]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - net/core/skbuff.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
[mirror_ubuntu-eoan-kernel.git] / net / core / skbuff.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31 /*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62
63 #include <net/protocol.h>
64 #include <net/dst.h>
65 #include <net/sock.h>
66 #include <net/checksum.h>
67 #include <net/ip6_checksum.h>
68 #include <net/xfrm.h>
69
70 #include <linux/uaccess.h>
71 #include <trace/events/skb.h>
72 #include <linux/highmem.h>
73 #include <linux/capability.h>
74 #include <linux/user_namespace.h>
75
76 #include "datagram.h"
77
78 struct kmem_cache *skbuff_head_cache __ro_after_init;
79 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
80 #ifdef CONFIG_SKB_EXTENSIONS
81 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
82 #endif
83 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
84 EXPORT_SYMBOL(sysctl_max_skb_frags);
85
86 /**
87 * skb_panic - private function for out-of-line support
88 * @skb: buffer
89 * @sz: size
90 * @addr: address
91 * @msg: skb_over_panic or skb_under_panic
92 *
93 * Out-of-line support for skb_put() and skb_push().
94 * Called via the wrapper skb_over_panic() or skb_under_panic().
95 * Keep out of line to prevent kernel bloat.
96 * __builtin_return_address is not used because it is not always reliable.
97 */
98 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
99 const char msg[])
100 {
101 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
102 msg, addr, skb->len, sz, skb->head, skb->data,
103 (unsigned long)skb->tail, (unsigned long)skb->end,
104 skb->dev ? skb->dev->name : "<NULL>");
105 BUG();
106 }
107
108 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
109 {
110 skb_panic(skb, sz, addr, __func__);
111 }
112
113 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
114 {
115 skb_panic(skb, sz, addr, __func__);
116 }
117
118 /*
119 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
120 * the caller if emergency pfmemalloc reserves are being used. If it is and
121 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
122 * may be used. Otherwise, the packet data may be discarded until enough
123 * memory is free
124 */
125 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
126 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
127
128 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
129 unsigned long ip, bool *pfmemalloc)
130 {
131 void *obj;
132 bool ret_pfmemalloc = false;
133
134 /*
135 * Try a regular allocation, when that fails and we're not entitled
136 * to the reserves, fail.
137 */
138 obj = kmalloc_node_track_caller(size,
139 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
140 node);
141 if (obj || !(gfp_pfmemalloc_allowed(flags)))
142 goto out;
143
144 /* Try again but now we are using pfmemalloc reserves */
145 ret_pfmemalloc = true;
146 obj = kmalloc_node_track_caller(size, flags, node);
147
148 out:
149 if (pfmemalloc)
150 *pfmemalloc = ret_pfmemalloc;
151
152 return obj;
153 }
154
155 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
156 * 'private' fields and also do memory statistics to find all the
157 * [BEEP] leaks.
158 *
159 */
160
161 /**
162 * __alloc_skb - allocate a network buffer
163 * @size: size to allocate
164 * @gfp_mask: allocation mask
165 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
166 * instead of head cache and allocate a cloned (child) skb.
167 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
168 * allocations in case the data is required for writeback
169 * @node: numa node to allocate memory on
170 *
171 * Allocate a new &sk_buff. The returned buffer has no headroom and a
172 * tail room of at least size bytes. The object has a reference count
173 * of one. The return is the buffer. On a failure the return is %NULL.
174 *
175 * Buffers may only be allocated from interrupts using a @gfp_mask of
176 * %GFP_ATOMIC.
177 */
178 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
179 int flags, int node)
180 {
181 struct kmem_cache *cache;
182 struct skb_shared_info *shinfo;
183 struct sk_buff *skb;
184 u8 *data;
185 bool pfmemalloc;
186
187 cache = (flags & SKB_ALLOC_FCLONE)
188 ? skbuff_fclone_cache : skbuff_head_cache;
189
190 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
191 gfp_mask |= __GFP_MEMALLOC;
192
193 /* Get the HEAD */
194 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
195 if (!skb)
196 goto out;
197 prefetchw(skb);
198
199 /* We do our best to align skb_shared_info on a separate cache
200 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
201 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
202 * Both skb->head and skb_shared_info are cache line aligned.
203 */
204 size = SKB_DATA_ALIGN(size);
205 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
206 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
207 if (!data)
208 goto nodata;
209 /* kmalloc(size) might give us more room than requested.
210 * Put skb_shared_info exactly at the end of allocated zone,
211 * to allow max possible filling before reallocation.
212 */
213 size = SKB_WITH_OVERHEAD(ksize(data));
214 prefetchw(data + size);
215
216 /*
217 * Only clear those fields we need to clear, not those that we will
218 * actually initialise below. Hence, don't put any more fields after
219 * the tail pointer in struct sk_buff!
220 */
221 memset(skb, 0, offsetof(struct sk_buff, tail));
222 /* Account for allocated memory : skb + skb->head */
223 skb->truesize = SKB_TRUESIZE(size);
224 skb->pfmemalloc = pfmemalloc;
225 refcount_set(&skb->users, 1);
226 skb->head = data;
227 skb->data = data;
228 skb_reset_tail_pointer(skb);
229 skb->end = skb->tail + size;
230 skb->mac_header = (typeof(skb->mac_header))~0U;
231 skb->transport_header = (typeof(skb->transport_header))~0U;
232
233 /* make sure we initialize shinfo sequentially */
234 shinfo = skb_shinfo(skb);
235 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
236 atomic_set(&shinfo->dataref, 1);
237
238 if (flags & SKB_ALLOC_FCLONE) {
239 struct sk_buff_fclones *fclones;
240
241 fclones = container_of(skb, struct sk_buff_fclones, skb1);
242
243 skb->fclone = SKB_FCLONE_ORIG;
244 refcount_set(&fclones->fclone_ref, 1);
245
246 fclones->skb2.fclone = SKB_FCLONE_CLONE;
247 }
248 out:
249 return skb;
250 nodata:
251 kmem_cache_free(cache, skb);
252 skb = NULL;
253 goto out;
254 }
255 EXPORT_SYMBOL(__alloc_skb);
256
257 /* Caller must provide SKB that is memset cleared */
258 static struct sk_buff *__build_skb_around(struct sk_buff *skb,
259 void *data, unsigned int frag_size)
260 {
261 struct skb_shared_info *shinfo;
262 unsigned int size = frag_size ? : ksize(data);
263
264 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
265
266 /* Assumes caller memset cleared SKB */
267 skb->truesize = SKB_TRUESIZE(size);
268 refcount_set(&skb->users, 1);
269 skb->head = data;
270 skb->data = data;
271 skb_reset_tail_pointer(skb);
272 skb->end = skb->tail + size;
273 skb->mac_header = (typeof(skb->mac_header))~0U;
274 skb->transport_header = (typeof(skb->transport_header))~0U;
275
276 /* make sure we initialize shinfo sequentially */
277 shinfo = skb_shinfo(skb);
278 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
279 atomic_set(&shinfo->dataref, 1);
280
281 return skb;
282 }
283
284 /**
285 * __build_skb - build a network buffer
286 * @data: data buffer provided by caller
287 * @frag_size: size of data, or 0 if head was kmalloced
288 *
289 * Allocate a new &sk_buff. Caller provides space holding head and
290 * skb_shared_info. @data must have been allocated by kmalloc() only if
291 * @frag_size is 0, otherwise data should come from the page allocator
292 * or vmalloc()
293 * The return is the new skb buffer.
294 * On a failure the return is %NULL, and @data is not freed.
295 * Notes :
296 * Before IO, driver allocates only data buffer where NIC put incoming frame
297 * Driver should add room at head (NET_SKB_PAD) and
298 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
299 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
300 * before giving packet to stack.
301 * RX rings only contains data buffers, not full skbs.
302 */
303 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
304 {
305 struct sk_buff *skb;
306
307 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
308 if (unlikely(!skb))
309 return NULL;
310
311 memset(skb, 0, offsetof(struct sk_buff, tail));
312
313 return __build_skb_around(skb, data, frag_size);
314 }
315
316 /* build_skb() is wrapper over __build_skb(), that specifically
317 * takes care of skb->head and skb->pfmemalloc
318 * This means that if @frag_size is not zero, then @data must be backed
319 * by a page fragment, not kmalloc() or vmalloc()
320 */
321 struct sk_buff *build_skb(void *data, unsigned int frag_size)
322 {
323 struct sk_buff *skb = __build_skb(data, frag_size);
324
325 if (skb && frag_size) {
326 skb->head_frag = 1;
327 if (page_is_pfmemalloc(virt_to_head_page(data)))
328 skb->pfmemalloc = 1;
329 }
330 return skb;
331 }
332 EXPORT_SYMBOL(build_skb);
333
334 /**
335 * build_skb_around - build a network buffer around provided skb
336 * @skb: sk_buff provide by caller, must be memset cleared
337 * @data: data buffer provided by caller
338 * @frag_size: size of data, or 0 if head was kmalloced
339 */
340 struct sk_buff *build_skb_around(struct sk_buff *skb,
341 void *data, unsigned int frag_size)
342 {
343 if (unlikely(!skb))
344 return NULL;
345
346 skb = __build_skb_around(skb, data, frag_size);
347
348 if (skb && frag_size) {
349 skb->head_frag = 1;
350 if (page_is_pfmemalloc(virt_to_head_page(data)))
351 skb->pfmemalloc = 1;
352 }
353 return skb;
354 }
355 EXPORT_SYMBOL(build_skb_around);
356
357 #define NAPI_SKB_CACHE_SIZE 64
358
359 struct napi_alloc_cache {
360 struct page_frag_cache page;
361 unsigned int skb_count;
362 void *skb_cache[NAPI_SKB_CACHE_SIZE];
363 };
364
365 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
366 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
367
368 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
369 {
370 struct page_frag_cache *nc;
371 unsigned long flags;
372 void *data;
373
374 local_irq_save(flags);
375 nc = this_cpu_ptr(&netdev_alloc_cache);
376 data = page_frag_alloc(nc, fragsz, gfp_mask);
377 local_irq_restore(flags);
378 return data;
379 }
380
381 /**
382 * netdev_alloc_frag - allocate a page fragment
383 * @fragsz: fragment size
384 *
385 * Allocates a frag from a page for receive buffer.
386 * Uses GFP_ATOMIC allocations.
387 */
388 void *netdev_alloc_frag(unsigned int fragsz)
389 {
390 fragsz = SKB_DATA_ALIGN(fragsz);
391
392 return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
393 }
394 EXPORT_SYMBOL(netdev_alloc_frag);
395
396 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
397 {
398 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
399
400 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
401 }
402
403 void *napi_alloc_frag(unsigned int fragsz)
404 {
405 fragsz = SKB_DATA_ALIGN(fragsz);
406
407 return __napi_alloc_frag(fragsz, GFP_ATOMIC);
408 }
409 EXPORT_SYMBOL(napi_alloc_frag);
410
411 /**
412 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
413 * @dev: network device to receive on
414 * @len: length to allocate
415 * @gfp_mask: get_free_pages mask, passed to alloc_skb
416 *
417 * Allocate a new &sk_buff and assign it a usage count of one. The
418 * buffer has NET_SKB_PAD headroom built in. Users should allocate
419 * the headroom they think they need without accounting for the
420 * built in space. The built in space is used for optimisations.
421 *
422 * %NULL is returned if there is no free memory.
423 */
424 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
425 gfp_t gfp_mask)
426 {
427 struct page_frag_cache *nc;
428 unsigned long flags;
429 struct sk_buff *skb;
430 bool pfmemalloc;
431 void *data;
432
433 len += NET_SKB_PAD;
434
435 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
436 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
437 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
438 if (!skb)
439 goto skb_fail;
440 goto skb_success;
441 }
442
443 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
444 len = SKB_DATA_ALIGN(len);
445
446 if (sk_memalloc_socks())
447 gfp_mask |= __GFP_MEMALLOC;
448
449 local_irq_save(flags);
450
451 nc = this_cpu_ptr(&netdev_alloc_cache);
452 data = page_frag_alloc(nc, len, gfp_mask);
453 pfmemalloc = nc->pfmemalloc;
454
455 local_irq_restore(flags);
456
457 if (unlikely(!data))
458 return NULL;
459
460 skb = __build_skb(data, len);
461 if (unlikely(!skb)) {
462 skb_free_frag(data);
463 return NULL;
464 }
465
466 /* use OR instead of assignment to avoid clearing of bits in mask */
467 if (pfmemalloc)
468 skb->pfmemalloc = 1;
469 skb->head_frag = 1;
470
471 skb_success:
472 skb_reserve(skb, NET_SKB_PAD);
473 skb->dev = dev;
474
475 skb_fail:
476 return skb;
477 }
478 EXPORT_SYMBOL(__netdev_alloc_skb);
479
480 /**
481 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
482 * @napi: napi instance this buffer was allocated for
483 * @len: length to allocate
484 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
485 *
486 * Allocate a new sk_buff for use in NAPI receive. This buffer will
487 * attempt to allocate the head from a special reserved region used
488 * only for NAPI Rx allocation. By doing this we can save several
489 * CPU cycles by avoiding having to disable and re-enable IRQs.
490 *
491 * %NULL is returned if there is no free memory.
492 */
493 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
494 gfp_t gfp_mask)
495 {
496 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
497 struct sk_buff *skb;
498 void *data;
499
500 len += NET_SKB_PAD + NET_IP_ALIGN;
501
502 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
503 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
504 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
505 if (!skb)
506 goto skb_fail;
507 goto skb_success;
508 }
509
510 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
511 len = SKB_DATA_ALIGN(len);
512
513 if (sk_memalloc_socks())
514 gfp_mask |= __GFP_MEMALLOC;
515
516 data = page_frag_alloc(&nc->page, len, gfp_mask);
517 if (unlikely(!data))
518 return NULL;
519
520 skb = __build_skb(data, len);
521 if (unlikely(!skb)) {
522 skb_free_frag(data);
523 return NULL;
524 }
525
526 /* use OR instead of assignment to avoid clearing of bits in mask */
527 if (nc->page.pfmemalloc)
528 skb->pfmemalloc = 1;
529 skb->head_frag = 1;
530
531 skb_success:
532 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
533 skb->dev = napi->dev;
534
535 skb_fail:
536 return skb;
537 }
538 EXPORT_SYMBOL(__napi_alloc_skb);
539
540 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
541 int size, unsigned int truesize)
542 {
543 skb_fill_page_desc(skb, i, page, off, size);
544 skb->len += size;
545 skb->data_len += size;
546 skb->truesize += truesize;
547 }
548 EXPORT_SYMBOL(skb_add_rx_frag);
549
550 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
551 unsigned int truesize)
552 {
553 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
554
555 skb_frag_size_add(frag, size);
556 skb->len += size;
557 skb->data_len += size;
558 skb->truesize += truesize;
559 }
560 EXPORT_SYMBOL(skb_coalesce_rx_frag);
561
562 static void skb_drop_list(struct sk_buff **listp)
563 {
564 kfree_skb_list(*listp);
565 *listp = NULL;
566 }
567
568 static inline void skb_drop_fraglist(struct sk_buff *skb)
569 {
570 skb_drop_list(&skb_shinfo(skb)->frag_list);
571 }
572
573 static void skb_clone_fraglist(struct sk_buff *skb)
574 {
575 struct sk_buff *list;
576
577 skb_walk_frags(skb, list)
578 skb_get(list);
579 }
580
581 static void skb_free_head(struct sk_buff *skb)
582 {
583 unsigned char *head = skb->head;
584
585 if (skb->head_frag)
586 skb_free_frag(head);
587 else
588 kfree(head);
589 }
590
591 static void skb_release_data(struct sk_buff *skb)
592 {
593 struct skb_shared_info *shinfo = skb_shinfo(skb);
594 int i;
595
596 if (skb->cloned &&
597 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
598 &shinfo->dataref))
599 return;
600
601 for (i = 0; i < shinfo->nr_frags; i++)
602 __skb_frag_unref(&shinfo->frags[i]);
603
604 if (shinfo->frag_list)
605 kfree_skb_list(shinfo->frag_list);
606
607 skb_zcopy_clear(skb, true);
608 skb_free_head(skb);
609 }
610
611 /*
612 * Free an skbuff by memory without cleaning the state.
613 */
614 static void kfree_skbmem(struct sk_buff *skb)
615 {
616 struct sk_buff_fclones *fclones;
617
618 switch (skb->fclone) {
619 case SKB_FCLONE_UNAVAILABLE:
620 kmem_cache_free(skbuff_head_cache, skb);
621 return;
622
623 case SKB_FCLONE_ORIG:
624 fclones = container_of(skb, struct sk_buff_fclones, skb1);
625
626 /* We usually free the clone (TX completion) before original skb
627 * This test would have no chance to be true for the clone,
628 * while here, branch prediction will be good.
629 */
630 if (refcount_read(&fclones->fclone_ref) == 1)
631 goto fastpath;
632 break;
633
634 default: /* SKB_FCLONE_CLONE */
635 fclones = container_of(skb, struct sk_buff_fclones, skb2);
636 break;
637 }
638 if (!refcount_dec_and_test(&fclones->fclone_ref))
639 return;
640 fastpath:
641 kmem_cache_free(skbuff_fclone_cache, fclones);
642 }
643
644 void skb_release_head_state(struct sk_buff *skb)
645 {
646 skb_dst_drop(skb);
647 if (skb->destructor) {
648 WARN_ON(in_irq());
649 skb->destructor(skb);
650 }
651 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
652 nf_conntrack_put(skb_nfct(skb));
653 #endif
654 skb_ext_put(skb);
655 }
656
657 /* Free everything but the sk_buff shell. */
658 static void skb_release_all(struct sk_buff *skb)
659 {
660 skb_release_head_state(skb);
661 if (likely(skb->head))
662 skb_release_data(skb);
663 }
664
665 /**
666 * __kfree_skb - private function
667 * @skb: buffer
668 *
669 * Free an sk_buff. Release anything attached to the buffer.
670 * Clean the state. This is an internal helper function. Users should
671 * always call kfree_skb
672 */
673
674 void __kfree_skb(struct sk_buff *skb)
675 {
676 skb_release_all(skb);
677 kfree_skbmem(skb);
678 }
679 EXPORT_SYMBOL(__kfree_skb);
680
681 /**
682 * kfree_skb - free an sk_buff
683 * @skb: buffer to free
684 *
685 * Drop a reference to the buffer and free it if the usage count has
686 * hit zero.
687 */
688 void kfree_skb(struct sk_buff *skb)
689 {
690 if (!skb_unref(skb))
691 return;
692
693 trace_kfree_skb(skb, __builtin_return_address(0));
694 __kfree_skb(skb);
695 }
696 EXPORT_SYMBOL(kfree_skb);
697
698 void kfree_skb_list(struct sk_buff *segs)
699 {
700 while (segs) {
701 struct sk_buff *next = segs->next;
702
703 kfree_skb(segs);
704 segs = next;
705 }
706 }
707 EXPORT_SYMBOL(kfree_skb_list);
708
709 /**
710 * skb_tx_error - report an sk_buff xmit error
711 * @skb: buffer that triggered an error
712 *
713 * Report xmit error if a device callback is tracking this skb.
714 * skb must be freed afterwards.
715 */
716 void skb_tx_error(struct sk_buff *skb)
717 {
718 skb_zcopy_clear(skb, true);
719 }
720 EXPORT_SYMBOL(skb_tx_error);
721
722 /**
723 * consume_skb - free an skbuff
724 * @skb: buffer to free
725 *
726 * Drop a ref to the buffer and free it if the usage count has hit zero
727 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
728 * is being dropped after a failure and notes that
729 */
730 void consume_skb(struct sk_buff *skb)
731 {
732 if (!skb_unref(skb))
733 return;
734
735 trace_consume_skb(skb);
736 __kfree_skb(skb);
737 }
738 EXPORT_SYMBOL(consume_skb);
739
740 /**
741 * consume_stateless_skb - free an skbuff, assuming it is stateless
742 * @skb: buffer to free
743 *
744 * Alike consume_skb(), but this variant assumes that this is the last
745 * skb reference and all the head states have been already dropped
746 */
747 void __consume_stateless_skb(struct sk_buff *skb)
748 {
749 trace_consume_skb(skb);
750 skb_release_data(skb);
751 kfree_skbmem(skb);
752 }
753
754 void __kfree_skb_flush(void)
755 {
756 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
757
758 /* flush skb_cache if containing objects */
759 if (nc->skb_count) {
760 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
761 nc->skb_cache);
762 nc->skb_count = 0;
763 }
764 }
765
766 static inline void _kfree_skb_defer(struct sk_buff *skb)
767 {
768 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
769
770 /* drop skb->head and call any destructors for packet */
771 skb_release_all(skb);
772
773 /* record skb to CPU local list */
774 nc->skb_cache[nc->skb_count++] = skb;
775
776 #ifdef CONFIG_SLUB
777 /* SLUB writes into objects when freeing */
778 prefetchw(skb);
779 #endif
780
781 /* flush skb_cache if it is filled */
782 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
783 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
784 nc->skb_cache);
785 nc->skb_count = 0;
786 }
787 }
788 void __kfree_skb_defer(struct sk_buff *skb)
789 {
790 _kfree_skb_defer(skb);
791 }
792
793 void napi_consume_skb(struct sk_buff *skb, int budget)
794 {
795 if (unlikely(!skb))
796 return;
797
798 /* Zero budget indicate non-NAPI context called us, like netpoll */
799 if (unlikely(!budget)) {
800 dev_consume_skb_any(skb);
801 return;
802 }
803
804 if (!skb_unref(skb))
805 return;
806
807 /* if reaching here SKB is ready to free */
808 trace_consume_skb(skb);
809
810 /* if SKB is a clone, don't handle this case */
811 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
812 __kfree_skb(skb);
813 return;
814 }
815
816 _kfree_skb_defer(skb);
817 }
818 EXPORT_SYMBOL(napi_consume_skb);
819
820 /* Make sure a field is enclosed inside headers_start/headers_end section */
821 #define CHECK_SKB_FIELD(field) \
822 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
823 offsetof(struct sk_buff, headers_start)); \
824 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
825 offsetof(struct sk_buff, headers_end)); \
826
827 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
828 {
829 new->tstamp = old->tstamp;
830 /* We do not copy old->sk */
831 new->dev = old->dev;
832 memcpy(new->cb, old->cb, sizeof(old->cb));
833 skb_dst_copy(new, old);
834 __skb_ext_copy(new, old);
835 __nf_copy(new, old, false);
836
837 /* Note : this field could be in headers_start/headers_end section
838 * It is not yet because we do not want to have a 16 bit hole
839 */
840 new->queue_mapping = old->queue_mapping;
841
842 memcpy(&new->headers_start, &old->headers_start,
843 offsetof(struct sk_buff, headers_end) -
844 offsetof(struct sk_buff, headers_start));
845 CHECK_SKB_FIELD(protocol);
846 CHECK_SKB_FIELD(csum);
847 CHECK_SKB_FIELD(hash);
848 CHECK_SKB_FIELD(priority);
849 CHECK_SKB_FIELD(skb_iif);
850 CHECK_SKB_FIELD(vlan_proto);
851 CHECK_SKB_FIELD(vlan_tci);
852 CHECK_SKB_FIELD(transport_header);
853 CHECK_SKB_FIELD(network_header);
854 CHECK_SKB_FIELD(mac_header);
855 CHECK_SKB_FIELD(inner_protocol);
856 CHECK_SKB_FIELD(inner_transport_header);
857 CHECK_SKB_FIELD(inner_network_header);
858 CHECK_SKB_FIELD(inner_mac_header);
859 CHECK_SKB_FIELD(mark);
860 #ifdef CONFIG_NETWORK_SECMARK
861 CHECK_SKB_FIELD(secmark);
862 #endif
863 #ifdef CONFIG_NET_RX_BUSY_POLL
864 CHECK_SKB_FIELD(napi_id);
865 #endif
866 #ifdef CONFIG_XPS
867 CHECK_SKB_FIELD(sender_cpu);
868 #endif
869 #ifdef CONFIG_NET_SCHED
870 CHECK_SKB_FIELD(tc_index);
871 #endif
872
873 }
874
875 /*
876 * You should not add any new code to this function. Add it to
877 * __copy_skb_header above instead.
878 */
879 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
880 {
881 #define C(x) n->x = skb->x
882
883 n->next = n->prev = NULL;
884 n->sk = NULL;
885 __copy_skb_header(n, skb);
886
887 C(len);
888 C(data_len);
889 C(mac_len);
890 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
891 n->cloned = 1;
892 n->nohdr = 0;
893 n->peeked = 0;
894 C(pfmemalloc);
895 n->destructor = NULL;
896 C(tail);
897 C(end);
898 C(head);
899 C(head_frag);
900 C(data);
901 C(truesize);
902 refcount_set(&n->users, 1);
903
904 atomic_inc(&(skb_shinfo(skb)->dataref));
905 skb->cloned = 1;
906
907 return n;
908 #undef C
909 }
910
911 /**
912 * skb_morph - morph one skb into another
913 * @dst: the skb to receive the contents
914 * @src: the skb to supply the contents
915 *
916 * This is identical to skb_clone except that the target skb is
917 * supplied by the user.
918 *
919 * The target skb is returned upon exit.
920 */
921 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
922 {
923 skb_release_all(dst);
924 return __skb_clone(dst, src);
925 }
926 EXPORT_SYMBOL_GPL(skb_morph);
927
928 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
929 {
930 unsigned long max_pg, num_pg, new_pg, old_pg;
931 struct user_struct *user;
932
933 if (capable(CAP_IPC_LOCK) || !size)
934 return 0;
935
936 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
937 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
938 user = mmp->user ? : current_user();
939
940 do {
941 old_pg = atomic_long_read(&user->locked_vm);
942 new_pg = old_pg + num_pg;
943 if (new_pg > max_pg)
944 return -ENOBUFS;
945 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
946 old_pg);
947
948 if (!mmp->user) {
949 mmp->user = get_uid(user);
950 mmp->num_pg = num_pg;
951 } else {
952 mmp->num_pg += num_pg;
953 }
954
955 return 0;
956 }
957 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
958
959 void mm_unaccount_pinned_pages(struct mmpin *mmp)
960 {
961 if (mmp->user) {
962 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
963 free_uid(mmp->user);
964 }
965 }
966 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
967
968 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
969 {
970 struct ubuf_info *uarg;
971 struct sk_buff *skb;
972
973 WARN_ON_ONCE(!in_task());
974
975 skb = sock_omalloc(sk, 0, GFP_KERNEL);
976 if (!skb)
977 return NULL;
978
979 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
980 uarg = (void *)skb->cb;
981 uarg->mmp.user = NULL;
982
983 if (mm_account_pinned_pages(&uarg->mmp, size)) {
984 kfree_skb(skb);
985 return NULL;
986 }
987
988 uarg->callback = sock_zerocopy_callback;
989 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
990 uarg->len = 1;
991 uarg->bytelen = size;
992 uarg->zerocopy = 1;
993 refcount_set(&uarg->refcnt, 1);
994 sock_hold(sk);
995
996 return uarg;
997 }
998 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
999
1000 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1001 {
1002 return container_of((void *)uarg, struct sk_buff, cb);
1003 }
1004
1005 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1006 struct ubuf_info *uarg)
1007 {
1008 if (uarg) {
1009 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1010 u32 bytelen, next;
1011
1012 /* realloc only when socket is locked (TCP, UDP cork),
1013 * so uarg->len and sk_zckey access is serialized
1014 */
1015 if (!sock_owned_by_user(sk)) {
1016 WARN_ON_ONCE(1);
1017 return NULL;
1018 }
1019
1020 bytelen = uarg->bytelen + size;
1021 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1022 /* TCP can create new skb to attach new uarg */
1023 if (sk->sk_type == SOCK_STREAM)
1024 goto new_alloc;
1025 return NULL;
1026 }
1027
1028 next = (u32)atomic_read(&sk->sk_zckey);
1029 if ((u32)(uarg->id + uarg->len) == next) {
1030 if (mm_account_pinned_pages(&uarg->mmp, size))
1031 return NULL;
1032 uarg->len++;
1033 uarg->bytelen = bytelen;
1034 atomic_set(&sk->sk_zckey, ++next);
1035 sock_zerocopy_get(uarg);
1036 return uarg;
1037 }
1038 }
1039
1040 new_alloc:
1041 return sock_zerocopy_alloc(sk, size);
1042 }
1043 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1044
1045 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1046 {
1047 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1048 u32 old_lo, old_hi;
1049 u64 sum_len;
1050
1051 old_lo = serr->ee.ee_info;
1052 old_hi = serr->ee.ee_data;
1053 sum_len = old_hi - old_lo + 1ULL + len;
1054
1055 if (sum_len >= (1ULL << 32))
1056 return false;
1057
1058 if (lo != old_hi + 1)
1059 return false;
1060
1061 serr->ee.ee_data += len;
1062 return true;
1063 }
1064
1065 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1066 {
1067 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1068 struct sock_exterr_skb *serr;
1069 struct sock *sk = skb->sk;
1070 struct sk_buff_head *q;
1071 unsigned long flags;
1072 u32 lo, hi;
1073 u16 len;
1074
1075 mm_unaccount_pinned_pages(&uarg->mmp);
1076
1077 /* if !len, there was only 1 call, and it was aborted
1078 * so do not queue a completion notification
1079 */
1080 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1081 goto release;
1082
1083 len = uarg->len;
1084 lo = uarg->id;
1085 hi = uarg->id + len - 1;
1086
1087 serr = SKB_EXT_ERR(skb);
1088 memset(serr, 0, sizeof(*serr));
1089 serr->ee.ee_errno = 0;
1090 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1091 serr->ee.ee_data = hi;
1092 serr->ee.ee_info = lo;
1093 if (!success)
1094 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1095
1096 q = &sk->sk_error_queue;
1097 spin_lock_irqsave(&q->lock, flags);
1098 tail = skb_peek_tail(q);
1099 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1100 !skb_zerocopy_notify_extend(tail, lo, len)) {
1101 __skb_queue_tail(q, skb);
1102 skb = NULL;
1103 }
1104 spin_unlock_irqrestore(&q->lock, flags);
1105
1106 sk->sk_error_report(sk);
1107
1108 release:
1109 consume_skb(skb);
1110 sock_put(sk);
1111 }
1112 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1113
1114 void sock_zerocopy_put(struct ubuf_info *uarg)
1115 {
1116 if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1117 if (uarg->callback)
1118 uarg->callback(uarg, uarg->zerocopy);
1119 else
1120 consume_skb(skb_from_uarg(uarg));
1121 }
1122 }
1123 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1124
1125 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1126 {
1127 if (uarg) {
1128 struct sock *sk = skb_from_uarg(uarg)->sk;
1129
1130 atomic_dec(&sk->sk_zckey);
1131 uarg->len--;
1132
1133 if (have_uref)
1134 sock_zerocopy_put(uarg);
1135 }
1136 }
1137 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1138
1139 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1140 {
1141 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1142 }
1143 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1144
1145 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1146 struct msghdr *msg, int len,
1147 struct ubuf_info *uarg)
1148 {
1149 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1150 struct iov_iter orig_iter = msg->msg_iter;
1151 int err, orig_len = skb->len;
1152
1153 /* An skb can only point to one uarg. This edge case happens when
1154 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1155 */
1156 if (orig_uarg && uarg != orig_uarg)
1157 return -EEXIST;
1158
1159 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1160 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1161 struct sock *save_sk = skb->sk;
1162
1163 /* Streams do not free skb on error. Reset to prev state. */
1164 msg->msg_iter = orig_iter;
1165 skb->sk = sk;
1166 ___pskb_trim(skb, orig_len);
1167 skb->sk = save_sk;
1168 return err;
1169 }
1170
1171 skb_zcopy_set(skb, uarg, NULL);
1172 return skb->len - orig_len;
1173 }
1174 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1175
1176 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1177 gfp_t gfp_mask)
1178 {
1179 if (skb_zcopy(orig)) {
1180 if (skb_zcopy(nskb)) {
1181 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1182 if (!gfp_mask) {
1183 WARN_ON_ONCE(1);
1184 return -ENOMEM;
1185 }
1186 if (skb_uarg(nskb) == skb_uarg(orig))
1187 return 0;
1188 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1189 return -EIO;
1190 }
1191 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1192 }
1193 return 0;
1194 }
1195
1196 /**
1197 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1198 * @skb: the skb to modify
1199 * @gfp_mask: allocation priority
1200 *
1201 * This must be called on SKBTX_DEV_ZEROCOPY skb.
1202 * It will copy all frags into kernel and drop the reference
1203 * to userspace pages.
1204 *
1205 * If this function is called from an interrupt gfp_mask() must be
1206 * %GFP_ATOMIC.
1207 *
1208 * Returns 0 on success or a negative error code on failure
1209 * to allocate kernel memory to copy to.
1210 */
1211 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1212 {
1213 int num_frags = skb_shinfo(skb)->nr_frags;
1214 struct page *page, *head = NULL;
1215 int i, new_frags;
1216 u32 d_off;
1217
1218 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1219 return -EINVAL;
1220
1221 if (!num_frags)
1222 goto release;
1223
1224 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1225 for (i = 0; i < new_frags; i++) {
1226 page = alloc_page(gfp_mask);
1227 if (!page) {
1228 while (head) {
1229 struct page *next = (struct page *)page_private(head);
1230 put_page(head);
1231 head = next;
1232 }
1233 return -ENOMEM;
1234 }
1235 set_page_private(page, (unsigned long)head);
1236 head = page;
1237 }
1238
1239 page = head;
1240 d_off = 0;
1241 for (i = 0; i < num_frags; i++) {
1242 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1243 u32 p_off, p_len, copied;
1244 struct page *p;
1245 u8 *vaddr;
1246
1247 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1248 p, p_off, p_len, copied) {
1249 u32 copy, done = 0;
1250 vaddr = kmap_atomic(p);
1251
1252 while (done < p_len) {
1253 if (d_off == PAGE_SIZE) {
1254 d_off = 0;
1255 page = (struct page *)page_private(page);
1256 }
1257 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1258 memcpy(page_address(page) + d_off,
1259 vaddr + p_off + done, copy);
1260 done += copy;
1261 d_off += copy;
1262 }
1263 kunmap_atomic(vaddr);
1264 }
1265 }
1266
1267 /* skb frags release userspace buffers */
1268 for (i = 0; i < num_frags; i++)
1269 skb_frag_unref(skb, i);
1270
1271 /* skb frags point to kernel buffers */
1272 for (i = 0; i < new_frags - 1; i++) {
1273 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1274 head = (struct page *)page_private(head);
1275 }
1276 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1277 skb_shinfo(skb)->nr_frags = new_frags;
1278
1279 release:
1280 skb_zcopy_clear(skb, false);
1281 return 0;
1282 }
1283 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1284
1285 /**
1286 * skb_clone - duplicate an sk_buff
1287 * @skb: buffer to clone
1288 * @gfp_mask: allocation priority
1289 *
1290 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1291 * copies share the same packet data but not structure. The new
1292 * buffer has a reference count of 1. If the allocation fails the
1293 * function returns %NULL otherwise the new buffer is returned.
1294 *
1295 * If this function is called from an interrupt gfp_mask() must be
1296 * %GFP_ATOMIC.
1297 */
1298
1299 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1300 {
1301 struct sk_buff_fclones *fclones = container_of(skb,
1302 struct sk_buff_fclones,
1303 skb1);
1304 struct sk_buff *n;
1305
1306 if (skb_orphan_frags(skb, gfp_mask))
1307 return NULL;
1308
1309 if (skb->fclone == SKB_FCLONE_ORIG &&
1310 refcount_read(&fclones->fclone_ref) == 1) {
1311 n = &fclones->skb2;
1312 refcount_set(&fclones->fclone_ref, 2);
1313 } else {
1314 if (skb_pfmemalloc(skb))
1315 gfp_mask |= __GFP_MEMALLOC;
1316
1317 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1318 if (!n)
1319 return NULL;
1320
1321 n->fclone = SKB_FCLONE_UNAVAILABLE;
1322 }
1323
1324 return __skb_clone(n, skb);
1325 }
1326 EXPORT_SYMBOL(skb_clone);
1327
1328 void skb_headers_offset_update(struct sk_buff *skb, int off)
1329 {
1330 /* Only adjust this if it actually is csum_start rather than csum */
1331 if (skb->ip_summed == CHECKSUM_PARTIAL)
1332 skb->csum_start += off;
1333 /* {transport,network,mac}_header and tail are relative to skb->head */
1334 skb->transport_header += off;
1335 skb->network_header += off;
1336 if (skb_mac_header_was_set(skb))
1337 skb->mac_header += off;
1338 skb->inner_transport_header += off;
1339 skb->inner_network_header += off;
1340 skb->inner_mac_header += off;
1341 }
1342 EXPORT_SYMBOL(skb_headers_offset_update);
1343
1344 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1345 {
1346 __copy_skb_header(new, old);
1347
1348 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1349 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1350 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1351 }
1352 EXPORT_SYMBOL(skb_copy_header);
1353
1354 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1355 {
1356 if (skb_pfmemalloc(skb))
1357 return SKB_ALLOC_RX;
1358 return 0;
1359 }
1360
1361 /**
1362 * skb_copy - create private copy of an sk_buff
1363 * @skb: buffer to copy
1364 * @gfp_mask: allocation priority
1365 *
1366 * Make a copy of both an &sk_buff and its data. This is used when the
1367 * caller wishes to modify the data and needs a private copy of the
1368 * data to alter. Returns %NULL on failure or the pointer to the buffer
1369 * on success. The returned buffer has a reference count of 1.
1370 *
1371 * As by-product this function converts non-linear &sk_buff to linear
1372 * one, so that &sk_buff becomes completely private and caller is allowed
1373 * to modify all the data of returned buffer. This means that this
1374 * function is not recommended for use in circumstances when only
1375 * header is going to be modified. Use pskb_copy() instead.
1376 */
1377
1378 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1379 {
1380 int headerlen = skb_headroom(skb);
1381 unsigned int size = skb_end_offset(skb) + skb->data_len;
1382 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1383 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1384
1385 if (!n)
1386 return NULL;
1387
1388 /* Set the data pointer */
1389 skb_reserve(n, headerlen);
1390 /* Set the tail pointer and length */
1391 skb_put(n, skb->len);
1392
1393 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1394
1395 skb_copy_header(n, skb);
1396 return n;
1397 }
1398 EXPORT_SYMBOL(skb_copy);
1399
1400 /**
1401 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1402 * @skb: buffer to copy
1403 * @headroom: headroom of new skb
1404 * @gfp_mask: allocation priority
1405 * @fclone: if true allocate the copy of the skb from the fclone
1406 * cache instead of the head cache; it is recommended to set this
1407 * to true for the cases where the copy will likely be cloned
1408 *
1409 * Make a copy of both an &sk_buff and part of its data, located
1410 * in header. Fragmented data remain shared. This is used when
1411 * the caller wishes to modify only header of &sk_buff and needs
1412 * private copy of the header to alter. Returns %NULL on failure
1413 * or the pointer to the buffer on success.
1414 * The returned buffer has a reference count of 1.
1415 */
1416
1417 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1418 gfp_t gfp_mask, bool fclone)
1419 {
1420 unsigned int size = skb_headlen(skb) + headroom;
1421 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1422 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1423
1424 if (!n)
1425 goto out;
1426
1427 /* Set the data pointer */
1428 skb_reserve(n, headroom);
1429 /* Set the tail pointer and length */
1430 skb_put(n, skb_headlen(skb));
1431 /* Copy the bytes */
1432 skb_copy_from_linear_data(skb, n->data, n->len);
1433
1434 n->truesize += skb->data_len;
1435 n->data_len = skb->data_len;
1436 n->len = skb->len;
1437
1438 if (skb_shinfo(skb)->nr_frags) {
1439 int i;
1440
1441 if (skb_orphan_frags(skb, gfp_mask) ||
1442 skb_zerocopy_clone(n, skb, gfp_mask)) {
1443 kfree_skb(n);
1444 n = NULL;
1445 goto out;
1446 }
1447 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1448 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1449 skb_frag_ref(skb, i);
1450 }
1451 skb_shinfo(n)->nr_frags = i;
1452 }
1453
1454 if (skb_has_frag_list(skb)) {
1455 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1456 skb_clone_fraglist(n);
1457 }
1458
1459 skb_copy_header(n, skb);
1460 out:
1461 return n;
1462 }
1463 EXPORT_SYMBOL(__pskb_copy_fclone);
1464
1465 /**
1466 * pskb_expand_head - reallocate header of &sk_buff
1467 * @skb: buffer to reallocate
1468 * @nhead: room to add at head
1469 * @ntail: room to add at tail
1470 * @gfp_mask: allocation priority
1471 *
1472 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1473 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1474 * reference count of 1. Returns zero in the case of success or error,
1475 * if expansion failed. In the last case, &sk_buff is not changed.
1476 *
1477 * All the pointers pointing into skb header may change and must be
1478 * reloaded after call to this function.
1479 */
1480
1481 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1482 gfp_t gfp_mask)
1483 {
1484 int i, osize = skb_end_offset(skb);
1485 int size = osize + nhead + ntail;
1486 long off;
1487 u8 *data;
1488
1489 BUG_ON(nhead < 0);
1490
1491 BUG_ON(skb_shared(skb));
1492
1493 size = SKB_DATA_ALIGN(size);
1494
1495 if (skb_pfmemalloc(skb))
1496 gfp_mask |= __GFP_MEMALLOC;
1497 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1498 gfp_mask, NUMA_NO_NODE, NULL);
1499 if (!data)
1500 goto nodata;
1501 size = SKB_WITH_OVERHEAD(ksize(data));
1502
1503 /* Copy only real data... and, alas, header. This should be
1504 * optimized for the cases when header is void.
1505 */
1506 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1507
1508 memcpy((struct skb_shared_info *)(data + size),
1509 skb_shinfo(skb),
1510 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1511
1512 /*
1513 * if shinfo is shared we must drop the old head gracefully, but if it
1514 * is not we can just drop the old head and let the existing refcount
1515 * be since all we did is relocate the values
1516 */
1517 if (skb_cloned(skb)) {
1518 if (skb_orphan_frags(skb, gfp_mask))
1519 goto nofrags;
1520 if (skb_zcopy(skb))
1521 refcount_inc(&skb_uarg(skb)->refcnt);
1522 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1523 skb_frag_ref(skb, i);
1524
1525 if (skb_has_frag_list(skb))
1526 skb_clone_fraglist(skb);
1527
1528 skb_release_data(skb);
1529 } else {
1530 skb_free_head(skb);
1531 }
1532 off = (data + nhead) - skb->head;
1533
1534 skb->head = data;
1535 skb->head_frag = 0;
1536 skb->data += off;
1537 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1538 skb->end = size;
1539 off = nhead;
1540 #else
1541 skb->end = skb->head + size;
1542 #endif
1543 skb->tail += off;
1544 skb_headers_offset_update(skb, nhead);
1545 skb->cloned = 0;
1546 skb->hdr_len = 0;
1547 skb->nohdr = 0;
1548 atomic_set(&skb_shinfo(skb)->dataref, 1);
1549
1550 skb_metadata_clear(skb);
1551
1552 /* It is not generally safe to change skb->truesize.
1553 * For the moment, we really care of rx path, or
1554 * when skb is orphaned (not attached to a socket).
1555 */
1556 if (!skb->sk || skb->destructor == sock_edemux)
1557 skb->truesize += size - osize;
1558
1559 return 0;
1560
1561 nofrags:
1562 kfree(data);
1563 nodata:
1564 return -ENOMEM;
1565 }
1566 EXPORT_SYMBOL(pskb_expand_head);
1567
1568 /* Make private copy of skb with writable head and some headroom */
1569
1570 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1571 {
1572 struct sk_buff *skb2;
1573 int delta = headroom - skb_headroom(skb);
1574
1575 if (delta <= 0)
1576 skb2 = pskb_copy(skb, GFP_ATOMIC);
1577 else {
1578 skb2 = skb_clone(skb, GFP_ATOMIC);
1579 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1580 GFP_ATOMIC)) {
1581 kfree_skb(skb2);
1582 skb2 = NULL;
1583 }
1584 }
1585 return skb2;
1586 }
1587 EXPORT_SYMBOL(skb_realloc_headroom);
1588
1589 /**
1590 * skb_copy_expand - copy and expand sk_buff
1591 * @skb: buffer to copy
1592 * @newheadroom: new free bytes at head
1593 * @newtailroom: new free bytes at tail
1594 * @gfp_mask: allocation priority
1595 *
1596 * Make a copy of both an &sk_buff and its data and while doing so
1597 * allocate additional space.
1598 *
1599 * This is used when the caller wishes to modify the data and needs a
1600 * private copy of the data to alter as well as more space for new fields.
1601 * Returns %NULL on failure or the pointer to the buffer
1602 * on success. The returned buffer has a reference count of 1.
1603 *
1604 * You must pass %GFP_ATOMIC as the allocation priority if this function
1605 * is called from an interrupt.
1606 */
1607 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1608 int newheadroom, int newtailroom,
1609 gfp_t gfp_mask)
1610 {
1611 /*
1612 * Allocate the copy buffer
1613 */
1614 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1615 gfp_mask, skb_alloc_rx_flag(skb),
1616 NUMA_NO_NODE);
1617 int oldheadroom = skb_headroom(skb);
1618 int head_copy_len, head_copy_off;
1619
1620 if (!n)
1621 return NULL;
1622
1623 skb_reserve(n, newheadroom);
1624
1625 /* Set the tail pointer and length */
1626 skb_put(n, skb->len);
1627
1628 head_copy_len = oldheadroom;
1629 head_copy_off = 0;
1630 if (newheadroom <= head_copy_len)
1631 head_copy_len = newheadroom;
1632 else
1633 head_copy_off = newheadroom - head_copy_len;
1634
1635 /* Copy the linear header and data. */
1636 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1637 skb->len + head_copy_len));
1638
1639 skb_copy_header(n, skb);
1640
1641 skb_headers_offset_update(n, newheadroom - oldheadroom);
1642
1643 return n;
1644 }
1645 EXPORT_SYMBOL(skb_copy_expand);
1646
1647 /**
1648 * __skb_pad - zero pad the tail of an skb
1649 * @skb: buffer to pad
1650 * @pad: space to pad
1651 * @free_on_error: free buffer on error
1652 *
1653 * Ensure that a buffer is followed by a padding area that is zero
1654 * filled. Used by network drivers which may DMA or transfer data
1655 * beyond the buffer end onto the wire.
1656 *
1657 * May return error in out of memory cases. The skb is freed on error
1658 * if @free_on_error is true.
1659 */
1660
1661 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1662 {
1663 int err;
1664 int ntail;
1665
1666 /* If the skbuff is non linear tailroom is always zero.. */
1667 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1668 memset(skb->data+skb->len, 0, pad);
1669 return 0;
1670 }
1671
1672 ntail = skb->data_len + pad - (skb->end - skb->tail);
1673 if (likely(skb_cloned(skb) || ntail > 0)) {
1674 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1675 if (unlikely(err))
1676 goto free_skb;
1677 }
1678
1679 /* FIXME: The use of this function with non-linear skb's really needs
1680 * to be audited.
1681 */
1682 err = skb_linearize(skb);
1683 if (unlikely(err))
1684 goto free_skb;
1685
1686 memset(skb->data + skb->len, 0, pad);
1687 return 0;
1688
1689 free_skb:
1690 if (free_on_error)
1691 kfree_skb(skb);
1692 return err;
1693 }
1694 EXPORT_SYMBOL(__skb_pad);
1695
1696 /**
1697 * pskb_put - add data to the tail of a potentially fragmented buffer
1698 * @skb: start of the buffer to use
1699 * @tail: tail fragment of the buffer to use
1700 * @len: amount of data to add
1701 *
1702 * This function extends the used data area of the potentially
1703 * fragmented buffer. @tail must be the last fragment of @skb -- or
1704 * @skb itself. If this would exceed the total buffer size the kernel
1705 * will panic. A pointer to the first byte of the extra data is
1706 * returned.
1707 */
1708
1709 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1710 {
1711 if (tail != skb) {
1712 skb->data_len += len;
1713 skb->len += len;
1714 }
1715 return skb_put(tail, len);
1716 }
1717 EXPORT_SYMBOL_GPL(pskb_put);
1718
1719 /**
1720 * skb_put - add data to a buffer
1721 * @skb: buffer to use
1722 * @len: amount of data to add
1723 *
1724 * This function extends the used data area of the buffer. If this would
1725 * exceed the total buffer size the kernel will panic. A pointer to the
1726 * first byte of the extra data is returned.
1727 */
1728 void *skb_put(struct sk_buff *skb, unsigned int len)
1729 {
1730 void *tmp = skb_tail_pointer(skb);
1731 SKB_LINEAR_ASSERT(skb);
1732 skb->tail += len;
1733 skb->len += len;
1734 if (unlikely(skb->tail > skb->end))
1735 skb_over_panic(skb, len, __builtin_return_address(0));
1736 return tmp;
1737 }
1738 EXPORT_SYMBOL(skb_put);
1739
1740 /**
1741 * skb_push - add data to the start of a buffer
1742 * @skb: buffer to use
1743 * @len: amount of data to add
1744 *
1745 * This function extends the used data area of the buffer at the buffer
1746 * start. If this would exceed the total buffer headroom the kernel will
1747 * panic. A pointer to the first byte of the extra data is returned.
1748 */
1749 void *skb_push(struct sk_buff *skb, unsigned int len)
1750 {
1751 skb->data -= len;
1752 skb->len += len;
1753 if (unlikely(skb->data < skb->head))
1754 skb_under_panic(skb, len, __builtin_return_address(0));
1755 return skb->data;
1756 }
1757 EXPORT_SYMBOL(skb_push);
1758
1759 /**
1760 * skb_pull - remove data from the start of a buffer
1761 * @skb: buffer to use
1762 * @len: amount of data to remove
1763 *
1764 * This function removes data from the start of a buffer, returning
1765 * the memory to the headroom. A pointer to the next data in the buffer
1766 * is returned. Once the data has been pulled future pushes will overwrite
1767 * the old data.
1768 */
1769 void *skb_pull(struct sk_buff *skb, unsigned int len)
1770 {
1771 return skb_pull_inline(skb, len);
1772 }
1773 EXPORT_SYMBOL(skb_pull);
1774
1775 /**
1776 * skb_trim - remove end from a buffer
1777 * @skb: buffer to alter
1778 * @len: new length
1779 *
1780 * Cut the length of a buffer down by removing data from the tail. If
1781 * the buffer is already under the length specified it is not modified.
1782 * The skb must be linear.
1783 */
1784 void skb_trim(struct sk_buff *skb, unsigned int len)
1785 {
1786 if (skb->len > len)
1787 __skb_trim(skb, len);
1788 }
1789 EXPORT_SYMBOL(skb_trim);
1790
1791 /* Trims skb to length len. It can change skb pointers.
1792 */
1793
1794 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1795 {
1796 struct sk_buff **fragp;
1797 struct sk_buff *frag;
1798 int offset = skb_headlen(skb);
1799 int nfrags = skb_shinfo(skb)->nr_frags;
1800 int i;
1801 int err;
1802
1803 if (skb_cloned(skb) &&
1804 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1805 return err;
1806
1807 i = 0;
1808 if (offset >= len)
1809 goto drop_pages;
1810
1811 for (; i < nfrags; i++) {
1812 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1813
1814 if (end < len) {
1815 offset = end;
1816 continue;
1817 }
1818
1819 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1820
1821 drop_pages:
1822 skb_shinfo(skb)->nr_frags = i;
1823
1824 for (; i < nfrags; i++)
1825 skb_frag_unref(skb, i);
1826
1827 if (skb_has_frag_list(skb))
1828 skb_drop_fraglist(skb);
1829 goto done;
1830 }
1831
1832 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1833 fragp = &frag->next) {
1834 int end = offset + frag->len;
1835
1836 if (skb_shared(frag)) {
1837 struct sk_buff *nfrag;
1838
1839 nfrag = skb_clone(frag, GFP_ATOMIC);
1840 if (unlikely(!nfrag))
1841 return -ENOMEM;
1842
1843 nfrag->next = frag->next;
1844 consume_skb(frag);
1845 frag = nfrag;
1846 *fragp = frag;
1847 }
1848
1849 if (end < len) {
1850 offset = end;
1851 continue;
1852 }
1853
1854 if (end > len &&
1855 unlikely((err = pskb_trim(frag, len - offset))))
1856 return err;
1857
1858 if (frag->next)
1859 skb_drop_list(&frag->next);
1860 break;
1861 }
1862
1863 done:
1864 if (len > skb_headlen(skb)) {
1865 skb->data_len -= skb->len - len;
1866 skb->len = len;
1867 } else {
1868 skb->len = len;
1869 skb->data_len = 0;
1870 skb_set_tail_pointer(skb, len);
1871 }
1872
1873 if (!skb->sk || skb->destructor == sock_edemux)
1874 skb_condense(skb);
1875 return 0;
1876 }
1877 EXPORT_SYMBOL(___pskb_trim);
1878
1879 /* Note : use pskb_trim_rcsum() instead of calling this directly
1880 */
1881 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
1882 {
1883 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1884 int delta = skb->len - len;
1885
1886 skb->csum = csum_block_sub(skb->csum,
1887 skb_checksum(skb, len, delta, 0),
1888 len);
1889 }
1890 return __pskb_trim(skb, len);
1891 }
1892 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
1893
1894 /**
1895 * __pskb_pull_tail - advance tail of skb header
1896 * @skb: buffer to reallocate
1897 * @delta: number of bytes to advance tail
1898 *
1899 * The function makes a sense only on a fragmented &sk_buff,
1900 * it expands header moving its tail forward and copying necessary
1901 * data from fragmented part.
1902 *
1903 * &sk_buff MUST have reference count of 1.
1904 *
1905 * Returns %NULL (and &sk_buff does not change) if pull failed
1906 * or value of new tail of skb in the case of success.
1907 *
1908 * All the pointers pointing into skb header may change and must be
1909 * reloaded after call to this function.
1910 */
1911
1912 /* Moves tail of skb head forward, copying data from fragmented part,
1913 * when it is necessary.
1914 * 1. It may fail due to malloc failure.
1915 * 2. It may change skb pointers.
1916 *
1917 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1918 */
1919 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1920 {
1921 /* If skb has not enough free space at tail, get new one
1922 * plus 128 bytes for future expansions. If we have enough
1923 * room at tail, reallocate without expansion only if skb is cloned.
1924 */
1925 int i, k, eat = (skb->tail + delta) - skb->end;
1926
1927 if (eat > 0 || skb_cloned(skb)) {
1928 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1929 GFP_ATOMIC))
1930 return NULL;
1931 }
1932
1933 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1934 skb_tail_pointer(skb), delta));
1935
1936 /* Optimization: no fragments, no reasons to preestimate
1937 * size of pulled pages. Superb.
1938 */
1939 if (!skb_has_frag_list(skb))
1940 goto pull_pages;
1941
1942 /* Estimate size of pulled pages. */
1943 eat = delta;
1944 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1945 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1946
1947 if (size >= eat)
1948 goto pull_pages;
1949 eat -= size;
1950 }
1951
1952 /* If we need update frag list, we are in troubles.
1953 * Certainly, it is possible to add an offset to skb data,
1954 * but taking into account that pulling is expected to
1955 * be very rare operation, it is worth to fight against
1956 * further bloating skb head and crucify ourselves here instead.
1957 * Pure masohism, indeed. 8)8)
1958 */
1959 if (eat) {
1960 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1961 struct sk_buff *clone = NULL;
1962 struct sk_buff *insp = NULL;
1963
1964 do {
1965 if (list->len <= eat) {
1966 /* Eaten as whole. */
1967 eat -= list->len;
1968 list = list->next;
1969 insp = list;
1970 } else {
1971 /* Eaten partially. */
1972
1973 if (skb_shared(list)) {
1974 /* Sucks! We need to fork list. :-( */
1975 clone = skb_clone(list, GFP_ATOMIC);
1976 if (!clone)
1977 return NULL;
1978 insp = list->next;
1979 list = clone;
1980 } else {
1981 /* This may be pulled without
1982 * problems. */
1983 insp = list;
1984 }
1985 if (!pskb_pull(list, eat)) {
1986 kfree_skb(clone);
1987 return NULL;
1988 }
1989 break;
1990 }
1991 } while (eat);
1992
1993 /* Free pulled out fragments. */
1994 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1995 skb_shinfo(skb)->frag_list = list->next;
1996 kfree_skb(list);
1997 }
1998 /* And insert new clone at head. */
1999 if (clone) {
2000 clone->next = list;
2001 skb_shinfo(skb)->frag_list = clone;
2002 }
2003 }
2004 /* Success! Now we may commit changes to skb data. */
2005
2006 pull_pages:
2007 eat = delta;
2008 k = 0;
2009 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2010 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2011
2012 if (size <= eat) {
2013 skb_frag_unref(skb, i);
2014 eat -= size;
2015 } else {
2016 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
2017 if (eat) {
2018 skb_shinfo(skb)->frags[k].page_offset += eat;
2019 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
2020 if (!i)
2021 goto end;
2022 eat = 0;
2023 }
2024 k++;
2025 }
2026 }
2027 skb_shinfo(skb)->nr_frags = k;
2028
2029 end:
2030 skb->tail += delta;
2031 skb->data_len -= delta;
2032
2033 if (!skb->data_len)
2034 skb_zcopy_clear(skb, false);
2035
2036 return skb_tail_pointer(skb);
2037 }
2038 EXPORT_SYMBOL(__pskb_pull_tail);
2039
2040 /**
2041 * skb_copy_bits - copy bits from skb to kernel buffer
2042 * @skb: source skb
2043 * @offset: offset in source
2044 * @to: destination buffer
2045 * @len: number of bytes to copy
2046 *
2047 * Copy the specified number of bytes from the source skb to the
2048 * destination buffer.
2049 *
2050 * CAUTION ! :
2051 * If its prototype is ever changed,
2052 * check arch/{*}/net/{*}.S files,
2053 * since it is called from BPF assembly code.
2054 */
2055 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2056 {
2057 int start = skb_headlen(skb);
2058 struct sk_buff *frag_iter;
2059 int i, copy;
2060
2061 if (offset > (int)skb->len - len)
2062 goto fault;
2063
2064 /* Copy header. */
2065 if ((copy = start - offset) > 0) {
2066 if (copy > len)
2067 copy = len;
2068 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2069 if ((len -= copy) == 0)
2070 return 0;
2071 offset += copy;
2072 to += copy;
2073 }
2074
2075 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2076 int end;
2077 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2078
2079 WARN_ON(start > offset + len);
2080
2081 end = start + skb_frag_size(f);
2082 if ((copy = end - offset) > 0) {
2083 u32 p_off, p_len, copied;
2084 struct page *p;
2085 u8 *vaddr;
2086
2087 if (copy > len)
2088 copy = len;
2089
2090 skb_frag_foreach_page(f,
2091 f->page_offset + offset - start,
2092 copy, p, p_off, p_len, copied) {
2093 vaddr = kmap_atomic(p);
2094 memcpy(to + copied, vaddr + p_off, p_len);
2095 kunmap_atomic(vaddr);
2096 }
2097
2098 if ((len -= copy) == 0)
2099 return 0;
2100 offset += copy;
2101 to += copy;
2102 }
2103 start = end;
2104 }
2105
2106 skb_walk_frags(skb, frag_iter) {
2107 int end;
2108
2109 WARN_ON(start > offset + len);
2110
2111 end = start + frag_iter->len;
2112 if ((copy = end - offset) > 0) {
2113 if (copy > len)
2114 copy = len;
2115 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2116 goto fault;
2117 if ((len -= copy) == 0)
2118 return 0;
2119 offset += copy;
2120 to += copy;
2121 }
2122 start = end;
2123 }
2124
2125 if (!len)
2126 return 0;
2127
2128 fault:
2129 return -EFAULT;
2130 }
2131 EXPORT_SYMBOL(skb_copy_bits);
2132
2133 /*
2134 * Callback from splice_to_pipe(), if we need to release some pages
2135 * at the end of the spd in case we error'ed out in filling the pipe.
2136 */
2137 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2138 {
2139 put_page(spd->pages[i]);
2140 }
2141
2142 static struct page *linear_to_page(struct page *page, unsigned int *len,
2143 unsigned int *offset,
2144 struct sock *sk)
2145 {
2146 struct page_frag *pfrag = sk_page_frag(sk);
2147
2148 if (!sk_page_frag_refill(sk, pfrag))
2149 return NULL;
2150
2151 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2152
2153 memcpy(page_address(pfrag->page) + pfrag->offset,
2154 page_address(page) + *offset, *len);
2155 *offset = pfrag->offset;
2156 pfrag->offset += *len;
2157
2158 return pfrag->page;
2159 }
2160
2161 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2162 struct page *page,
2163 unsigned int offset)
2164 {
2165 return spd->nr_pages &&
2166 spd->pages[spd->nr_pages - 1] == page &&
2167 (spd->partial[spd->nr_pages - 1].offset +
2168 spd->partial[spd->nr_pages - 1].len == offset);
2169 }
2170
2171 /*
2172 * Fill page/offset/length into spd, if it can hold more pages.
2173 */
2174 static bool spd_fill_page(struct splice_pipe_desc *spd,
2175 struct pipe_inode_info *pipe, struct page *page,
2176 unsigned int *len, unsigned int offset,
2177 bool linear,
2178 struct sock *sk)
2179 {
2180 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2181 return true;
2182
2183 if (linear) {
2184 page = linear_to_page(page, len, &offset, sk);
2185 if (!page)
2186 return true;
2187 }
2188 if (spd_can_coalesce(spd, page, offset)) {
2189 spd->partial[spd->nr_pages - 1].len += *len;
2190 return false;
2191 }
2192 get_page(page);
2193 spd->pages[spd->nr_pages] = page;
2194 spd->partial[spd->nr_pages].len = *len;
2195 spd->partial[spd->nr_pages].offset = offset;
2196 spd->nr_pages++;
2197
2198 return false;
2199 }
2200
2201 static bool __splice_segment(struct page *page, unsigned int poff,
2202 unsigned int plen, unsigned int *off,
2203 unsigned int *len,
2204 struct splice_pipe_desc *spd, bool linear,
2205 struct sock *sk,
2206 struct pipe_inode_info *pipe)
2207 {
2208 if (!*len)
2209 return true;
2210
2211 /* skip this segment if already processed */
2212 if (*off >= plen) {
2213 *off -= plen;
2214 return false;
2215 }
2216
2217 /* ignore any bits we already processed */
2218 poff += *off;
2219 plen -= *off;
2220 *off = 0;
2221
2222 do {
2223 unsigned int flen = min(*len, plen);
2224
2225 if (spd_fill_page(spd, pipe, page, &flen, poff,
2226 linear, sk))
2227 return true;
2228 poff += flen;
2229 plen -= flen;
2230 *len -= flen;
2231 } while (*len && plen);
2232
2233 return false;
2234 }
2235
2236 /*
2237 * Map linear and fragment data from the skb to spd. It reports true if the
2238 * pipe is full or if we already spliced the requested length.
2239 */
2240 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2241 unsigned int *offset, unsigned int *len,
2242 struct splice_pipe_desc *spd, struct sock *sk)
2243 {
2244 int seg;
2245 struct sk_buff *iter;
2246
2247 /* map the linear part :
2248 * If skb->head_frag is set, this 'linear' part is backed by a
2249 * fragment, and if the head is not shared with any clones then
2250 * we can avoid a copy since we own the head portion of this page.
2251 */
2252 if (__splice_segment(virt_to_page(skb->data),
2253 (unsigned long) skb->data & (PAGE_SIZE - 1),
2254 skb_headlen(skb),
2255 offset, len, spd,
2256 skb_head_is_locked(skb),
2257 sk, pipe))
2258 return true;
2259
2260 /*
2261 * then map the fragments
2262 */
2263 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2264 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2265
2266 if (__splice_segment(skb_frag_page(f),
2267 f->page_offset, skb_frag_size(f),
2268 offset, len, spd, false, sk, pipe))
2269 return true;
2270 }
2271
2272 skb_walk_frags(skb, iter) {
2273 if (*offset >= iter->len) {
2274 *offset -= iter->len;
2275 continue;
2276 }
2277 /* __skb_splice_bits() only fails if the output has no room
2278 * left, so no point in going over the frag_list for the error
2279 * case.
2280 */
2281 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2282 return true;
2283 }
2284
2285 return false;
2286 }
2287
2288 /*
2289 * Map data from the skb to a pipe. Should handle both the linear part,
2290 * the fragments, and the frag list.
2291 */
2292 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2293 struct pipe_inode_info *pipe, unsigned int tlen,
2294 unsigned int flags)
2295 {
2296 struct partial_page partial[MAX_SKB_FRAGS];
2297 struct page *pages[MAX_SKB_FRAGS];
2298 struct splice_pipe_desc spd = {
2299 .pages = pages,
2300 .partial = partial,
2301 .nr_pages_max = MAX_SKB_FRAGS,
2302 .ops = &nosteal_pipe_buf_ops,
2303 .spd_release = sock_spd_release,
2304 };
2305 int ret = 0;
2306
2307 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2308
2309 if (spd.nr_pages)
2310 ret = splice_to_pipe(pipe, &spd);
2311
2312 return ret;
2313 }
2314 EXPORT_SYMBOL_GPL(skb_splice_bits);
2315
2316 /* Send skb data on a socket. Socket must be locked. */
2317 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2318 int len)
2319 {
2320 unsigned int orig_len = len;
2321 struct sk_buff *head = skb;
2322 unsigned short fragidx;
2323 int slen, ret;
2324
2325 do_frag_list:
2326
2327 /* Deal with head data */
2328 while (offset < skb_headlen(skb) && len) {
2329 struct kvec kv;
2330 struct msghdr msg;
2331
2332 slen = min_t(int, len, skb_headlen(skb) - offset);
2333 kv.iov_base = skb->data + offset;
2334 kv.iov_len = slen;
2335 memset(&msg, 0, sizeof(msg));
2336
2337 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2338 if (ret <= 0)
2339 goto error;
2340
2341 offset += ret;
2342 len -= ret;
2343 }
2344
2345 /* All the data was skb head? */
2346 if (!len)
2347 goto out;
2348
2349 /* Make offset relative to start of frags */
2350 offset -= skb_headlen(skb);
2351
2352 /* Find where we are in frag list */
2353 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2354 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2355
2356 if (offset < frag->size)
2357 break;
2358
2359 offset -= frag->size;
2360 }
2361
2362 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2363 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2364
2365 slen = min_t(size_t, len, frag->size - offset);
2366
2367 while (slen) {
2368 ret = kernel_sendpage_locked(sk, frag->page.p,
2369 frag->page_offset + offset,
2370 slen, MSG_DONTWAIT);
2371 if (ret <= 0)
2372 goto error;
2373
2374 len -= ret;
2375 offset += ret;
2376 slen -= ret;
2377 }
2378
2379 offset = 0;
2380 }
2381
2382 if (len) {
2383 /* Process any frag lists */
2384
2385 if (skb == head) {
2386 if (skb_has_frag_list(skb)) {
2387 skb = skb_shinfo(skb)->frag_list;
2388 goto do_frag_list;
2389 }
2390 } else if (skb->next) {
2391 skb = skb->next;
2392 goto do_frag_list;
2393 }
2394 }
2395
2396 out:
2397 return orig_len - len;
2398
2399 error:
2400 return orig_len == len ? ret : orig_len - len;
2401 }
2402 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2403
2404 /**
2405 * skb_store_bits - store bits from kernel buffer to skb
2406 * @skb: destination buffer
2407 * @offset: offset in destination
2408 * @from: source buffer
2409 * @len: number of bytes to copy
2410 *
2411 * Copy the specified number of bytes from the source buffer to the
2412 * destination skb. This function handles all the messy bits of
2413 * traversing fragment lists and such.
2414 */
2415
2416 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2417 {
2418 int start = skb_headlen(skb);
2419 struct sk_buff *frag_iter;
2420 int i, copy;
2421
2422 if (offset > (int)skb->len - len)
2423 goto fault;
2424
2425 if ((copy = start - offset) > 0) {
2426 if (copy > len)
2427 copy = len;
2428 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2429 if ((len -= copy) == 0)
2430 return 0;
2431 offset += copy;
2432 from += copy;
2433 }
2434
2435 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2436 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2437 int end;
2438
2439 WARN_ON(start > offset + len);
2440
2441 end = start + skb_frag_size(frag);
2442 if ((copy = end - offset) > 0) {
2443 u32 p_off, p_len, copied;
2444 struct page *p;
2445 u8 *vaddr;
2446
2447 if (copy > len)
2448 copy = len;
2449
2450 skb_frag_foreach_page(frag,
2451 frag->page_offset + offset - start,
2452 copy, p, p_off, p_len, copied) {
2453 vaddr = kmap_atomic(p);
2454 memcpy(vaddr + p_off, from + copied, p_len);
2455 kunmap_atomic(vaddr);
2456 }
2457
2458 if ((len -= copy) == 0)
2459 return 0;
2460 offset += copy;
2461 from += copy;
2462 }
2463 start = end;
2464 }
2465
2466 skb_walk_frags(skb, frag_iter) {
2467 int end;
2468
2469 WARN_ON(start > offset + len);
2470
2471 end = start + frag_iter->len;
2472 if ((copy = end - offset) > 0) {
2473 if (copy > len)
2474 copy = len;
2475 if (skb_store_bits(frag_iter, offset - start,
2476 from, copy))
2477 goto fault;
2478 if ((len -= copy) == 0)
2479 return 0;
2480 offset += copy;
2481 from += copy;
2482 }
2483 start = end;
2484 }
2485 if (!len)
2486 return 0;
2487
2488 fault:
2489 return -EFAULT;
2490 }
2491 EXPORT_SYMBOL(skb_store_bits);
2492
2493 /* Checksum skb data. */
2494 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2495 __wsum csum, const struct skb_checksum_ops *ops)
2496 {
2497 int start = skb_headlen(skb);
2498 int i, copy = start - offset;
2499 struct sk_buff *frag_iter;
2500 int pos = 0;
2501
2502 /* Checksum header. */
2503 if (copy > 0) {
2504 if (copy > len)
2505 copy = len;
2506 csum = ops->update(skb->data + offset, copy, csum);
2507 if ((len -= copy) == 0)
2508 return csum;
2509 offset += copy;
2510 pos = copy;
2511 }
2512
2513 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2514 int end;
2515 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2516
2517 WARN_ON(start > offset + len);
2518
2519 end = start + skb_frag_size(frag);
2520 if ((copy = end - offset) > 0) {
2521 u32 p_off, p_len, copied;
2522 struct page *p;
2523 __wsum csum2;
2524 u8 *vaddr;
2525
2526 if (copy > len)
2527 copy = len;
2528
2529 skb_frag_foreach_page(frag,
2530 frag->page_offset + offset - start,
2531 copy, p, p_off, p_len, copied) {
2532 vaddr = kmap_atomic(p);
2533 csum2 = ops->update(vaddr + p_off, p_len, 0);
2534 kunmap_atomic(vaddr);
2535 csum = ops->combine(csum, csum2, pos, p_len);
2536 pos += p_len;
2537 }
2538
2539 if (!(len -= copy))
2540 return csum;
2541 offset += copy;
2542 }
2543 start = end;
2544 }
2545
2546 skb_walk_frags(skb, frag_iter) {
2547 int end;
2548
2549 WARN_ON(start > offset + len);
2550
2551 end = start + frag_iter->len;
2552 if ((copy = end - offset) > 0) {
2553 __wsum csum2;
2554 if (copy > len)
2555 copy = len;
2556 csum2 = __skb_checksum(frag_iter, offset - start,
2557 copy, 0, ops);
2558 csum = ops->combine(csum, csum2, pos, copy);
2559 if ((len -= copy) == 0)
2560 return csum;
2561 offset += copy;
2562 pos += copy;
2563 }
2564 start = end;
2565 }
2566 BUG_ON(len);
2567
2568 return csum;
2569 }
2570 EXPORT_SYMBOL(__skb_checksum);
2571
2572 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2573 int len, __wsum csum)
2574 {
2575 const struct skb_checksum_ops ops = {
2576 .update = csum_partial_ext,
2577 .combine = csum_block_add_ext,
2578 };
2579
2580 return __skb_checksum(skb, offset, len, csum, &ops);
2581 }
2582 EXPORT_SYMBOL(skb_checksum);
2583
2584 /* Both of above in one bottle. */
2585
2586 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2587 u8 *to, int len, __wsum csum)
2588 {
2589 int start = skb_headlen(skb);
2590 int i, copy = start - offset;
2591 struct sk_buff *frag_iter;
2592 int pos = 0;
2593
2594 /* Copy header. */
2595 if (copy > 0) {
2596 if (copy > len)
2597 copy = len;
2598 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2599 copy, csum);
2600 if ((len -= copy) == 0)
2601 return csum;
2602 offset += copy;
2603 to += copy;
2604 pos = copy;
2605 }
2606
2607 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2608 int end;
2609
2610 WARN_ON(start > offset + len);
2611
2612 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2613 if ((copy = end - offset) > 0) {
2614 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2615 u32 p_off, p_len, copied;
2616 struct page *p;
2617 __wsum csum2;
2618 u8 *vaddr;
2619
2620 if (copy > len)
2621 copy = len;
2622
2623 skb_frag_foreach_page(frag,
2624 frag->page_offset + offset - start,
2625 copy, p, p_off, p_len, copied) {
2626 vaddr = kmap_atomic(p);
2627 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2628 to + copied,
2629 p_len, 0);
2630 kunmap_atomic(vaddr);
2631 csum = csum_block_add(csum, csum2, pos);
2632 pos += p_len;
2633 }
2634
2635 if (!(len -= copy))
2636 return csum;
2637 offset += copy;
2638 to += copy;
2639 }
2640 start = end;
2641 }
2642
2643 skb_walk_frags(skb, frag_iter) {
2644 __wsum csum2;
2645 int end;
2646
2647 WARN_ON(start > offset + len);
2648
2649 end = start + frag_iter->len;
2650 if ((copy = end - offset) > 0) {
2651 if (copy > len)
2652 copy = len;
2653 csum2 = skb_copy_and_csum_bits(frag_iter,
2654 offset - start,
2655 to, copy, 0);
2656 csum = csum_block_add(csum, csum2, pos);
2657 if ((len -= copy) == 0)
2658 return csum;
2659 offset += copy;
2660 to += copy;
2661 pos += copy;
2662 }
2663 start = end;
2664 }
2665 BUG_ON(len);
2666 return csum;
2667 }
2668 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2669
2670 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2671 {
2672 __sum16 sum;
2673
2674 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2675 /* See comments in __skb_checksum_complete(). */
2676 if (likely(!sum)) {
2677 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2678 !skb->csum_complete_sw)
2679 netdev_rx_csum_fault(skb->dev, skb);
2680 }
2681 if (!skb_shared(skb))
2682 skb->csum_valid = !sum;
2683 return sum;
2684 }
2685 EXPORT_SYMBOL(__skb_checksum_complete_head);
2686
2687 /* This function assumes skb->csum already holds pseudo header's checksum,
2688 * which has been changed from the hardware checksum, for example, by
2689 * __skb_checksum_validate_complete(). And, the original skb->csum must
2690 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2691 *
2692 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2693 * zero. The new checksum is stored back into skb->csum unless the skb is
2694 * shared.
2695 */
2696 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2697 {
2698 __wsum csum;
2699 __sum16 sum;
2700
2701 csum = skb_checksum(skb, 0, skb->len, 0);
2702
2703 sum = csum_fold(csum_add(skb->csum, csum));
2704 /* This check is inverted, because we already knew the hardware
2705 * checksum is invalid before calling this function. So, if the
2706 * re-computed checksum is valid instead, then we have a mismatch
2707 * between the original skb->csum and skb_checksum(). This means either
2708 * the original hardware checksum is incorrect or we screw up skb->csum
2709 * when moving skb->data around.
2710 */
2711 if (likely(!sum)) {
2712 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2713 !skb->csum_complete_sw)
2714 netdev_rx_csum_fault(skb->dev, skb);
2715 }
2716
2717 if (!skb_shared(skb)) {
2718 /* Save full packet checksum */
2719 skb->csum = csum;
2720 skb->ip_summed = CHECKSUM_COMPLETE;
2721 skb->csum_complete_sw = 1;
2722 skb->csum_valid = !sum;
2723 }
2724
2725 return sum;
2726 }
2727 EXPORT_SYMBOL(__skb_checksum_complete);
2728
2729 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2730 {
2731 net_warn_ratelimited(
2732 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2733 __func__);
2734 return 0;
2735 }
2736
2737 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2738 int offset, int len)
2739 {
2740 net_warn_ratelimited(
2741 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2742 __func__);
2743 return 0;
2744 }
2745
2746 static const struct skb_checksum_ops default_crc32c_ops = {
2747 .update = warn_crc32c_csum_update,
2748 .combine = warn_crc32c_csum_combine,
2749 };
2750
2751 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2752 &default_crc32c_ops;
2753 EXPORT_SYMBOL(crc32c_csum_stub);
2754
2755 /**
2756 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2757 * @from: source buffer
2758 *
2759 * Calculates the amount of linear headroom needed in the 'to' skb passed
2760 * into skb_zerocopy().
2761 */
2762 unsigned int
2763 skb_zerocopy_headlen(const struct sk_buff *from)
2764 {
2765 unsigned int hlen = 0;
2766
2767 if (!from->head_frag ||
2768 skb_headlen(from) < L1_CACHE_BYTES ||
2769 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2770 hlen = skb_headlen(from);
2771
2772 if (skb_has_frag_list(from))
2773 hlen = from->len;
2774
2775 return hlen;
2776 }
2777 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2778
2779 /**
2780 * skb_zerocopy - Zero copy skb to skb
2781 * @to: destination buffer
2782 * @from: source buffer
2783 * @len: number of bytes to copy from source buffer
2784 * @hlen: size of linear headroom in destination buffer
2785 *
2786 * Copies up to `len` bytes from `from` to `to` by creating references
2787 * to the frags in the source buffer.
2788 *
2789 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2790 * headroom in the `to` buffer.
2791 *
2792 * Return value:
2793 * 0: everything is OK
2794 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2795 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2796 */
2797 int
2798 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2799 {
2800 int i, j = 0;
2801 int plen = 0; /* length of skb->head fragment */
2802 int ret;
2803 struct page *page;
2804 unsigned int offset;
2805
2806 BUG_ON(!from->head_frag && !hlen);
2807
2808 /* dont bother with small payloads */
2809 if (len <= skb_tailroom(to))
2810 return skb_copy_bits(from, 0, skb_put(to, len), len);
2811
2812 if (hlen) {
2813 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2814 if (unlikely(ret))
2815 return ret;
2816 len -= hlen;
2817 } else {
2818 plen = min_t(int, skb_headlen(from), len);
2819 if (plen) {
2820 page = virt_to_head_page(from->head);
2821 offset = from->data - (unsigned char *)page_address(page);
2822 __skb_fill_page_desc(to, 0, page, offset, plen);
2823 get_page(page);
2824 j = 1;
2825 len -= plen;
2826 }
2827 }
2828
2829 to->truesize += len + plen;
2830 to->len += len + plen;
2831 to->data_len += len + plen;
2832
2833 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2834 skb_tx_error(from);
2835 return -ENOMEM;
2836 }
2837 skb_zerocopy_clone(to, from, GFP_ATOMIC);
2838
2839 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2840 if (!len)
2841 break;
2842 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2843 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2844 len -= skb_shinfo(to)->frags[j].size;
2845 skb_frag_ref(to, j);
2846 j++;
2847 }
2848 skb_shinfo(to)->nr_frags = j;
2849
2850 return 0;
2851 }
2852 EXPORT_SYMBOL_GPL(skb_zerocopy);
2853
2854 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2855 {
2856 __wsum csum;
2857 long csstart;
2858
2859 if (skb->ip_summed == CHECKSUM_PARTIAL)
2860 csstart = skb_checksum_start_offset(skb);
2861 else
2862 csstart = skb_headlen(skb);
2863
2864 BUG_ON(csstart > skb_headlen(skb));
2865
2866 skb_copy_from_linear_data(skb, to, csstart);
2867
2868 csum = 0;
2869 if (csstart != skb->len)
2870 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2871 skb->len - csstart, 0);
2872
2873 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2874 long csstuff = csstart + skb->csum_offset;
2875
2876 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2877 }
2878 }
2879 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2880
2881 /**
2882 * skb_dequeue - remove from the head of the queue
2883 * @list: list to dequeue from
2884 *
2885 * Remove the head of the list. The list lock is taken so the function
2886 * may be used safely with other locking list functions. The head item is
2887 * returned or %NULL if the list is empty.
2888 */
2889
2890 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2891 {
2892 unsigned long flags;
2893 struct sk_buff *result;
2894
2895 spin_lock_irqsave(&list->lock, flags);
2896 result = __skb_dequeue(list);
2897 spin_unlock_irqrestore(&list->lock, flags);
2898 return result;
2899 }
2900 EXPORT_SYMBOL(skb_dequeue);
2901
2902 /**
2903 * skb_dequeue_tail - remove from the tail of the queue
2904 * @list: list to dequeue from
2905 *
2906 * Remove the tail of the list. The list lock is taken so the function
2907 * may be used safely with other locking list functions. The tail item is
2908 * returned or %NULL if the list is empty.
2909 */
2910 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2911 {
2912 unsigned long flags;
2913 struct sk_buff *result;
2914
2915 spin_lock_irqsave(&list->lock, flags);
2916 result = __skb_dequeue_tail(list);
2917 spin_unlock_irqrestore(&list->lock, flags);
2918 return result;
2919 }
2920 EXPORT_SYMBOL(skb_dequeue_tail);
2921
2922 /**
2923 * skb_queue_purge - empty a list
2924 * @list: list to empty
2925 *
2926 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2927 * the list and one reference dropped. This function takes the list
2928 * lock and is atomic with respect to other list locking functions.
2929 */
2930 void skb_queue_purge(struct sk_buff_head *list)
2931 {
2932 struct sk_buff *skb;
2933 while ((skb = skb_dequeue(list)) != NULL)
2934 kfree_skb(skb);
2935 }
2936 EXPORT_SYMBOL(skb_queue_purge);
2937
2938 /**
2939 * skb_rbtree_purge - empty a skb rbtree
2940 * @root: root of the rbtree to empty
2941 * Return value: the sum of truesizes of all purged skbs.
2942 *
2943 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2944 * the list and one reference dropped. This function does not take
2945 * any lock. Synchronization should be handled by the caller (e.g., TCP
2946 * out-of-order queue is protected by the socket lock).
2947 */
2948 unsigned int skb_rbtree_purge(struct rb_root *root)
2949 {
2950 struct rb_node *p = rb_first(root);
2951 unsigned int sum = 0;
2952
2953 while (p) {
2954 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2955
2956 p = rb_next(p);
2957 rb_erase(&skb->rbnode, root);
2958 sum += skb->truesize;
2959 kfree_skb(skb);
2960 }
2961 return sum;
2962 }
2963
2964 /**
2965 * skb_queue_head - queue a buffer at the list head
2966 * @list: list to use
2967 * @newsk: buffer to queue
2968 *
2969 * Queue a buffer at the start of the list. This function takes the
2970 * list lock and can be used safely with other locking &sk_buff functions
2971 * safely.
2972 *
2973 * A buffer cannot be placed on two lists at the same time.
2974 */
2975 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2976 {
2977 unsigned long flags;
2978
2979 spin_lock_irqsave(&list->lock, flags);
2980 __skb_queue_head(list, newsk);
2981 spin_unlock_irqrestore(&list->lock, flags);
2982 }
2983 EXPORT_SYMBOL(skb_queue_head);
2984
2985 /**
2986 * skb_queue_tail - queue a buffer at the list tail
2987 * @list: list to use
2988 * @newsk: buffer to queue
2989 *
2990 * Queue a buffer at the tail of the list. This function takes the
2991 * list lock and can be used safely with other locking &sk_buff functions
2992 * safely.
2993 *
2994 * A buffer cannot be placed on two lists at the same time.
2995 */
2996 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2997 {
2998 unsigned long flags;
2999
3000 spin_lock_irqsave(&list->lock, flags);
3001 __skb_queue_tail(list, newsk);
3002 spin_unlock_irqrestore(&list->lock, flags);
3003 }
3004 EXPORT_SYMBOL(skb_queue_tail);
3005
3006 /**
3007 * skb_unlink - remove a buffer from a list
3008 * @skb: buffer to remove
3009 * @list: list to use
3010 *
3011 * Remove a packet from a list. The list locks are taken and this
3012 * function is atomic with respect to other list locked calls
3013 *
3014 * You must know what list the SKB is on.
3015 */
3016 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3017 {
3018 unsigned long flags;
3019
3020 spin_lock_irqsave(&list->lock, flags);
3021 __skb_unlink(skb, list);
3022 spin_unlock_irqrestore(&list->lock, flags);
3023 }
3024 EXPORT_SYMBOL(skb_unlink);
3025
3026 /**
3027 * skb_append - append a buffer
3028 * @old: buffer to insert after
3029 * @newsk: buffer to insert
3030 * @list: list to use
3031 *
3032 * Place a packet after a given packet in a list. The list locks are taken
3033 * and this function is atomic with respect to other list locked calls.
3034 * A buffer cannot be placed on two lists at the same time.
3035 */
3036 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3037 {
3038 unsigned long flags;
3039
3040 spin_lock_irqsave(&list->lock, flags);
3041 __skb_queue_after(list, old, newsk);
3042 spin_unlock_irqrestore(&list->lock, flags);
3043 }
3044 EXPORT_SYMBOL(skb_append);
3045
3046 static inline void skb_split_inside_header(struct sk_buff *skb,
3047 struct sk_buff* skb1,
3048 const u32 len, const int pos)
3049 {
3050 int i;
3051
3052 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3053 pos - len);
3054 /* And move data appendix as is. */
3055 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3056 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3057
3058 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3059 skb_shinfo(skb)->nr_frags = 0;
3060 skb1->data_len = skb->data_len;
3061 skb1->len += skb1->data_len;
3062 skb->data_len = 0;
3063 skb->len = len;
3064 skb_set_tail_pointer(skb, len);
3065 }
3066
3067 static inline void skb_split_no_header(struct sk_buff *skb,
3068 struct sk_buff* skb1,
3069 const u32 len, int pos)
3070 {
3071 int i, k = 0;
3072 const int nfrags = skb_shinfo(skb)->nr_frags;
3073
3074 skb_shinfo(skb)->nr_frags = 0;
3075 skb1->len = skb1->data_len = skb->len - len;
3076 skb->len = len;
3077 skb->data_len = len - pos;
3078
3079 for (i = 0; i < nfrags; i++) {
3080 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3081
3082 if (pos + size > len) {
3083 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3084
3085 if (pos < len) {
3086 /* Split frag.
3087 * We have two variants in this case:
3088 * 1. Move all the frag to the second
3089 * part, if it is possible. F.e.
3090 * this approach is mandatory for TUX,
3091 * where splitting is expensive.
3092 * 2. Split is accurately. We make this.
3093 */
3094 skb_frag_ref(skb, i);
3095 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3096 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3097 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3098 skb_shinfo(skb)->nr_frags++;
3099 }
3100 k++;
3101 } else
3102 skb_shinfo(skb)->nr_frags++;
3103 pos += size;
3104 }
3105 skb_shinfo(skb1)->nr_frags = k;
3106 }
3107
3108 /**
3109 * skb_split - Split fragmented skb to two parts at length len.
3110 * @skb: the buffer to split
3111 * @skb1: the buffer to receive the second part
3112 * @len: new length for skb
3113 */
3114 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3115 {
3116 int pos = skb_headlen(skb);
3117
3118 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3119 SKBTX_SHARED_FRAG;
3120 skb_zerocopy_clone(skb1, skb, 0);
3121 if (len < pos) /* Split line is inside header. */
3122 skb_split_inside_header(skb, skb1, len, pos);
3123 else /* Second chunk has no header, nothing to copy. */
3124 skb_split_no_header(skb, skb1, len, pos);
3125 }
3126 EXPORT_SYMBOL(skb_split);
3127
3128 /* Shifting from/to a cloned skb is a no-go.
3129 *
3130 * Caller cannot keep skb_shinfo related pointers past calling here!
3131 */
3132 static int skb_prepare_for_shift(struct sk_buff *skb)
3133 {
3134 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3135 }
3136
3137 /**
3138 * skb_shift - Shifts paged data partially from skb to another
3139 * @tgt: buffer into which tail data gets added
3140 * @skb: buffer from which the paged data comes from
3141 * @shiftlen: shift up to this many bytes
3142 *
3143 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3144 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3145 * It's up to caller to free skb if everything was shifted.
3146 *
3147 * If @tgt runs out of frags, the whole operation is aborted.
3148 *
3149 * Skb cannot include anything else but paged data while tgt is allowed
3150 * to have non-paged data as well.
3151 *
3152 * TODO: full sized shift could be optimized but that would need
3153 * specialized skb free'er to handle frags without up-to-date nr_frags.
3154 */
3155 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3156 {
3157 int from, to, merge, todo;
3158 struct skb_frag_struct *fragfrom, *fragto;
3159
3160 BUG_ON(shiftlen > skb->len);
3161
3162 if (skb_headlen(skb))
3163 return 0;
3164 if (skb_zcopy(tgt) || skb_zcopy(skb))
3165 return 0;
3166
3167 todo = shiftlen;
3168 from = 0;
3169 to = skb_shinfo(tgt)->nr_frags;
3170 fragfrom = &skb_shinfo(skb)->frags[from];
3171
3172 /* Actual merge is delayed until the point when we know we can
3173 * commit all, so that we don't have to undo partial changes
3174 */
3175 if (!to ||
3176 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3177 fragfrom->page_offset)) {
3178 merge = -1;
3179 } else {
3180 merge = to - 1;
3181
3182 todo -= skb_frag_size(fragfrom);
3183 if (todo < 0) {
3184 if (skb_prepare_for_shift(skb) ||
3185 skb_prepare_for_shift(tgt))
3186 return 0;
3187
3188 /* All previous frag pointers might be stale! */
3189 fragfrom = &skb_shinfo(skb)->frags[from];
3190 fragto = &skb_shinfo(tgt)->frags[merge];
3191
3192 skb_frag_size_add(fragto, shiftlen);
3193 skb_frag_size_sub(fragfrom, shiftlen);
3194 fragfrom->page_offset += shiftlen;
3195
3196 goto onlymerged;
3197 }
3198
3199 from++;
3200 }
3201
3202 /* Skip full, not-fitting skb to avoid expensive operations */
3203 if ((shiftlen == skb->len) &&
3204 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3205 return 0;
3206
3207 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3208 return 0;
3209
3210 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3211 if (to == MAX_SKB_FRAGS)
3212 return 0;
3213
3214 fragfrom = &skb_shinfo(skb)->frags[from];
3215 fragto = &skb_shinfo(tgt)->frags[to];
3216
3217 if (todo >= skb_frag_size(fragfrom)) {
3218 *fragto = *fragfrom;
3219 todo -= skb_frag_size(fragfrom);
3220 from++;
3221 to++;
3222
3223 } else {
3224 __skb_frag_ref(fragfrom);
3225 fragto->page = fragfrom->page;
3226 fragto->page_offset = fragfrom->page_offset;
3227 skb_frag_size_set(fragto, todo);
3228
3229 fragfrom->page_offset += todo;
3230 skb_frag_size_sub(fragfrom, todo);
3231 todo = 0;
3232
3233 to++;
3234 break;
3235 }
3236 }
3237
3238 /* Ready to "commit" this state change to tgt */
3239 skb_shinfo(tgt)->nr_frags = to;
3240
3241 if (merge >= 0) {
3242 fragfrom = &skb_shinfo(skb)->frags[0];
3243 fragto = &skb_shinfo(tgt)->frags[merge];
3244
3245 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3246 __skb_frag_unref(fragfrom);
3247 }
3248
3249 /* Reposition in the original skb */
3250 to = 0;
3251 while (from < skb_shinfo(skb)->nr_frags)
3252 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3253 skb_shinfo(skb)->nr_frags = to;
3254
3255 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3256
3257 onlymerged:
3258 /* Most likely the tgt won't ever need its checksum anymore, skb on
3259 * the other hand might need it if it needs to be resent
3260 */
3261 tgt->ip_summed = CHECKSUM_PARTIAL;
3262 skb->ip_summed = CHECKSUM_PARTIAL;
3263
3264 /* Yak, is it really working this way? Some helper please? */
3265 skb->len -= shiftlen;
3266 skb->data_len -= shiftlen;
3267 skb->truesize -= shiftlen;
3268 tgt->len += shiftlen;
3269 tgt->data_len += shiftlen;
3270 tgt->truesize += shiftlen;
3271
3272 return shiftlen;
3273 }
3274
3275 /**
3276 * skb_prepare_seq_read - Prepare a sequential read of skb data
3277 * @skb: the buffer to read
3278 * @from: lower offset of data to be read
3279 * @to: upper offset of data to be read
3280 * @st: state variable
3281 *
3282 * Initializes the specified state variable. Must be called before
3283 * invoking skb_seq_read() for the first time.
3284 */
3285 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3286 unsigned int to, struct skb_seq_state *st)
3287 {
3288 st->lower_offset = from;
3289 st->upper_offset = to;
3290 st->root_skb = st->cur_skb = skb;
3291 st->frag_idx = st->stepped_offset = 0;
3292 st->frag_data = NULL;
3293 }
3294 EXPORT_SYMBOL(skb_prepare_seq_read);
3295
3296 /**
3297 * skb_seq_read - Sequentially read skb data
3298 * @consumed: number of bytes consumed by the caller so far
3299 * @data: destination pointer for data to be returned
3300 * @st: state variable
3301 *
3302 * Reads a block of skb data at @consumed relative to the
3303 * lower offset specified to skb_prepare_seq_read(). Assigns
3304 * the head of the data block to @data and returns the length
3305 * of the block or 0 if the end of the skb data or the upper
3306 * offset has been reached.
3307 *
3308 * The caller is not required to consume all of the data
3309 * returned, i.e. @consumed is typically set to the number
3310 * of bytes already consumed and the next call to
3311 * skb_seq_read() will return the remaining part of the block.
3312 *
3313 * Note 1: The size of each block of data returned can be arbitrary,
3314 * this limitation is the cost for zerocopy sequential
3315 * reads of potentially non linear data.
3316 *
3317 * Note 2: Fragment lists within fragments are not implemented
3318 * at the moment, state->root_skb could be replaced with
3319 * a stack for this purpose.
3320 */
3321 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3322 struct skb_seq_state *st)
3323 {
3324 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3325 skb_frag_t *frag;
3326
3327 if (unlikely(abs_offset >= st->upper_offset)) {
3328 if (st->frag_data) {
3329 kunmap_atomic(st->frag_data);
3330 st->frag_data = NULL;
3331 }
3332 return 0;
3333 }
3334
3335 next_skb:
3336 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3337
3338 if (abs_offset < block_limit && !st->frag_data) {
3339 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3340 return block_limit - abs_offset;
3341 }
3342
3343 if (st->frag_idx == 0 && !st->frag_data)
3344 st->stepped_offset += skb_headlen(st->cur_skb);
3345
3346 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3347 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3348 block_limit = skb_frag_size(frag) + st->stepped_offset;
3349
3350 if (abs_offset < block_limit) {
3351 if (!st->frag_data)
3352 st->frag_data = kmap_atomic(skb_frag_page(frag));
3353
3354 *data = (u8 *) st->frag_data + frag->page_offset +
3355 (abs_offset - st->stepped_offset);
3356
3357 return block_limit - abs_offset;
3358 }
3359
3360 if (st->frag_data) {
3361 kunmap_atomic(st->frag_data);
3362 st->frag_data = NULL;
3363 }
3364
3365 st->frag_idx++;
3366 st->stepped_offset += skb_frag_size(frag);
3367 }
3368
3369 if (st->frag_data) {
3370 kunmap_atomic(st->frag_data);
3371 st->frag_data = NULL;
3372 }
3373
3374 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3375 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3376 st->frag_idx = 0;
3377 goto next_skb;
3378 } else if (st->cur_skb->next) {
3379 st->cur_skb = st->cur_skb->next;
3380 st->frag_idx = 0;
3381 goto next_skb;
3382 }
3383
3384 return 0;
3385 }
3386 EXPORT_SYMBOL(skb_seq_read);
3387
3388 /**
3389 * skb_abort_seq_read - Abort a sequential read of skb data
3390 * @st: state variable
3391 *
3392 * Must be called if skb_seq_read() was not called until it
3393 * returned 0.
3394 */
3395 void skb_abort_seq_read(struct skb_seq_state *st)
3396 {
3397 if (st->frag_data)
3398 kunmap_atomic(st->frag_data);
3399 }
3400 EXPORT_SYMBOL(skb_abort_seq_read);
3401
3402 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3403
3404 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3405 struct ts_config *conf,
3406 struct ts_state *state)
3407 {
3408 return skb_seq_read(offset, text, TS_SKB_CB(state));
3409 }
3410
3411 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3412 {
3413 skb_abort_seq_read(TS_SKB_CB(state));
3414 }
3415
3416 /**
3417 * skb_find_text - Find a text pattern in skb data
3418 * @skb: the buffer to look in
3419 * @from: search offset
3420 * @to: search limit
3421 * @config: textsearch configuration
3422 *
3423 * Finds a pattern in the skb data according to the specified
3424 * textsearch configuration. Use textsearch_next() to retrieve
3425 * subsequent occurrences of the pattern. Returns the offset
3426 * to the first occurrence or UINT_MAX if no match was found.
3427 */
3428 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3429 unsigned int to, struct ts_config *config)
3430 {
3431 struct ts_state state;
3432 unsigned int ret;
3433
3434 config->get_next_block = skb_ts_get_next_block;
3435 config->finish = skb_ts_finish;
3436
3437 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3438
3439 ret = textsearch_find(config, &state);
3440 return (ret <= to - from ? ret : UINT_MAX);
3441 }
3442 EXPORT_SYMBOL(skb_find_text);
3443
3444 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3445 int offset, size_t size)
3446 {
3447 int i = skb_shinfo(skb)->nr_frags;
3448
3449 if (skb_can_coalesce(skb, i, page, offset)) {
3450 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3451 } else if (i < MAX_SKB_FRAGS) {
3452 get_page(page);
3453 skb_fill_page_desc(skb, i, page, offset, size);
3454 } else {
3455 return -EMSGSIZE;
3456 }
3457
3458 return 0;
3459 }
3460 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3461
3462 /**
3463 * skb_pull_rcsum - pull skb and update receive checksum
3464 * @skb: buffer to update
3465 * @len: length of data pulled
3466 *
3467 * This function performs an skb_pull on the packet and updates
3468 * the CHECKSUM_COMPLETE checksum. It should be used on
3469 * receive path processing instead of skb_pull unless you know
3470 * that the checksum difference is zero (e.g., a valid IP header)
3471 * or you are setting ip_summed to CHECKSUM_NONE.
3472 */
3473 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3474 {
3475 unsigned char *data = skb->data;
3476
3477 BUG_ON(len > skb->len);
3478 __skb_pull(skb, len);
3479 skb_postpull_rcsum(skb, data, len);
3480 return skb->data;
3481 }
3482 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3483
3484 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3485 {
3486 skb_frag_t head_frag;
3487 struct page *page;
3488
3489 page = virt_to_head_page(frag_skb->head);
3490 head_frag.page.p = page;
3491 head_frag.page_offset = frag_skb->data -
3492 (unsigned char *)page_address(page);
3493 head_frag.size = skb_headlen(frag_skb);
3494 return head_frag;
3495 }
3496
3497 /**
3498 * skb_segment - Perform protocol segmentation on skb.
3499 * @head_skb: buffer to segment
3500 * @features: features for the output path (see dev->features)
3501 *
3502 * This function performs segmentation on the given skb. It returns
3503 * a pointer to the first in a list of new skbs for the segments.
3504 * In case of error it returns ERR_PTR(err).
3505 */
3506 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3507 netdev_features_t features)
3508 {
3509 struct sk_buff *segs = NULL;
3510 struct sk_buff *tail = NULL;
3511 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3512 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3513 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3514 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3515 struct sk_buff *frag_skb = head_skb;
3516 unsigned int offset = doffset;
3517 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3518 unsigned int partial_segs = 0;
3519 unsigned int headroom;
3520 unsigned int len = head_skb->len;
3521 __be16 proto;
3522 bool csum, sg;
3523 int nfrags = skb_shinfo(head_skb)->nr_frags;
3524 int err = -ENOMEM;
3525 int i = 0;
3526 int pos;
3527 int dummy;
3528
3529 __skb_push(head_skb, doffset);
3530 proto = skb_network_protocol(head_skb, &dummy);
3531 if (unlikely(!proto))
3532 return ERR_PTR(-EINVAL);
3533
3534 sg = !!(features & NETIF_F_SG);
3535 csum = !!can_checksum_protocol(features, proto);
3536
3537 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3538 if (!(features & NETIF_F_GSO_PARTIAL)) {
3539 struct sk_buff *iter;
3540 unsigned int frag_len;
3541
3542 if (!list_skb ||
3543 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3544 goto normal;
3545
3546 /* If we get here then all the required
3547 * GSO features except frag_list are supported.
3548 * Try to split the SKB to multiple GSO SKBs
3549 * with no frag_list.
3550 * Currently we can do that only when the buffers don't
3551 * have a linear part and all the buffers except
3552 * the last are of the same length.
3553 */
3554 frag_len = list_skb->len;
3555 skb_walk_frags(head_skb, iter) {
3556 if (frag_len != iter->len && iter->next)
3557 goto normal;
3558 if (skb_headlen(iter) && !iter->head_frag)
3559 goto normal;
3560
3561 len -= iter->len;
3562 }
3563
3564 if (len != frag_len)
3565 goto normal;
3566 }
3567
3568 /* GSO partial only requires that we trim off any excess that
3569 * doesn't fit into an MSS sized block, so take care of that
3570 * now.
3571 */
3572 partial_segs = len / mss;
3573 if (partial_segs > 1)
3574 mss *= partial_segs;
3575 else
3576 partial_segs = 0;
3577 }
3578
3579 normal:
3580 headroom = skb_headroom(head_skb);
3581 pos = skb_headlen(head_skb);
3582
3583 do {
3584 struct sk_buff *nskb;
3585 skb_frag_t *nskb_frag;
3586 int hsize;
3587 int size;
3588
3589 if (unlikely(mss == GSO_BY_FRAGS)) {
3590 len = list_skb->len;
3591 } else {
3592 len = head_skb->len - offset;
3593 if (len > mss)
3594 len = mss;
3595 }
3596
3597 hsize = skb_headlen(head_skb) - offset;
3598 if (hsize < 0)
3599 hsize = 0;
3600 if (hsize > len || !sg)
3601 hsize = len;
3602
3603 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3604 (skb_headlen(list_skb) == len || sg)) {
3605 BUG_ON(skb_headlen(list_skb) > len);
3606
3607 i = 0;
3608 nfrags = skb_shinfo(list_skb)->nr_frags;
3609 frag = skb_shinfo(list_skb)->frags;
3610 frag_skb = list_skb;
3611 pos += skb_headlen(list_skb);
3612
3613 while (pos < offset + len) {
3614 BUG_ON(i >= nfrags);
3615
3616 size = skb_frag_size(frag);
3617 if (pos + size > offset + len)
3618 break;
3619
3620 i++;
3621 pos += size;
3622 frag++;
3623 }
3624
3625 nskb = skb_clone(list_skb, GFP_ATOMIC);
3626 list_skb = list_skb->next;
3627
3628 if (unlikely(!nskb))
3629 goto err;
3630
3631 if (unlikely(pskb_trim(nskb, len))) {
3632 kfree_skb(nskb);
3633 goto err;
3634 }
3635
3636 hsize = skb_end_offset(nskb);
3637 if (skb_cow_head(nskb, doffset + headroom)) {
3638 kfree_skb(nskb);
3639 goto err;
3640 }
3641
3642 nskb->truesize += skb_end_offset(nskb) - hsize;
3643 skb_release_head_state(nskb);
3644 __skb_push(nskb, doffset);
3645 } else {
3646 nskb = __alloc_skb(hsize + doffset + headroom,
3647 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3648 NUMA_NO_NODE);
3649
3650 if (unlikely(!nskb))
3651 goto err;
3652
3653 skb_reserve(nskb, headroom);
3654 __skb_put(nskb, doffset);
3655 }
3656
3657 if (segs)
3658 tail->next = nskb;
3659 else
3660 segs = nskb;
3661 tail = nskb;
3662
3663 __copy_skb_header(nskb, head_skb);
3664
3665 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3666 skb_reset_mac_len(nskb);
3667
3668 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3669 nskb->data - tnl_hlen,
3670 doffset + tnl_hlen);
3671
3672 if (nskb->len == len + doffset)
3673 goto perform_csum_check;
3674
3675 if (!sg) {
3676 if (!nskb->remcsum_offload)
3677 nskb->ip_summed = CHECKSUM_NONE;
3678 SKB_GSO_CB(nskb)->csum =
3679 skb_copy_and_csum_bits(head_skb, offset,
3680 skb_put(nskb, len),
3681 len, 0);
3682 SKB_GSO_CB(nskb)->csum_start =
3683 skb_headroom(nskb) + doffset;
3684 continue;
3685 }
3686
3687 nskb_frag = skb_shinfo(nskb)->frags;
3688
3689 skb_copy_from_linear_data_offset(head_skb, offset,
3690 skb_put(nskb, hsize), hsize);
3691
3692 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3693 SKBTX_SHARED_FRAG;
3694
3695 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3696 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3697 goto err;
3698
3699 while (pos < offset + len) {
3700 if (i >= nfrags) {
3701 i = 0;
3702 nfrags = skb_shinfo(list_skb)->nr_frags;
3703 frag = skb_shinfo(list_skb)->frags;
3704 frag_skb = list_skb;
3705 if (!skb_headlen(list_skb)) {
3706 BUG_ON(!nfrags);
3707 } else {
3708 BUG_ON(!list_skb->head_frag);
3709
3710 /* to make room for head_frag. */
3711 i--;
3712 frag--;
3713 }
3714 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3715 skb_zerocopy_clone(nskb, frag_skb,
3716 GFP_ATOMIC))
3717 goto err;
3718
3719 list_skb = list_skb->next;
3720 }
3721
3722 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3723 MAX_SKB_FRAGS)) {
3724 net_warn_ratelimited(
3725 "skb_segment: too many frags: %u %u\n",
3726 pos, mss);
3727 err = -EINVAL;
3728 goto err;
3729 }
3730
3731 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3732 __skb_frag_ref(nskb_frag);
3733 size = skb_frag_size(nskb_frag);
3734
3735 if (pos < offset) {
3736 nskb_frag->page_offset += offset - pos;
3737 skb_frag_size_sub(nskb_frag, offset - pos);
3738 }
3739
3740 skb_shinfo(nskb)->nr_frags++;
3741
3742 if (pos + size <= offset + len) {
3743 i++;
3744 frag++;
3745 pos += size;
3746 } else {
3747 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3748 goto skip_fraglist;
3749 }
3750
3751 nskb_frag++;
3752 }
3753
3754 skip_fraglist:
3755 nskb->data_len = len - hsize;
3756 nskb->len += nskb->data_len;
3757 nskb->truesize += nskb->data_len;
3758
3759 perform_csum_check:
3760 if (!csum) {
3761 if (skb_has_shared_frag(nskb) &&
3762 __skb_linearize(nskb))
3763 goto err;
3764
3765 if (!nskb->remcsum_offload)
3766 nskb->ip_summed = CHECKSUM_NONE;
3767 SKB_GSO_CB(nskb)->csum =
3768 skb_checksum(nskb, doffset,
3769 nskb->len - doffset, 0);
3770 SKB_GSO_CB(nskb)->csum_start =
3771 skb_headroom(nskb) + doffset;
3772 }
3773 } while ((offset += len) < head_skb->len);
3774
3775 /* Some callers want to get the end of the list.
3776 * Put it in segs->prev to avoid walking the list.
3777 * (see validate_xmit_skb_list() for example)
3778 */
3779 segs->prev = tail;
3780
3781 if (partial_segs) {
3782 struct sk_buff *iter;
3783 int type = skb_shinfo(head_skb)->gso_type;
3784 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3785
3786 /* Update type to add partial and then remove dodgy if set */
3787 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3788 type &= ~SKB_GSO_DODGY;
3789
3790 /* Update GSO info and prepare to start updating headers on
3791 * our way back down the stack of protocols.
3792 */
3793 for (iter = segs; iter; iter = iter->next) {
3794 skb_shinfo(iter)->gso_size = gso_size;
3795 skb_shinfo(iter)->gso_segs = partial_segs;
3796 skb_shinfo(iter)->gso_type = type;
3797 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3798 }
3799
3800 if (tail->len - doffset <= gso_size)
3801 skb_shinfo(tail)->gso_size = 0;
3802 else if (tail != segs)
3803 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3804 }
3805
3806 /* Following permits correct backpressure, for protocols
3807 * using skb_set_owner_w().
3808 * Idea is to tranfert ownership from head_skb to last segment.
3809 */
3810 if (head_skb->destructor == sock_wfree) {
3811 swap(tail->truesize, head_skb->truesize);
3812 swap(tail->destructor, head_skb->destructor);
3813 swap(tail->sk, head_skb->sk);
3814 }
3815 return segs;
3816
3817 err:
3818 kfree_skb_list(segs);
3819 return ERR_PTR(err);
3820 }
3821 EXPORT_SYMBOL_GPL(skb_segment);
3822
3823 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
3824 {
3825 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3826 unsigned int offset = skb_gro_offset(skb);
3827 unsigned int headlen = skb_headlen(skb);
3828 unsigned int len = skb_gro_len(skb);
3829 unsigned int delta_truesize;
3830 struct sk_buff *lp;
3831
3832 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
3833 return -E2BIG;
3834
3835 lp = NAPI_GRO_CB(p)->last;
3836 pinfo = skb_shinfo(lp);
3837
3838 if (headlen <= offset) {
3839 skb_frag_t *frag;
3840 skb_frag_t *frag2;
3841 int i = skbinfo->nr_frags;
3842 int nr_frags = pinfo->nr_frags + i;
3843
3844 if (nr_frags > MAX_SKB_FRAGS)
3845 goto merge;
3846
3847 offset -= headlen;
3848 pinfo->nr_frags = nr_frags;
3849 skbinfo->nr_frags = 0;
3850
3851 frag = pinfo->frags + nr_frags;
3852 frag2 = skbinfo->frags + i;
3853 do {
3854 *--frag = *--frag2;
3855 } while (--i);
3856
3857 frag->page_offset += offset;
3858 skb_frag_size_sub(frag, offset);
3859
3860 /* all fragments truesize : remove (head size + sk_buff) */
3861 delta_truesize = skb->truesize -
3862 SKB_TRUESIZE(skb_end_offset(skb));
3863
3864 skb->truesize -= skb->data_len;
3865 skb->len -= skb->data_len;
3866 skb->data_len = 0;
3867
3868 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3869 goto done;
3870 } else if (skb->head_frag) {
3871 int nr_frags = pinfo->nr_frags;
3872 skb_frag_t *frag = pinfo->frags + nr_frags;
3873 struct page *page = virt_to_head_page(skb->head);
3874 unsigned int first_size = headlen - offset;
3875 unsigned int first_offset;
3876
3877 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3878 goto merge;
3879
3880 first_offset = skb->data -
3881 (unsigned char *)page_address(page) +
3882 offset;
3883
3884 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3885
3886 frag->page.p = page;
3887 frag->page_offset = first_offset;
3888 skb_frag_size_set(frag, first_size);
3889
3890 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3891 /* We dont need to clear skbinfo->nr_frags here */
3892
3893 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3894 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3895 goto done;
3896 }
3897
3898 merge:
3899 delta_truesize = skb->truesize;
3900 if (offset > headlen) {
3901 unsigned int eat = offset - headlen;
3902
3903 skbinfo->frags[0].page_offset += eat;
3904 skb_frag_size_sub(&skbinfo->frags[0], eat);
3905 skb->data_len -= eat;
3906 skb->len -= eat;
3907 offset = headlen;
3908 }
3909
3910 __skb_pull(skb, offset);
3911
3912 if (NAPI_GRO_CB(p)->last == p)
3913 skb_shinfo(p)->frag_list = skb;
3914 else
3915 NAPI_GRO_CB(p)->last->next = skb;
3916 NAPI_GRO_CB(p)->last = skb;
3917 __skb_header_release(skb);
3918 lp = p;
3919
3920 done:
3921 NAPI_GRO_CB(p)->count++;
3922 p->data_len += len;
3923 p->truesize += delta_truesize;
3924 p->len += len;
3925 if (lp != p) {
3926 lp->data_len += len;
3927 lp->truesize += delta_truesize;
3928 lp->len += len;
3929 }
3930 NAPI_GRO_CB(skb)->same_flow = 1;
3931 return 0;
3932 }
3933 EXPORT_SYMBOL_GPL(skb_gro_receive);
3934
3935 #ifdef CONFIG_SKB_EXTENSIONS
3936 #define SKB_EXT_ALIGN_VALUE 8
3937 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
3938
3939 static const u8 skb_ext_type_len[] = {
3940 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3941 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
3942 #endif
3943 #ifdef CONFIG_XFRM
3944 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
3945 #endif
3946 };
3947
3948 static __always_inline unsigned int skb_ext_total_length(void)
3949 {
3950 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
3951 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3952 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
3953 #endif
3954 #ifdef CONFIG_XFRM
3955 skb_ext_type_len[SKB_EXT_SEC_PATH] +
3956 #endif
3957 0;
3958 }
3959
3960 static void skb_extensions_init(void)
3961 {
3962 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
3963 BUILD_BUG_ON(skb_ext_total_length() > 255);
3964
3965 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
3966 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
3967 0,
3968 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3969 NULL);
3970 }
3971 #else
3972 static void skb_extensions_init(void) {}
3973 #endif
3974
3975 void __init skb_init(void)
3976 {
3977 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
3978 sizeof(struct sk_buff),
3979 0,
3980 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3981 offsetof(struct sk_buff, cb),
3982 sizeof_field(struct sk_buff, cb),
3983 NULL);
3984 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3985 sizeof(struct sk_buff_fclones),
3986 0,
3987 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3988 NULL);
3989 skb_extensions_init();
3990 }
3991
3992 static int
3993 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3994 unsigned int recursion_level)
3995 {
3996 int start = skb_headlen(skb);
3997 int i, copy = start - offset;
3998 struct sk_buff *frag_iter;
3999 int elt = 0;
4000
4001 if (unlikely(recursion_level >= 24))
4002 return -EMSGSIZE;
4003
4004 if (copy > 0) {
4005 if (copy > len)
4006 copy = len;
4007 sg_set_buf(sg, skb->data + offset, copy);
4008 elt++;
4009 if ((len -= copy) == 0)
4010 return elt;
4011 offset += copy;
4012 }
4013
4014 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4015 int end;
4016
4017 WARN_ON(start > offset + len);
4018
4019 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4020 if ((copy = end - offset) > 0) {
4021 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4022 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4023 return -EMSGSIZE;
4024
4025 if (copy > len)
4026 copy = len;
4027 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4028 frag->page_offset+offset-start);
4029 elt++;
4030 if (!(len -= copy))
4031 return elt;
4032 offset += copy;
4033 }
4034 start = end;
4035 }
4036
4037 skb_walk_frags(skb, frag_iter) {
4038 int end, ret;
4039
4040 WARN_ON(start > offset + len);
4041
4042 end = start + frag_iter->len;
4043 if ((copy = end - offset) > 0) {
4044 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4045 return -EMSGSIZE;
4046
4047 if (copy > len)
4048 copy = len;
4049 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4050 copy, recursion_level + 1);
4051 if (unlikely(ret < 0))
4052 return ret;
4053 elt += ret;
4054 if ((len -= copy) == 0)
4055 return elt;
4056 offset += copy;
4057 }
4058 start = end;
4059 }
4060 BUG_ON(len);
4061 return elt;
4062 }
4063
4064 /**
4065 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4066 * @skb: Socket buffer containing the buffers to be mapped
4067 * @sg: The scatter-gather list to map into
4068 * @offset: The offset into the buffer's contents to start mapping
4069 * @len: Length of buffer space to be mapped
4070 *
4071 * Fill the specified scatter-gather list with mappings/pointers into a
4072 * region of the buffer space attached to a socket buffer. Returns either
4073 * the number of scatterlist items used, or -EMSGSIZE if the contents
4074 * could not fit.
4075 */
4076 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4077 {
4078 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4079
4080 if (nsg <= 0)
4081 return nsg;
4082
4083 sg_mark_end(&sg[nsg - 1]);
4084
4085 return nsg;
4086 }
4087 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4088
4089 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4090 * sglist without mark the sg which contain last skb data as the end.
4091 * So the caller can mannipulate sg list as will when padding new data after
4092 * the first call without calling sg_unmark_end to expend sg list.
4093 *
4094 * Scenario to use skb_to_sgvec_nomark:
4095 * 1. sg_init_table
4096 * 2. skb_to_sgvec_nomark(payload1)
4097 * 3. skb_to_sgvec_nomark(payload2)
4098 *
4099 * This is equivalent to:
4100 * 1. sg_init_table
4101 * 2. skb_to_sgvec(payload1)
4102 * 3. sg_unmark_end
4103 * 4. skb_to_sgvec(payload2)
4104 *
4105 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4106 * is more preferable.
4107 */
4108 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4109 int offset, int len)
4110 {
4111 return __skb_to_sgvec(skb, sg, offset, len, 0);
4112 }
4113 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4114
4115
4116
4117 /**
4118 * skb_cow_data - Check that a socket buffer's data buffers are writable
4119 * @skb: The socket buffer to check.
4120 * @tailbits: Amount of trailing space to be added
4121 * @trailer: Returned pointer to the skb where the @tailbits space begins
4122 *
4123 * Make sure that the data buffers attached to a socket buffer are
4124 * writable. If they are not, private copies are made of the data buffers
4125 * and the socket buffer is set to use these instead.
4126 *
4127 * If @tailbits is given, make sure that there is space to write @tailbits
4128 * bytes of data beyond current end of socket buffer. @trailer will be
4129 * set to point to the skb in which this space begins.
4130 *
4131 * The number of scatterlist elements required to completely map the
4132 * COW'd and extended socket buffer will be returned.
4133 */
4134 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4135 {
4136 int copyflag;
4137 int elt;
4138 struct sk_buff *skb1, **skb_p;
4139
4140 /* If skb is cloned or its head is paged, reallocate
4141 * head pulling out all the pages (pages are considered not writable
4142 * at the moment even if they are anonymous).
4143 */
4144 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4145 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4146 return -ENOMEM;
4147
4148 /* Easy case. Most of packets will go this way. */
4149 if (!skb_has_frag_list(skb)) {
4150 /* A little of trouble, not enough of space for trailer.
4151 * This should not happen, when stack is tuned to generate
4152 * good frames. OK, on miss we reallocate and reserve even more
4153 * space, 128 bytes is fair. */
4154
4155 if (skb_tailroom(skb) < tailbits &&
4156 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4157 return -ENOMEM;
4158
4159 /* Voila! */
4160 *trailer = skb;
4161 return 1;
4162 }
4163
4164 /* Misery. We are in troubles, going to mincer fragments... */
4165
4166 elt = 1;
4167 skb_p = &skb_shinfo(skb)->frag_list;
4168 copyflag = 0;
4169
4170 while ((skb1 = *skb_p) != NULL) {
4171 int ntail = 0;
4172
4173 /* The fragment is partially pulled by someone,
4174 * this can happen on input. Copy it and everything
4175 * after it. */
4176
4177 if (skb_shared(skb1))
4178 copyflag = 1;
4179
4180 /* If the skb is the last, worry about trailer. */
4181
4182 if (skb1->next == NULL && tailbits) {
4183 if (skb_shinfo(skb1)->nr_frags ||
4184 skb_has_frag_list(skb1) ||
4185 skb_tailroom(skb1) < tailbits)
4186 ntail = tailbits + 128;
4187 }
4188
4189 if (copyflag ||
4190 skb_cloned(skb1) ||
4191 ntail ||
4192 skb_shinfo(skb1)->nr_frags ||
4193 skb_has_frag_list(skb1)) {
4194 struct sk_buff *skb2;
4195
4196 /* Fuck, we are miserable poor guys... */
4197 if (ntail == 0)
4198 skb2 = skb_copy(skb1, GFP_ATOMIC);
4199 else
4200 skb2 = skb_copy_expand(skb1,
4201 skb_headroom(skb1),
4202 ntail,
4203 GFP_ATOMIC);
4204 if (unlikely(skb2 == NULL))
4205 return -ENOMEM;
4206
4207 if (skb1->sk)
4208 skb_set_owner_w(skb2, skb1->sk);
4209
4210 /* Looking around. Are we still alive?
4211 * OK, link new skb, drop old one */
4212
4213 skb2->next = skb1->next;
4214 *skb_p = skb2;
4215 kfree_skb(skb1);
4216 skb1 = skb2;
4217 }
4218 elt++;
4219 *trailer = skb1;
4220 skb_p = &skb1->next;
4221 }
4222
4223 return elt;
4224 }
4225 EXPORT_SYMBOL_GPL(skb_cow_data);
4226
4227 static void sock_rmem_free(struct sk_buff *skb)
4228 {
4229 struct sock *sk = skb->sk;
4230
4231 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4232 }
4233
4234 static void skb_set_err_queue(struct sk_buff *skb)
4235 {
4236 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4237 * So, it is safe to (mis)use it to mark skbs on the error queue.
4238 */
4239 skb->pkt_type = PACKET_OUTGOING;
4240 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4241 }
4242
4243 /*
4244 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4245 */
4246 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4247 {
4248 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4249 (unsigned int)sk->sk_rcvbuf)
4250 return -ENOMEM;
4251
4252 skb_orphan(skb);
4253 skb->sk = sk;
4254 skb->destructor = sock_rmem_free;
4255 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4256 skb_set_err_queue(skb);
4257
4258 /* before exiting rcu section, make sure dst is refcounted */
4259 skb_dst_force(skb);
4260
4261 skb_queue_tail(&sk->sk_error_queue, skb);
4262 if (!sock_flag(sk, SOCK_DEAD))
4263 sk->sk_error_report(sk);
4264 return 0;
4265 }
4266 EXPORT_SYMBOL(sock_queue_err_skb);
4267
4268 static bool is_icmp_err_skb(const struct sk_buff *skb)
4269 {
4270 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4271 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4272 }
4273
4274 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4275 {
4276 struct sk_buff_head *q = &sk->sk_error_queue;
4277 struct sk_buff *skb, *skb_next = NULL;
4278 bool icmp_next = false;
4279 unsigned long flags;
4280
4281 spin_lock_irqsave(&q->lock, flags);
4282 skb = __skb_dequeue(q);
4283 if (skb && (skb_next = skb_peek(q))) {
4284 icmp_next = is_icmp_err_skb(skb_next);
4285 if (icmp_next)
4286 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4287 }
4288 spin_unlock_irqrestore(&q->lock, flags);
4289
4290 if (is_icmp_err_skb(skb) && !icmp_next)
4291 sk->sk_err = 0;
4292
4293 if (skb_next)
4294 sk->sk_error_report(sk);
4295
4296 return skb;
4297 }
4298 EXPORT_SYMBOL(sock_dequeue_err_skb);
4299
4300 /**
4301 * skb_clone_sk - create clone of skb, and take reference to socket
4302 * @skb: the skb to clone
4303 *
4304 * This function creates a clone of a buffer that holds a reference on
4305 * sk_refcnt. Buffers created via this function are meant to be
4306 * returned using sock_queue_err_skb, or free via kfree_skb.
4307 *
4308 * When passing buffers allocated with this function to sock_queue_err_skb
4309 * it is necessary to wrap the call with sock_hold/sock_put in order to
4310 * prevent the socket from being released prior to being enqueued on
4311 * the sk_error_queue.
4312 */
4313 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4314 {
4315 struct sock *sk = skb->sk;
4316 struct sk_buff *clone;
4317
4318 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4319 return NULL;
4320
4321 clone = skb_clone(skb, GFP_ATOMIC);
4322 if (!clone) {
4323 sock_put(sk);
4324 return NULL;
4325 }
4326
4327 clone->sk = sk;
4328 clone->destructor = sock_efree;
4329
4330 return clone;
4331 }
4332 EXPORT_SYMBOL(skb_clone_sk);
4333
4334 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4335 struct sock *sk,
4336 int tstype,
4337 bool opt_stats)
4338 {
4339 struct sock_exterr_skb *serr;
4340 int err;
4341
4342 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4343
4344 serr = SKB_EXT_ERR(skb);
4345 memset(serr, 0, sizeof(*serr));
4346 serr->ee.ee_errno = ENOMSG;
4347 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4348 serr->ee.ee_info = tstype;
4349 serr->opt_stats = opt_stats;
4350 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4351 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4352 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4353 if (sk->sk_protocol == IPPROTO_TCP &&
4354 sk->sk_type == SOCK_STREAM)
4355 serr->ee.ee_data -= sk->sk_tskey;
4356 }
4357
4358 err = sock_queue_err_skb(sk, skb);
4359
4360 if (err)
4361 kfree_skb(skb);
4362 }
4363
4364 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4365 {
4366 bool ret;
4367
4368 if (likely(sysctl_tstamp_allow_data || tsonly))
4369 return true;
4370
4371 read_lock_bh(&sk->sk_callback_lock);
4372 ret = sk->sk_socket && sk->sk_socket->file &&
4373 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4374 read_unlock_bh(&sk->sk_callback_lock);
4375 return ret;
4376 }
4377
4378 void skb_complete_tx_timestamp(struct sk_buff *skb,
4379 struct skb_shared_hwtstamps *hwtstamps)
4380 {
4381 struct sock *sk = skb->sk;
4382
4383 if (!skb_may_tx_timestamp(sk, false))
4384 goto err;
4385
4386 /* Take a reference to prevent skb_orphan() from freeing the socket,
4387 * but only if the socket refcount is not zero.
4388 */
4389 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4390 *skb_hwtstamps(skb) = *hwtstamps;
4391 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4392 sock_put(sk);
4393 return;
4394 }
4395
4396 err:
4397 kfree_skb(skb);
4398 }
4399 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4400
4401 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4402 struct skb_shared_hwtstamps *hwtstamps,
4403 struct sock *sk, int tstype)
4404 {
4405 struct sk_buff *skb;
4406 bool tsonly, opt_stats = false;
4407
4408 if (!sk)
4409 return;
4410
4411 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4412 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4413 return;
4414
4415 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4416 if (!skb_may_tx_timestamp(sk, tsonly))
4417 return;
4418
4419 if (tsonly) {
4420 #ifdef CONFIG_INET
4421 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4422 sk->sk_protocol == IPPROTO_TCP &&
4423 sk->sk_type == SOCK_STREAM) {
4424 skb = tcp_get_timestamping_opt_stats(sk);
4425 opt_stats = true;
4426 } else
4427 #endif
4428 skb = alloc_skb(0, GFP_ATOMIC);
4429 } else {
4430 skb = skb_clone(orig_skb, GFP_ATOMIC);
4431 }
4432 if (!skb)
4433 return;
4434
4435 if (tsonly) {
4436 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4437 SKBTX_ANY_TSTAMP;
4438 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4439 }
4440
4441 if (hwtstamps)
4442 *skb_hwtstamps(skb) = *hwtstamps;
4443 else
4444 skb->tstamp = ktime_get_real();
4445
4446 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4447 }
4448 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4449
4450 void skb_tstamp_tx(struct sk_buff *orig_skb,
4451 struct skb_shared_hwtstamps *hwtstamps)
4452 {
4453 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4454 SCM_TSTAMP_SND);
4455 }
4456 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4457
4458 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4459 {
4460 struct sock *sk = skb->sk;
4461 struct sock_exterr_skb *serr;
4462 int err = 1;
4463
4464 skb->wifi_acked_valid = 1;
4465 skb->wifi_acked = acked;
4466
4467 serr = SKB_EXT_ERR(skb);
4468 memset(serr, 0, sizeof(*serr));
4469 serr->ee.ee_errno = ENOMSG;
4470 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4471
4472 /* Take a reference to prevent skb_orphan() from freeing the socket,
4473 * but only if the socket refcount is not zero.
4474 */
4475 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4476 err = sock_queue_err_skb(sk, skb);
4477 sock_put(sk);
4478 }
4479 if (err)
4480 kfree_skb(skb);
4481 }
4482 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4483
4484 /**
4485 * skb_partial_csum_set - set up and verify partial csum values for packet
4486 * @skb: the skb to set
4487 * @start: the number of bytes after skb->data to start checksumming.
4488 * @off: the offset from start to place the checksum.
4489 *
4490 * For untrusted partially-checksummed packets, we need to make sure the values
4491 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4492 *
4493 * This function checks and sets those values and skb->ip_summed: if this
4494 * returns false you should drop the packet.
4495 */
4496 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4497 {
4498 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4499 u32 csum_start = skb_headroom(skb) + (u32)start;
4500
4501 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4502 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4503 start, off, skb_headroom(skb), skb_headlen(skb));
4504 return false;
4505 }
4506 skb->ip_summed = CHECKSUM_PARTIAL;
4507 skb->csum_start = csum_start;
4508 skb->csum_offset = off;
4509 skb_set_transport_header(skb, start);
4510 return true;
4511 }
4512 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4513
4514 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4515 unsigned int max)
4516 {
4517 if (skb_headlen(skb) >= len)
4518 return 0;
4519
4520 /* If we need to pullup then pullup to the max, so we
4521 * won't need to do it again.
4522 */
4523 if (max > skb->len)
4524 max = skb->len;
4525
4526 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4527 return -ENOMEM;
4528
4529 if (skb_headlen(skb) < len)
4530 return -EPROTO;
4531
4532 return 0;
4533 }
4534
4535 #define MAX_TCP_HDR_LEN (15 * 4)
4536
4537 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4538 typeof(IPPROTO_IP) proto,
4539 unsigned int off)
4540 {
4541 switch (proto) {
4542 int err;
4543
4544 case IPPROTO_TCP:
4545 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4546 off + MAX_TCP_HDR_LEN);
4547 if (!err && !skb_partial_csum_set(skb, off,
4548 offsetof(struct tcphdr,
4549 check)))
4550 err = -EPROTO;
4551 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4552
4553 case IPPROTO_UDP:
4554 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4555 off + sizeof(struct udphdr));
4556 if (!err && !skb_partial_csum_set(skb, off,
4557 offsetof(struct udphdr,
4558 check)))
4559 err = -EPROTO;
4560 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4561 }
4562
4563 return ERR_PTR(-EPROTO);
4564 }
4565
4566 /* This value should be large enough to cover a tagged ethernet header plus
4567 * maximally sized IP and TCP or UDP headers.
4568 */
4569 #define MAX_IP_HDR_LEN 128
4570
4571 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4572 {
4573 unsigned int off;
4574 bool fragment;
4575 __sum16 *csum;
4576 int err;
4577
4578 fragment = false;
4579
4580 err = skb_maybe_pull_tail(skb,
4581 sizeof(struct iphdr),
4582 MAX_IP_HDR_LEN);
4583 if (err < 0)
4584 goto out;
4585
4586 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4587 fragment = true;
4588
4589 off = ip_hdrlen(skb);
4590
4591 err = -EPROTO;
4592
4593 if (fragment)
4594 goto out;
4595
4596 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4597 if (IS_ERR(csum))
4598 return PTR_ERR(csum);
4599
4600 if (recalculate)
4601 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4602 ip_hdr(skb)->daddr,
4603 skb->len - off,
4604 ip_hdr(skb)->protocol, 0);
4605 err = 0;
4606
4607 out:
4608 return err;
4609 }
4610
4611 /* This value should be large enough to cover a tagged ethernet header plus
4612 * an IPv6 header, all options, and a maximal TCP or UDP header.
4613 */
4614 #define MAX_IPV6_HDR_LEN 256
4615
4616 #define OPT_HDR(type, skb, off) \
4617 (type *)(skb_network_header(skb) + (off))
4618
4619 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4620 {
4621 int err;
4622 u8 nexthdr;
4623 unsigned int off;
4624 unsigned int len;
4625 bool fragment;
4626 bool done;
4627 __sum16 *csum;
4628
4629 fragment = false;
4630 done = false;
4631
4632 off = sizeof(struct ipv6hdr);
4633
4634 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4635 if (err < 0)
4636 goto out;
4637
4638 nexthdr = ipv6_hdr(skb)->nexthdr;
4639
4640 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4641 while (off <= len && !done) {
4642 switch (nexthdr) {
4643 case IPPROTO_DSTOPTS:
4644 case IPPROTO_HOPOPTS:
4645 case IPPROTO_ROUTING: {
4646 struct ipv6_opt_hdr *hp;
4647
4648 err = skb_maybe_pull_tail(skb,
4649 off +
4650 sizeof(struct ipv6_opt_hdr),
4651 MAX_IPV6_HDR_LEN);
4652 if (err < 0)
4653 goto out;
4654
4655 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4656 nexthdr = hp->nexthdr;
4657 off += ipv6_optlen(hp);
4658 break;
4659 }
4660 case IPPROTO_AH: {
4661 struct ip_auth_hdr *hp;
4662
4663 err = skb_maybe_pull_tail(skb,
4664 off +
4665 sizeof(struct ip_auth_hdr),
4666 MAX_IPV6_HDR_LEN);
4667 if (err < 0)
4668 goto out;
4669
4670 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4671 nexthdr = hp->nexthdr;
4672 off += ipv6_authlen(hp);
4673 break;
4674 }
4675 case IPPROTO_FRAGMENT: {
4676 struct frag_hdr *hp;
4677
4678 err = skb_maybe_pull_tail(skb,
4679 off +
4680 sizeof(struct frag_hdr),
4681 MAX_IPV6_HDR_LEN);
4682 if (err < 0)
4683 goto out;
4684
4685 hp = OPT_HDR(struct frag_hdr, skb, off);
4686
4687 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4688 fragment = true;
4689
4690 nexthdr = hp->nexthdr;
4691 off += sizeof(struct frag_hdr);
4692 break;
4693 }
4694 default:
4695 done = true;
4696 break;
4697 }
4698 }
4699
4700 err = -EPROTO;
4701
4702 if (!done || fragment)
4703 goto out;
4704
4705 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4706 if (IS_ERR(csum))
4707 return PTR_ERR(csum);
4708
4709 if (recalculate)
4710 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4711 &ipv6_hdr(skb)->daddr,
4712 skb->len - off, nexthdr, 0);
4713 err = 0;
4714
4715 out:
4716 return err;
4717 }
4718
4719 /**
4720 * skb_checksum_setup - set up partial checksum offset
4721 * @skb: the skb to set up
4722 * @recalculate: if true the pseudo-header checksum will be recalculated
4723 */
4724 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4725 {
4726 int err;
4727
4728 switch (skb->protocol) {
4729 case htons(ETH_P_IP):
4730 err = skb_checksum_setup_ipv4(skb, recalculate);
4731 break;
4732
4733 case htons(ETH_P_IPV6):
4734 err = skb_checksum_setup_ipv6(skb, recalculate);
4735 break;
4736
4737 default:
4738 err = -EPROTO;
4739 break;
4740 }
4741
4742 return err;
4743 }
4744 EXPORT_SYMBOL(skb_checksum_setup);
4745
4746 /**
4747 * skb_checksum_maybe_trim - maybe trims the given skb
4748 * @skb: the skb to check
4749 * @transport_len: the data length beyond the network header
4750 *
4751 * Checks whether the given skb has data beyond the given transport length.
4752 * If so, returns a cloned skb trimmed to this transport length.
4753 * Otherwise returns the provided skb. Returns NULL in error cases
4754 * (e.g. transport_len exceeds skb length or out-of-memory).
4755 *
4756 * Caller needs to set the skb transport header and free any returned skb if it
4757 * differs from the provided skb.
4758 */
4759 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4760 unsigned int transport_len)
4761 {
4762 struct sk_buff *skb_chk;
4763 unsigned int len = skb_transport_offset(skb) + transport_len;
4764 int ret;
4765
4766 if (skb->len < len)
4767 return NULL;
4768 else if (skb->len == len)
4769 return skb;
4770
4771 skb_chk = skb_clone(skb, GFP_ATOMIC);
4772 if (!skb_chk)
4773 return NULL;
4774
4775 ret = pskb_trim_rcsum(skb_chk, len);
4776 if (ret) {
4777 kfree_skb(skb_chk);
4778 return NULL;
4779 }
4780
4781 return skb_chk;
4782 }
4783
4784 /**
4785 * skb_checksum_trimmed - validate checksum of an skb
4786 * @skb: the skb to check
4787 * @transport_len: the data length beyond the network header
4788 * @skb_chkf: checksum function to use
4789 *
4790 * Applies the given checksum function skb_chkf to the provided skb.
4791 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4792 *
4793 * If the skb has data beyond the given transport length, then a
4794 * trimmed & cloned skb is checked and returned.
4795 *
4796 * Caller needs to set the skb transport header and free any returned skb if it
4797 * differs from the provided skb.
4798 */
4799 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4800 unsigned int transport_len,
4801 __sum16(*skb_chkf)(struct sk_buff *skb))
4802 {
4803 struct sk_buff *skb_chk;
4804 unsigned int offset = skb_transport_offset(skb);
4805 __sum16 ret;
4806
4807 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4808 if (!skb_chk)
4809 goto err;
4810
4811 if (!pskb_may_pull(skb_chk, offset))
4812 goto err;
4813
4814 skb_pull_rcsum(skb_chk, offset);
4815 ret = skb_chkf(skb_chk);
4816 skb_push_rcsum(skb_chk, offset);
4817
4818 if (ret)
4819 goto err;
4820
4821 return skb_chk;
4822
4823 err:
4824 if (skb_chk && skb_chk != skb)
4825 kfree_skb(skb_chk);
4826
4827 return NULL;
4828
4829 }
4830 EXPORT_SYMBOL(skb_checksum_trimmed);
4831
4832 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4833 {
4834 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4835 skb->dev->name);
4836 }
4837 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4838
4839 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4840 {
4841 if (head_stolen) {
4842 skb_release_head_state(skb);
4843 kmem_cache_free(skbuff_head_cache, skb);
4844 } else {
4845 __kfree_skb(skb);
4846 }
4847 }
4848 EXPORT_SYMBOL(kfree_skb_partial);
4849
4850 /**
4851 * skb_try_coalesce - try to merge skb to prior one
4852 * @to: prior buffer
4853 * @from: buffer to add
4854 * @fragstolen: pointer to boolean
4855 * @delta_truesize: how much more was allocated than was requested
4856 */
4857 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4858 bool *fragstolen, int *delta_truesize)
4859 {
4860 struct skb_shared_info *to_shinfo, *from_shinfo;
4861 int i, delta, len = from->len;
4862
4863 *fragstolen = false;
4864
4865 if (skb_cloned(to))
4866 return false;
4867
4868 if (len <= skb_tailroom(to)) {
4869 if (len)
4870 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4871 *delta_truesize = 0;
4872 return true;
4873 }
4874
4875 to_shinfo = skb_shinfo(to);
4876 from_shinfo = skb_shinfo(from);
4877 if (to_shinfo->frag_list || from_shinfo->frag_list)
4878 return false;
4879 if (skb_zcopy(to) || skb_zcopy(from))
4880 return false;
4881
4882 if (skb_headlen(from) != 0) {
4883 struct page *page;
4884 unsigned int offset;
4885
4886 if (to_shinfo->nr_frags +
4887 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4888 return false;
4889
4890 if (skb_head_is_locked(from))
4891 return false;
4892
4893 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4894
4895 page = virt_to_head_page(from->head);
4896 offset = from->data - (unsigned char *)page_address(page);
4897
4898 skb_fill_page_desc(to, to_shinfo->nr_frags,
4899 page, offset, skb_headlen(from));
4900 *fragstolen = true;
4901 } else {
4902 if (to_shinfo->nr_frags +
4903 from_shinfo->nr_frags > MAX_SKB_FRAGS)
4904 return false;
4905
4906 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4907 }
4908
4909 WARN_ON_ONCE(delta < len);
4910
4911 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4912 from_shinfo->frags,
4913 from_shinfo->nr_frags * sizeof(skb_frag_t));
4914 to_shinfo->nr_frags += from_shinfo->nr_frags;
4915
4916 if (!skb_cloned(from))
4917 from_shinfo->nr_frags = 0;
4918
4919 /* if the skb is not cloned this does nothing
4920 * since we set nr_frags to 0.
4921 */
4922 for (i = 0; i < from_shinfo->nr_frags; i++)
4923 __skb_frag_ref(&from_shinfo->frags[i]);
4924
4925 to->truesize += delta;
4926 to->len += len;
4927 to->data_len += len;
4928
4929 *delta_truesize = delta;
4930 return true;
4931 }
4932 EXPORT_SYMBOL(skb_try_coalesce);
4933
4934 /**
4935 * skb_scrub_packet - scrub an skb
4936 *
4937 * @skb: buffer to clean
4938 * @xnet: packet is crossing netns
4939 *
4940 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4941 * into/from a tunnel. Some information have to be cleared during these
4942 * operations.
4943 * skb_scrub_packet can also be used to clean a skb before injecting it in
4944 * another namespace (@xnet == true). We have to clear all information in the
4945 * skb that could impact namespace isolation.
4946 */
4947 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4948 {
4949 skb->pkt_type = PACKET_HOST;
4950 skb->skb_iif = 0;
4951 skb->ignore_df = 0;
4952 skb_dst_drop(skb);
4953 secpath_reset(skb);
4954 nf_reset(skb);
4955 nf_reset_trace(skb);
4956
4957 #ifdef CONFIG_NET_SWITCHDEV
4958 skb->offload_fwd_mark = 0;
4959 skb->offload_l3_fwd_mark = 0;
4960 #endif
4961
4962 if (!xnet)
4963 return;
4964
4965 ipvs_reset(skb);
4966 skb->mark = 0;
4967 skb->tstamp = 0;
4968 }
4969 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4970
4971 /**
4972 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4973 *
4974 * @skb: GSO skb
4975 *
4976 * skb_gso_transport_seglen is used to determine the real size of the
4977 * individual segments, including Layer4 headers (TCP/UDP).
4978 *
4979 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4980 */
4981 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4982 {
4983 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4984 unsigned int thlen = 0;
4985
4986 if (skb->encapsulation) {
4987 thlen = skb_inner_transport_header(skb) -
4988 skb_transport_header(skb);
4989
4990 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4991 thlen += inner_tcp_hdrlen(skb);
4992 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4993 thlen = tcp_hdrlen(skb);
4994 } else if (unlikely(skb_is_gso_sctp(skb))) {
4995 thlen = sizeof(struct sctphdr);
4996 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4997 thlen = sizeof(struct udphdr);
4998 }
4999 /* UFO sets gso_size to the size of the fragmentation
5000 * payload, i.e. the size of the L4 (UDP) header is already
5001 * accounted for.
5002 */
5003 return thlen + shinfo->gso_size;
5004 }
5005
5006 /**
5007 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5008 *
5009 * @skb: GSO skb
5010 *
5011 * skb_gso_network_seglen is used to determine the real size of the
5012 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5013 *
5014 * The MAC/L2 header is not accounted for.
5015 */
5016 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5017 {
5018 unsigned int hdr_len = skb_transport_header(skb) -
5019 skb_network_header(skb);
5020
5021 return hdr_len + skb_gso_transport_seglen(skb);
5022 }
5023
5024 /**
5025 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5026 *
5027 * @skb: GSO skb
5028 *
5029 * skb_gso_mac_seglen is used to determine the real size of the
5030 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5031 * headers (TCP/UDP).
5032 */
5033 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5034 {
5035 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5036
5037 return hdr_len + skb_gso_transport_seglen(skb);
5038 }
5039
5040 /**
5041 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5042 *
5043 * There are a couple of instances where we have a GSO skb, and we
5044 * want to determine what size it would be after it is segmented.
5045 *
5046 * We might want to check:
5047 * - L3+L4+payload size (e.g. IP forwarding)
5048 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5049 *
5050 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5051 *
5052 * @skb: GSO skb
5053 *
5054 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5055 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5056 *
5057 * @max_len: The maximum permissible length.
5058 *
5059 * Returns true if the segmented length <= max length.
5060 */
5061 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5062 unsigned int seg_len,
5063 unsigned int max_len) {
5064 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5065 const struct sk_buff *iter;
5066
5067 if (shinfo->gso_size != GSO_BY_FRAGS)
5068 return seg_len <= max_len;
5069
5070 /* Undo this so we can re-use header sizes */
5071 seg_len -= GSO_BY_FRAGS;
5072
5073 skb_walk_frags(skb, iter) {
5074 if (seg_len + skb_headlen(iter) > max_len)
5075 return false;
5076 }
5077
5078 return true;
5079 }
5080
5081 /**
5082 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5083 *
5084 * @skb: GSO skb
5085 * @mtu: MTU to validate against
5086 *
5087 * skb_gso_validate_network_len validates if a given skb will fit a
5088 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5089 * payload.
5090 */
5091 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5092 {
5093 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5094 }
5095 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5096
5097 /**
5098 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5099 *
5100 * @skb: GSO skb
5101 * @len: length to validate against
5102 *
5103 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5104 * length once split, including L2, L3 and L4 headers and the payload.
5105 */
5106 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5107 {
5108 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5109 }
5110 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5111
5112 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5113 {
5114 int mac_len, meta_len;
5115 void *meta;
5116
5117 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5118 kfree_skb(skb);
5119 return NULL;
5120 }
5121
5122 mac_len = skb->data - skb_mac_header(skb);
5123 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5124 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5125 mac_len - VLAN_HLEN - ETH_TLEN);
5126 }
5127
5128 meta_len = skb_metadata_len(skb);
5129 if (meta_len) {
5130 meta = skb_metadata_end(skb) - meta_len;
5131 memmove(meta + VLAN_HLEN, meta, meta_len);
5132 }
5133
5134 skb->mac_header += VLAN_HLEN;
5135 return skb;
5136 }
5137
5138 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5139 {
5140 struct vlan_hdr *vhdr;
5141 u16 vlan_tci;
5142
5143 if (unlikely(skb_vlan_tag_present(skb))) {
5144 /* vlan_tci is already set-up so leave this for another time */
5145 return skb;
5146 }
5147
5148 skb = skb_share_check(skb, GFP_ATOMIC);
5149 if (unlikely(!skb))
5150 goto err_free;
5151
5152 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5153 goto err_free;
5154
5155 vhdr = (struct vlan_hdr *)skb->data;
5156 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5157 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5158
5159 skb_pull_rcsum(skb, VLAN_HLEN);
5160 vlan_set_encap_proto(skb, vhdr);
5161
5162 skb = skb_reorder_vlan_header(skb);
5163 if (unlikely(!skb))
5164 goto err_free;
5165
5166 skb_reset_network_header(skb);
5167 skb_reset_transport_header(skb);
5168 skb_reset_mac_len(skb);
5169
5170 return skb;
5171
5172 err_free:
5173 kfree_skb(skb);
5174 return NULL;
5175 }
5176 EXPORT_SYMBOL(skb_vlan_untag);
5177
5178 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5179 {
5180 if (!pskb_may_pull(skb, write_len))
5181 return -ENOMEM;
5182
5183 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5184 return 0;
5185
5186 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5187 }
5188 EXPORT_SYMBOL(skb_ensure_writable);
5189
5190 /* remove VLAN header from packet and update csum accordingly.
5191 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5192 */
5193 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5194 {
5195 struct vlan_hdr *vhdr;
5196 int offset = skb->data - skb_mac_header(skb);
5197 int err;
5198
5199 if (WARN_ONCE(offset,
5200 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5201 offset)) {
5202 return -EINVAL;
5203 }
5204
5205 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5206 if (unlikely(err))
5207 return err;
5208
5209 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5210
5211 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5212 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5213
5214 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5215 __skb_pull(skb, VLAN_HLEN);
5216
5217 vlan_set_encap_proto(skb, vhdr);
5218 skb->mac_header += VLAN_HLEN;
5219
5220 if (skb_network_offset(skb) < ETH_HLEN)
5221 skb_set_network_header(skb, ETH_HLEN);
5222
5223 skb_reset_mac_len(skb);
5224
5225 return err;
5226 }
5227 EXPORT_SYMBOL(__skb_vlan_pop);
5228
5229 /* Pop a vlan tag either from hwaccel or from payload.
5230 * Expects skb->data at mac header.
5231 */
5232 int skb_vlan_pop(struct sk_buff *skb)
5233 {
5234 u16 vlan_tci;
5235 __be16 vlan_proto;
5236 int err;
5237
5238 if (likely(skb_vlan_tag_present(skb))) {
5239 __vlan_hwaccel_clear_tag(skb);
5240 } else {
5241 if (unlikely(!eth_type_vlan(skb->protocol)))
5242 return 0;
5243
5244 err = __skb_vlan_pop(skb, &vlan_tci);
5245 if (err)
5246 return err;
5247 }
5248 /* move next vlan tag to hw accel tag */
5249 if (likely(!eth_type_vlan(skb->protocol)))
5250 return 0;
5251
5252 vlan_proto = skb->protocol;
5253 err = __skb_vlan_pop(skb, &vlan_tci);
5254 if (unlikely(err))
5255 return err;
5256
5257 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5258 return 0;
5259 }
5260 EXPORT_SYMBOL(skb_vlan_pop);
5261
5262 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5263 * Expects skb->data at mac header.
5264 */
5265 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5266 {
5267 if (skb_vlan_tag_present(skb)) {
5268 int offset = skb->data - skb_mac_header(skb);
5269 int err;
5270
5271 if (WARN_ONCE(offset,
5272 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5273 offset)) {
5274 return -EINVAL;
5275 }
5276
5277 err = __vlan_insert_tag(skb, skb->vlan_proto,
5278 skb_vlan_tag_get(skb));
5279 if (err)
5280 return err;
5281
5282 skb->protocol = skb->vlan_proto;
5283 skb->mac_len += VLAN_HLEN;
5284
5285 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5286 }
5287 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5288 return 0;
5289 }
5290 EXPORT_SYMBOL(skb_vlan_push);
5291
5292 /**
5293 * alloc_skb_with_frags - allocate skb with page frags
5294 *
5295 * @header_len: size of linear part
5296 * @data_len: needed length in frags
5297 * @max_page_order: max page order desired.
5298 * @errcode: pointer to error code if any
5299 * @gfp_mask: allocation mask
5300 *
5301 * This can be used to allocate a paged skb, given a maximal order for frags.
5302 */
5303 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5304 unsigned long data_len,
5305 int max_page_order,
5306 int *errcode,
5307 gfp_t gfp_mask)
5308 {
5309 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5310 unsigned long chunk;
5311 struct sk_buff *skb;
5312 struct page *page;
5313 int i;
5314
5315 *errcode = -EMSGSIZE;
5316 /* Note this test could be relaxed, if we succeed to allocate
5317 * high order pages...
5318 */
5319 if (npages > MAX_SKB_FRAGS)
5320 return NULL;
5321
5322 *errcode = -ENOBUFS;
5323 skb = alloc_skb(header_len, gfp_mask);
5324 if (!skb)
5325 return NULL;
5326
5327 skb->truesize += npages << PAGE_SHIFT;
5328
5329 for (i = 0; npages > 0; i++) {
5330 int order = max_page_order;
5331
5332 while (order) {
5333 if (npages >= 1 << order) {
5334 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5335 __GFP_COMP |
5336 __GFP_NOWARN,
5337 order);
5338 if (page)
5339 goto fill_page;
5340 /* Do not retry other high order allocations */
5341 order = 1;
5342 max_page_order = 0;
5343 }
5344 order--;
5345 }
5346 page = alloc_page(gfp_mask);
5347 if (!page)
5348 goto failure;
5349 fill_page:
5350 chunk = min_t(unsigned long, data_len,
5351 PAGE_SIZE << order);
5352 skb_fill_page_desc(skb, i, page, 0, chunk);
5353 data_len -= chunk;
5354 npages -= 1 << order;
5355 }
5356 return skb;
5357
5358 failure:
5359 kfree_skb(skb);
5360 return NULL;
5361 }
5362 EXPORT_SYMBOL(alloc_skb_with_frags);
5363
5364 /* carve out the first off bytes from skb when off < headlen */
5365 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5366 const int headlen, gfp_t gfp_mask)
5367 {
5368 int i;
5369 int size = skb_end_offset(skb);
5370 int new_hlen = headlen - off;
5371 u8 *data;
5372
5373 size = SKB_DATA_ALIGN(size);
5374
5375 if (skb_pfmemalloc(skb))
5376 gfp_mask |= __GFP_MEMALLOC;
5377 data = kmalloc_reserve(size +
5378 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5379 gfp_mask, NUMA_NO_NODE, NULL);
5380 if (!data)
5381 return -ENOMEM;
5382
5383 size = SKB_WITH_OVERHEAD(ksize(data));
5384
5385 /* Copy real data, and all frags */
5386 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5387 skb->len -= off;
5388
5389 memcpy((struct skb_shared_info *)(data + size),
5390 skb_shinfo(skb),
5391 offsetof(struct skb_shared_info,
5392 frags[skb_shinfo(skb)->nr_frags]));
5393 if (skb_cloned(skb)) {
5394 /* drop the old head gracefully */
5395 if (skb_orphan_frags(skb, gfp_mask)) {
5396 kfree(data);
5397 return -ENOMEM;
5398 }
5399 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5400 skb_frag_ref(skb, i);
5401 if (skb_has_frag_list(skb))
5402 skb_clone_fraglist(skb);
5403 skb_release_data(skb);
5404 } else {
5405 /* we can reuse existing recount- all we did was
5406 * relocate values
5407 */
5408 skb_free_head(skb);
5409 }
5410
5411 skb->head = data;
5412 skb->data = data;
5413 skb->head_frag = 0;
5414 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5415 skb->end = size;
5416 #else
5417 skb->end = skb->head + size;
5418 #endif
5419 skb_set_tail_pointer(skb, skb_headlen(skb));
5420 skb_headers_offset_update(skb, 0);
5421 skb->cloned = 0;
5422 skb->hdr_len = 0;
5423 skb->nohdr = 0;
5424 atomic_set(&skb_shinfo(skb)->dataref, 1);
5425
5426 return 0;
5427 }
5428
5429 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5430
5431 /* carve out the first eat bytes from skb's frag_list. May recurse into
5432 * pskb_carve()
5433 */
5434 static int pskb_carve_frag_list(struct sk_buff *skb,
5435 struct skb_shared_info *shinfo, int eat,
5436 gfp_t gfp_mask)
5437 {
5438 struct sk_buff *list = shinfo->frag_list;
5439 struct sk_buff *clone = NULL;
5440 struct sk_buff *insp = NULL;
5441
5442 do {
5443 if (!list) {
5444 pr_err("Not enough bytes to eat. Want %d\n", eat);
5445 return -EFAULT;
5446 }
5447 if (list->len <= eat) {
5448 /* Eaten as whole. */
5449 eat -= list->len;
5450 list = list->next;
5451 insp = list;
5452 } else {
5453 /* Eaten partially. */
5454 if (skb_shared(list)) {
5455 clone = skb_clone(list, gfp_mask);
5456 if (!clone)
5457 return -ENOMEM;
5458 insp = list->next;
5459 list = clone;
5460 } else {
5461 /* This may be pulled without problems. */
5462 insp = list;
5463 }
5464 if (pskb_carve(list, eat, gfp_mask) < 0) {
5465 kfree_skb(clone);
5466 return -ENOMEM;
5467 }
5468 break;
5469 }
5470 } while (eat);
5471
5472 /* Free pulled out fragments. */
5473 while ((list = shinfo->frag_list) != insp) {
5474 shinfo->frag_list = list->next;
5475 kfree_skb(list);
5476 }
5477 /* And insert new clone at head. */
5478 if (clone) {
5479 clone->next = list;
5480 shinfo->frag_list = clone;
5481 }
5482 return 0;
5483 }
5484
5485 /* carve off first len bytes from skb. Split line (off) is in the
5486 * non-linear part of skb
5487 */
5488 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5489 int pos, gfp_t gfp_mask)
5490 {
5491 int i, k = 0;
5492 int size = skb_end_offset(skb);
5493 u8 *data;
5494 const int nfrags = skb_shinfo(skb)->nr_frags;
5495 struct skb_shared_info *shinfo;
5496
5497 size = SKB_DATA_ALIGN(size);
5498
5499 if (skb_pfmemalloc(skb))
5500 gfp_mask |= __GFP_MEMALLOC;
5501 data = kmalloc_reserve(size +
5502 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5503 gfp_mask, NUMA_NO_NODE, NULL);
5504 if (!data)
5505 return -ENOMEM;
5506
5507 size = SKB_WITH_OVERHEAD(ksize(data));
5508
5509 memcpy((struct skb_shared_info *)(data + size),
5510 skb_shinfo(skb), offsetof(struct skb_shared_info,
5511 frags[skb_shinfo(skb)->nr_frags]));
5512 if (skb_orphan_frags(skb, gfp_mask)) {
5513 kfree(data);
5514 return -ENOMEM;
5515 }
5516 shinfo = (struct skb_shared_info *)(data + size);
5517 for (i = 0; i < nfrags; i++) {
5518 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5519
5520 if (pos + fsize > off) {
5521 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5522
5523 if (pos < off) {
5524 /* Split frag.
5525 * We have two variants in this case:
5526 * 1. Move all the frag to the second
5527 * part, if it is possible. F.e.
5528 * this approach is mandatory for TUX,
5529 * where splitting is expensive.
5530 * 2. Split is accurately. We make this.
5531 */
5532 shinfo->frags[0].page_offset += off - pos;
5533 skb_frag_size_sub(&shinfo->frags[0], off - pos);
5534 }
5535 skb_frag_ref(skb, i);
5536 k++;
5537 }
5538 pos += fsize;
5539 }
5540 shinfo->nr_frags = k;
5541 if (skb_has_frag_list(skb))
5542 skb_clone_fraglist(skb);
5543
5544 if (k == 0) {
5545 /* split line is in frag list */
5546 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5547 }
5548 skb_release_data(skb);
5549
5550 skb->head = data;
5551 skb->head_frag = 0;
5552 skb->data = data;
5553 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5554 skb->end = size;
5555 #else
5556 skb->end = skb->head + size;
5557 #endif
5558 skb_reset_tail_pointer(skb);
5559 skb_headers_offset_update(skb, 0);
5560 skb->cloned = 0;
5561 skb->hdr_len = 0;
5562 skb->nohdr = 0;
5563 skb->len -= off;
5564 skb->data_len = skb->len;
5565 atomic_set(&skb_shinfo(skb)->dataref, 1);
5566 return 0;
5567 }
5568
5569 /* remove len bytes from the beginning of the skb */
5570 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5571 {
5572 int headlen = skb_headlen(skb);
5573
5574 if (len < headlen)
5575 return pskb_carve_inside_header(skb, len, headlen, gfp);
5576 else
5577 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5578 }
5579
5580 /* Extract to_copy bytes starting at off from skb, and return this in
5581 * a new skb
5582 */
5583 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5584 int to_copy, gfp_t gfp)
5585 {
5586 struct sk_buff *clone = skb_clone(skb, gfp);
5587
5588 if (!clone)
5589 return NULL;
5590
5591 if (pskb_carve(clone, off, gfp) < 0 ||
5592 pskb_trim(clone, to_copy)) {
5593 kfree_skb(clone);
5594 return NULL;
5595 }
5596 return clone;
5597 }
5598 EXPORT_SYMBOL(pskb_extract);
5599
5600 /**
5601 * skb_condense - try to get rid of fragments/frag_list if possible
5602 * @skb: buffer
5603 *
5604 * Can be used to save memory before skb is added to a busy queue.
5605 * If packet has bytes in frags and enough tail room in skb->head,
5606 * pull all of them, so that we can free the frags right now and adjust
5607 * truesize.
5608 * Notes:
5609 * We do not reallocate skb->head thus can not fail.
5610 * Caller must re-evaluate skb->truesize if needed.
5611 */
5612 void skb_condense(struct sk_buff *skb)
5613 {
5614 if (skb->data_len) {
5615 if (skb->data_len > skb->end - skb->tail ||
5616 skb_cloned(skb))
5617 return;
5618
5619 /* Nice, we can free page frag(s) right now */
5620 __pskb_pull_tail(skb, skb->data_len);
5621 }
5622 /* At this point, skb->truesize might be over estimated,
5623 * because skb had a fragment, and fragments do not tell
5624 * their truesize.
5625 * When we pulled its content into skb->head, fragment
5626 * was freed, but __pskb_pull_tail() could not possibly
5627 * adjust skb->truesize, not knowing the frag truesize.
5628 */
5629 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5630 }
5631
5632 #ifdef CONFIG_SKB_EXTENSIONS
5633 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
5634 {
5635 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
5636 }
5637
5638 static struct skb_ext *skb_ext_alloc(void)
5639 {
5640 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
5641
5642 if (new) {
5643 memset(new->offset, 0, sizeof(new->offset));
5644 refcount_set(&new->refcnt, 1);
5645 }
5646
5647 return new;
5648 }
5649
5650 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
5651 unsigned int old_active)
5652 {
5653 struct skb_ext *new;
5654
5655 if (refcount_read(&old->refcnt) == 1)
5656 return old;
5657
5658 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
5659 if (!new)
5660 return NULL;
5661
5662 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
5663 refcount_set(&new->refcnt, 1);
5664
5665 #ifdef CONFIG_XFRM
5666 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
5667 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
5668 unsigned int i;
5669
5670 for (i = 0; i < sp->len; i++)
5671 xfrm_state_hold(sp->xvec[i]);
5672 }
5673 #endif
5674 __skb_ext_put(old);
5675 return new;
5676 }
5677
5678 /**
5679 * skb_ext_add - allocate space for given extension, COW if needed
5680 * @skb: buffer
5681 * @id: extension to allocate space for
5682 *
5683 * Allocates enough space for the given extension.
5684 * If the extension is already present, a pointer to that extension
5685 * is returned.
5686 *
5687 * If the skb was cloned, COW applies and the returned memory can be
5688 * modified without changing the extension space of clones buffers.
5689 *
5690 * Returns pointer to the extension or NULL on allocation failure.
5691 */
5692 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
5693 {
5694 struct skb_ext *new, *old = NULL;
5695 unsigned int newlen, newoff;
5696
5697 if (skb->active_extensions) {
5698 old = skb->extensions;
5699
5700 new = skb_ext_maybe_cow(old, skb->active_extensions);
5701 if (!new)
5702 return NULL;
5703
5704 if (__skb_ext_exist(new, id))
5705 goto set_active;
5706
5707 newoff = new->chunks;
5708 } else {
5709 newoff = SKB_EXT_CHUNKSIZEOF(*new);
5710
5711 new = skb_ext_alloc();
5712 if (!new)
5713 return NULL;
5714 }
5715
5716 newlen = newoff + skb_ext_type_len[id];
5717 new->chunks = newlen;
5718 new->offset[id] = newoff;
5719 set_active:
5720 skb->extensions = new;
5721 skb->active_extensions |= 1 << id;
5722 return skb_ext_get_ptr(new, id);
5723 }
5724 EXPORT_SYMBOL(skb_ext_add);
5725
5726 #ifdef CONFIG_XFRM
5727 static void skb_ext_put_sp(struct sec_path *sp)
5728 {
5729 unsigned int i;
5730
5731 for (i = 0; i < sp->len; i++)
5732 xfrm_state_put(sp->xvec[i]);
5733 }
5734 #endif
5735
5736 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
5737 {
5738 struct skb_ext *ext = skb->extensions;
5739
5740 skb->active_extensions &= ~(1 << id);
5741 if (skb->active_extensions == 0) {
5742 skb->extensions = NULL;
5743 __skb_ext_put(ext);
5744 #ifdef CONFIG_XFRM
5745 } else if (id == SKB_EXT_SEC_PATH &&
5746 refcount_read(&ext->refcnt) == 1) {
5747 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
5748
5749 skb_ext_put_sp(sp);
5750 sp->len = 0;
5751 #endif
5752 }
5753 }
5754 EXPORT_SYMBOL(__skb_ext_del);
5755
5756 void __skb_ext_put(struct skb_ext *ext)
5757 {
5758 /* If this is last clone, nothing can increment
5759 * it after check passes. Avoids one atomic op.
5760 */
5761 if (refcount_read(&ext->refcnt) == 1)
5762 goto free_now;
5763
5764 if (!refcount_dec_and_test(&ext->refcnt))
5765 return;
5766 free_now:
5767 #ifdef CONFIG_XFRM
5768 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
5769 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
5770 #endif
5771
5772 kmem_cache_free(skbuff_ext_cache, ext);
5773 }
5774 EXPORT_SYMBOL(__skb_ext_put);
5775 #endif /* CONFIG_SKB_EXTENSIONS */