]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/skbuff.c
net: cleanup unsigned to unsigned int
[mirror_ubuntu-bionic-kernel.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/mm.h>
44 #include <linux/interrupt.h>
45 #include <linux/in.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61
62 #include <net/protocol.h>
63 #include <net/dst.h>
64 #include <net/sock.h>
65 #include <net/checksum.h>
66 #include <net/xfrm.h>
67
68 #include <asm/uaccess.h>
69 #include <trace/events/skb.h>
70 #include <linux/highmem.h>
71
72 static struct kmem_cache *skbuff_head_cache __read_mostly;
73 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
74
75 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
76 struct pipe_buffer *buf)
77 {
78 put_page(buf->page);
79 }
80
81 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
82 struct pipe_buffer *buf)
83 {
84 get_page(buf->page);
85 }
86
87 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
88 struct pipe_buffer *buf)
89 {
90 return 1;
91 }
92
93
94 /* Pipe buffer operations for a socket. */
95 static const struct pipe_buf_operations sock_pipe_buf_ops = {
96 .can_merge = 0,
97 .map = generic_pipe_buf_map,
98 .unmap = generic_pipe_buf_unmap,
99 .confirm = generic_pipe_buf_confirm,
100 .release = sock_pipe_buf_release,
101 .steal = sock_pipe_buf_steal,
102 .get = sock_pipe_buf_get,
103 };
104
105 /*
106 * Keep out-of-line to prevent kernel bloat.
107 * __builtin_return_address is not used because it is not always
108 * reliable.
109 */
110
111 /**
112 * skb_over_panic - private function
113 * @skb: buffer
114 * @sz: size
115 * @here: address
116 *
117 * Out of line support code for skb_put(). Not user callable.
118 */
119 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
120 {
121 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
122 "data:%p tail:%#lx end:%#lx dev:%s\n",
123 here, skb->len, sz, skb->head, skb->data,
124 (unsigned long)skb->tail, (unsigned long)skb->end,
125 skb->dev ? skb->dev->name : "<NULL>");
126 BUG();
127 }
128
129 /**
130 * skb_under_panic - private function
131 * @skb: buffer
132 * @sz: size
133 * @here: address
134 *
135 * Out of line support code for skb_push(). Not user callable.
136 */
137
138 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
139 {
140 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
141 "data:%p tail:%#lx end:%#lx dev:%s\n",
142 here, skb->len, sz, skb->head, skb->data,
143 (unsigned long)skb->tail, (unsigned long)skb->end,
144 skb->dev ? skb->dev->name : "<NULL>");
145 BUG();
146 }
147
148 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
149 * 'private' fields and also do memory statistics to find all the
150 * [BEEP] leaks.
151 *
152 */
153
154 /**
155 * __alloc_skb - allocate a network buffer
156 * @size: size to allocate
157 * @gfp_mask: allocation mask
158 * @fclone: allocate from fclone cache instead of head cache
159 * and allocate a cloned (child) skb
160 * @node: numa node to allocate memory on
161 *
162 * Allocate a new &sk_buff. The returned buffer has no headroom and a
163 * tail room of size bytes. The object has a reference count of one.
164 * The return is the buffer. On a failure the return is %NULL.
165 *
166 * Buffers may only be allocated from interrupts using a @gfp_mask of
167 * %GFP_ATOMIC.
168 */
169 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
170 int fclone, int node)
171 {
172 struct kmem_cache *cache;
173 struct skb_shared_info *shinfo;
174 struct sk_buff *skb;
175 u8 *data;
176
177 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
178
179 /* Get the HEAD */
180 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
181 if (!skb)
182 goto out;
183 prefetchw(skb);
184
185 /* We do our best to align skb_shared_info on a separate cache
186 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
187 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
188 * Both skb->head and skb_shared_info are cache line aligned.
189 */
190 size = SKB_DATA_ALIGN(size);
191 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
192 data = kmalloc_node_track_caller(size, gfp_mask, node);
193 if (!data)
194 goto nodata;
195 /* kmalloc(size) might give us more room than requested.
196 * Put skb_shared_info exactly at the end of allocated zone,
197 * to allow max possible filling before reallocation.
198 */
199 size = SKB_WITH_OVERHEAD(ksize(data));
200 prefetchw(data + size);
201
202 /*
203 * Only clear those fields we need to clear, not those that we will
204 * actually initialise below. Hence, don't put any more fields after
205 * the tail pointer in struct sk_buff!
206 */
207 memset(skb, 0, offsetof(struct sk_buff, tail));
208 /* Account for allocated memory : skb + skb->head */
209 skb->truesize = SKB_TRUESIZE(size);
210 atomic_set(&skb->users, 1);
211 skb->head = data;
212 skb->data = data;
213 skb_reset_tail_pointer(skb);
214 skb->end = skb->tail + size;
215 #ifdef NET_SKBUFF_DATA_USES_OFFSET
216 skb->mac_header = ~0U;
217 #endif
218
219 /* make sure we initialize shinfo sequentially */
220 shinfo = skb_shinfo(skb);
221 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
222 atomic_set(&shinfo->dataref, 1);
223 kmemcheck_annotate_variable(shinfo->destructor_arg);
224
225 if (fclone) {
226 struct sk_buff *child = skb + 1;
227 atomic_t *fclone_ref = (atomic_t *) (child + 1);
228
229 kmemcheck_annotate_bitfield(child, flags1);
230 kmemcheck_annotate_bitfield(child, flags2);
231 skb->fclone = SKB_FCLONE_ORIG;
232 atomic_set(fclone_ref, 1);
233
234 child->fclone = SKB_FCLONE_UNAVAILABLE;
235 }
236 out:
237 return skb;
238 nodata:
239 kmem_cache_free(cache, skb);
240 skb = NULL;
241 goto out;
242 }
243 EXPORT_SYMBOL(__alloc_skb);
244
245 /**
246 * build_skb - build a network buffer
247 * @data: data buffer provided by caller
248 *
249 * Allocate a new &sk_buff. Caller provides space holding head and
250 * skb_shared_info. @data must have been allocated by kmalloc()
251 * The return is the new skb buffer.
252 * On a failure the return is %NULL, and @data is not freed.
253 * Notes :
254 * Before IO, driver allocates only data buffer where NIC put incoming frame
255 * Driver should add room at head (NET_SKB_PAD) and
256 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
257 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
258 * before giving packet to stack.
259 * RX rings only contains data buffers, not full skbs.
260 */
261 struct sk_buff *build_skb(void *data)
262 {
263 struct skb_shared_info *shinfo;
264 struct sk_buff *skb;
265 unsigned int size;
266
267 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
268 if (!skb)
269 return NULL;
270
271 size = ksize(data) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
272
273 memset(skb, 0, offsetof(struct sk_buff, tail));
274 skb->truesize = SKB_TRUESIZE(size);
275 atomic_set(&skb->users, 1);
276 skb->head = data;
277 skb->data = data;
278 skb_reset_tail_pointer(skb);
279 skb->end = skb->tail + size;
280 #ifdef NET_SKBUFF_DATA_USES_OFFSET
281 skb->mac_header = ~0U;
282 #endif
283
284 /* make sure we initialize shinfo sequentially */
285 shinfo = skb_shinfo(skb);
286 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
287 atomic_set(&shinfo->dataref, 1);
288 kmemcheck_annotate_variable(shinfo->destructor_arg);
289
290 return skb;
291 }
292 EXPORT_SYMBOL(build_skb);
293
294 /**
295 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
296 * @dev: network device to receive on
297 * @length: length to allocate
298 * @gfp_mask: get_free_pages mask, passed to alloc_skb
299 *
300 * Allocate a new &sk_buff and assign it a usage count of one. The
301 * buffer has unspecified headroom built in. Users should allocate
302 * the headroom they think they need without accounting for the
303 * built in space. The built in space is used for optimisations.
304 *
305 * %NULL is returned if there is no free memory.
306 */
307 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
308 unsigned int length, gfp_t gfp_mask)
309 {
310 struct sk_buff *skb;
311
312 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
313 if (likely(skb)) {
314 skb_reserve(skb, NET_SKB_PAD);
315 skb->dev = dev;
316 }
317 return skb;
318 }
319 EXPORT_SYMBOL(__netdev_alloc_skb);
320
321 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
322 int size, unsigned int truesize)
323 {
324 skb_fill_page_desc(skb, i, page, off, size);
325 skb->len += size;
326 skb->data_len += size;
327 skb->truesize += truesize;
328 }
329 EXPORT_SYMBOL(skb_add_rx_frag);
330
331 /**
332 * dev_alloc_skb - allocate an skbuff for receiving
333 * @length: length to allocate
334 *
335 * Allocate a new &sk_buff and assign it a usage count of one. The
336 * buffer has unspecified headroom built in. Users should allocate
337 * the headroom they think they need without accounting for the
338 * built in space. The built in space is used for optimisations.
339 *
340 * %NULL is returned if there is no free memory. Although this function
341 * allocates memory it can be called from an interrupt.
342 */
343 struct sk_buff *dev_alloc_skb(unsigned int length)
344 {
345 /*
346 * There is more code here than it seems:
347 * __dev_alloc_skb is an inline
348 */
349 return __dev_alloc_skb(length, GFP_ATOMIC);
350 }
351 EXPORT_SYMBOL(dev_alloc_skb);
352
353 static void skb_drop_list(struct sk_buff **listp)
354 {
355 struct sk_buff *list = *listp;
356
357 *listp = NULL;
358
359 do {
360 struct sk_buff *this = list;
361 list = list->next;
362 kfree_skb(this);
363 } while (list);
364 }
365
366 static inline void skb_drop_fraglist(struct sk_buff *skb)
367 {
368 skb_drop_list(&skb_shinfo(skb)->frag_list);
369 }
370
371 static void skb_clone_fraglist(struct sk_buff *skb)
372 {
373 struct sk_buff *list;
374
375 skb_walk_frags(skb, list)
376 skb_get(list);
377 }
378
379 static void skb_release_data(struct sk_buff *skb)
380 {
381 if (!skb->cloned ||
382 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
383 &skb_shinfo(skb)->dataref)) {
384 if (skb_shinfo(skb)->nr_frags) {
385 int i;
386 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
387 skb_frag_unref(skb, i);
388 }
389
390 /*
391 * If skb buf is from userspace, we need to notify the caller
392 * the lower device DMA has done;
393 */
394 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
395 struct ubuf_info *uarg;
396
397 uarg = skb_shinfo(skb)->destructor_arg;
398 if (uarg->callback)
399 uarg->callback(uarg);
400 }
401
402 if (skb_has_frag_list(skb))
403 skb_drop_fraglist(skb);
404
405 kfree(skb->head);
406 }
407 }
408
409 /*
410 * Free an skbuff by memory without cleaning the state.
411 */
412 static void kfree_skbmem(struct sk_buff *skb)
413 {
414 struct sk_buff *other;
415 atomic_t *fclone_ref;
416
417 switch (skb->fclone) {
418 case SKB_FCLONE_UNAVAILABLE:
419 kmem_cache_free(skbuff_head_cache, skb);
420 break;
421
422 case SKB_FCLONE_ORIG:
423 fclone_ref = (atomic_t *) (skb + 2);
424 if (atomic_dec_and_test(fclone_ref))
425 kmem_cache_free(skbuff_fclone_cache, skb);
426 break;
427
428 case SKB_FCLONE_CLONE:
429 fclone_ref = (atomic_t *) (skb + 1);
430 other = skb - 1;
431
432 /* The clone portion is available for
433 * fast-cloning again.
434 */
435 skb->fclone = SKB_FCLONE_UNAVAILABLE;
436
437 if (atomic_dec_and_test(fclone_ref))
438 kmem_cache_free(skbuff_fclone_cache, other);
439 break;
440 }
441 }
442
443 static void skb_release_head_state(struct sk_buff *skb)
444 {
445 skb_dst_drop(skb);
446 #ifdef CONFIG_XFRM
447 secpath_put(skb->sp);
448 #endif
449 if (skb->destructor) {
450 WARN_ON(in_irq());
451 skb->destructor(skb);
452 }
453 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
454 nf_conntrack_put(skb->nfct);
455 #endif
456 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
457 nf_conntrack_put_reasm(skb->nfct_reasm);
458 #endif
459 #ifdef CONFIG_BRIDGE_NETFILTER
460 nf_bridge_put(skb->nf_bridge);
461 #endif
462 /* XXX: IS this still necessary? - JHS */
463 #ifdef CONFIG_NET_SCHED
464 skb->tc_index = 0;
465 #ifdef CONFIG_NET_CLS_ACT
466 skb->tc_verd = 0;
467 #endif
468 #endif
469 }
470
471 /* Free everything but the sk_buff shell. */
472 static void skb_release_all(struct sk_buff *skb)
473 {
474 skb_release_head_state(skb);
475 skb_release_data(skb);
476 }
477
478 /**
479 * __kfree_skb - private function
480 * @skb: buffer
481 *
482 * Free an sk_buff. Release anything attached to the buffer.
483 * Clean the state. This is an internal helper function. Users should
484 * always call kfree_skb
485 */
486
487 void __kfree_skb(struct sk_buff *skb)
488 {
489 skb_release_all(skb);
490 kfree_skbmem(skb);
491 }
492 EXPORT_SYMBOL(__kfree_skb);
493
494 /**
495 * kfree_skb - free an sk_buff
496 * @skb: buffer to free
497 *
498 * Drop a reference to the buffer and free it if the usage count has
499 * hit zero.
500 */
501 void kfree_skb(struct sk_buff *skb)
502 {
503 if (unlikely(!skb))
504 return;
505 if (likely(atomic_read(&skb->users) == 1))
506 smp_rmb();
507 else if (likely(!atomic_dec_and_test(&skb->users)))
508 return;
509 trace_kfree_skb(skb, __builtin_return_address(0));
510 __kfree_skb(skb);
511 }
512 EXPORT_SYMBOL(kfree_skb);
513
514 /**
515 * consume_skb - free an skbuff
516 * @skb: buffer to free
517 *
518 * Drop a ref to the buffer and free it if the usage count has hit zero
519 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
520 * is being dropped after a failure and notes that
521 */
522 void consume_skb(struct sk_buff *skb)
523 {
524 if (unlikely(!skb))
525 return;
526 if (likely(atomic_read(&skb->users) == 1))
527 smp_rmb();
528 else if (likely(!atomic_dec_and_test(&skb->users)))
529 return;
530 trace_consume_skb(skb);
531 __kfree_skb(skb);
532 }
533 EXPORT_SYMBOL(consume_skb);
534
535 /**
536 * skb_recycle - clean up an skb for reuse
537 * @skb: buffer
538 *
539 * Recycles the skb to be reused as a receive buffer. This
540 * function does any necessary reference count dropping, and
541 * cleans up the skbuff as if it just came from __alloc_skb().
542 */
543 void skb_recycle(struct sk_buff *skb)
544 {
545 struct skb_shared_info *shinfo;
546
547 skb_release_head_state(skb);
548
549 shinfo = skb_shinfo(skb);
550 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
551 atomic_set(&shinfo->dataref, 1);
552
553 memset(skb, 0, offsetof(struct sk_buff, tail));
554 skb->data = skb->head + NET_SKB_PAD;
555 skb_reset_tail_pointer(skb);
556 }
557 EXPORT_SYMBOL(skb_recycle);
558
559 /**
560 * skb_recycle_check - check if skb can be reused for receive
561 * @skb: buffer
562 * @skb_size: minimum receive buffer size
563 *
564 * Checks that the skb passed in is not shared or cloned, and
565 * that it is linear and its head portion at least as large as
566 * skb_size so that it can be recycled as a receive buffer.
567 * If these conditions are met, this function does any necessary
568 * reference count dropping and cleans up the skbuff as if it
569 * just came from __alloc_skb().
570 */
571 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
572 {
573 if (!skb_is_recycleable(skb, skb_size))
574 return false;
575
576 skb_recycle(skb);
577
578 return true;
579 }
580 EXPORT_SYMBOL(skb_recycle_check);
581
582 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
583 {
584 new->tstamp = old->tstamp;
585 new->dev = old->dev;
586 new->transport_header = old->transport_header;
587 new->network_header = old->network_header;
588 new->mac_header = old->mac_header;
589 skb_dst_copy(new, old);
590 new->rxhash = old->rxhash;
591 new->ooo_okay = old->ooo_okay;
592 new->l4_rxhash = old->l4_rxhash;
593 new->no_fcs = old->no_fcs;
594 #ifdef CONFIG_XFRM
595 new->sp = secpath_get(old->sp);
596 #endif
597 memcpy(new->cb, old->cb, sizeof(old->cb));
598 new->csum = old->csum;
599 new->local_df = old->local_df;
600 new->pkt_type = old->pkt_type;
601 new->ip_summed = old->ip_summed;
602 skb_copy_queue_mapping(new, old);
603 new->priority = old->priority;
604 #if IS_ENABLED(CONFIG_IP_VS)
605 new->ipvs_property = old->ipvs_property;
606 #endif
607 new->protocol = old->protocol;
608 new->mark = old->mark;
609 new->skb_iif = old->skb_iif;
610 __nf_copy(new, old);
611 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
612 new->nf_trace = old->nf_trace;
613 #endif
614 #ifdef CONFIG_NET_SCHED
615 new->tc_index = old->tc_index;
616 #ifdef CONFIG_NET_CLS_ACT
617 new->tc_verd = old->tc_verd;
618 #endif
619 #endif
620 new->vlan_tci = old->vlan_tci;
621
622 skb_copy_secmark(new, old);
623 }
624
625 /*
626 * You should not add any new code to this function. Add it to
627 * __copy_skb_header above instead.
628 */
629 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
630 {
631 #define C(x) n->x = skb->x
632
633 n->next = n->prev = NULL;
634 n->sk = NULL;
635 __copy_skb_header(n, skb);
636
637 C(len);
638 C(data_len);
639 C(mac_len);
640 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
641 n->cloned = 1;
642 n->nohdr = 0;
643 n->destructor = NULL;
644 C(tail);
645 C(end);
646 C(head);
647 C(data);
648 C(truesize);
649 atomic_set(&n->users, 1);
650
651 atomic_inc(&(skb_shinfo(skb)->dataref));
652 skb->cloned = 1;
653
654 return n;
655 #undef C
656 }
657
658 /**
659 * skb_morph - morph one skb into another
660 * @dst: the skb to receive the contents
661 * @src: the skb to supply the contents
662 *
663 * This is identical to skb_clone except that the target skb is
664 * supplied by the user.
665 *
666 * The target skb is returned upon exit.
667 */
668 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
669 {
670 skb_release_all(dst);
671 return __skb_clone(dst, src);
672 }
673 EXPORT_SYMBOL_GPL(skb_morph);
674
675 /* skb_copy_ubufs - copy userspace skb frags buffers to kernel
676 * @skb: the skb to modify
677 * @gfp_mask: allocation priority
678 *
679 * This must be called on SKBTX_DEV_ZEROCOPY skb.
680 * It will copy all frags into kernel and drop the reference
681 * to userspace pages.
682 *
683 * If this function is called from an interrupt gfp_mask() must be
684 * %GFP_ATOMIC.
685 *
686 * Returns 0 on success or a negative error code on failure
687 * to allocate kernel memory to copy to.
688 */
689 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
690 {
691 int i;
692 int num_frags = skb_shinfo(skb)->nr_frags;
693 struct page *page, *head = NULL;
694 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
695
696 for (i = 0; i < num_frags; i++) {
697 u8 *vaddr;
698 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
699
700 page = alloc_page(GFP_ATOMIC);
701 if (!page) {
702 while (head) {
703 struct page *next = (struct page *)head->private;
704 put_page(head);
705 head = next;
706 }
707 return -ENOMEM;
708 }
709 vaddr = kmap_atomic(skb_frag_page(f));
710 memcpy(page_address(page),
711 vaddr + f->page_offset, skb_frag_size(f));
712 kunmap_atomic(vaddr);
713 page->private = (unsigned long)head;
714 head = page;
715 }
716
717 /* skb frags release userspace buffers */
718 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
719 skb_frag_unref(skb, i);
720
721 uarg->callback(uarg);
722
723 /* skb frags point to kernel buffers */
724 for (i = skb_shinfo(skb)->nr_frags; i > 0; i--) {
725 __skb_fill_page_desc(skb, i-1, head, 0,
726 skb_shinfo(skb)->frags[i - 1].size);
727 head = (struct page *)head->private;
728 }
729
730 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
731 return 0;
732 }
733
734
735 /**
736 * skb_clone - duplicate an sk_buff
737 * @skb: buffer to clone
738 * @gfp_mask: allocation priority
739 *
740 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
741 * copies share the same packet data but not structure. The new
742 * buffer has a reference count of 1. If the allocation fails the
743 * function returns %NULL otherwise the new buffer is returned.
744 *
745 * If this function is called from an interrupt gfp_mask() must be
746 * %GFP_ATOMIC.
747 */
748
749 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
750 {
751 struct sk_buff *n;
752
753 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
754 if (skb_copy_ubufs(skb, gfp_mask))
755 return NULL;
756 }
757
758 n = skb + 1;
759 if (skb->fclone == SKB_FCLONE_ORIG &&
760 n->fclone == SKB_FCLONE_UNAVAILABLE) {
761 atomic_t *fclone_ref = (atomic_t *) (n + 1);
762 n->fclone = SKB_FCLONE_CLONE;
763 atomic_inc(fclone_ref);
764 } else {
765 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
766 if (!n)
767 return NULL;
768
769 kmemcheck_annotate_bitfield(n, flags1);
770 kmemcheck_annotate_bitfield(n, flags2);
771 n->fclone = SKB_FCLONE_UNAVAILABLE;
772 }
773
774 return __skb_clone(n, skb);
775 }
776 EXPORT_SYMBOL(skb_clone);
777
778 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
779 {
780 #ifndef NET_SKBUFF_DATA_USES_OFFSET
781 /*
782 * Shift between the two data areas in bytes
783 */
784 unsigned long offset = new->data - old->data;
785 #endif
786
787 __copy_skb_header(new, old);
788
789 #ifndef NET_SKBUFF_DATA_USES_OFFSET
790 /* {transport,network,mac}_header are relative to skb->head */
791 new->transport_header += offset;
792 new->network_header += offset;
793 if (skb_mac_header_was_set(new))
794 new->mac_header += offset;
795 #endif
796 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
797 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
798 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
799 }
800
801 /**
802 * skb_copy - create private copy of an sk_buff
803 * @skb: buffer to copy
804 * @gfp_mask: allocation priority
805 *
806 * Make a copy of both an &sk_buff and its data. This is used when the
807 * caller wishes to modify the data and needs a private copy of the
808 * data to alter. Returns %NULL on failure or the pointer to the buffer
809 * on success. The returned buffer has a reference count of 1.
810 *
811 * As by-product this function converts non-linear &sk_buff to linear
812 * one, so that &sk_buff becomes completely private and caller is allowed
813 * to modify all the data of returned buffer. This means that this
814 * function is not recommended for use in circumstances when only
815 * header is going to be modified. Use pskb_copy() instead.
816 */
817
818 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
819 {
820 int headerlen = skb_headroom(skb);
821 unsigned int size = (skb_end_pointer(skb) - skb->head) + skb->data_len;
822 struct sk_buff *n = alloc_skb(size, gfp_mask);
823
824 if (!n)
825 return NULL;
826
827 /* Set the data pointer */
828 skb_reserve(n, headerlen);
829 /* Set the tail pointer and length */
830 skb_put(n, skb->len);
831
832 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
833 BUG();
834
835 copy_skb_header(n, skb);
836 return n;
837 }
838 EXPORT_SYMBOL(skb_copy);
839
840 /**
841 * __pskb_copy - create copy of an sk_buff with private head.
842 * @skb: buffer to copy
843 * @headroom: headroom of new skb
844 * @gfp_mask: allocation priority
845 *
846 * Make a copy of both an &sk_buff and part of its data, located
847 * in header. Fragmented data remain shared. This is used when
848 * the caller wishes to modify only header of &sk_buff and needs
849 * private copy of the header to alter. Returns %NULL on failure
850 * or the pointer to the buffer on success.
851 * The returned buffer has a reference count of 1.
852 */
853
854 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
855 {
856 unsigned int size = skb_headlen(skb) + headroom;
857 struct sk_buff *n = alloc_skb(size, gfp_mask);
858
859 if (!n)
860 goto out;
861
862 /* Set the data pointer */
863 skb_reserve(n, headroom);
864 /* Set the tail pointer and length */
865 skb_put(n, skb_headlen(skb));
866 /* Copy the bytes */
867 skb_copy_from_linear_data(skb, n->data, n->len);
868
869 n->truesize += skb->data_len;
870 n->data_len = skb->data_len;
871 n->len = skb->len;
872
873 if (skb_shinfo(skb)->nr_frags) {
874 int i;
875
876 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
877 if (skb_copy_ubufs(skb, gfp_mask)) {
878 kfree_skb(n);
879 n = NULL;
880 goto out;
881 }
882 }
883 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
884 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
885 skb_frag_ref(skb, i);
886 }
887 skb_shinfo(n)->nr_frags = i;
888 }
889
890 if (skb_has_frag_list(skb)) {
891 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
892 skb_clone_fraglist(n);
893 }
894
895 copy_skb_header(n, skb);
896 out:
897 return n;
898 }
899 EXPORT_SYMBOL(__pskb_copy);
900
901 /**
902 * pskb_expand_head - reallocate header of &sk_buff
903 * @skb: buffer to reallocate
904 * @nhead: room to add at head
905 * @ntail: room to add at tail
906 * @gfp_mask: allocation priority
907 *
908 * Expands (or creates identical copy, if &nhead and &ntail are zero)
909 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
910 * reference count of 1. Returns zero in the case of success or error,
911 * if expansion failed. In the last case, &sk_buff is not changed.
912 *
913 * All the pointers pointing into skb header may change and must be
914 * reloaded after call to this function.
915 */
916
917 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
918 gfp_t gfp_mask)
919 {
920 int i;
921 u8 *data;
922 int size = nhead + (skb_end_pointer(skb) - skb->head) + ntail;
923 long off;
924 bool fastpath;
925
926 BUG_ON(nhead < 0);
927
928 if (skb_shared(skb))
929 BUG();
930
931 size = SKB_DATA_ALIGN(size);
932
933 /* Check if we can avoid taking references on fragments if we own
934 * the last reference on skb->head. (see skb_release_data())
935 */
936 if (!skb->cloned)
937 fastpath = true;
938 else {
939 int delta = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
940 fastpath = atomic_read(&skb_shinfo(skb)->dataref) == delta;
941 }
942
943 if (fastpath &&
944 size + sizeof(struct skb_shared_info) <= ksize(skb->head)) {
945 memmove(skb->head + size, skb_shinfo(skb),
946 offsetof(struct skb_shared_info,
947 frags[skb_shinfo(skb)->nr_frags]));
948 memmove(skb->head + nhead, skb->head,
949 skb_tail_pointer(skb) - skb->head);
950 off = nhead;
951 goto adjust_others;
952 }
953
954 data = kmalloc(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
955 gfp_mask);
956 if (!data)
957 goto nodata;
958 size = SKB_WITH_OVERHEAD(ksize(data));
959
960 /* Copy only real data... and, alas, header. This should be
961 * optimized for the cases when header is void.
962 */
963 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
964
965 memcpy((struct skb_shared_info *)(data + size),
966 skb_shinfo(skb),
967 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
968
969 if (fastpath) {
970 kfree(skb->head);
971 } else {
972 /* copy this zero copy skb frags */
973 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
974 if (skb_copy_ubufs(skb, gfp_mask))
975 goto nofrags;
976 }
977 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
978 skb_frag_ref(skb, i);
979
980 if (skb_has_frag_list(skb))
981 skb_clone_fraglist(skb);
982
983 skb_release_data(skb);
984 }
985 off = (data + nhead) - skb->head;
986
987 skb->head = data;
988 adjust_others:
989 skb->data += off;
990 #ifdef NET_SKBUFF_DATA_USES_OFFSET
991 skb->end = size;
992 off = nhead;
993 #else
994 skb->end = skb->head + size;
995 #endif
996 /* {transport,network,mac}_header and tail are relative to skb->head */
997 skb->tail += off;
998 skb->transport_header += off;
999 skb->network_header += off;
1000 if (skb_mac_header_was_set(skb))
1001 skb->mac_header += off;
1002 /* Only adjust this if it actually is csum_start rather than csum */
1003 if (skb->ip_summed == CHECKSUM_PARTIAL)
1004 skb->csum_start += nhead;
1005 skb->cloned = 0;
1006 skb->hdr_len = 0;
1007 skb->nohdr = 0;
1008 atomic_set(&skb_shinfo(skb)->dataref, 1);
1009 return 0;
1010
1011 nofrags:
1012 kfree(data);
1013 nodata:
1014 return -ENOMEM;
1015 }
1016 EXPORT_SYMBOL(pskb_expand_head);
1017
1018 /* Make private copy of skb with writable head and some headroom */
1019
1020 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1021 {
1022 struct sk_buff *skb2;
1023 int delta = headroom - skb_headroom(skb);
1024
1025 if (delta <= 0)
1026 skb2 = pskb_copy(skb, GFP_ATOMIC);
1027 else {
1028 skb2 = skb_clone(skb, GFP_ATOMIC);
1029 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1030 GFP_ATOMIC)) {
1031 kfree_skb(skb2);
1032 skb2 = NULL;
1033 }
1034 }
1035 return skb2;
1036 }
1037 EXPORT_SYMBOL(skb_realloc_headroom);
1038
1039 /**
1040 * skb_copy_expand - copy and expand sk_buff
1041 * @skb: buffer to copy
1042 * @newheadroom: new free bytes at head
1043 * @newtailroom: new free bytes at tail
1044 * @gfp_mask: allocation priority
1045 *
1046 * Make a copy of both an &sk_buff and its data and while doing so
1047 * allocate additional space.
1048 *
1049 * This is used when the caller wishes to modify the data and needs a
1050 * private copy of the data to alter as well as more space for new fields.
1051 * Returns %NULL on failure or the pointer to the buffer
1052 * on success. The returned buffer has a reference count of 1.
1053 *
1054 * You must pass %GFP_ATOMIC as the allocation priority if this function
1055 * is called from an interrupt.
1056 */
1057 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1058 int newheadroom, int newtailroom,
1059 gfp_t gfp_mask)
1060 {
1061 /*
1062 * Allocate the copy buffer
1063 */
1064 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
1065 gfp_mask);
1066 int oldheadroom = skb_headroom(skb);
1067 int head_copy_len, head_copy_off;
1068 int off;
1069
1070 if (!n)
1071 return NULL;
1072
1073 skb_reserve(n, newheadroom);
1074
1075 /* Set the tail pointer and length */
1076 skb_put(n, skb->len);
1077
1078 head_copy_len = oldheadroom;
1079 head_copy_off = 0;
1080 if (newheadroom <= head_copy_len)
1081 head_copy_len = newheadroom;
1082 else
1083 head_copy_off = newheadroom - head_copy_len;
1084
1085 /* Copy the linear header and data. */
1086 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1087 skb->len + head_copy_len))
1088 BUG();
1089
1090 copy_skb_header(n, skb);
1091
1092 off = newheadroom - oldheadroom;
1093 if (n->ip_summed == CHECKSUM_PARTIAL)
1094 n->csum_start += off;
1095 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1096 n->transport_header += off;
1097 n->network_header += off;
1098 if (skb_mac_header_was_set(skb))
1099 n->mac_header += off;
1100 #endif
1101
1102 return n;
1103 }
1104 EXPORT_SYMBOL(skb_copy_expand);
1105
1106 /**
1107 * skb_pad - zero pad the tail of an skb
1108 * @skb: buffer to pad
1109 * @pad: space to pad
1110 *
1111 * Ensure that a buffer is followed by a padding area that is zero
1112 * filled. Used by network drivers which may DMA or transfer data
1113 * beyond the buffer end onto the wire.
1114 *
1115 * May return error in out of memory cases. The skb is freed on error.
1116 */
1117
1118 int skb_pad(struct sk_buff *skb, int pad)
1119 {
1120 int err;
1121 int ntail;
1122
1123 /* If the skbuff is non linear tailroom is always zero.. */
1124 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1125 memset(skb->data+skb->len, 0, pad);
1126 return 0;
1127 }
1128
1129 ntail = skb->data_len + pad - (skb->end - skb->tail);
1130 if (likely(skb_cloned(skb) || ntail > 0)) {
1131 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1132 if (unlikely(err))
1133 goto free_skb;
1134 }
1135
1136 /* FIXME: The use of this function with non-linear skb's really needs
1137 * to be audited.
1138 */
1139 err = skb_linearize(skb);
1140 if (unlikely(err))
1141 goto free_skb;
1142
1143 memset(skb->data + skb->len, 0, pad);
1144 return 0;
1145
1146 free_skb:
1147 kfree_skb(skb);
1148 return err;
1149 }
1150 EXPORT_SYMBOL(skb_pad);
1151
1152 /**
1153 * skb_put - add data to a buffer
1154 * @skb: buffer to use
1155 * @len: amount of data to add
1156 *
1157 * This function extends the used data area of the buffer. If this would
1158 * exceed the total buffer size the kernel will panic. A pointer to the
1159 * first byte of the extra data is returned.
1160 */
1161 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1162 {
1163 unsigned char *tmp = skb_tail_pointer(skb);
1164 SKB_LINEAR_ASSERT(skb);
1165 skb->tail += len;
1166 skb->len += len;
1167 if (unlikely(skb->tail > skb->end))
1168 skb_over_panic(skb, len, __builtin_return_address(0));
1169 return tmp;
1170 }
1171 EXPORT_SYMBOL(skb_put);
1172
1173 /**
1174 * skb_push - add data to the start of a buffer
1175 * @skb: buffer to use
1176 * @len: amount of data to add
1177 *
1178 * This function extends the used data area of the buffer at the buffer
1179 * start. If this would exceed the total buffer headroom the kernel will
1180 * panic. A pointer to the first byte of the extra data is returned.
1181 */
1182 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1183 {
1184 skb->data -= len;
1185 skb->len += len;
1186 if (unlikely(skb->data<skb->head))
1187 skb_under_panic(skb, len, __builtin_return_address(0));
1188 return skb->data;
1189 }
1190 EXPORT_SYMBOL(skb_push);
1191
1192 /**
1193 * skb_pull - remove data from the start of a buffer
1194 * @skb: buffer to use
1195 * @len: amount of data to remove
1196 *
1197 * This function removes data from the start of a buffer, returning
1198 * the memory to the headroom. A pointer to the next data in the buffer
1199 * is returned. Once the data has been pulled future pushes will overwrite
1200 * the old data.
1201 */
1202 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1203 {
1204 return skb_pull_inline(skb, len);
1205 }
1206 EXPORT_SYMBOL(skb_pull);
1207
1208 /**
1209 * skb_trim - remove end from a buffer
1210 * @skb: buffer to alter
1211 * @len: new length
1212 *
1213 * Cut the length of a buffer down by removing data from the tail. If
1214 * the buffer is already under the length specified it is not modified.
1215 * The skb must be linear.
1216 */
1217 void skb_trim(struct sk_buff *skb, unsigned int len)
1218 {
1219 if (skb->len > len)
1220 __skb_trim(skb, len);
1221 }
1222 EXPORT_SYMBOL(skb_trim);
1223
1224 /* Trims skb to length len. It can change skb pointers.
1225 */
1226
1227 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1228 {
1229 struct sk_buff **fragp;
1230 struct sk_buff *frag;
1231 int offset = skb_headlen(skb);
1232 int nfrags = skb_shinfo(skb)->nr_frags;
1233 int i;
1234 int err;
1235
1236 if (skb_cloned(skb) &&
1237 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1238 return err;
1239
1240 i = 0;
1241 if (offset >= len)
1242 goto drop_pages;
1243
1244 for (; i < nfrags; i++) {
1245 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1246
1247 if (end < len) {
1248 offset = end;
1249 continue;
1250 }
1251
1252 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1253
1254 drop_pages:
1255 skb_shinfo(skb)->nr_frags = i;
1256
1257 for (; i < nfrags; i++)
1258 skb_frag_unref(skb, i);
1259
1260 if (skb_has_frag_list(skb))
1261 skb_drop_fraglist(skb);
1262 goto done;
1263 }
1264
1265 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1266 fragp = &frag->next) {
1267 int end = offset + frag->len;
1268
1269 if (skb_shared(frag)) {
1270 struct sk_buff *nfrag;
1271
1272 nfrag = skb_clone(frag, GFP_ATOMIC);
1273 if (unlikely(!nfrag))
1274 return -ENOMEM;
1275
1276 nfrag->next = frag->next;
1277 kfree_skb(frag);
1278 frag = nfrag;
1279 *fragp = frag;
1280 }
1281
1282 if (end < len) {
1283 offset = end;
1284 continue;
1285 }
1286
1287 if (end > len &&
1288 unlikely((err = pskb_trim(frag, len - offset))))
1289 return err;
1290
1291 if (frag->next)
1292 skb_drop_list(&frag->next);
1293 break;
1294 }
1295
1296 done:
1297 if (len > skb_headlen(skb)) {
1298 skb->data_len -= skb->len - len;
1299 skb->len = len;
1300 } else {
1301 skb->len = len;
1302 skb->data_len = 0;
1303 skb_set_tail_pointer(skb, len);
1304 }
1305
1306 return 0;
1307 }
1308 EXPORT_SYMBOL(___pskb_trim);
1309
1310 /**
1311 * __pskb_pull_tail - advance tail of skb header
1312 * @skb: buffer to reallocate
1313 * @delta: number of bytes to advance tail
1314 *
1315 * The function makes a sense only on a fragmented &sk_buff,
1316 * it expands header moving its tail forward and copying necessary
1317 * data from fragmented part.
1318 *
1319 * &sk_buff MUST have reference count of 1.
1320 *
1321 * Returns %NULL (and &sk_buff does not change) if pull failed
1322 * or value of new tail of skb in the case of success.
1323 *
1324 * All the pointers pointing into skb header may change and must be
1325 * reloaded after call to this function.
1326 */
1327
1328 /* Moves tail of skb head forward, copying data from fragmented part,
1329 * when it is necessary.
1330 * 1. It may fail due to malloc failure.
1331 * 2. It may change skb pointers.
1332 *
1333 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1334 */
1335 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1336 {
1337 /* If skb has not enough free space at tail, get new one
1338 * plus 128 bytes for future expansions. If we have enough
1339 * room at tail, reallocate without expansion only if skb is cloned.
1340 */
1341 int i, k, eat = (skb->tail + delta) - skb->end;
1342
1343 if (eat > 0 || skb_cloned(skb)) {
1344 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1345 GFP_ATOMIC))
1346 return NULL;
1347 }
1348
1349 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1350 BUG();
1351
1352 /* Optimization: no fragments, no reasons to preestimate
1353 * size of pulled pages. Superb.
1354 */
1355 if (!skb_has_frag_list(skb))
1356 goto pull_pages;
1357
1358 /* Estimate size of pulled pages. */
1359 eat = delta;
1360 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1361 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1362
1363 if (size >= eat)
1364 goto pull_pages;
1365 eat -= size;
1366 }
1367
1368 /* If we need update frag list, we are in troubles.
1369 * Certainly, it possible to add an offset to skb data,
1370 * but taking into account that pulling is expected to
1371 * be very rare operation, it is worth to fight against
1372 * further bloating skb head and crucify ourselves here instead.
1373 * Pure masohism, indeed. 8)8)
1374 */
1375 if (eat) {
1376 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1377 struct sk_buff *clone = NULL;
1378 struct sk_buff *insp = NULL;
1379
1380 do {
1381 BUG_ON(!list);
1382
1383 if (list->len <= eat) {
1384 /* Eaten as whole. */
1385 eat -= list->len;
1386 list = list->next;
1387 insp = list;
1388 } else {
1389 /* Eaten partially. */
1390
1391 if (skb_shared(list)) {
1392 /* Sucks! We need to fork list. :-( */
1393 clone = skb_clone(list, GFP_ATOMIC);
1394 if (!clone)
1395 return NULL;
1396 insp = list->next;
1397 list = clone;
1398 } else {
1399 /* This may be pulled without
1400 * problems. */
1401 insp = list;
1402 }
1403 if (!pskb_pull(list, eat)) {
1404 kfree_skb(clone);
1405 return NULL;
1406 }
1407 break;
1408 }
1409 } while (eat);
1410
1411 /* Free pulled out fragments. */
1412 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1413 skb_shinfo(skb)->frag_list = list->next;
1414 kfree_skb(list);
1415 }
1416 /* And insert new clone at head. */
1417 if (clone) {
1418 clone->next = list;
1419 skb_shinfo(skb)->frag_list = clone;
1420 }
1421 }
1422 /* Success! Now we may commit changes to skb data. */
1423
1424 pull_pages:
1425 eat = delta;
1426 k = 0;
1427 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1428 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1429
1430 if (size <= eat) {
1431 skb_frag_unref(skb, i);
1432 eat -= size;
1433 } else {
1434 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1435 if (eat) {
1436 skb_shinfo(skb)->frags[k].page_offset += eat;
1437 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1438 eat = 0;
1439 }
1440 k++;
1441 }
1442 }
1443 skb_shinfo(skb)->nr_frags = k;
1444
1445 skb->tail += delta;
1446 skb->data_len -= delta;
1447
1448 return skb_tail_pointer(skb);
1449 }
1450 EXPORT_SYMBOL(__pskb_pull_tail);
1451
1452 /**
1453 * skb_copy_bits - copy bits from skb to kernel buffer
1454 * @skb: source skb
1455 * @offset: offset in source
1456 * @to: destination buffer
1457 * @len: number of bytes to copy
1458 *
1459 * Copy the specified number of bytes from the source skb to the
1460 * destination buffer.
1461 *
1462 * CAUTION ! :
1463 * If its prototype is ever changed,
1464 * check arch/{*}/net/{*}.S files,
1465 * since it is called from BPF assembly code.
1466 */
1467 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1468 {
1469 int start = skb_headlen(skb);
1470 struct sk_buff *frag_iter;
1471 int i, copy;
1472
1473 if (offset > (int)skb->len - len)
1474 goto fault;
1475
1476 /* Copy header. */
1477 if ((copy = start - offset) > 0) {
1478 if (copy > len)
1479 copy = len;
1480 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1481 if ((len -= copy) == 0)
1482 return 0;
1483 offset += copy;
1484 to += copy;
1485 }
1486
1487 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1488 int end;
1489 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1490
1491 WARN_ON(start > offset + len);
1492
1493 end = start + skb_frag_size(f);
1494 if ((copy = end - offset) > 0) {
1495 u8 *vaddr;
1496
1497 if (copy > len)
1498 copy = len;
1499
1500 vaddr = kmap_atomic(skb_frag_page(f));
1501 memcpy(to,
1502 vaddr + f->page_offset + offset - start,
1503 copy);
1504 kunmap_atomic(vaddr);
1505
1506 if ((len -= copy) == 0)
1507 return 0;
1508 offset += copy;
1509 to += copy;
1510 }
1511 start = end;
1512 }
1513
1514 skb_walk_frags(skb, frag_iter) {
1515 int end;
1516
1517 WARN_ON(start > offset + len);
1518
1519 end = start + frag_iter->len;
1520 if ((copy = end - offset) > 0) {
1521 if (copy > len)
1522 copy = len;
1523 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1524 goto fault;
1525 if ((len -= copy) == 0)
1526 return 0;
1527 offset += copy;
1528 to += copy;
1529 }
1530 start = end;
1531 }
1532
1533 if (!len)
1534 return 0;
1535
1536 fault:
1537 return -EFAULT;
1538 }
1539 EXPORT_SYMBOL(skb_copy_bits);
1540
1541 /*
1542 * Callback from splice_to_pipe(), if we need to release some pages
1543 * at the end of the spd in case we error'ed out in filling the pipe.
1544 */
1545 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1546 {
1547 put_page(spd->pages[i]);
1548 }
1549
1550 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1551 unsigned int *offset,
1552 struct sk_buff *skb, struct sock *sk)
1553 {
1554 struct page *p = sk->sk_sndmsg_page;
1555 unsigned int off;
1556
1557 if (!p) {
1558 new_page:
1559 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1560 if (!p)
1561 return NULL;
1562
1563 off = sk->sk_sndmsg_off = 0;
1564 /* hold one ref to this page until it's full */
1565 } else {
1566 unsigned int mlen;
1567
1568 off = sk->sk_sndmsg_off;
1569 mlen = PAGE_SIZE - off;
1570 if (mlen < 64 && mlen < *len) {
1571 put_page(p);
1572 goto new_page;
1573 }
1574
1575 *len = min_t(unsigned int, *len, mlen);
1576 }
1577
1578 memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1579 sk->sk_sndmsg_off += *len;
1580 *offset = off;
1581 get_page(p);
1582
1583 return p;
1584 }
1585
1586 /*
1587 * Fill page/offset/length into spd, if it can hold more pages.
1588 */
1589 static inline int spd_fill_page(struct splice_pipe_desc *spd,
1590 struct pipe_inode_info *pipe, struct page *page,
1591 unsigned int *len, unsigned int offset,
1592 struct sk_buff *skb, int linear,
1593 struct sock *sk)
1594 {
1595 if (unlikely(spd->nr_pages == pipe->buffers))
1596 return 1;
1597
1598 if (linear) {
1599 page = linear_to_page(page, len, &offset, skb, sk);
1600 if (!page)
1601 return 1;
1602 } else
1603 get_page(page);
1604
1605 spd->pages[spd->nr_pages] = page;
1606 spd->partial[spd->nr_pages].len = *len;
1607 spd->partial[spd->nr_pages].offset = offset;
1608 spd->nr_pages++;
1609
1610 return 0;
1611 }
1612
1613 static inline void __segment_seek(struct page **page, unsigned int *poff,
1614 unsigned int *plen, unsigned int off)
1615 {
1616 unsigned long n;
1617
1618 *poff += off;
1619 n = *poff / PAGE_SIZE;
1620 if (n)
1621 *page = nth_page(*page, n);
1622
1623 *poff = *poff % PAGE_SIZE;
1624 *plen -= off;
1625 }
1626
1627 static inline int __splice_segment(struct page *page, unsigned int poff,
1628 unsigned int plen, unsigned int *off,
1629 unsigned int *len, struct sk_buff *skb,
1630 struct splice_pipe_desc *spd, int linear,
1631 struct sock *sk,
1632 struct pipe_inode_info *pipe)
1633 {
1634 if (!*len)
1635 return 1;
1636
1637 /* skip this segment if already processed */
1638 if (*off >= plen) {
1639 *off -= plen;
1640 return 0;
1641 }
1642
1643 /* ignore any bits we already processed */
1644 if (*off) {
1645 __segment_seek(&page, &poff, &plen, *off);
1646 *off = 0;
1647 }
1648
1649 do {
1650 unsigned int flen = min(*len, plen);
1651
1652 /* the linear region may spread across several pages */
1653 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1654
1655 if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1656 return 1;
1657
1658 __segment_seek(&page, &poff, &plen, flen);
1659 *len -= flen;
1660
1661 } while (*len && plen);
1662
1663 return 0;
1664 }
1665
1666 /*
1667 * Map linear and fragment data from the skb to spd. It reports failure if the
1668 * pipe is full or if we already spliced the requested length.
1669 */
1670 static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1671 unsigned int *offset, unsigned int *len,
1672 struct splice_pipe_desc *spd, struct sock *sk)
1673 {
1674 int seg;
1675
1676 /*
1677 * map the linear part
1678 */
1679 if (__splice_segment(virt_to_page(skb->data),
1680 (unsigned long) skb->data & (PAGE_SIZE - 1),
1681 skb_headlen(skb),
1682 offset, len, skb, spd, 1, sk, pipe))
1683 return 1;
1684
1685 /*
1686 * then map the fragments
1687 */
1688 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1689 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1690
1691 if (__splice_segment(skb_frag_page(f),
1692 f->page_offset, skb_frag_size(f),
1693 offset, len, skb, spd, 0, sk, pipe))
1694 return 1;
1695 }
1696
1697 return 0;
1698 }
1699
1700 /*
1701 * Map data from the skb to a pipe. Should handle both the linear part,
1702 * the fragments, and the frag list. It does NOT handle frag lists within
1703 * the frag list, if such a thing exists. We'd probably need to recurse to
1704 * handle that cleanly.
1705 */
1706 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1707 struct pipe_inode_info *pipe, unsigned int tlen,
1708 unsigned int flags)
1709 {
1710 struct partial_page partial[PIPE_DEF_BUFFERS];
1711 struct page *pages[PIPE_DEF_BUFFERS];
1712 struct splice_pipe_desc spd = {
1713 .pages = pages,
1714 .partial = partial,
1715 .flags = flags,
1716 .ops = &sock_pipe_buf_ops,
1717 .spd_release = sock_spd_release,
1718 };
1719 struct sk_buff *frag_iter;
1720 struct sock *sk = skb->sk;
1721 int ret = 0;
1722
1723 if (splice_grow_spd(pipe, &spd))
1724 return -ENOMEM;
1725
1726 /*
1727 * __skb_splice_bits() only fails if the output has no room left,
1728 * so no point in going over the frag_list for the error case.
1729 */
1730 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1731 goto done;
1732 else if (!tlen)
1733 goto done;
1734
1735 /*
1736 * now see if we have a frag_list to map
1737 */
1738 skb_walk_frags(skb, frag_iter) {
1739 if (!tlen)
1740 break;
1741 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1742 break;
1743 }
1744
1745 done:
1746 if (spd.nr_pages) {
1747 /*
1748 * Drop the socket lock, otherwise we have reverse
1749 * locking dependencies between sk_lock and i_mutex
1750 * here as compared to sendfile(). We enter here
1751 * with the socket lock held, and splice_to_pipe() will
1752 * grab the pipe inode lock. For sendfile() emulation,
1753 * we call into ->sendpage() with the i_mutex lock held
1754 * and networking will grab the socket lock.
1755 */
1756 release_sock(sk);
1757 ret = splice_to_pipe(pipe, &spd);
1758 lock_sock(sk);
1759 }
1760
1761 splice_shrink_spd(pipe, &spd);
1762 return ret;
1763 }
1764
1765 /**
1766 * skb_store_bits - store bits from kernel buffer to skb
1767 * @skb: destination buffer
1768 * @offset: offset in destination
1769 * @from: source buffer
1770 * @len: number of bytes to copy
1771 *
1772 * Copy the specified number of bytes from the source buffer to the
1773 * destination skb. This function handles all the messy bits of
1774 * traversing fragment lists and such.
1775 */
1776
1777 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1778 {
1779 int start = skb_headlen(skb);
1780 struct sk_buff *frag_iter;
1781 int i, copy;
1782
1783 if (offset > (int)skb->len - len)
1784 goto fault;
1785
1786 if ((copy = start - offset) > 0) {
1787 if (copy > len)
1788 copy = len;
1789 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1790 if ((len -= copy) == 0)
1791 return 0;
1792 offset += copy;
1793 from += copy;
1794 }
1795
1796 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1797 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1798 int end;
1799
1800 WARN_ON(start > offset + len);
1801
1802 end = start + skb_frag_size(frag);
1803 if ((copy = end - offset) > 0) {
1804 u8 *vaddr;
1805
1806 if (copy > len)
1807 copy = len;
1808
1809 vaddr = kmap_atomic(skb_frag_page(frag));
1810 memcpy(vaddr + frag->page_offset + offset - start,
1811 from, copy);
1812 kunmap_atomic(vaddr);
1813
1814 if ((len -= copy) == 0)
1815 return 0;
1816 offset += copy;
1817 from += copy;
1818 }
1819 start = end;
1820 }
1821
1822 skb_walk_frags(skb, frag_iter) {
1823 int end;
1824
1825 WARN_ON(start > offset + len);
1826
1827 end = start + frag_iter->len;
1828 if ((copy = end - offset) > 0) {
1829 if (copy > len)
1830 copy = len;
1831 if (skb_store_bits(frag_iter, offset - start,
1832 from, copy))
1833 goto fault;
1834 if ((len -= copy) == 0)
1835 return 0;
1836 offset += copy;
1837 from += copy;
1838 }
1839 start = end;
1840 }
1841 if (!len)
1842 return 0;
1843
1844 fault:
1845 return -EFAULT;
1846 }
1847 EXPORT_SYMBOL(skb_store_bits);
1848
1849 /* Checksum skb data. */
1850
1851 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1852 int len, __wsum csum)
1853 {
1854 int start = skb_headlen(skb);
1855 int i, copy = start - offset;
1856 struct sk_buff *frag_iter;
1857 int pos = 0;
1858
1859 /* Checksum header. */
1860 if (copy > 0) {
1861 if (copy > len)
1862 copy = len;
1863 csum = csum_partial(skb->data + offset, copy, csum);
1864 if ((len -= copy) == 0)
1865 return csum;
1866 offset += copy;
1867 pos = copy;
1868 }
1869
1870 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1871 int end;
1872 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1873
1874 WARN_ON(start > offset + len);
1875
1876 end = start + skb_frag_size(frag);
1877 if ((copy = end - offset) > 0) {
1878 __wsum csum2;
1879 u8 *vaddr;
1880
1881 if (copy > len)
1882 copy = len;
1883 vaddr = kmap_atomic(skb_frag_page(frag));
1884 csum2 = csum_partial(vaddr + frag->page_offset +
1885 offset - start, copy, 0);
1886 kunmap_atomic(vaddr);
1887 csum = csum_block_add(csum, csum2, pos);
1888 if (!(len -= copy))
1889 return csum;
1890 offset += copy;
1891 pos += copy;
1892 }
1893 start = end;
1894 }
1895
1896 skb_walk_frags(skb, frag_iter) {
1897 int end;
1898
1899 WARN_ON(start > offset + len);
1900
1901 end = start + frag_iter->len;
1902 if ((copy = end - offset) > 0) {
1903 __wsum csum2;
1904 if (copy > len)
1905 copy = len;
1906 csum2 = skb_checksum(frag_iter, offset - start,
1907 copy, 0);
1908 csum = csum_block_add(csum, csum2, pos);
1909 if ((len -= copy) == 0)
1910 return csum;
1911 offset += copy;
1912 pos += copy;
1913 }
1914 start = end;
1915 }
1916 BUG_ON(len);
1917
1918 return csum;
1919 }
1920 EXPORT_SYMBOL(skb_checksum);
1921
1922 /* Both of above in one bottle. */
1923
1924 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1925 u8 *to, int len, __wsum csum)
1926 {
1927 int start = skb_headlen(skb);
1928 int i, copy = start - offset;
1929 struct sk_buff *frag_iter;
1930 int pos = 0;
1931
1932 /* Copy header. */
1933 if (copy > 0) {
1934 if (copy > len)
1935 copy = len;
1936 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1937 copy, csum);
1938 if ((len -= copy) == 0)
1939 return csum;
1940 offset += copy;
1941 to += copy;
1942 pos = copy;
1943 }
1944
1945 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1946 int end;
1947
1948 WARN_ON(start > offset + len);
1949
1950 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1951 if ((copy = end - offset) > 0) {
1952 __wsum csum2;
1953 u8 *vaddr;
1954 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1955
1956 if (copy > len)
1957 copy = len;
1958 vaddr = kmap_atomic(skb_frag_page(frag));
1959 csum2 = csum_partial_copy_nocheck(vaddr +
1960 frag->page_offset +
1961 offset - start, to,
1962 copy, 0);
1963 kunmap_atomic(vaddr);
1964 csum = csum_block_add(csum, csum2, pos);
1965 if (!(len -= copy))
1966 return csum;
1967 offset += copy;
1968 to += copy;
1969 pos += copy;
1970 }
1971 start = end;
1972 }
1973
1974 skb_walk_frags(skb, frag_iter) {
1975 __wsum csum2;
1976 int end;
1977
1978 WARN_ON(start > offset + len);
1979
1980 end = start + frag_iter->len;
1981 if ((copy = end - offset) > 0) {
1982 if (copy > len)
1983 copy = len;
1984 csum2 = skb_copy_and_csum_bits(frag_iter,
1985 offset - start,
1986 to, copy, 0);
1987 csum = csum_block_add(csum, csum2, pos);
1988 if ((len -= copy) == 0)
1989 return csum;
1990 offset += copy;
1991 to += copy;
1992 pos += copy;
1993 }
1994 start = end;
1995 }
1996 BUG_ON(len);
1997 return csum;
1998 }
1999 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2000
2001 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2002 {
2003 __wsum csum;
2004 long csstart;
2005
2006 if (skb->ip_summed == CHECKSUM_PARTIAL)
2007 csstart = skb_checksum_start_offset(skb);
2008 else
2009 csstart = skb_headlen(skb);
2010
2011 BUG_ON(csstart > skb_headlen(skb));
2012
2013 skb_copy_from_linear_data(skb, to, csstart);
2014
2015 csum = 0;
2016 if (csstart != skb->len)
2017 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2018 skb->len - csstart, 0);
2019
2020 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2021 long csstuff = csstart + skb->csum_offset;
2022
2023 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2024 }
2025 }
2026 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2027
2028 /**
2029 * skb_dequeue - remove from the head of the queue
2030 * @list: list to dequeue from
2031 *
2032 * Remove the head of the list. The list lock is taken so the function
2033 * may be used safely with other locking list functions. The head item is
2034 * returned or %NULL if the list is empty.
2035 */
2036
2037 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2038 {
2039 unsigned long flags;
2040 struct sk_buff *result;
2041
2042 spin_lock_irqsave(&list->lock, flags);
2043 result = __skb_dequeue(list);
2044 spin_unlock_irqrestore(&list->lock, flags);
2045 return result;
2046 }
2047 EXPORT_SYMBOL(skb_dequeue);
2048
2049 /**
2050 * skb_dequeue_tail - remove from the tail of the queue
2051 * @list: list to dequeue from
2052 *
2053 * Remove the tail of the list. The list lock is taken so the function
2054 * may be used safely with other locking list functions. The tail item is
2055 * returned or %NULL if the list is empty.
2056 */
2057 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2058 {
2059 unsigned long flags;
2060 struct sk_buff *result;
2061
2062 spin_lock_irqsave(&list->lock, flags);
2063 result = __skb_dequeue_tail(list);
2064 spin_unlock_irqrestore(&list->lock, flags);
2065 return result;
2066 }
2067 EXPORT_SYMBOL(skb_dequeue_tail);
2068
2069 /**
2070 * skb_queue_purge - empty a list
2071 * @list: list to empty
2072 *
2073 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2074 * the list and one reference dropped. This function takes the list
2075 * lock and is atomic with respect to other list locking functions.
2076 */
2077 void skb_queue_purge(struct sk_buff_head *list)
2078 {
2079 struct sk_buff *skb;
2080 while ((skb = skb_dequeue(list)) != NULL)
2081 kfree_skb(skb);
2082 }
2083 EXPORT_SYMBOL(skb_queue_purge);
2084
2085 /**
2086 * skb_queue_head - queue a buffer at the list head
2087 * @list: list to use
2088 * @newsk: buffer to queue
2089 *
2090 * Queue a buffer at the start of the list. This function takes the
2091 * list lock and can be used safely with other locking &sk_buff functions
2092 * safely.
2093 *
2094 * A buffer cannot be placed on two lists at the same time.
2095 */
2096 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2097 {
2098 unsigned long flags;
2099
2100 spin_lock_irqsave(&list->lock, flags);
2101 __skb_queue_head(list, newsk);
2102 spin_unlock_irqrestore(&list->lock, flags);
2103 }
2104 EXPORT_SYMBOL(skb_queue_head);
2105
2106 /**
2107 * skb_queue_tail - queue a buffer at the list tail
2108 * @list: list to use
2109 * @newsk: buffer to queue
2110 *
2111 * Queue a buffer at the tail of the list. This function takes the
2112 * list lock and can be used safely with other locking &sk_buff functions
2113 * safely.
2114 *
2115 * A buffer cannot be placed on two lists at the same time.
2116 */
2117 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2118 {
2119 unsigned long flags;
2120
2121 spin_lock_irqsave(&list->lock, flags);
2122 __skb_queue_tail(list, newsk);
2123 spin_unlock_irqrestore(&list->lock, flags);
2124 }
2125 EXPORT_SYMBOL(skb_queue_tail);
2126
2127 /**
2128 * skb_unlink - remove a buffer from a list
2129 * @skb: buffer to remove
2130 * @list: list to use
2131 *
2132 * Remove a packet from a list. The list locks are taken and this
2133 * function is atomic with respect to other list locked calls
2134 *
2135 * You must know what list the SKB is on.
2136 */
2137 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2138 {
2139 unsigned long flags;
2140
2141 spin_lock_irqsave(&list->lock, flags);
2142 __skb_unlink(skb, list);
2143 spin_unlock_irqrestore(&list->lock, flags);
2144 }
2145 EXPORT_SYMBOL(skb_unlink);
2146
2147 /**
2148 * skb_append - append a buffer
2149 * @old: buffer to insert after
2150 * @newsk: buffer to insert
2151 * @list: list to use
2152 *
2153 * Place a packet after a given packet in a list. The list locks are taken
2154 * and this function is atomic with respect to other list locked calls.
2155 * A buffer cannot be placed on two lists at the same time.
2156 */
2157 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2158 {
2159 unsigned long flags;
2160
2161 spin_lock_irqsave(&list->lock, flags);
2162 __skb_queue_after(list, old, newsk);
2163 spin_unlock_irqrestore(&list->lock, flags);
2164 }
2165 EXPORT_SYMBOL(skb_append);
2166
2167 /**
2168 * skb_insert - insert a buffer
2169 * @old: buffer to insert before
2170 * @newsk: buffer to insert
2171 * @list: list to use
2172 *
2173 * Place a packet before a given packet in a list. The list locks are
2174 * taken and this function is atomic with respect to other list locked
2175 * calls.
2176 *
2177 * A buffer cannot be placed on two lists at the same time.
2178 */
2179 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2180 {
2181 unsigned long flags;
2182
2183 spin_lock_irqsave(&list->lock, flags);
2184 __skb_insert(newsk, old->prev, old, list);
2185 spin_unlock_irqrestore(&list->lock, flags);
2186 }
2187 EXPORT_SYMBOL(skb_insert);
2188
2189 static inline void skb_split_inside_header(struct sk_buff *skb,
2190 struct sk_buff* skb1,
2191 const u32 len, const int pos)
2192 {
2193 int i;
2194
2195 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2196 pos - len);
2197 /* And move data appendix as is. */
2198 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2199 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2200
2201 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2202 skb_shinfo(skb)->nr_frags = 0;
2203 skb1->data_len = skb->data_len;
2204 skb1->len += skb1->data_len;
2205 skb->data_len = 0;
2206 skb->len = len;
2207 skb_set_tail_pointer(skb, len);
2208 }
2209
2210 static inline void skb_split_no_header(struct sk_buff *skb,
2211 struct sk_buff* skb1,
2212 const u32 len, int pos)
2213 {
2214 int i, k = 0;
2215 const int nfrags = skb_shinfo(skb)->nr_frags;
2216
2217 skb_shinfo(skb)->nr_frags = 0;
2218 skb1->len = skb1->data_len = skb->len - len;
2219 skb->len = len;
2220 skb->data_len = len - pos;
2221
2222 for (i = 0; i < nfrags; i++) {
2223 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2224
2225 if (pos + size > len) {
2226 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2227
2228 if (pos < len) {
2229 /* Split frag.
2230 * We have two variants in this case:
2231 * 1. Move all the frag to the second
2232 * part, if it is possible. F.e.
2233 * this approach is mandatory for TUX,
2234 * where splitting is expensive.
2235 * 2. Split is accurately. We make this.
2236 */
2237 skb_frag_ref(skb, i);
2238 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2239 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2240 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2241 skb_shinfo(skb)->nr_frags++;
2242 }
2243 k++;
2244 } else
2245 skb_shinfo(skb)->nr_frags++;
2246 pos += size;
2247 }
2248 skb_shinfo(skb1)->nr_frags = k;
2249 }
2250
2251 /**
2252 * skb_split - Split fragmented skb to two parts at length len.
2253 * @skb: the buffer to split
2254 * @skb1: the buffer to receive the second part
2255 * @len: new length for skb
2256 */
2257 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2258 {
2259 int pos = skb_headlen(skb);
2260
2261 if (len < pos) /* Split line is inside header. */
2262 skb_split_inside_header(skb, skb1, len, pos);
2263 else /* Second chunk has no header, nothing to copy. */
2264 skb_split_no_header(skb, skb1, len, pos);
2265 }
2266 EXPORT_SYMBOL(skb_split);
2267
2268 /* Shifting from/to a cloned skb is a no-go.
2269 *
2270 * Caller cannot keep skb_shinfo related pointers past calling here!
2271 */
2272 static int skb_prepare_for_shift(struct sk_buff *skb)
2273 {
2274 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2275 }
2276
2277 /**
2278 * skb_shift - Shifts paged data partially from skb to another
2279 * @tgt: buffer into which tail data gets added
2280 * @skb: buffer from which the paged data comes from
2281 * @shiftlen: shift up to this many bytes
2282 *
2283 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2284 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2285 * It's up to caller to free skb if everything was shifted.
2286 *
2287 * If @tgt runs out of frags, the whole operation is aborted.
2288 *
2289 * Skb cannot include anything else but paged data while tgt is allowed
2290 * to have non-paged data as well.
2291 *
2292 * TODO: full sized shift could be optimized but that would need
2293 * specialized skb free'er to handle frags without up-to-date nr_frags.
2294 */
2295 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2296 {
2297 int from, to, merge, todo;
2298 struct skb_frag_struct *fragfrom, *fragto;
2299
2300 BUG_ON(shiftlen > skb->len);
2301 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2302
2303 todo = shiftlen;
2304 from = 0;
2305 to = skb_shinfo(tgt)->nr_frags;
2306 fragfrom = &skb_shinfo(skb)->frags[from];
2307
2308 /* Actual merge is delayed until the point when we know we can
2309 * commit all, so that we don't have to undo partial changes
2310 */
2311 if (!to ||
2312 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2313 fragfrom->page_offset)) {
2314 merge = -1;
2315 } else {
2316 merge = to - 1;
2317
2318 todo -= skb_frag_size(fragfrom);
2319 if (todo < 0) {
2320 if (skb_prepare_for_shift(skb) ||
2321 skb_prepare_for_shift(tgt))
2322 return 0;
2323
2324 /* All previous frag pointers might be stale! */
2325 fragfrom = &skb_shinfo(skb)->frags[from];
2326 fragto = &skb_shinfo(tgt)->frags[merge];
2327
2328 skb_frag_size_add(fragto, shiftlen);
2329 skb_frag_size_sub(fragfrom, shiftlen);
2330 fragfrom->page_offset += shiftlen;
2331
2332 goto onlymerged;
2333 }
2334
2335 from++;
2336 }
2337
2338 /* Skip full, not-fitting skb to avoid expensive operations */
2339 if ((shiftlen == skb->len) &&
2340 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2341 return 0;
2342
2343 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2344 return 0;
2345
2346 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2347 if (to == MAX_SKB_FRAGS)
2348 return 0;
2349
2350 fragfrom = &skb_shinfo(skb)->frags[from];
2351 fragto = &skb_shinfo(tgt)->frags[to];
2352
2353 if (todo >= skb_frag_size(fragfrom)) {
2354 *fragto = *fragfrom;
2355 todo -= skb_frag_size(fragfrom);
2356 from++;
2357 to++;
2358
2359 } else {
2360 __skb_frag_ref(fragfrom);
2361 fragto->page = fragfrom->page;
2362 fragto->page_offset = fragfrom->page_offset;
2363 skb_frag_size_set(fragto, todo);
2364
2365 fragfrom->page_offset += todo;
2366 skb_frag_size_sub(fragfrom, todo);
2367 todo = 0;
2368
2369 to++;
2370 break;
2371 }
2372 }
2373
2374 /* Ready to "commit" this state change to tgt */
2375 skb_shinfo(tgt)->nr_frags = to;
2376
2377 if (merge >= 0) {
2378 fragfrom = &skb_shinfo(skb)->frags[0];
2379 fragto = &skb_shinfo(tgt)->frags[merge];
2380
2381 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2382 __skb_frag_unref(fragfrom);
2383 }
2384
2385 /* Reposition in the original skb */
2386 to = 0;
2387 while (from < skb_shinfo(skb)->nr_frags)
2388 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2389 skb_shinfo(skb)->nr_frags = to;
2390
2391 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2392
2393 onlymerged:
2394 /* Most likely the tgt won't ever need its checksum anymore, skb on
2395 * the other hand might need it if it needs to be resent
2396 */
2397 tgt->ip_summed = CHECKSUM_PARTIAL;
2398 skb->ip_summed = CHECKSUM_PARTIAL;
2399
2400 /* Yak, is it really working this way? Some helper please? */
2401 skb->len -= shiftlen;
2402 skb->data_len -= shiftlen;
2403 skb->truesize -= shiftlen;
2404 tgt->len += shiftlen;
2405 tgt->data_len += shiftlen;
2406 tgt->truesize += shiftlen;
2407
2408 return shiftlen;
2409 }
2410
2411 /**
2412 * skb_prepare_seq_read - Prepare a sequential read of skb data
2413 * @skb: the buffer to read
2414 * @from: lower offset of data to be read
2415 * @to: upper offset of data to be read
2416 * @st: state variable
2417 *
2418 * Initializes the specified state variable. Must be called before
2419 * invoking skb_seq_read() for the first time.
2420 */
2421 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2422 unsigned int to, struct skb_seq_state *st)
2423 {
2424 st->lower_offset = from;
2425 st->upper_offset = to;
2426 st->root_skb = st->cur_skb = skb;
2427 st->frag_idx = st->stepped_offset = 0;
2428 st->frag_data = NULL;
2429 }
2430 EXPORT_SYMBOL(skb_prepare_seq_read);
2431
2432 /**
2433 * skb_seq_read - Sequentially read skb data
2434 * @consumed: number of bytes consumed by the caller so far
2435 * @data: destination pointer for data to be returned
2436 * @st: state variable
2437 *
2438 * Reads a block of skb data at &consumed relative to the
2439 * lower offset specified to skb_prepare_seq_read(). Assigns
2440 * the head of the data block to &data and returns the length
2441 * of the block or 0 if the end of the skb data or the upper
2442 * offset has been reached.
2443 *
2444 * The caller is not required to consume all of the data
2445 * returned, i.e. &consumed is typically set to the number
2446 * of bytes already consumed and the next call to
2447 * skb_seq_read() will return the remaining part of the block.
2448 *
2449 * Note 1: The size of each block of data returned can be arbitrary,
2450 * this limitation is the cost for zerocopy seqeuental
2451 * reads of potentially non linear data.
2452 *
2453 * Note 2: Fragment lists within fragments are not implemented
2454 * at the moment, state->root_skb could be replaced with
2455 * a stack for this purpose.
2456 */
2457 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2458 struct skb_seq_state *st)
2459 {
2460 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2461 skb_frag_t *frag;
2462
2463 if (unlikely(abs_offset >= st->upper_offset))
2464 return 0;
2465
2466 next_skb:
2467 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2468
2469 if (abs_offset < block_limit && !st->frag_data) {
2470 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2471 return block_limit - abs_offset;
2472 }
2473
2474 if (st->frag_idx == 0 && !st->frag_data)
2475 st->stepped_offset += skb_headlen(st->cur_skb);
2476
2477 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2478 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2479 block_limit = skb_frag_size(frag) + st->stepped_offset;
2480
2481 if (abs_offset < block_limit) {
2482 if (!st->frag_data)
2483 st->frag_data = kmap_atomic(skb_frag_page(frag));
2484
2485 *data = (u8 *) st->frag_data + frag->page_offset +
2486 (abs_offset - st->stepped_offset);
2487
2488 return block_limit - abs_offset;
2489 }
2490
2491 if (st->frag_data) {
2492 kunmap_atomic(st->frag_data);
2493 st->frag_data = NULL;
2494 }
2495
2496 st->frag_idx++;
2497 st->stepped_offset += skb_frag_size(frag);
2498 }
2499
2500 if (st->frag_data) {
2501 kunmap_atomic(st->frag_data);
2502 st->frag_data = NULL;
2503 }
2504
2505 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2506 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2507 st->frag_idx = 0;
2508 goto next_skb;
2509 } else if (st->cur_skb->next) {
2510 st->cur_skb = st->cur_skb->next;
2511 st->frag_idx = 0;
2512 goto next_skb;
2513 }
2514
2515 return 0;
2516 }
2517 EXPORT_SYMBOL(skb_seq_read);
2518
2519 /**
2520 * skb_abort_seq_read - Abort a sequential read of skb data
2521 * @st: state variable
2522 *
2523 * Must be called if skb_seq_read() was not called until it
2524 * returned 0.
2525 */
2526 void skb_abort_seq_read(struct skb_seq_state *st)
2527 {
2528 if (st->frag_data)
2529 kunmap_atomic(st->frag_data);
2530 }
2531 EXPORT_SYMBOL(skb_abort_seq_read);
2532
2533 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2534
2535 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2536 struct ts_config *conf,
2537 struct ts_state *state)
2538 {
2539 return skb_seq_read(offset, text, TS_SKB_CB(state));
2540 }
2541
2542 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2543 {
2544 skb_abort_seq_read(TS_SKB_CB(state));
2545 }
2546
2547 /**
2548 * skb_find_text - Find a text pattern in skb data
2549 * @skb: the buffer to look in
2550 * @from: search offset
2551 * @to: search limit
2552 * @config: textsearch configuration
2553 * @state: uninitialized textsearch state variable
2554 *
2555 * Finds a pattern in the skb data according to the specified
2556 * textsearch configuration. Use textsearch_next() to retrieve
2557 * subsequent occurrences of the pattern. Returns the offset
2558 * to the first occurrence or UINT_MAX if no match was found.
2559 */
2560 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2561 unsigned int to, struct ts_config *config,
2562 struct ts_state *state)
2563 {
2564 unsigned int ret;
2565
2566 config->get_next_block = skb_ts_get_next_block;
2567 config->finish = skb_ts_finish;
2568
2569 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2570
2571 ret = textsearch_find(config, state);
2572 return (ret <= to - from ? ret : UINT_MAX);
2573 }
2574 EXPORT_SYMBOL(skb_find_text);
2575
2576 /**
2577 * skb_append_datato_frags: - append the user data to a skb
2578 * @sk: sock structure
2579 * @skb: skb structure to be appened with user data.
2580 * @getfrag: call back function to be used for getting the user data
2581 * @from: pointer to user message iov
2582 * @length: length of the iov message
2583 *
2584 * Description: This procedure append the user data in the fragment part
2585 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2586 */
2587 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2588 int (*getfrag)(void *from, char *to, int offset,
2589 int len, int odd, struct sk_buff *skb),
2590 void *from, int length)
2591 {
2592 int frg_cnt = 0;
2593 skb_frag_t *frag = NULL;
2594 struct page *page = NULL;
2595 int copy, left;
2596 int offset = 0;
2597 int ret;
2598
2599 do {
2600 /* Return error if we don't have space for new frag */
2601 frg_cnt = skb_shinfo(skb)->nr_frags;
2602 if (frg_cnt >= MAX_SKB_FRAGS)
2603 return -EFAULT;
2604
2605 /* allocate a new page for next frag */
2606 page = alloc_pages(sk->sk_allocation, 0);
2607
2608 /* If alloc_page fails just return failure and caller will
2609 * free previous allocated pages by doing kfree_skb()
2610 */
2611 if (page == NULL)
2612 return -ENOMEM;
2613
2614 /* initialize the next frag */
2615 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2616 skb->truesize += PAGE_SIZE;
2617 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2618
2619 /* get the new initialized frag */
2620 frg_cnt = skb_shinfo(skb)->nr_frags;
2621 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2622
2623 /* copy the user data to page */
2624 left = PAGE_SIZE - frag->page_offset;
2625 copy = (length > left)? left : length;
2626
2627 ret = getfrag(from, skb_frag_address(frag) + skb_frag_size(frag),
2628 offset, copy, 0, skb);
2629 if (ret < 0)
2630 return -EFAULT;
2631
2632 /* copy was successful so update the size parameters */
2633 skb_frag_size_add(frag, copy);
2634 skb->len += copy;
2635 skb->data_len += copy;
2636 offset += copy;
2637 length -= copy;
2638
2639 } while (length > 0);
2640
2641 return 0;
2642 }
2643 EXPORT_SYMBOL(skb_append_datato_frags);
2644
2645 /**
2646 * skb_pull_rcsum - pull skb and update receive checksum
2647 * @skb: buffer to update
2648 * @len: length of data pulled
2649 *
2650 * This function performs an skb_pull on the packet and updates
2651 * the CHECKSUM_COMPLETE checksum. It should be used on
2652 * receive path processing instead of skb_pull unless you know
2653 * that the checksum difference is zero (e.g., a valid IP header)
2654 * or you are setting ip_summed to CHECKSUM_NONE.
2655 */
2656 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2657 {
2658 BUG_ON(len > skb->len);
2659 skb->len -= len;
2660 BUG_ON(skb->len < skb->data_len);
2661 skb_postpull_rcsum(skb, skb->data, len);
2662 return skb->data += len;
2663 }
2664 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2665
2666 /**
2667 * skb_segment - Perform protocol segmentation on skb.
2668 * @skb: buffer to segment
2669 * @features: features for the output path (see dev->features)
2670 *
2671 * This function performs segmentation on the given skb. It returns
2672 * a pointer to the first in a list of new skbs for the segments.
2673 * In case of error it returns ERR_PTR(err).
2674 */
2675 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2676 {
2677 struct sk_buff *segs = NULL;
2678 struct sk_buff *tail = NULL;
2679 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2680 unsigned int mss = skb_shinfo(skb)->gso_size;
2681 unsigned int doffset = skb->data - skb_mac_header(skb);
2682 unsigned int offset = doffset;
2683 unsigned int headroom;
2684 unsigned int len;
2685 int sg = !!(features & NETIF_F_SG);
2686 int nfrags = skb_shinfo(skb)->nr_frags;
2687 int err = -ENOMEM;
2688 int i = 0;
2689 int pos;
2690
2691 __skb_push(skb, doffset);
2692 headroom = skb_headroom(skb);
2693 pos = skb_headlen(skb);
2694
2695 do {
2696 struct sk_buff *nskb;
2697 skb_frag_t *frag;
2698 int hsize;
2699 int size;
2700
2701 len = skb->len - offset;
2702 if (len > mss)
2703 len = mss;
2704
2705 hsize = skb_headlen(skb) - offset;
2706 if (hsize < 0)
2707 hsize = 0;
2708 if (hsize > len || !sg)
2709 hsize = len;
2710
2711 if (!hsize && i >= nfrags) {
2712 BUG_ON(fskb->len != len);
2713
2714 pos += len;
2715 nskb = skb_clone(fskb, GFP_ATOMIC);
2716 fskb = fskb->next;
2717
2718 if (unlikely(!nskb))
2719 goto err;
2720
2721 hsize = skb_end_pointer(nskb) - nskb->head;
2722 if (skb_cow_head(nskb, doffset + headroom)) {
2723 kfree_skb(nskb);
2724 goto err;
2725 }
2726
2727 nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2728 hsize;
2729 skb_release_head_state(nskb);
2730 __skb_push(nskb, doffset);
2731 } else {
2732 nskb = alloc_skb(hsize + doffset + headroom,
2733 GFP_ATOMIC);
2734
2735 if (unlikely(!nskb))
2736 goto err;
2737
2738 skb_reserve(nskb, headroom);
2739 __skb_put(nskb, doffset);
2740 }
2741
2742 if (segs)
2743 tail->next = nskb;
2744 else
2745 segs = nskb;
2746 tail = nskb;
2747
2748 __copy_skb_header(nskb, skb);
2749 nskb->mac_len = skb->mac_len;
2750
2751 /* nskb and skb might have different headroom */
2752 if (nskb->ip_summed == CHECKSUM_PARTIAL)
2753 nskb->csum_start += skb_headroom(nskb) - headroom;
2754
2755 skb_reset_mac_header(nskb);
2756 skb_set_network_header(nskb, skb->mac_len);
2757 nskb->transport_header = (nskb->network_header +
2758 skb_network_header_len(skb));
2759 skb_copy_from_linear_data(skb, nskb->data, doffset);
2760
2761 if (fskb != skb_shinfo(skb)->frag_list)
2762 continue;
2763
2764 if (!sg) {
2765 nskb->ip_summed = CHECKSUM_NONE;
2766 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2767 skb_put(nskb, len),
2768 len, 0);
2769 continue;
2770 }
2771
2772 frag = skb_shinfo(nskb)->frags;
2773
2774 skb_copy_from_linear_data_offset(skb, offset,
2775 skb_put(nskb, hsize), hsize);
2776
2777 while (pos < offset + len && i < nfrags) {
2778 *frag = skb_shinfo(skb)->frags[i];
2779 __skb_frag_ref(frag);
2780 size = skb_frag_size(frag);
2781
2782 if (pos < offset) {
2783 frag->page_offset += offset - pos;
2784 skb_frag_size_sub(frag, offset - pos);
2785 }
2786
2787 skb_shinfo(nskb)->nr_frags++;
2788
2789 if (pos + size <= offset + len) {
2790 i++;
2791 pos += size;
2792 } else {
2793 skb_frag_size_sub(frag, pos + size - (offset + len));
2794 goto skip_fraglist;
2795 }
2796
2797 frag++;
2798 }
2799
2800 if (pos < offset + len) {
2801 struct sk_buff *fskb2 = fskb;
2802
2803 BUG_ON(pos + fskb->len != offset + len);
2804
2805 pos += fskb->len;
2806 fskb = fskb->next;
2807
2808 if (fskb2->next) {
2809 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2810 if (!fskb2)
2811 goto err;
2812 } else
2813 skb_get(fskb2);
2814
2815 SKB_FRAG_ASSERT(nskb);
2816 skb_shinfo(nskb)->frag_list = fskb2;
2817 }
2818
2819 skip_fraglist:
2820 nskb->data_len = len - hsize;
2821 nskb->len += nskb->data_len;
2822 nskb->truesize += nskb->data_len;
2823 } while ((offset += len) < skb->len);
2824
2825 return segs;
2826
2827 err:
2828 while ((skb = segs)) {
2829 segs = skb->next;
2830 kfree_skb(skb);
2831 }
2832 return ERR_PTR(err);
2833 }
2834 EXPORT_SYMBOL_GPL(skb_segment);
2835
2836 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2837 {
2838 struct sk_buff *p = *head;
2839 struct sk_buff *nskb;
2840 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2841 struct skb_shared_info *pinfo = skb_shinfo(p);
2842 unsigned int headroom;
2843 unsigned int len = skb_gro_len(skb);
2844 unsigned int offset = skb_gro_offset(skb);
2845 unsigned int headlen = skb_headlen(skb);
2846
2847 if (p->len + len >= 65536)
2848 return -E2BIG;
2849
2850 if (pinfo->frag_list)
2851 goto merge;
2852 else if (headlen <= offset) {
2853 skb_frag_t *frag;
2854 skb_frag_t *frag2;
2855 int i = skbinfo->nr_frags;
2856 int nr_frags = pinfo->nr_frags + i;
2857
2858 offset -= headlen;
2859
2860 if (nr_frags > MAX_SKB_FRAGS)
2861 return -E2BIG;
2862
2863 pinfo->nr_frags = nr_frags;
2864 skbinfo->nr_frags = 0;
2865
2866 frag = pinfo->frags + nr_frags;
2867 frag2 = skbinfo->frags + i;
2868 do {
2869 *--frag = *--frag2;
2870 } while (--i);
2871
2872 frag->page_offset += offset;
2873 skb_frag_size_sub(frag, offset);
2874
2875 skb->truesize -= skb->data_len;
2876 skb->len -= skb->data_len;
2877 skb->data_len = 0;
2878
2879 NAPI_GRO_CB(skb)->free = 1;
2880 goto done;
2881 } else if (skb_gro_len(p) != pinfo->gso_size)
2882 return -E2BIG;
2883
2884 headroom = skb_headroom(p);
2885 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2886 if (unlikely(!nskb))
2887 return -ENOMEM;
2888
2889 __copy_skb_header(nskb, p);
2890 nskb->mac_len = p->mac_len;
2891
2892 skb_reserve(nskb, headroom);
2893 __skb_put(nskb, skb_gro_offset(p));
2894
2895 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2896 skb_set_network_header(nskb, skb_network_offset(p));
2897 skb_set_transport_header(nskb, skb_transport_offset(p));
2898
2899 __skb_pull(p, skb_gro_offset(p));
2900 memcpy(skb_mac_header(nskb), skb_mac_header(p),
2901 p->data - skb_mac_header(p));
2902
2903 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2904 skb_shinfo(nskb)->frag_list = p;
2905 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2906 pinfo->gso_size = 0;
2907 skb_header_release(p);
2908 nskb->prev = p;
2909
2910 nskb->data_len += p->len;
2911 nskb->truesize += p->truesize;
2912 nskb->len += p->len;
2913
2914 *head = nskb;
2915 nskb->next = p->next;
2916 p->next = NULL;
2917
2918 p = nskb;
2919
2920 merge:
2921 p->truesize += skb->truesize - len;
2922 if (offset > headlen) {
2923 unsigned int eat = offset - headlen;
2924
2925 skbinfo->frags[0].page_offset += eat;
2926 skb_frag_size_sub(&skbinfo->frags[0], eat);
2927 skb->data_len -= eat;
2928 skb->len -= eat;
2929 offset = headlen;
2930 }
2931
2932 __skb_pull(skb, offset);
2933
2934 p->prev->next = skb;
2935 p->prev = skb;
2936 skb_header_release(skb);
2937
2938 done:
2939 NAPI_GRO_CB(p)->count++;
2940 p->data_len += len;
2941 p->truesize += len;
2942 p->len += len;
2943
2944 NAPI_GRO_CB(skb)->same_flow = 1;
2945 return 0;
2946 }
2947 EXPORT_SYMBOL_GPL(skb_gro_receive);
2948
2949 void __init skb_init(void)
2950 {
2951 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2952 sizeof(struct sk_buff),
2953 0,
2954 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2955 NULL);
2956 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2957 (2*sizeof(struct sk_buff)) +
2958 sizeof(atomic_t),
2959 0,
2960 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2961 NULL);
2962 }
2963
2964 /**
2965 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2966 * @skb: Socket buffer containing the buffers to be mapped
2967 * @sg: The scatter-gather list to map into
2968 * @offset: The offset into the buffer's contents to start mapping
2969 * @len: Length of buffer space to be mapped
2970 *
2971 * Fill the specified scatter-gather list with mappings/pointers into a
2972 * region of the buffer space attached to a socket buffer.
2973 */
2974 static int
2975 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2976 {
2977 int start = skb_headlen(skb);
2978 int i, copy = start - offset;
2979 struct sk_buff *frag_iter;
2980 int elt = 0;
2981
2982 if (copy > 0) {
2983 if (copy > len)
2984 copy = len;
2985 sg_set_buf(sg, skb->data + offset, copy);
2986 elt++;
2987 if ((len -= copy) == 0)
2988 return elt;
2989 offset += copy;
2990 }
2991
2992 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2993 int end;
2994
2995 WARN_ON(start > offset + len);
2996
2997 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2998 if ((copy = end - offset) > 0) {
2999 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3000
3001 if (copy > len)
3002 copy = len;
3003 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3004 frag->page_offset+offset-start);
3005 elt++;
3006 if (!(len -= copy))
3007 return elt;
3008 offset += copy;
3009 }
3010 start = end;
3011 }
3012
3013 skb_walk_frags(skb, frag_iter) {
3014 int end;
3015
3016 WARN_ON(start > offset + len);
3017
3018 end = start + frag_iter->len;
3019 if ((copy = end - offset) > 0) {
3020 if (copy > len)
3021 copy = len;
3022 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3023 copy);
3024 if ((len -= copy) == 0)
3025 return elt;
3026 offset += copy;
3027 }
3028 start = end;
3029 }
3030 BUG_ON(len);
3031 return elt;
3032 }
3033
3034 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3035 {
3036 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3037
3038 sg_mark_end(&sg[nsg - 1]);
3039
3040 return nsg;
3041 }
3042 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3043
3044 /**
3045 * skb_cow_data - Check that a socket buffer's data buffers are writable
3046 * @skb: The socket buffer to check.
3047 * @tailbits: Amount of trailing space to be added
3048 * @trailer: Returned pointer to the skb where the @tailbits space begins
3049 *
3050 * Make sure that the data buffers attached to a socket buffer are
3051 * writable. If they are not, private copies are made of the data buffers
3052 * and the socket buffer is set to use these instead.
3053 *
3054 * If @tailbits is given, make sure that there is space to write @tailbits
3055 * bytes of data beyond current end of socket buffer. @trailer will be
3056 * set to point to the skb in which this space begins.
3057 *
3058 * The number of scatterlist elements required to completely map the
3059 * COW'd and extended socket buffer will be returned.
3060 */
3061 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3062 {
3063 int copyflag;
3064 int elt;
3065 struct sk_buff *skb1, **skb_p;
3066
3067 /* If skb is cloned or its head is paged, reallocate
3068 * head pulling out all the pages (pages are considered not writable
3069 * at the moment even if they are anonymous).
3070 */
3071 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3072 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3073 return -ENOMEM;
3074
3075 /* Easy case. Most of packets will go this way. */
3076 if (!skb_has_frag_list(skb)) {
3077 /* A little of trouble, not enough of space for trailer.
3078 * This should not happen, when stack is tuned to generate
3079 * good frames. OK, on miss we reallocate and reserve even more
3080 * space, 128 bytes is fair. */
3081
3082 if (skb_tailroom(skb) < tailbits &&
3083 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3084 return -ENOMEM;
3085
3086 /* Voila! */
3087 *trailer = skb;
3088 return 1;
3089 }
3090
3091 /* Misery. We are in troubles, going to mincer fragments... */
3092
3093 elt = 1;
3094 skb_p = &skb_shinfo(skb)->frag_list;
3095 copyflag = 0;
3096
3097 while ((skb1 = *skb_p) != NULL) {
3098 int ntail = 0;
3099
3100 /* The fragment is partially pulled by someone,
3101 * this can happen on input. Copy it and everything
3102 * after it. */
3103
3104 if (skb_shared(skb1))
3105 copyflag = 1;
3106
3107 /* If the skb is the last, worry about trailer. */
3108
3109 if (skb1->next == NULL && tailbits) {
3110 if (skb_shinfo(skb1)->nr_frags ||
3111 skb_has_frag_list(skb1) ||
3112 skb_tailroom(skb1) < tailbits)
3113 ntail = tailbits + 128;
3114 }
3115
3116 if (copyflag ||
3117 skb_cloned(skb1) ||
3118 ntail ||
3119 skb_shinfo(skb1)->nr_frags ||
3120 skb_has_frag_list(skb1)) {
3121 struct sk_buff *skb2;
3122
3123 /* Fuck, we are miserable poor guys... */
3124 if (ntail == 0)
3125 skb2 = skb_copy(skb1, GFP_ATOMIC);
3126 else
3127 skb2 = skb_copy_expand(skb1,
3128 skb_headroom(skb1),
3129 ntail,
3130 GFP_ATOMIC);
3131 if (unlikely(skb2 == NULL))
3132 return -ENOMEM;
3133
3134 if (skb1->sk)
3135 skb_set_owner_w(skb2, skb1->sk);
3136
3137 /* Looking around. Are we still alive?
3138 * OK, link new skb, drop old one */
3139
3140 skb2->next = skb1->next;
3141 *skb_p = skb2;
3142 kfree_skb(skb1);
3143 skb1 = skb2;
3144 }
3145 elt++;
3146 *trailer = skb1;
3147 skb_p = &skb1->next;
3148 }
3149
3150 return elt;
3151 }
3152 EXPORT_SYMBOL_GPL(skb_cow_data);
3153
3154 static void sock_rmem_free(struct sk_buff *skb)
3155 {
3156 struct sock *sk = skb->sk;
3157
3158 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3159 }
3160
3161 /*
3162 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3163 */
3164 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3165 {
3166 int len = skb->len;
3167
3168 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3169 (unsigned int)sk->sk_rcvbuf)
3170 return -ENOMEM;
3171
3172 skb_orphan(skb);
3173 skb->sk = sk;
3174 skb->destructor = sock_rmem_free;
3175 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3176
3177 /* before exiting rcu section, make sure dst is refcounted */
3178 skb_dst_force(skb);
3179
3180 skb_queue_tail(&sk->sk_error_queue, skb);
3181 if (!sock_flag(sk, SOCK_DEAD))
3182 sk->sk_data_ready(sk, len);
3183 return 0;
3184 }
3185 EXPORT_SYMBOL(sock_queue_err_skb);
3186
3187 void skb_tstamp_tx(struct sk_buff *orig_skb,
3188 struct skb_shared_hwtstamps *hwtstamps)
3189 {
3190 struct sock *sk = orig_skb->sk;
3191 struct sock_exterr_skb *serr;
3192 struct sk_buff *skb;
3193 int err;
3194
3195 if (!sk)
3196 return;
3197
3198 skb = skb_clone(orig_skb, GFP_ATOMIC);
3199 if (!skb)
3200 return;
3201
3202 if (hwtstamps) {
3203 *skb_hwtstamps(skb) =
3204 *hwtstamps;
3205 } else {
3206 /*
3207 * no hardware time stamps available,
3208 * so keep the shared tx_flags and only
3209 * store software time stamp
3210 */
3211 skb->tstamp = ktime_get_real();
3212 }
3213
3214 serr = SKB_EXT_ERR(skb);
3215 memset(serr, 0, sizeof(*serr));
3216 serr->ee.ee_errno = ENOMSG;
3217 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3218
3219 err = sock_queue_err_skb(sk, skb);
3220
3221 if (err)
3222 kfree_skb(skb);
3223 }
3224 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3225
3226 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3227 {
3228 struct sock *sk = skb->sk;
3229 struct sock_exterr_skb *serr;
3230 int err;
3231
3232 skb->wifi_acked_valid = 1;
3233 skb->wifi_acked = acked;
3234
3235 serr = SKB_EXT_ERR(skb);
3236 memset(serr, 0, sizeof(*serr));
3237 serr->ee.ee_errno = ENOMSG;
3238 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3239
3240 err = sock_queue_err_skb(sk, skb);
3241 if (err)
3242 kfree_skb(skb);
3243 }
3244 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3245
3246
3247 /**
3248 * skb_partial_csum_set - set up and verify partial csum values for packet
3249 * @skb: the skb to set
3250 * @start: the number of bytes after skb->data to start checksumming.
3251 * @off: the offset from start to place the checksum.
3252 *
3253 * For untrusted partially-checksummed packets, we need to make sure the values
3254 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3255 *
3256 * This function checks and sets those values and skb->ip_summed: if this
3257 * returns false you should drop the packet.
3258 */
3259 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3260 {
3261 if (unlikely(start > skb_headlen(skb)) ||
3262 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3263 if (net_ratelimit())
3264 printk(KERN_WARNING
3265 "bad partial csum: csum=%u/%u len=%u\n",
3266 start, off, skb_headlen(skb));
3267 return false;
3268 }
3269 skb->ip_summed = CHECKSUM_PARTIAL;
3270 skb->csum_start = skb_headroom(skb) + start;
3271 skb->csum_offset = off;
3272 return true;
3273 }
3274 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3275
3276 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3277 {
3278 if (net_ratelimit())
3279 pr_warning("%s: received packets cannot be forwarded"
3280 " while LRO is enabled\n", skb->dev->name);
3281 }
3282 EXPORT_SYMBOL(__skb_warn_lro_forwarding);