /**
465 * skb_recycle_check - check if skb can be reused for receive
466 * @skb: buffer
467 * @skb_size: minimum receive buffer size
468 *
469 * Checks that the skb passed in is not shared or cloned, and
470 * that it is linear and its head portion at least as large as
471 * skb_size so that it can be recycled as a receive buffer.
472 * If these conditions are met, this function does any necessary
473 * reference count dropping and cleans up the skbuff as if it
474 * just came from __alloc_skb().
475 */
476 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
477 {
478 struct skb_shared_info *shinfo;
479
480 if (irqs_disabled())
481 return false;
482
483 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
484 return false;
485
486 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
487 if (skb_end_pointer(skb) - skb->head < skb_size)
488 return false;
489
490 if (skb_shared(skb) || skb_cloned(skb))
491 return false;
492
493 skb_release_head_state(skb);
494
495 shinfo = skb_shinfo(skb);
496 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
497 atomic_set(&shinfo->dataref, 1);
498
499 memset(skb, 0, offsetof(struct sk_buff, tail));
500 skb->data = skb->head + NET_SKB_PAD;
501 skb_reset_tail_pointer(skb);
502
503 return true;
504 }
505 EXPORT_SYMBOL(skb_recycle_check);
506
507 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
508 {
509 new->tstamp = old->tstamp;
510 new->dev = old->dev;
511 new->transport_header = old->transport_header;
512 new->network_header = old->network_header;
513 new->mac_header = old->mac_header;
514 skb_dst_copy(new, old);
515 new->rxhash = old->rxhash;
516 #ifdef CONFIG_XFRM
517 new->sp = secpath_get(old->sp);
518 #endif
519 memcpy(new->cb, old->cb, sizeof(old->cb));
520 new->csum = old->csum;
521 new->local_df = old->local_df;
522 new->pkt_type = old->pkt_type;
523 new->ip_summed = old->ip_summed;
524 skb_copy_queue_mapping(new, old);
525 new->priority = old->priority;
526 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
527 new->ipvs_property = old->ipvs_property;
528 #endif
529 new->protocol = old->protocol;
530 new->mark = old->mark;
531 new->skb_iif = old->skb_iif;
532 __nf_copy(new, old);
533 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
534 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
535 new->nf_trace = old->nf_trace;
536 #endif
537 #ifdef CONFIG_NET_SCHED
538 new->tc_index = old->tc_index;
539 #ifdef CONFIG_NET_CLS_ACT
540 new->tc_verd = old->tc_verd;
541 #endif
542 #endif
543 new->vlan_tci = old->vlan_tci;
544
545 skb_copy_secmark(new, old);
546 }
547
548 /*
549 * You should not add any new code to this function. Add it to
550 * __copy_skb_header above instead.
551 */
552 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
553 {
554 #define C(x) n->x = skb->x
555
556 n->next = n->prev = NULL;
557 n->sk = NULL;
558 __copy_skb_header(n, skb);
559
560 C(len);
561 C(data_len);
562 C(mac_len);
563 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
564 n->cloned = 1;
565 n->nohdr = 0;
566 n->destructor = NULL;
567 C(tail);
568 C(end);
569 C(head);
570 C(data);
571 C(truesize);
572 atomic_set(&n->users, 1);
573
574 atomic_inc(&(skb_shinfo(skb)->dataref));
575 skb->cloned = 1;
576
577 return n;
578 #undef C
579 }
580
581 /**
582 * skb_morph - morph one skb into another
583 * @dst: the skb to receive the contents
584 * @src: the skb to supply the contents
585 *
586 * This is identical to skb_clone except that the target skb is
587 * supplied by the user.
588 *
589 * The target skb is returned upon exit.
590 */
591 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
592 {
593 skb_release_all(dst);
594 return __skb_clone(dst, src);
595 }
596 EXPORT_SYMBOL_GPL(skb_morph);
597
598 /**
599 * skb_clone - duplicate an sk_buff
600 * @skb: buffer to clone
601 * @gfp_mask: allocation priority
602 *
603 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
604 * copies share the same packet data but not structure. The new
605 * buffer has a reference count of 1. If the allocation fails the
606 * function returns %NULL otherwise the new buffer is returned.
607 *
608 * If this function is called from an interrupt gfp_mask() must be
609 * %GFP_ATOMIC.
610 */
611
612 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
613 {
614 struct sk_buff *n;
615
616 n = skb + 1;
617 if (skb->fclone == SKB_FCLONE_ORIG &&
618 n->fclone == SKB_FCLONE_UNAVAILABLE) {
619 atomic_t *fclone_ref = (atomic_t *) (n + 1);
620 n->fclone = SKB_FCLONE_CLONE;
621 atomic_inc(fclone_ref);
622 } else {
623 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
624 if (!n)
625 return NULL;
626
627 kmemcheck_annotate_bitfield(n, flags1);
628 kmemcheck_annotate_bitfield(n, flags2);
629 n->fclone = SKB_FCLONE_UNAVAILABLE;
630 }
631
632 return __skb_clone(n, skb);
633 }
634 EXPORT_SYMBOL(skb_clone);
635
636 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
637 {
638 #ifndef NET_SKBUFF_DATA_USES_OFFSET
639 /*
640 * Shift between the two data areas in bytes
641 */
642 unsigned long offset = new->data - old->data;
643 #endif
644
645 __copy_skb_header(new, old);
646
647 #ifndef NET_SKBUFF_DATA_USES_OFFSET
648 /* {transport,network,mac}_header are relative to skb->head */
649 new->transport_header += offset;
650 new->network_header += offset;
651 if (skb_mac_header_was_set(new))
652 new->mac_header += offset;
653 #endif
654 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
655 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
656 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
657 }
658
659 /**
660 * skb_copy - create private copy of an sk_buff
661 * @skb: buffer to copy
662 * @gfp_mask: allocation priority
663 *
664 * Make a copy of both an &sk_buff and its data. This is used when the
665 * caller wishes to modify the data and needs a private copy of the
666 * data to alter. Returns %NULL on failure or the pointer to the buffer
667 * on success. The returned buffer has a reference count of 1.
668 *
669 * As by-product this function converts non-linear &sk_buff to linear
670 * one, so that &sk_buff becomes completely private and caller is allowed
671 * to modify all the data of returned buffer. This means that this
672 * function is not recommended for use in circumstances when only
673 * header is going to be modified. Use pskb_copy() instead.
674 */
675
676 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
677 {
678 int headerlen = skb_headroom(skb);
679 unsigned int size = (skb_end_pointer(skb) - skb->head) + skb->data_len;
680 struct sk_buff *n = alloc_skb(size, gfp_mask);
681
682 if (!n)
683 return NULL;
684
685 /* Set the data pointer */
686 skb_reserve(n, headerlen);
687 /* Set the tail pointer and length */
688 skb_put(n, skb->len);
689
690 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
691 BUG();
692
693 copy_skb_header(n, skb);
694 return n;
695 }
696 EXPORT_SYMBOL(skb_copy);
697
698 /**
699 * pskb_copy - create copy of an sk_buff with private head.
700 * @skb: buffer to copy
701 * @gfp_mask: allocation priority
702 *
703 * Make a copy of both an &sk_buff and part of its data, located
704 * in header. Fragmented data remain shared. This is used when
705 * the caller wishes to modify only header of &sk_buff and needs
706 * private copy of the header to alter. Returns %NULL on failure
707 * or the pointer to the buffer on success.
708 * The returned buffer has a reference count of 1.
709 */
710
711 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
712 {
713 unsigned int size = skb_end_pointer(skb) - skb->head;
714 struct sk_buff *n = alloc_skb(size, gfp_mask);
715
716 if (!n)
717 goto out;
718
719 /* Set the data pointer */
720 skb_reserve(n, skb_headroom(skb));
721 /* Set the tail pointer and length */
722 skb_put(n, skb_headlen(skb));
723 /* Copy the bytes */
724 skb_copy_from_linear_data(skb, n->data, n->len);
725
726 n->truesize += skb->data_len;
727 n->data_len = skb->data_len;
728 n->len = skb->len;
729
730 if (skb_shinfo(skb)->nr_frags) {
731 int i;
732
733 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
734 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
735 get_page(skb_shinfo(n)->frags[i].page);
736 }
737 skb_shinfo(n)->nr_frags = i;
738 }
739
740 if (skb_has_frag_list(skb)) {
741 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
742 skb_clone_fraglist(n);
743 }
744
745 copy_skb_header(n, skb);
746 out:
747 return n;
748 }
749 EXPORT_SYMBOL(pskb_copy);
750
751 /**
752 * pskb_expand_head - reallocate header of &sk_buff
753 * @skb: buffer to reallocate
754 * @nhead: room to add at head
755 * @ntail: room to add at tail
756 * @gfp_mask: allocation priority
757 *
758 * Expands (or creates identical copy, if &nhead and &ntail are zero)
759 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
760 * reference count of 1. Returns zero in the case of success or error,
761 * if expansion failed. In the last case, &sk_buff is not changed.
762 *
763 * All the pointers pointing into skb header may change and must be
764 * reloaded after call to this function.
765 */
766
767 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
768 gfp_t gfp_mask)
769 {
770 int i;
771 u8 *data;
772 int size = nhead + (skb_end_pointer(skb) - skb->head) + ntail;
773 long off;
774 bool fastpath;
775
776 BUG_ON(nhead < 0);
777
778 if (skb_shared(skb))
779 BUG();
780
781 size = SKB_DATA_ALIGN(size);
782
783 /* Check if we can avoid taking references on fragments if we own
784 * the last reference on skb->head. (see skb_release_data())
785 */
786 if (!skb->cloned)
787 fastpath = true;
788 else {
789 int delta = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
790
791 fastpath = atomic_read(&skb_shinfo(skb)->dataref) == delta;
792 }
793
794 if (fastpath &&
795 size + sizeof(struct skb_shared_info) <= ksize(skb->head)) {
796 memmove(skb->head + size, skb_shinfo(skb),
797 offsetof(struct skb_shared_info,
798 frags[skb_shinfo(skb)->nr_frags]));
799 memmove(skb->head + nhead, skb->head,
800 skb_tail_pointer(skb) - skb->head);
801 off = nhead;
802 goto adjust_others;
803 }
804
805 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
806 if (!data)
807 goto nodata;
808
809 /* Copy only real data... and, alas, header. This should be
810 * optimized for the cases when header is void.
811 */
812 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
813
814 memcpy((struct skb_shared_info *)(data + size),
815 skb_shinfo(skb),
816 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
817
818 if (fastpath) {
819 kfree(skb->head);
820 } else {
821 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
822 get_page(skb_shinfo(skb)->frags[i].page);
823
824 if (skb_has_frag_list(skb))
825 skb_clone_fraglist(skb);
826
827 skb_release_data(skb);
828 }
829 off = (data + nhead) - skb->head;
830
831 skb->head = data;
832 adjust_others:
833 skb->data += off;
834 #ifdef NET_SKBUFF_DATA_USES_OFFSET
835 skb->end = size;
836 off = nhead;
837 #else
838 skb->end = skb->head + size;
839 #endif
840 /* {transport,network,mac}_header and tail are relative to skb->head */
841 skb->tail += off;
842 skb->transport_header += off;
843 skb->network_header += off;
844 if (skb_mac_header_was_set(skb))
845 skb->mac_header += off;
846 /* Only adjust this if it actually is csum_start rather than csum */
847 if (skb->ip_summed == CHECKSUM_PARTIAL)
848 skb->csum_start += nhead;
849 skb->cloned = 0;
850 skb->hdr_len = 0;
851 skb->nohdr = 0;
852 atomic_set(&skb_shinfo(skb)->dataref, 1);
853 return 0;
854
855 nodata:
856 return -ENOMEM;
857 }
858 EXPORT_SYMBOL(pskb_expand_head);
859
860 /* Make private copy of skb with writable head and some headroom */
861
862 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
863 {
864 struct sk_buff *skb2;
865 int delta = headroom - skb_headroom(skb);
866
867 if (delta <= 0)
868 skb2 = pskb_copy(skb, GFP_ATOMIC);
869 else {
870 skb2 = skb_clone(skb, GFP_ATOMIC);
871 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
872 GFP_ATOMIC)) {
873 kfree_skb(skb2);
874 skb2 = NULL;
875 }
876 }
877 return skb2;
878 }
879 EXPORT_SYMBOL(skb_realloc_headroom);
880
881 /**
882 * skb_copy_expand - copy and expand sk_buff
883 * @skb: buffer to copy
884 * @newheadroom: new free bytes at head
885 * @newtailroom: new free bytes at tail
886 * @gfp_mask: allocation priority
887 *
888 * Make a copy of both an &sk_buff and its data and while doing so
889 * allocate additional space.
890 *
891 * This is used when the caller wishes to modify the data and needs a
892 * private copy of the data to alter as well as more space for new fields.
893 * Returns %NULL on failure or the pointer to the buffer
894 * on success. The returned buffer has a reference count of 1.
895 *
896 * You must pass %GFP_ATOMIC as the allocation priority if this function
897 * is called from an interrupt.
898 */
899 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
900 int newheadroom, int newtailroom,
901 gfp_t gfp_mask)
902 {
903 /*
904 * Allocate the copy buffer
905 */
906 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
907 gfp_mask);
908 int oldheadroom = skb_headroom(skb);
909 int head_copy_len, head_copy_off;
910 int off;
911
912 if (!n)
913 return NULL;
914
915 skb_reserve(n, newheadroom);
916
917 /* Set the tail pointer and length */
918 skb_put(n, skb->len);
919
920 head_copy_len = oldheadroom;
921 head_copy_off = 0;
922 if (newheadroom <= head_copy_len)
923 head_copy_len = newheadroom;
924 else
925 head_copy_off = newheadroom - head_copy_len;
926
927 /* Copy the linear header and data. */
928 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
929 skb->len + head_copy_len))
930 BUG();
931
932 copy_skb_header(n, skb);
933
934 off = newheadroom - oldheadroom;
935 if (n->ip_summed == CHECKSUM_PARTIAL)
936 n->csum_start += off;
937 #ifdef NET_SKBUFF_DATA_USES_OFFSET
938 n->transport_header += off;
939 n->network_header += off;
940 if (skb_mac_header_was_set(skb))
941 n->mac_header += off;
942 #endif
943
944 return n;
945 }
946 EXPORT_SYMBOL(skb_copy_expand);
947
948 /**
949 * skb_pad - zero pad the tail of an skb
950 * @skb: buffer to pad
951 * @pad: space to pad
952 *
953 * Ensure that a buffer is followed by a padding area that is zero
954 * filled. Used by network drivers which may DMA or transfer data
955 * beyond the buffer end onto the wire.
956 *
957 * May return error in out of memory cases. The skb is freed on error.
958 */
959
960 int skb_pad(struct sk_buff *skb, int pad)
961 {
962 int err;
963 int ntail;
964
965 /* If the skbuff is non linear tailroom is always zero.. */
966 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
967 memset(skb->data+skb->len, 0, pad);
968 return 0;
969 }
970
971 ntail = skb->data_len + pad - (skb->end - skb->tail);
972 if (likely(skb_cloned(skb) || ntail > 0)) {
973 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
974 if (unlikely(err))
975 goto free_skb;
976 }
977
978 /* FIXME: The use of this function with non-linear skb's really needs
979 * to be audited.
980 */
981 err = skb_linearize(skb);
982 if (unlikely(err))
983 goto free_skb;
984
985 memset(skb->data + skb->len, 0, pad);
986 return 0;
987
988 free_skb:
989 kfree_skb(skb);
990 return err;
991 }
992 EXPORT_SYMBOL(skb_pad);
993
994 /**
995 * skb_put - add data to a buffer
996 * @skb: buffer to use
997 * @len: amount of data to add
998 *
999 * This function extends the used data area of the buffer. If this would
1000 * exceed the total buffer size the kernel will panic. A pointer to the
1001 * first byte of the extra data is returned.
1002 */
1003 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1004 {
1005 unsigned char *tmp = skb_tail_pointer(skb);
1006 SKB_LINEAR_ASSERT(skb);
1007 skb->tail += len;
1008 skb->len += len;
1009 if (unlikely(skb->tail > skb->end))
1010 skb_over_panic(skb, len, __builtin_return_address(0));
1011 return tmp;
1012 }
1013 EXPORT_SYMBOL(skb_put);
1014
1015 /**
1016 * skb_push - add data to the start of a buffer
1017 * @skb: buffer to use
1018 * @len: amount of data to add
1019 *
1020 * This function extends the used data area of the buffer at the buffer
1021 * start. If this would exceed the total buffer headroom the kernel will
1022 * panic. A pointer to the first byte of the extra data is returned.
1023 */
1024 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1025 {
1026 skb->data -= len;
1027 skb->len += len;
1028 if (unlikely(skb->data<skb->head))
1029 skb_under_panic(skb, len, __builtin_return_address(0));
1030 return skb->data;
1031 }
1032 EXPORT_SYMBOL(skb_push);
1033
1034 /**
1035 * skb_pull - remove data from the start of a buffer
1036 * @skb: buffer to use
1037 * @len: amount of data to remove
1038 *
1039 * This function removes data from the start of a buffer, returning
1040 * the memory to the headroom. A pointer to the next data in the buffer
1041 * is returned. Once the data has been pulled future pushes will overwrite
1042 * the old data.
1043 */
1044 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1045 {
1046 return skb_pull_inline(skb, len);
1047 }
1048 EXPORT_SYMBOL(skb_pull);
1049
1050 /**
1051 * skb_trim - remove end from a buffer
1052 * @skb: buffer to alter
1053 * @len: new length
1054 *
1055 * Cut the length of a buffer down by removing data from the tail. If
1056 * the buffer is already under the length specified it is not modified.
1057 * The skb must be linear.
1058 */
1059 void skb_trim(struct sk_buff *skb, unsigned int len)
1060 {
1061 if (skb->len > len)
1062 __skb_trim(skb, len);
1063 }
1064 EXPORT_SYMBOL(skb_trim);
1065
1066 /* Trims skb to length len. It can change skb pointers.
1067 */
1068
1069 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1070 {
1071 struct sk_buff **fragp;
1072 struct sk_buff *frag;
1073 int offset = skb_headlen(skb);
1074 int nfrags = skb_shinfo(skb)->nr_frags;
1075 int i;
1076 int err;
1077
1078 if (skb_cloned(skb) &&
1079 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1080 return err;
1081
1082 i = 0;
1083 if (offset >= len)
1084 goto drop_pages;
1085
1086 for (; i < nfrags; i++) {
1087 int end = offset + skb_shinfo(skb)->frags[i].size;
1088
1089 if (end < len) {
1090 offset = end;
1091 continue;
1092 }
1093
1094 skb_shinfo(skb)->frags[i++].size = len - offset;
1095
1096 drop_pages:
1097 skb_shinfo(skb)->nr_frags = i;
1098
1099 for (; i < nfrags; i++)
1100 put_page(skb_shinfo(skb)->frags[i].page);
1101
1102 if (skb_has_frag_list(skb))
1103 skb_drop_fraglist(skb);
1104 goto done;
1105 }
1106
1107 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1108 fragp = &frag->next) {
1109 int end = offset + frag->len;
1110
1111 if (skb_shared(frag)) {
1112 struct sk_buff *nfrag;
1113
1114 nfrag = skb_clone(frag, GFP_ATOMIC);
1115 if (unlikely(!nfrag))
1116 return -ENOMEM;
1117
1118 nfrag->next = frag->next;
1119 kfree_skb(frag);
1120 frag = nfrag;
1121 *fragp = frag;
1122 }
1123
1124 if (end < len) {
1125 offset = end;
1126 continue;
1127 }
1128
1129 if (end > len &&
1130 unlikely((err = pskb_trim(frag, len - offset))))
1131 return err;
1132
1133 if (frag->next)
1134 skb_drop_list(&frag->next);
1135 break;
1136 }
1137
1138 done:
1139 if (len > skb_headlen(skb)) {
1140 skb->data_len -= skb->len - len;
1141 skb->len = len;
1142 } else {
1143 skb->len = len;
1144 skb->data_len = 0;
1145 skb_set_tail_pointer(skb, len);
1146 }
1147
1148 return 0;
1149 }
1150 EXPORT_SYMBOL(___pskb_trim);
1151
1152 /**
1153 * __pskb_pull_tail - advance tail of skb header
1154 * @skb: buffer to reallocate
1155 * @delta: number of bytes to advance tail
1156 *
1157 * The function makes a sense only on a fragmented &sk_buff,
1158 * it expands header moving its tail forward and copying necessary
1159 * data from fragmented part.
1160 *
1161 * &sk_buff MUST have reference count of 1.
1162 *
1163 * Returns %NULL (and &sk_buff does not change) if pull failed
1164 * or value of new tail of skb in the case of success.
1165 *
1166 * All the pointers pointing into skb header may change and must be
1167 * reloaded after call to this function.
1168 */
1169
1170 /* Moves tail of skb head forward, copying data from fragmented part,
1171 * when it is necessary.
1172 * 1. It may fail due to malloc failure.
1173 * 2. It may change skb pointers.
1174 *
1175 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1176 */
1177 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1178 {
1179 /* If skb has not enough free space at tail, get new one
1180 * plus 128 bytes for future expansions. If we have enough
1181 * room at tail, reallocate without expansion only if skb is cloned.
1182 */
1183 int i, k, eat = (skb->tail + delta) - skb->end;
1184
1185 if (eat > 0 || skb_cloned(skb)) {
1186 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1187 GFP_ATOMIC))
1188 return NULL;
1189 }
1190
1191 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1192 BUG();
1193
1194 /* Optimization: no fragments, no reasons to preestimate
1195 * size of pulled pages. Superb.
1196 */
1197 if (!skb_has_frag_list(skb))
1198 goto pull_pages;
1199
1200 /* Estimate size of pulled pages. */
1201 eat = delta;
1202 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1203 if (skb_shinfo(skb)->frags[i].size >= eat)
1204 goto pull_pages;
1205 eat -= skb_shinfo(skb)->frags[i].size;
1206 }
1207
1208 /* If we need update frag list, we are in troubles.
1209 * Certainly, it possible to add an offset to skb data,
1210 * but taking into account that pulling is expected to
1211 * be very rare operation, it is worth to fight against
1212 * further bloating skb head and crucify ourselves here instead.
1213 * Pure masohism, indeed. 8)8)
1214 */
1215 if (eat) {
1216 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1217 struct sk_buff *clone = NULL;
1218 struct sk_buff *insp = NULL;
1219
1220 do {
1221 BUG_ON(!list);
1222
1223 if (list->len <= eat) {
1224 /* Eaten as whole. */
1225 eat -= list->len;
1226 list = list->next;
1227 insp = list;
1228 } else {
1229 /* Eaten partially. */
1230
1231 if (skb_shared(list)) {
1232 /* Sucks! We need to fork list. :-( */
1233 clone = skb_clone(list, GFP_ATOMIC);
1234 if (!clone)
1235 return NULL;
1236 insp = list->next;
1237 list = clone;
1238 } else {
1239 /* This may be pulled without
1240 * problems. */
1241 insp = list;
1242 }
1243 if (!pskb_pull(list, eat)) {
1244 kfree_skb(clone);
1245 return NULL;
1246 }
1247 break;
1248 }
1249 } while (eat);
1250
1251 /* Free pulled out fragments. */
1252 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1253 skb_shinfo(skb)->frag_list = list->next;
1254 kfree_skb(list);
1255 }
1256 /* And insert new clone at head. */
1257 if (clone) {
1258 clone->next = list;
1259 skb_shinfo(skb)->frag_list = clone;
1260 }
1261 }
1262 /* Success! Now we may commit changes to skb data. */
1263
1264 pull_pages:
1265 eat = delta;
1266 k = 0;
1267 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1268 if (skb_shinfo(skb)->frags[i].size <= eat) {
1269 put_page(skb_shinfo(skb)->frags[i].page);
1270 eat -= skb_shinfo(skb)->frags[i].size;
1271 } else {
1272 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1273 if (eat) {
1274 skb_shinfo(skb)->frags[k].page_offset += eat;
1275 skb_shinfo(skb)->frags[k].size -= eat;
1276 eat = 0;
1277 }
1278 k++;
1279 }
1280 }
1281 skb_shinfo(skb)->nr_frags = k;
1282
1283 skb->tail += delta;
1284 skb->data_len -= delta;
1285
1286 return skb_tail_pointer(skb);
1287 }
1288 EXPORT_SYMBOL(__pskb_pull_tail);
1289
1290 /* Copy some data bits from skb to kernel buffer. */
1291
1292 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1293 {
1294 int start = skb_headlen(skb);
1295 struct sk_buff *frag_iter;
1296 int i, copy;
1297
1298 if (offset > (int)skb->len - len)
1299 goto fault;
1300
1301 /* Copy header. */
1302 if ((copy = start - offset) > 0) {
1303 if (copy > len)
1304 copy = len;
1305 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1306 if ((len -= copy) == 0)
1307 return 0;
1308 offset += copy;
1309 to += copy;
1310 }
1311
1312 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1313 int end;
1314
1315 WARN_ON(start > offset + len);
1316
1317 end = start + skb_shinfo(skb)->frags[i].size;
1318 if ((copy = end - offset) > 0) {
1319 u8 *vaddr;
1320
1321 if (copy > len)
1322 copy = len;
1323
1324 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1325 memcpy(to,
1326 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1327 offset - start, copy);
1328 kunmap_skb_frag(vaddr);
1329
1330 if ((len -= copy) == 0)
1331 return 0;
1332 offset += copy;
1333 to += copy;
1334 }
1335 start = end;
1336 }
1337
1338 skb_walk_frags(skb, frag_iter) {
1339 int end;
1340
1341 WARN_ON(start > offset + len);
1342
1343 end = start + frag_iter->len;
1344 if ((copy = end - offset) > 0) {
1345 if (copy > len)
1346 copy = len;
1347 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1348 goto fault;
1349 if ((len -= copy) == 0)
1350 return 0;
1351 offset += copy;
1352 to += copy;
1353 }
1354 start = end;
1355 }
1356 if (!len)
1357 return 0;
1358
1359 fault:
1360 return -EFAULT;
1361 }
1362 EXPORT_SYMBOL(skb_copy_bits);
1363
1364 /*
1365 * Callback from splice_to_pipe(), if we need to release some pages
1366 * at the end of the spd in case we error'ed out in filling the pipe.
1367 */
1368 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1369 {
1370 put_page(spd->pages[i]);
1371 }
1372
1373 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1374 unsigned int *offset,
1375 struct sk_buff *skb, struct sock *sk)
1376 {
1377 struct page *p = sk->sk_sndmsg_page;
1378 unsigned int off;
1379
1380 if (!p) {
1381 new_page:
1382 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1383 if (!p)
1384 return NULL;
1385
1386 off = sk->sk_sndmsg_off = 0;
1387 /* hold one ref to this page until it's full */
1388 } else {
1389 unsigned int mlen;
1390
1391 off = sk->sk_sndmsg_off;
1392 mlen = PAGE_SIZE - off;
1393 if (mlen < 64 && mlen < *len) {
1394 put_page(p);
1395 goto new_page;
1396 }
1397
1398 *len = min_t(unsigned int, *len, mlen);
1399 }
1400
1401 memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1402 sk->sk_sndmsg_off += *len;
1403 *offset = off;
1404 get_page(p);
1405
1406 return p;
1407 }
1408
1409 /*
1410 * Fill page/offset/length into spd, if it can hold more pages.
1411 */
1412 static inline int spd_fill_page(struct splice_pipe_desc *spd,
1413 struct pipe_inode_info *pipe, struct page *page,
1414 unsigned int *len, unsigned int offset,
1415 struct sk_buff *skb, int linear,
1416 struct sock *sk)
1417 {
1418 if (unlikely(spd->nr_pages == pipe->buffers))
1419 return 1;
1420
1421 if (linear) {
1422 page = linear_to_page(page, len, &offset, skb, sk);
1423 if (!page)
1424 return 1;
1425 } else
1426 get_page(page);
1427
1428 spd->pages[spd->nr_pages] = page;
1429 spd->partial[spd->nr_pages].len = *len;
1430 spd->partial[spd->nr_pages].offset = offset;
1431 spd->nr_pages++;
1432
1433 return 0;
1434 }
1435
1436 static inline void __segment_seek(struct page **page, unsigned int *poff,
1437 unsigned int *plen, unsigned int off)
1438 {
1439 unsigned long n;
1440
1441 *poff += off;
1442 n = *poff / PAGE_SIZE;
1443 if (n)
1444 *page = nth_page(*page, n);
1445
1446 *poff = *poff % PAGE_SIZE;
1447 *plen -= off;
1448 }
1449
1450 static inline int __splice_segment(struct page *page, unsigned int poff,
1451 unsigned int plen, unsigned int *off,
1452 unsigned int *len, struct sk_buff *skb,
1453 struct splice_pipe_desc *spd, int linear,
1454 struct sock *sk,
1455 struct pipe_inode_info *pipe)
1456 {
1457 if (!*len)
1458 return 1;
1459
1460 /* skip this segment if already processed */
1461 if (*off >= plen) {
1462 *off -= plen;
1463 return 0;
1464 }
1465
1466 /* ignore any bits we already processed */
1467 if (*off) {
1468 __segment_seek(&page, &poff, &plen, *off);
1469 *off = 0;
1470 }
1471
1472 do {
1473 unsigned int flen = min(*len, plen);
1474
1475 /* the linear region may spread across several pages */
1476 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1477
1478 if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1479 return 1;
1480
1481 __segment_seek(&page, &poff, &plen, flen);
1482 *len -= flen;
1483
1484 } while (*len && plen);
1485
1486 return 0;
1487 }
1488
1489 /*
1490 * Map linear and fragment data from the skb to spd. It reports failure if the
1491 * pipe is full or if we already spliced the requested length.
1492 */
1493 static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1494 unsigned int *offset, unsigned int *len,
1495 struct splice_pipe_desc *spd, struct sock *sk)
1496 {
1497 int seg;
1498
1499 /*
1500 * map the linear part
1501 */
1502 if (__splice_segment(virt_to_page(skb->data),
1503 (unsigned long) skb->data & (PAGE_SIZE - 1),
1504 skb_headlen(skb),
1505 offset, len, skb, spd, 1, sk, pipe))
1506 return 1;
1507
1508 /*
1509 * then map the fragments
1510 */
1511 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1512 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1513
1514 if (__splice_segment(f->page, f->page_offset, f->size,
1515 offset, len, skb, spd, 0, sk, pipe))
1516 return 1;
1517 }
1518
1519 return 0;
1520 }
1521
1522 /*
1523 * Map data from the skb to a pipe. Should handle both the linear part,
1524 * the fragments, and the frag list. It does NOT handle frag lists within
1525 * the frag list, if such a thing exists. We'd probably need to recurse to
1526 * handle that cleanly.
1527 */
1528 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1529 struct pipe_inode_info *pipe, unsigned int tlen,
1530 unsigned int flags)
1531 {
1532 struct partial_page partial[PIPE_DEF_BUFFERS];
1533 struct page *pages[PIPE_DEF_BUFFERS];
1534 struct splice_pipe_desc spd = {
1535 .pages = pages,
1536 .partial = partial,
1537 .flags = flags,
1538 .ops = &sock_pipe_buf_ops,
1539 .spd_release = sock_spd_release,
1540 };
1541 struct sk_buff *frag_iter;
1542 struct sock *sk = skb->sk;
1543 int ret = 0;
1544
1545 if (splice_grow_spd(pipe, &spd))
1546 return -ENOMEM;
1547
1548 /*
1549 * __skb_splice_bits() only fails if the output has no room left,
1550 * so no point in going over the frag_list for the error case.
1551 */
1552 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1553 goto done;
1554 else if (!tlen)
1555 goto done;
1556
1557 /*
1558 * now see if we have a frag_list to map
1559 */
1560 skb_walk_frags(skb, frag_iter) {
1561 if (!tlen)
1562 break;
1563 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1564 break;
1565 }
1566
1567 done:
1568 if (spd.nr_pages) {
1569 /*
1570 * Drop the socket lock, otherwise we have reverse
1571 * locking dependencies between sk_lock and i_mutex
1572 * here as compared to sendfile(). We enter here
1573 * with the socket lock held, and splice_to_pipe() will
1574 * grab the pipe inode lock. For sendfile() emulation,
1575 * we call into ->sendpage() with the i_mutex lock held
1576 * and networking will grab the socket lock.
1577 */
1578 release_sock(sk);
1579 ret = splice_to_pipe(pipe, &spd);
1580 lock_sock(sk);
1581 }
1582
1583 splice_shrink_spd(pipe, &spd);
1584 return ret;
1585 }
1586
1587 /**
1588 * skb_store_bits - store bits from kernel buffer to skb
1589 * @skb: destination buffer
1590 * @offset: offset in destination
1591 * @from: source buffer
1592 * @len: number of bytes to copy
1593 *
1594 * Copy the specified number of bytes from the source buffer to the
1595 * destination skb. This function handles all the messy bits of
1596 * traversing fragment lists and such.
1597 */
1598
1599 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1600 {
1601 int start = skb_headlen(skb);
1602 struct sk_buff *frag_iter;
1603 int i, copy;
1604
1605 if (offset > (int)skb->len - len)
1606 goto fault;
1607
1608 if ((copy = start - offset) > 0) {
1609 if (copy > len)
1610 copy = len;
1611 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1612 if ((len -= copy) == 0)
1613 return 0;
1614 offset += copy;
1615 from += copy;
1616 }
1617
1618 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1619 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1620 int end;
1621
1622 WARN_ON(start > offset + len);
1623
1624 end = start + frag->size;
1625 if ((copy = end - offset) > 0) {
1626 u8 *vaddr;
1627
1628 if (copy > len)
1629 copy = len;
1630
1631 vaddr = kmap_skb_frag(frag);
1632 memcpy(vaddr + frag->page_offset + offset - start,
1633 from, copy);
1634 kunmap_skb_frag(vaddr);
1635
1636 if ((len -= copy) == 0)
1637 return 0;
1638 offset += copy;
1639 from += copy;
1640 }
1641 start = end;
1642 }
1643
1644 skb_walk_frags(skb, frag_iter) {
1645 int end;
1646
1647 WARN_ON(start > offset + len);
1648
1649 end = start + frag_iter->len;
1650 if ((copy = end - offset) > 0) {
1651 if (copy > len)
1652 copy = len;
1653 if (skb_store_bits(frag_iter, offset - start,
1654 from, copy))
1655 goto fault;
1656 if ((len -= copy) == 0)
1657 return 0;
1658 offset += copy;
1659 from += copy;
1660 }
1661 start = end;
1662 }
1663 if (!len)
1664 return 0;
1665
1666 fault:
1667 return -EFAULT;
1668 }
1669 EXPORT_SYMBOL(skb_store_bits);
1670
1671 /* Checksum skb data. */
1672
1673 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1674 int len, __wsum csum)
1675 {
1676 int start = skb_headlen(skb);
1677 int i, copy = start - offset;
1678 struct sk_buff *frag_iter;
1679 int pos = 0;
1680
1681 /* Checksum header. */
1682 if (copy > 0) {
1683 if (copy > len)
1684 copy = len;
1685 csum = csum_partial(skb->data + offset, copy, csum);
1686 if ((len -= copy) == 0)
1687 return csum;
1688 offset += copy;
1689 pos = copy;
1690 }
1691
1692 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1693 int end;
1694
1695 WARN_ON(start > offset + len);
1696
1697 end = start + skb_shinfo(skb)->frags[i].size;
1698 if ((copy = end - offset) > 0) {
1699 __wsum csum2;
1700 u8 *vaddr;
1701 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1702
1703 if (copy > len)
1704 copy = len;
1705 vaddr = kmap_skb_frag(frag);
1706 csum2 = csum_partial(vaddr + frag->page_offset +
1707 offset - start, copy, 0);
1708 kunmap_skb_frag(vaddr);
1709 csum = csum_block_add(csum, csum2, pos);
1710 if (!(len -= copy))
1711 return csum;
1712 offset += copy;
1713 pos += copy;
1714 }
1715 start = end;
1716 }
1717
1718 skb_walk_frags(skb, frag_iter) {
1719 int end;
1720
1721 WARN_ON(start > offset + len);
1722
1723 end = start + frag_iter->len;
1724 if ((copy = end - offset) > 0) {
1725 __wsum csum2;
1726 if (copy > len)
1727 copy = len;
1728 csum2 = skb_checksum(frag_iter, offset - start,
1729 copy, 0);
1730 csum = csum_block_add(csum, csum2, pos);
1731 if ((len -= copy) == 0)
1732 return csum;
1733 offset += copy;
1734 pos += copy;
1735 }
1736 start = end;
1737 }
1738 BUG_ON(len);
1739
1740 return csum;
1741 }
1742 EXPORT_SYMBOL(skb_checksum);
1743
1744 /* Both of above in one bottle. */
1745
1746 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1747 u8 *to, int len, __wsum csum)
1748 {
1749 int start = skb_headlen(skb);
1750 int i, copy = start - offset;
1751 struct sk_buff *frag_iter;
1752 int pos = 0;
1753
1754 /* Copy header. */
1755 if (copy > 0) {
1756 if (copy > len)
1757 copy = len;
1758 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1759 copy, csum);
1760 if ((len -= copy) == 0)
1761 return csum;
1762 offset += copy;
1763 to += copy;
1764 pos = copy;
1765 }
1766
1767 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1768 int end;
1769
1770 WARN_ON(start > offset + len);
1771
1772 end = start + skb_shinfo(skb)->frags[i].size;
1773 if ((copy = end - offset) > 0) {
1774 __wsum csum2;
1775 u8 *vaddr;
1776 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1777
1778 if (copy > len)
1779 copy = len;
1780 vaddr = kmap_skb_frag(frag);
1781 csum2 = csum_partial_copy_nocheck(vaddr +
1782 frag->page_offset +
1783 offset - start, to,
1784 copy, 0);
1785 kunmap_skb_frag(vaddr);
1786 csum = csum_block_add(csum, csum2, pos);
1787 if (!(len -= copy))
1788 return csum;
1789 offset += copy;
1790 to += copy;
1791 pos += copy;
1792 }
1793 start = end;
1794 }
1795
1796 skb_walk_frags(skb, frag_iter) {
1797 __wsum csum2;
1798 int end;
1799
1800 WARN_ON(start > offset + len);
1801
1802 end = start + frag_iter->len;
1803 if ((copy = end - offset) > 0) {
1804 if (copy > len)
1805 copy = len;
1806 csum2 = skb_copy_and_csum_bits(frag_iter,
1807 offset - start,
1808 to, copy, 0);
1809 csum = csum_block_add(csum, csum2, pos);
1810 if ((len -= copy) == 0)
1811 return csum;
1812 offset += copy;
1813 to += copy;
1814 pos += copy;
1815 }
1816 start = end;
1817 }
1818 BUG_ON(len);
1819 return csum;
1820 }
1821 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1822
1823 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1824 {
1825 __wsum csum;
1826 long csstart;
1827
1828 if (skb->ip_summed == CHECKSUM_PARTIAL)
1829 csstart = skb_checksum_start_offset(skb);
1830 else
1831 csstart = skb_headlen(skb);
1832
1833 BUG_ON(csstart > skb_headlen(skb));
1834
1835 skb_copy_from_linear_data(skb, to, csstart);
1836
1837 csum = 0;
1838 if (csstart != skb->len)
1839 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1840 skb->len - csstart, 0);
1841
1842 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1843 long csstuff = csstart + skb->csum_offset;
1844
1845 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1846 }
1847 }
1848 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1849
1850 /**
1851 * skb_dequeue - remove from the head of the queue
1852 * @list: list to dequeue from
1853 *
1854 * Remove the head of the list. The list lock is taken so the function
1855 * may be used safely with other locking list functions. The head item is
1856 * returned or %NULL if the list is empty.
1857 */
1858
1859 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1860 {
1861 unsigned long flags;
1862 struct sk_buff *result;
1863
1864 spin_lock_irqsave(&list->lock, flags);
1865 result = __skb_dequeue(list);
1866 spin_unlock_irqrestore(&list->lock, flags);
1867 return result;
1868 }
1869 EXPORT_SYMBOL(skb_dequeue);
1870
1871 /**
1872 * skb_dequeue_tail - remove from the tail of the queue
1873 * @list: list to dequeue from
1874 *
1875 * Remove the tail of the list. The list lock is taken so the function
1876 * may be used safely with other locking list functions. The tail item is
1877 * returned or %NULL if the list is empty.
1878 */
1879 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1880 {
1881 unsigned long flags;
1882 struct sk_buff *result;
1883
1884 spin_lock_irqsave(&list->lock, flags);
1885 result = __skb_dequeue_tail(list);
1886 spin_unlock_irqrestore(&list->lock, flags);
1887 return result;
1888 }
1889 EXPORT_SYMBOL(skb_dequeue_tail);
1890
1891 /**
1892 * skb_queue_purge - empty a list
1893 * @list: list to empty
1894 *
1895 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1896 * the list and one reference dropped. This function takes the list
1897 * lock and is atomic with respect to other list locking functions.
1898 */
1899 void skb_queue_purge(struct sk_buff_head *list)
1900 {
1901 struct sk_buff *skb;
1902 while ((skb = skb_dequeue(list)) != NULL)
1903 kfree_skb(skb);
1904 }
1905 EXPORT_SYMBOL(skb_queue_purge);
1906
1907 /**
1908 * skb_queue_head - queue a buffer at the list head
1909 * @list: list to use
1910 * @newsk: buffer to queue
1911 *
1912 * Queue a buffer at the start of the list. This function takes the
1913 * list lock and can be used safely with other locking &sk_buff functions
1914 * safely.
1915 *
1916 * A buffer cannot be placed on two lists at the same time.
1917 */
1918 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1919 {
1920 unsigned long flags;
1921
1922 spin_lock_irqsave(&list->lock, flags);
1923 __skb_queue_head(list, newsk);
1924 spin_unlock_irqrestore(&list->lock, flags);
1925 }
1926 EXPORT_SYMBOL(skb_queue_head);
1927
1928 /**
1929 * skb_queue_tail - queue a buffer at the list tail
1930 * @list: list to use
1931 * @newsk: buffer to queue
1932 *
1933 * Queue a buffer at the tail of the list. This function takes the
1934 * list lock and can be used safely with other locking &sk_buff functions
1935 * safely.
1936 *
1937 * A buffer cannot be placed on two lists at the same time.
1938 */
1939 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1940 {
1941 unsigned long flags;
1942
1943 spin_lock_irqsave(&list->lock, flags);
1944 __skb_queue_tail(list, newsk);
1945 spin_unlock_irqrestore(&list->lock, flags);
1946 }
1947 EXPORT_SYMBOL(skb_queue_tail);
1948
1949 /**
1950 * skb_unlink - remove a buffer from a list
1951 * @skb: buffer to remove
1952 * @list: list to use
1953 *
1954 * Remove a packet from a list. The list locks are taken and this
1955 * function is atomic with respect to other list locked calls
1956 *
1957 * You must know what list the SKB is on.
1958 */
1959 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1960 {
1961 unsigned long flags;
1962
1963 spin_lock_irqsave(&list->lock, flags);
1964 __skb_unlink(skb, list);
1965 spin_unlock_irqrestore(&list->lock, flags);
1966 }
1967 EXPORT_SYMBOL(skb_unlink);
1968
1969 /**
1970 * skb_append - append a buffer
1971 * @old: buffer to insert after
1972 * @newsk: buffer to insert
1973 * @list: list to use
1974 *
1975 * Place a packet after a given packet in a list. The list locks are taken
1976 * and this function is atomic with respect to other list locked calls.
1977 * A buffer cannot be placed on two lists at the same time.
1978 */
1979 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1980 {
1981 unsigned long flags;
1982
1983 spin_lock_irqsave(&list->lock, flags);
1984 __skb_queue_after(list, old, newsk);
1985 spin_unlock_irqrestore(&list->lock, flags);
1986 }
1987 EXPORT_SYMBOL(skb_append);
1988
1989 /**
1990 * skb_insert - insert a buffer
1991 * @old: buffer to insert before
1992 * @newsk: buffer to insert
1993 * @list: list to use
1994 *
1995 * Place a packet before a given packet in a list. The list locks are
1996 * taken and this function is atomic with respect to other list locked
1997 * calls.
1998 *
1999 * A buffer cannot be placed on two lists at the same time.
2000 */
2001 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2002 {
2003 unsigned long flags;
2004
2005 spin_lock_irqsave(&list->lock, flags);
2006 __skb_insert(newsk, old->prev, old, list);
2007 spin_unlock_irqrestore(&list->lock, flags);
2008 }
2009 EXPORT_SYMBOL(skb_insert);
2010
2011 static inline void skb_split_inside_header(struct sk_buff *skb,
2012 struct sk_buff* skb1,
2013 const u32 len, const int pos)
2014 {
2015 int i;
2016
2017 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2018 pos - len);
2019 /* And move data appendix as is. */
2020 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2021 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2022
2023 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2024 skb_shinfo(skb)->nr_frags = 0;
2025 skb1->data_len = skb->data_len;
2026 skb1->len += skb1->data_len;
2027 skb->data_len = 0;
2028 skb->len = len;
2029 skb_set_tail_pointer(skb, len);
2030 }
2031
2032 static inline void skb_split_no_header(struct sk_buff *skb,
2033 struct sk_buff* skb1,
2034 const u32 len, int pos)
2035 {
2036 int i, k = 0;
2037 const int nfrags = skb_shinfo(skb)->nr_frags;
2038
2039 skb_shinfo(skb)->nr_frags = 0;
2040 skb1->len = skb1->data_len = skb->len - len;
2041 skb->len = len;
2042 skb->data_len = len - pos;
2043
2044 for (i = 0; i < nfrags; i++) {
2045 int size = skb_shinfo(skb)->frags[i].size;
2046
2047 if (pos + size > len) {
2048 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2049
2050 if (pos < len) {
2051 /* Split frag.
2052 * We have two variants in this case:
2053 * 1. Move all the frag to the second
2054 * part, if it is possible. F.e.
2055 * this approach is mandatory for TUX,
2056 * where splitting is expensive.
2057 * 2. Split is accurately. We make this.
2058 */
2059 get_page(skb_shinfo(skb)->frags[i].page);
2060 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2061 skb_shinfo(skb1)->frags[0].size -= len - pos;
2062 skb_shinfo(skb)->frags[i].size = len - pos;
2063 skb_shinfo(skb)->nr_frags++;
2064 }
2065 k++;
2066 } else
2067 skb_shinfo(skb)->nr_frags++;
2068 pos += size;
2069 }
2070 skb_shinfo(skb1)->nr_frags = k;
2071 }
2072
2073 /**
2074 * skb_split - Split fragmented skb to two parts at length len.
2075 * @skb: the buffer to split
2076 * @skb1: the buffer to receive the second part
2077 * @len: new length for skb
2078 */
2079 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2080 {
2081 int pos = skb_headlen(skb);
2082
2083 if (len < pos) /* Split line is inside header. */
2084 skb_split_inside_header(skb, skb1, len, pos);
2085 else /* Second chunk has no header, nothing to copy. */
2086 skb_split_no_header(skb, skb1, len, pos);
2087 }
2088 EXPORT_SYMBOL(skb_split);
2089
2090 /* Shifting from/to a cloned skb is a no-go.
2091 *
2092 * Caller cannot keep skb_shinfo related pointers past calling here!
2093 */
2094 static int skb_prepare_for_shift(struct sk_buff *skb)
2095 {
2096 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2097 }
2098
2099 /**
2100 * skb_shift - Shifts paged data partially from skb to another
2101 * @tgt: buffer into which tail data gets added
2102 * @skb: buffer from which the paged data comes from
2103 * @shiftlen: shift up to this many bytes
2104 *
2105 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2106 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2107 * It's up to caller to free skb if everything was shifted.
2108 *
2109 * If @tgt runs out of frags, the whole operation is aborted.
2110 *
2111 * Skb cannot include anything else but paged data while tgt is allowed
2112 * to have non-paged data as well.
2113 *
2114 * TODO: full sized shift could be optimized but that would need
2115 * specialized skb free'er to handle frags without up-to-date nr_frags.
2116 */
2117 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2118 {
2119 int from, to, merge, todo;
2120 struct skb_frag_struct *fragfrom, *fragto;
2121
2122 BUG_ON(shiftlen > skb->len);
2123 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2124
2125 todo = shiftlen;
2126 from = 0;
2127 to = skb_shinfo(tgt)->nr_frags;
2128 fragfrom = &skb_shinfo(skb)->frags[from];
2129
2130 /* Actual merge is delayed until the point when we know we can
2131 * commit all, so that we don't have to undo partial changes
2132 */
2133 if (!to ||
2134 !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2135 merge = -1;
2136 } else {
2137 merge = to - 1;
2138
2139 todo -= fragfrom->size;
2140 if (todo < 0) {
2141 if (skb_prepare_for_shift(skb) ||
2142 skb_prepare_for_shift(tgt))
2143 return 0;
2144
2145 /* All previous frag pointers might be stale! */
2146 fragfrom = &skb_shinfo(skb)->frags[from];
2147 fragto = &skb_shinfo(tgt)->frags[merge];
2148
2149 fragto->size += shiftlen;
2150 fragfrom->size -= shiftlen;
2151 fragfrom->page_offset += shiftlen;
2152
2153 goto onlymerged;
2154 }
2155
2156 from++;
2157 }
2158
2159 /* Skip full, not-fitting skb to avoid expensive operations */
2160 if ((shiftlen == skb->len) &&
2161 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2162 return 0;
2163
2164 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2165 return 0;
2166
2167 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2168 if (to == MAX_SKB_FRAGS)
2169 return 0;
2170
2171 fragfrom = &skb_shinfo(skb)->frags[from];
2172 fragto = &skb_shinfo(tgt)->frags[to];
2173
2174 if (todo >= fragfrom->size) {
2175 *fragto = *fragfrom;
2176 todo -= fragfrom->size;
2177 from++;
2178 to++;
2179
2180 } else {
2181 get_page(fragfrom->page);
2182 fragto->page = fragfrom->page;
2183 fragto->page_offset = fragfrom->page_offset;
2184 fragto->size = todo;
2185
2186 fragfrom->page_offset += todo;
2187 fragfrom->size -= todo;
2188 todo = 0;
2189
2190 to++;
2191 break;
2192 }
2193 }
2194
2195 /* Ready to "commit" this state change to tgt */
2196 skb_shinfo(tgt)->nr_frags = to;
2197
2198 if (merge >= 0) {
2199 fragfrom = &skb_shinfo(skb)->frags[0];
2200 fragto = &skb_shinfo(tgt)->frags[merge];
2201
2202 fragto->size += fragfrom->size;
2203 put_page(fragfrom->page);
2204 }
2205
2206 /* Reposition in the original skb */
2207 to = 0;
2208 while (from < skb_shinfo(skb)->nr_frags)
2209 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2210 skb_shinfo(skb)->nr_frags = to;
2211
2212 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2213
2214 onlymerged:
2215 /* Most likely the tgt won't ever need its checksum anymore, skb on
2216 * the other hand might need it if it needs to be resent
2217 */
2218 tgt->ip_summed = CHECKSUM_PARTIAL;
2219 skb->ip_summed = CHECKSUM_PARTIAL;
2220
2221 /* Yak, is it really working this way? Some helper please? */
2222 skb->len -= shiftlen;
2223 skb->data_len -= shiftlen;
2224 skb->truesize -= shiftlen;
2225 tgt->len += shiftlen;
2226 tgt->data_len += shiftlen;
2227 tgt->truesize += shiftlen;
2228
2229 return shiftlen;
2230 }
2231
2232 /**
2233 * skb_prepare_seq_read - Prepare a sequential read of skb data
2234 * @skb: the buffer to read
2235 * @from: lower offset of data to be read
2236 * @to: upper offset of data to be read
2237 * @st: state variable
2238 *
2239 * Initializes the specified state variable. Must be called before
2240 * invoking skb_seq_read() for the first time.
2241 */
2242 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2243 unsigned int to, struct skb_seq_state *st)
2244 {
2245 st->lower_offset = from;
2246 st->upper_offset = to;
2247 st->root_skb = st->cur_skb = skb;
2248 st->frag_idx = st->stepped_offset = 0;
2249 st->frag_data = NULL;
2250 }
2251 EXPORT_SYMBOL(skb_prepare_seq_read);
2252
2253 /**
2254 * skb_seq_read - Sequentially read skb data
2255 * @consumed: number of bytes consumed by the caller so far
2256 * @data: destination pointer for data to be returned
2257 * @st: state variable
2258 *
2259 * Reads a block of skb data at &consumed relative to the
2260 * lower offset specified to skb_prepare_seq_read(). Assigns
2261 * the head of the data block to &data and returns the length
2262 * of the block or 0 if the end of the skb data or the upper
2263 * offset has been reached.
2264 *
2265 * The caller is not required to consume all of the data
2266 * returned, i.e. &consumed is typically set to the number
2267 * of bytes already consumed and the next call to
2268 * skb_seq_read() will return the remaining part of the block.
2269 *
2270 * Note 1: The size of each block of data returned can be arbitrary,
2271 * this limitation is the cost for zerocopy seqeuental
2272 * reads of potentially non linear data.
2273 *
2274 * Note 2: Fragment lists within fragments are not implemented
2275 * at the moment, state->root_skb could be replaced with
2276 * a stack for this purpose.
2277 */
2278 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2279 struct skb_seq_state *st)
2280 {
2281 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2282 skb_frag_t *frag;
2283
2284 if (unlikely(abs_offset >= st->upper_offset))
2285 return 0;
2286
2287 next_skb:
2288 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2289
2290 if (abs_offset < block_limit && !st->frag_data) {
2291 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2292 return block_limit - abs_offset;
2293 }
2294
2295 if (st->frag_idx == 0 && !st->frag_data)
2296 st->stepped_offset += skb_headlen(st->cur_skb);
2297
2298 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2299 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2300 block_limit = frag->size + st->stepped_offset;
2301
2302 if (abs_offset < block_limit) {
2303 if (!st->frag_data)
2304 st->frag_data = kmap_skb_frag(frag);
2305
2306 *data = (u8 *) st->frag_data + frag->page_offset +
2307 (abs_offset - st->stepped_offset);
2308
2309 return block_limit - abs_offset;
2310 }
2311
2312 if (st->frag_data) {
2313 kunmap_skb_frag(st->frag_data);
2314 st->frag_data = NULL;
2315 }
2316
2317 st->frag_idx++;
2318 st->stepped_offset += frag->size;
2319 }
2320
2321 if (st->frag_data) {
2322 kunmap_skb_frag(st->frag_data);
2323 st->frag_data = NULL;
2324 }
2325
2326 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2327 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2328 st->frag_idx = 0;
2329 goto next_skb;
2330 } else if (st->cur_skb->next) {
2331 st->cur_skb = st->cur_skb->next;
2332 st->frag_idx = 0;
2333 goto next_skb;
2334 }
2335
2336 return 0;
2337 }
2338 EXPORT_SYMBOL(skb_seq_read);
2339
2340 /**
2341 * skb_abort_seq_read - Abort a sequential read of skb data
2342 * @st: state variable
2343 *
2344 * Must be called if skb_seq_read() was not called until it
2345 * returned 0.
2346 */
2347 void skb_abort_seq_read(struct skb_seq_state *st)
2348 {
2349 if (st->frag_data)
2350 kunmap_skb_frag(st->frag_data);
2351 }
2352 EXPORT_SYMBOL(skb_abort_seq_read);
2353
2354 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2355
2356 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2357 struct ts_config *conf,
2358 struct ts_state *state)
2359 {
2360 return skb_seq_read(offset, text, TS_SKB_CB(state));
2361 }
2362
2363 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2364 {
2365 skb_abort_seq_read(TS_SKB_CB(state));
2366 }
2367
2368 /**
2369 * skb_find_text - Find a text pattern in skb data
2370 * @skb: the buffer to look in
2371 * @from: search offset
2372 * @to: search limit
2373 * @config: textsearch configuration
2374 * @state: uninitialized textsearch state variable
2375 *
2376 * Finds a pattern in the skb data according to the specified
2377 * textsearch configuration. Use textsearch_next() to retrieve
2378 * subsequent occurrences of the pattern. Returns the offset
2379 * to the first occurrence or UINT_MAX if no match was found.
2380 */
2381 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2382 unsigned int to, struct ts_config *config,
2383 struct ts_state *state)
2384 {
2385 unsigned int ret;
2386
2387 config->get_next_block = skb_ts_get_next_block;
2388 config->finish = skb_ts_finish;
2389
2390 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2391
2392 ret = textsearch_find(config, state);
2393 return (ret <= to - from ? ret : UINT_MAX);
2394 }
2395 EXPORT_SYMBOL(skb_find_text);
2396
2397 /**
2398 * skb_append_datato_frags: - append the user data to a skb
2399 * @sk: sock structure
2400 * @skb: skb structure to be appened with user data.
2401 * @getfrag: call back function to be used for getting the user data
2402 * @from: pointer to user message iov
2403 * @length: length of the iov message
2404 *
2405 * Description: This procedure append the user data in the fragment part
2406 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2407 */
2408 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2409 int (*getfrag)(void *from, char *to, int offset,
2410 int len, int odd, struct sk_buff *skb),
2411 void *from, int length)
2412 {
2413 int frg_cnt = 0;
2414 skb_frag_t *frag = NULL;
2415 struct page *page = NULL;
2416 int copy, left;
2417 int offset = 0;
2418 int ret;
2419
2420 do {
2421 /* Return error if we don't have space for new frag */
2422 frg_cnt = skb_shinfo(skb)->nr_frags;
2423 if (frg_cnt >= MAX_SKB_FRAGS)
2424 return -EFAULT;
2425
2426 /* allocate a new page for next frag */
2427 page = alloc_pages(sk->sk_allocation, 0);
2428
2429 /* If alloc_page fails just return failure and caller will
2430 * free previous allocated pages by doing kfree_skb()
2431 */
2432 if (page == NULL)
2433 return -ENOMEM;
2434
2435 /* initialize the next frag */
2436 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2437 skb->truesize += PAGE_SIZE;
2438 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2439
2440 /* get the new initialized frag */
2441 frg_cnt = skb_shinfo(skb)->nr_frags;
2442 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2443
2444 /* copy the user data to page */
2445 left = PAGE_SIZE - frag->page_offset;
2446 copy = (length > left)? left : length;
2447
2448 ret = getfrag(from, (page_address(frag->page) +
2449 frag->page_offset + frag->size),
2450 offset, copy, 0, skb);
2451 if (ret < 0)
2452 return -EFAULT;
2453
2454 /* copy was successful so update the size parameters */
2455 frag->size += copy;
2456 skb->len += copy;
2457 skb->data_len += copy;
2458 offset += copy;
2459 length -= copy;
2460
2461 } while (length > 0);
2462
2463 return 0;
2464 }
2465 EXPORT_SYMBOL(skb_append_datato_frags);
2466
2467 /**
2468 * skb_pull_rcsum - pull skb and update receive checksum
2469 * @skb: buffer to update
2470 * @len: length of data pulled
2471 *
2472 * This function performs an skb_pull on the packet and updates
2473 * the CHECKSUM_COMPLETE checksum. It should be used on
2474 * receive path processing instead of skb_pull unless you know
2475 * that the checksum difference is zero (e.g., a valid IP header)
2476 * or you are setting ip_summed to CHECKSUM_NONE.
2477 */
2478 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2479 {
2480 BUG_ON(len > skb->len);
2481 skb->len -= len;
2482 BUG_ON(skb->len < skb->data_len);
2483 skb_postpull_rcsum(skb, skb->data, len);
2484 return skb->data += len;
2485 }
2486 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2487
2488 /**
2489 * skb_segment - Perform protocol segmentation on skb.
2490 * @skb: buffer to segment
2491 * @features: features for the output path (see dev->features)
2492 *
2493 * This function performs segmentation on the given skb. It returns
2494 * a pointer to the first in a list of new skbs for the segments.
2495 * In case of error it returns ERR_PTR(err).
2496 */
2497 struct sk_buff *skb_segment(struct sk_buff *skb, u32 features)
2498 {
2499 struct sk_buff *segs = NULL;
2500 struct sk_buff *tail = NULL;
2501 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2502 unsigned int mss = skb_shinfo(skb)->gso_size;
2503 unsigned int doffset = skb->data - skb_mac_header(skb);
2504 unsigned int offset = doffset;
2505 unsigned int headroom;
2506 unsigned int len;
2507 int sg = !!(features & NETIF_F_SG);
2508 int nfrags = skb_shinfo(skb)->nr_frags;
2509 int err = -ENOMEM;
2510 int i = 0;
2511 int pos;
2512
2513 __skb_push(skb, doffset);
2514 headroom = skb_headroom(skb);
2515 pos = skb_headlen(skb);
2516
2517 do {
2518 struct sk_buff *nskb;
2519 skb_frag_t *frag;
2520 int hsize;
2521 int size;
2522
2523 len = skb->len - offset;
2524 if (len > mss)
2525 len = mss;
2526
2527 hsize = skb_headlen(skb) - offset;
2528 if (hsize < 0)
2529 hsize = 0;
2530 if (hsize > len || !sg)
2531 hsize = len;
2532
2533 if (!hsize && i >= nfrags) {
2534 BUG_ON(fskb->len != len);
2535
2536 pos += len;
2537 nskb = skb_clone(fskb, GFP_ATOMIC);
2538 fskb = fskb->next;
2539
2540 if (unlikely(!nskb))
2541 goto err;
2542
2543 hsize = skb_end_pointer(nskb) - nskb->head;
2544 if (skb_cow_head(nskb, doffset + headroom)) {
2545 kfree_skb(nskb);
2546 goto err;
2547 }
2548
2549 nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2550 hsize;
2551 skb_release_head_state(nskb);
2552 __skb_push(nskb, doffset);
2553 } else {
2554 nskb = alloc_skb(hsize + doffset + headroom,
2555 GFP_ATOMIC);
2556
2557 if (unlikely(!nskb))
2558 goto err;
2559
2560 skb_reserve(nskb, headroom);
2561 __skb_put(nskb, doffset);
2562 }
2563
2564 if (segs)
2565 tail->next = nskb;
2566 else
2567 segs = nskb;
2568 tail = nskb;
2569
2570 __copy_skb_header(nskb, skb);
2571 nskb->mac_len = skb->mac_len;
2572
2573 /* nskb and skb might have different headroom */
2574 if (nskb->ip_summed == CHECKSUM_PARTIAL)
2575 nskb->csum_start += skb_headroom(nskb) - headroom;
2576
2577 skb_reset_mac_header(nskb);
2578 skb_set_network_header(nskb, skb->mac_len);
2579 nskb->transport_header = (nskb->network_header +
2580 skb_network_header_len(skb));
2581 skb_copy_from_linear_data(skb, nskb->data, doffset);
2582
2583 if (fskb != skb_shinfo(skb)->frag_list)
2584 continue;
2585
2586 if (!sg) {
2587 nskb->ip_summed = CHECKSUM_NONE;
2588 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2589 skb_put(nskb, len),
2590 len, 0);
2591 continue;
2592 }
2593
2594 frag = skb_shinfo(nskb)->frags;
2595
2596 skb_copy_from_linear_data_offset(skb, offset,
2597 skb_put(nskb, hsize), hsize);
2598
2599 while (pos < offset + len && i < nfrags) {
2600 *frag = skb_shinfo(skb)->frags[i];
2601 get_page(frag->page);
2602 size = frag->size;
2603
2604 if (pos < offset) {
2605 frag->page_offset += offset - pos;
2606 frag->size -= offset - pos;
2607 }
2608
2609 skb_shinfo(nskb)->nr_frags++;
2610
2611 if (pos + size <= offset + len) {
2612 i++;
2613 pos += size;
2614 } else {
2615 frag->size -= pos + size - (offset + len);
2616 goto skip_fraglist;
2617 }
2618
2619 frag++;
2620 }
2621
2622 if (pos < offset + len) {
2623 struct sk_buff *fskb2 = fskb;
2624
2625 BUG_ON(pos + fskb->len != offset + len);
2626
2627 pos += fskb->len;
2628 fskb = fskb->next;
2629
2630 if (fskb2->next) {
2631 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2632 if (!fskb2)
2633 goto err;
2634 } else
2635 skb_get(fskb2);
2636
2637 SKB_FRAG_ASSERT(nskb);
2638 skb_shinfo(nskb)->frag_list = fskb2;
2639 }
2640
2641 skip_fraglist:
2642 nskb->data_len = len - hsize;
2643 nskb->len += nskb->data_len;
2644 nskb->truesize += nskb->data_len;
2645 } while ((offset += len) < skb->len);
2646
2647 return segs;
2648
2649 err:
2650 while ((skb = segs)) {
2651 segs = skb->next;
2652 kfree_skb(skb);
2653 }
2654 return ERR_PTR(err);
2655 }
2656 EXPORT_SYMBOL_GPL(skb_segment);
2657
2658 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2659 {
2660 struct sk_buff *p = *head;
2661 struct sk_buff *nskb;
2662 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2663 struct skb_shared_info *pinfo = skb_shinfo(p);
2664 unsigned int headroom;
2665 unsigned int len = skb_gro_len(skb);
2666 unsigned int offset = skb_gro_offset(skb);
2667 unsigned int headlen = skb_headlen(skb);
2668
2669 if (p->len + len >= 65536)
2670 return -E2BIG;
2671
2672 if (pinfo->frag_list)
2673 goto merge;
2674 else if (headlen <= offset) {
2675 skb_frag_t *frag;
2676 skb_frag_t *frag2;
2677 int i = skbinfo->nr_frags;
2678 int nr_frags = pinfo->nr_frags + i;
2679
2680 offset -= headlen;
2681
2682 if (nr_frags > MAX_SKB_FRAGS)
2683 return -E2BIG;
2684
2685 pinfo->nr_frags = nr_frags;
2686 skbinfo->nr_frags = 0;
2687
2688 frag = pinfo->frags + nr_frags;
2689 frag2 = skbinfo->frags + i;
2690 do {
2691 *--frag = *--frag2;
2692 } while (--i);
2693
2694 frag->page_offset += offset;
2695 frag->size -= offset;
2696
2697 skb->truesize -= skb->data_len;
2698 skb->len -= skb->data_len;
2699 skb->data_len = 0;
2700
2701 NAPI_GRO_CB(skb)->free = 1;
2702 goto done;
2703 } else if (skb_gro_len(p) != pinfo->gso_size)
2704 return -E2BIG;
2705
2706 headroom = skb_headroom(p);
2707 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2708 if (unlikely(!nskb))
2709 return -ENOMEM;
2710
2711 __copy_skb_header(nskb, p);
2712 nskb->mac_len = p->mac_len;
2713
2714 skb_reserve(nskb, headroom);
2715 __skb_put(nskb, skb_gro_offset(p));
2716
2717 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2718 skb_set_network_header(nskb, skb_network_offset(p));
2719 skb_set_transport_header(nskb, skb_transport_offset(p));
2720
2721 __skb_pull(p, skb_gro_offset(p));
2722 memcpy(skb_mac_header(nskb), skb_mac_header(p),
2723 p->data - skb_mac_header(p));
2724
2725 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2726 skb_shinfo(nskb)->frag_list = p;
2727 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2728 pinfo->gso_size = 0;
2729 skb_header_release(p);
2730 nskb->prev = p;
2731
2732 nskb->data_len += p->len;
2733 nskb->truesize += p->len;
2734 nskb->len += p->len;
2735
2736 *head = nskb;
2737 nskb->next = p->next;
2738 p->next = NULL;
2739
2740 p = nskb;
2741
2742 merge:
2743 if (offset > headlen) {
2744 unsigned int eat = offset - headlen;
2745
2746 skbinfo->frags[0].page_offset += eat;
2747 skbinfo->frags[0].size -= eat;
2748 skb->data_len -= eat;
2749 skb->len -= eat;
2750 offset = headlen;
2751 }
2752
2753 __skb_pull(skb, offset);
2754
2755 p->prev->next = skb;
2756 p->prev = skb;
2757 skb_header_release(skb);
2758
2759 done:
2760 NAPI_GRO_CB(p)->count++;
2761 p->data_len += len;
2762 p->truesize += len;
2763 p->len += len;
2764
2765 NAPI_GRO_CB(skb)->same_flow = 1;
2766 return 0;
2767 }
2768 EXPORT_SYMBOL_GPL(skb_gro_receive);
2769
2770 void __init skb_init(void)
2771 {
2772 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2773 sizeof(struct sk_buff),
2774 0,
2775 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2776 NULL);
2777 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2778 (2*sizeof(struct sk_buff)) +
2779 sizeof(atomic_t),
2780 0,
2781 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2782 NULL);
2783 }
2784
2785 /**
2786 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2787 * @skb: Socket buffer containing the buffers to be mapped
2788 * @sg: The scatter-gather list to map into
2789 * @offset: The offset into the buffer's contents to start mapping
2790 * @len: Length of buffer space to be mapped
2791 *
2792 * Fill the specified scatter-gather list with mappings/pointers into a
2793 * region of the buffer space attached to a socket buffer.
2794 */
2795 static int
2796 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2797 {
2798 int start = skb_headlen(skb);
2799 int i, copy = start - offset;
2800 struct sk_buff *frag_iter;
2801 int elt = 0;
2802
2803 if (copy > 0) {
2804 if (copy > len)
2805 copy = len;
2806 sg_set_buf(sg, skb->data + offset, copy);
2807 elt++;
2808 if ((len -= copy) == 0)
2809 return elt;
2810 offset += copy;
2811 }
2812
2813 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2814 int end;
2815
2816 WARN_ON(start > offset + len);
2817
2818 end = start + skb_shinfo(skb)->frags[i].size;
2819 if ((copy = end - offset) > 0) {
2820 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2821
2822 if (copy > len)
2823 copy = len;
2824 sg_set_page(&sg[elt], frag->page, copy,
2825 frag->page_offset+offset-start);
2826 elt++;
2827 if (!(len -= copy))
2828 return elt;
2829 offset += copy;
2830 }
2831 start = end;
2832 }
2833
2834 skb_walk_frags(skb, frag_iter) {
2835 int end;
2836
2837 WARN_ON(start > offset + len);
2838
2839 end = start + frag_iter->len;
2840 if ((copy = end - offset) > 0) {
2841 if (copy > len)
2842 copy = len;
2843 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
2844 copy);
2845 if ((len -= copy) == 0)
2846 return elt;
2847 offset += copy;
2848 }
2849 start = end;
2850 }
2851 BUG_ON(len);
2852 return elt;
2853 }
2854
2855 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2856 {
2857 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2858
2859 sg_mark_end(&sg[nsg - 1]);
2860
2861 return nsg;
2862 }
2863 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2864
2865 /**
2866 * skb_cow_data - Check that a socket buffer's data buffers are writable
2867 * @skb: The socket buffer to check.
2868 * @tailbits: Amount of trailing space to be added
2869 * @trailer: Returned pointer to the skb where the @tailbits space begins
2870 *
2871 * Make sure that the data buffers attached to a socket buffer are
2872 * writable. If they are not, private copies are made of the data buffers
2873 * and the socket buffer is set to use these instead.
2874 *
2875 * If @tailbits is given, make sure that there is space to write @tailbits
2876 * bytes of data beyond current end of socket buffer. @trailer will be
2877 * set to point to the skb in which this space begins.
2878 *
2879 * The number of scatterlist elements required to completely map the
2880 * COW'd and extended socket buffer will be returned.
2881 */
2882 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2883 {
2884 int copyflag;
2885 int elt;
2886 struct sk_buff *skb1, **skb_p;
2887
2888 /* If skb is cloned or its head is paged, reallocate
2889 * head pulling out all the pages (pages are considered not writable
2890 * at the moment even if they are anonymous).
2891 */
2892 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2893 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2894 return -ENOMEM;
2895
2896 /* Easy case. Most of packets will go this way. */
2897 if (!skb_has_frag_list(skb)) {
2898 /* A little of trouble, not enough of space for trailer.
2899 * This should not happen, when stack is tuned to generate
2900 * good frames. OK, on miss we reallocate and reserve even more
2901 * space, 128 bytes is fair. */
2902
2903 if (skb_tailroom(skb) < tailbits &&
2904 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2905 return -ENOMEM;
2906
2907 /* Voila! */
2908 *trailer = skb;
2909 return 1;
2910 }
2911
2912 /* Misery. We are in troubles, going to mincer fragments... */
2913
2914 elt = 1;
2915 skb_p = &skb_shinfo(skb)->frag_list;
2916 copyflag = 0;
2917
2918 while ((skb1 = *skb_p) != NULL) {
2919 int ntail = 0;
2920
2921 /* The fragment is partially pulled by someone,
2922 * this can happen on input. Copy it and everything
2923 * after it. */
2924
2925 if (skb_shared(skb1))
2926 copyflag = 1;
2927
2928 /* If the skb is the last, worry about trailer. */
2929
2930 if (skb1->next == NULL && tailbits) {
2931 if (skb_shinfo(skb1)->nr_frags ||
2932 skb_has_frag_list(skb1) ||
2933 skb_tailroom(skb1) < tailbits)
2934 ntail = tailbits + 128;
2935 }
2936
2937 if (copyflag ||
2938 skb_cloned(skb1) ||
2939 ntail ||
2940 skb_shinfo(skb1)->nr_frags ||
2941 skb_has_frag_list(skb1)) {
2942 struct sk_buff *skb2;
2943
2944 /* Fuck, we are miserable poor guys... */
2945 if (ntail == 0)
2946 skb2 = skb_copy(skb1, GFP_ATOMIC);
2947 else
2948 skb2 = skb_copy_expand(skb1,
2949 skb_headroom(skb1),
2950 ntail,
2951 GFP_ATOMIC);
2952 if (unlikely(skb2 == NULL))
2953 return -ENOMEM;
2954
2955 if (skb1->sk)
2956 skb_set_owner_w(skb2, skb1->sk);
2957
2958 /* Looking around. Are we still alive?
2959 * OK, link new skb, drop old one */
2960
2961 skb2->next = skb1->next;
2962 *skb_p = skb2;
2963 kfree_skb(skb1);
2964 skb1 = skb2;
2965 }
2966 elt++;
2967 *trailer = skb1;
2968 skb_p = &skb1->next;
2969 }
2970
2971 return elt;
2972 }
2973 EXPORT_SYMBOL_GPL(skb_cow_data);
2974
2975 static void sock_rmem_free(struct sk_buff *skb)
2976 {
2977 struct sock *sk = skb->sk;
2978
2979 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
2980 }
2981
2982 /*
2983 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
2984 */
2985 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
2986 {
2987 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
2988 (unsigned)sk->sk_rcvbuf)
2989 return -ENOMEM;
2990
2991 skb_orphan(skb);
2992 skb->sk = sk;
2993 skb->destructor = sock_rmem_free;
2994 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2995
2996 skb_queue_tail(&sk->sk_error_queue, skb);
2997 if (!sock_flag(sk, SOCK_DEAD))
2998 sk->sk_data_ready(sk, skb->len);
2999 return 0;
3000 }
3001 EXPORT_SYMBOL(sock_queue_err_skb);
3002
3003 void skb_tstamp_tx(struct sk_buff *orig_skb,
3004 struct skb_shared_hwtstamps *hwtstamps)
3005 {
3006 struct sock *sk = orig_skb->sk;
3007 struct sock_exterr_skb *serr;
3008 struct sk_buff *skb;
3009 int err;
3010
3011 if (!sk)
3012 return;
3013
3014 skb = skb_clone(orig_skb, GFP_ATOMIC);
3015 if (!skb)
3016 return;
3017
3018 if (hwtstamps) {
3019 *skb_hwtstamps(skb) =
3020 *hwtstamps;
3021 } else {
3022 /*
3023 * no hardware time stamps available,
3024 * so keep the shared tx_flags and only
3025 * store software time stamp
3026 */
3027 skb->tstamp = ktime_get_real();
3028 }
3029
3030 serr = SKB_EXT_ERR(skb);
3031 memset(serr, 0, sizeof(*serr));
3032 serr->ee.ee_errno = ENOMSG;
3033 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3034
3035 err = sock_queue_err_skb(sk, skb);
3036
3037 if (err)
3038 kfree_skb(skb);
3039 }
3040 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3041
3042
3043 /**
3044 * skb_partial_csum_set - set up and verify partial csum values for packet
3045 * @skb: the skb to set
3046 * @start: the number of bytes after skb->data to start checksumming.
3047 * @off: the offset from start to place the checksum.
3048 *
3049 * For untrusted partially-checksummed packets, we need to make sure the values
3050 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3051 *
3052 * This function checks and sets those values and skb->ip_summed: if this
3053 * returns false you should drop the packet.
3054 */
3055 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3056 {
3057 if (unlikely(start > skb_headlen(skb)) ||
3058 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3059 if (net_ratelimit())
3060 printk(KERN_WARNING
3061 "bad partial csum: csum=%u/%u len=%u\n",
3062 start, off, skb_headlen(skb));
3063 return false;
3064 }
3065 skb->ip_summed = CHECKSUM_PARTIAL;
3066 skb->csum_start = skb_headroom(skb) + start;
3067 skb->csum_offset = off;
3068 return true;
3069 }
3070 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3071
3072 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3073 {
3074 if (net_ratelimit())
3075 pr_warning("%s: received packets cannot be forwarded"
3076 " while LRO is enabled\n", skb->dev->name);
3077 }
3078 EXPORT_SYMBOL(__skb_warn_lro_forwarding);