]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/skbuff.c
97c32c75e704af1f31b064e8f1e0475ff1505d67
[mirror_ubuntu-artful-kernel.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73
74 #include <asm/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79
80 struct kmem_cache *skbuff_head_cache __read_mostly;
81 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83 EXPORT_SYMBOL(sysctl_max_skb_frags);
84
85 /**
86 * skb_panic - private function for out-of-line support
87 * @skb: buffer
88 * @sz: size
89 * @addr: address
90 * @msg: skb_over_panic or skb_under_panic
91 *
92 * Out-of-line support for skb_put() and skb_push().
93 * Called via the wrapper skb_over_panic() or skb_under_panic().
94 * Keep out of line to prevent kernel bloat.
95 * __builtin_return_address is not used because it is not always reliable.
96 */
97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 const char msg[])
99 {
100 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 msg, addr, skb->len, sz, skb->head, skb->data,
102 (unsigned long)skb->tail, (unsigned long)skb->end,
103 skb->dev ? skb->dev->name : "<NULL>");
104 BUG();
105 }
106
107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108 {
109 skb_panic(skb, sz, addr, __func__);
110 }
111
112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 skb_panic(skb, sz, addr, __func__);
115 }
116
117 /*
118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119 * the caller if emergency pfmemalloc reserves are being used. If it is and
120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121 * may be used. Otherwise, the packet data may be discarded until enough
122 * memory is free
123 */
124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
126
127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 unsigned long ip, bool *pfmemalloc)
129 {
130 void *obj;
131 bool ret_pfmemalloc = false;
132
133 /*
134 * Try a regular allocation, when that fails and we're not entitled
135 * to the reserves, fail.
136 */
137 obj = kmalloc_node_track_caller(size,
138 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 node);
140 if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 goto out;
142
143 /* Try again but now we are using pfmemalloc reserves */
144 ret_pfmemalloc = true;
145 obj = kmalloc_node_track_caller(size, flags, node);
146
147 out:
148 if (pfmemalloc)
149 *pfmemalloc = ret_pfmemalloc;
150
151 return obj;
152 }
153
154 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
155 * 'private' fields and also do memory statistics to find all the
156 * [BEEP] leaks.
157 *
158 */
159
160 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
161 {
162 struct sk_buff *skb;
163
164 /* Get the HEAD */
165 skb = kmem_cache_alloc_node(skbuff_head_cache,
166 gfp_mask & ~__GFP_DMA, node);
167 if (!skb)
168 goto out;
169
170 /*
171 * Only clear those fields we need to clear, not those that we will
172 * actually initialise below. Hence, don't put any more fields after
173 * the tail pointer in struct sk_buff!
174 */
175 memset(skb, 0, offsetof(struct sk_buff, tail));
176 skb->head = NULL;
177 skb->truesize = sizeof(struct sk_buff);
178 atomic_set(&skb->users, 1);
179
180 skb->mac_header = (typeof(skb->mac_header))~0U;
181 out:
182 return skb;
183 }
184
185 /**
186 * __alloc_skb - allocate a network buffer
187 * @size: size to allocate
188 * @gfp_mask: allocation mask
189 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
190 * instead of head cache and allocate a cloned (child) skb.
191 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
192 * allocations in case the data is required for writeback
193 * @node: numa node to allocate memory on
194 *
195 * Allocate a new &sk_buff. The returned buffer has no headroom and a
196 * tail room of at least size bytes. The object has a reference count
197 * of one. The return is the buffer. On a failure the return is %NULL.
198 *
199 * Buffers may only be allocated from interrupts using a @gfp_mask of
200 * %GFP_ATOMIC.
201 */
202 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
203 int flags, int node)
204 {
205 struct kmem_cache *cache;
206 struct skb_shared_info *shinfo;
207 struct sk_buff *skb;
208 u8 *data;
209 bool pfmemalloc;
210
211 cache = (flags & SKB_ALLOC_FCLONE)
212 ? skbuff_fclone_cache : skbuff_head_cache;
213
214 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
215 gfp_mask |= __GFP_MEMALLOC;
216
217 /* Get the HEAD */
218 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
219 if (!skb)
220 goto out;
221 prefetchw(skb);
222
223 /* We do our best to align skb_shared_info on a separate cache
224 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
225 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
226 * Both skb->head and skb_shared_info are cache line aligned.
227 */
228 size = SKB_DATA_ALIGN(size);
229 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
230 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
231 if (!data)
232 goto nodata;
233 /* kmalloc(size) might give us more room than requested.
234 * Put skb_shared_info exactly at the end of allocated zone,
235 * to allow max possible filling before reallocation.
236 */
237 size = SKB_WITH_OVERHEAD(ksize(data));
238 prefetchw(data + size);
239
240 /*
241 * Only clear those fields we need to clear, not those that we will
242 * actually initialise below. Hence, don't put any more fields after
243 * the tail pointer in struct sk_buff!
244 */
245 memset(skb, 0, offsetof(struct sk_buff, tail));
246 /* Account for allocated memory : skb + skb->head */
247 skb->truesize = SKB_TRUESIZE(size);
248 skb->pfmemalloc = pfmemalloc;
249 atomic_set(&skb->users, 1);
250 skb->head = data;
251 skb->data = data;
252 skb_reset_tail_pointer(skb);
253 skb->end = skb->tail + size;
254 skb->mac_header = (typeof(skb->mac_header))~0U;
255 skb->transport_header = (typeof(skb->transport_header))~0U;
256
257 /* make sure we initialize shinfo sequentially */
258 shinfo = skb_shinfo(skb);
259 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
260 atomic_set(&shinfo->dataref, 1);
261 kmemcheck_annotate_variable(shinfo->destructor_arg);
262
263 if (flags & SKB_ALLOC_FCLONE) {
264 struct sk_buff_fclones *fclones;
265
266 fclones = container_of(skb, struct sk_buff_fclones, skb1);
267
268 kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
269 skb->fclone = SKB_FCLONE_ORIG;
270 atomic_set(&fclones->fclone_ref, 1);
271
272 fclones->skb2.fclone = SKB_FCLONE_CLONE;
273 fclones->skb2.pfmemalloc = pfmemalloc;
274 }
275 out:
276 return skb;
277 nodata:
278 kmem_cache_free(cache, skb);
279 skb = NULL;
280 goto out;
281 }
282 EXPORT_SYMBOL(__alloc_skb);
283
284 /**
285 * __build_skb - build a network buffer
286 * @data: data buffer provided by caller
287 * @frag_size: size of data, or 0 if head was kmalloced
288 *
289 * Allocate a new &sk_buff. Caller provides space holding head and
290 * skb_shared_info. @data must have been allocated by kmalloc() only if
291 * @frag_size is 0, otherwise data should come from the page allocator
292 * or vmalloc()
293 * The return is the new skb buffer.
294 * On a failure the return is %NULL, and @data is not freed.
295 * Notes :
296 * Before IO, driver allocates only data buffer where NIC put incoming frame
297 * Driver should add room at head (NET_SKB_PAD) and
298 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
299 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
300 * before giving packet to stack.
301 * RX rings only contains data buffers, not full skbs.
302 */
303 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
304 {
305 struct skb_shared_info *shinfo;
306 struct sk_buff *skb;
307 unsigned int size = frag_size ? : ksize(data);
308
309 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
310 if (!skb)
311 return NULL;
312
313 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
314
315 memset(skb, 0, offsetof(struct sk_buff, tail));
316 skb->truesize = SKB_TRUESIZE(size);
317 atomic_set(&skb->users, 1);
318 skb->head = data;
319 skb->data = data;
320 skb_reset_tail_pointer(skb);
321 skb->end = skb->tail + size;
322 skb->mac_header = (typeof(skb->mac_header))~0U;
323 skb->transport_header = (typeof(skb->transport_header))~0U;
324
325 /* make sure we initialize shinfo sequentially */
326 shinfo = skb_shinfo(skb);
327 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
328 atomic_set(&shinfo->dataref, 1);
329 kmemcheck_annotate_variable(shinfo->destructor_arg);
330
331 return skb;
332 }
333
334 /* build_skb() is wrapper over __build_skb(), that specifically
335 * takes care of skb->head and skb->pfmemalloc
336 * This means that if @frag_size is not zero, then @data must be backed
337 * by a page fragment, not kmalloc() or vmalloc()
338 */
339 struct sk_buff *build_skb(void *data, unsigned int frag_size)
340 {
341 struct sk_buff *skb = __build_skb(data, frag_size);
342
343 if (skb && frag_size) {
344 skb->head_frag = 1;
345 if (page_is_pfmemalloc(virt_to_head_page(data)))
346 skb->pfmemalloc = 1;
347 }
348 return skb;
349 }
350 EXPORT_SYMBOL(build_skb);
351
352 #define NAPI_SKB_CACHE_SIZE 64
353
354 struct napi_alloc_cache {
355 struct page_frag_cache page;
356 size_t skb_count;
357 void *skb_cache[NAPI_SKB_CACHE_SIZE];
358 };
359
360 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
361 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
362
363 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
364 {
365 struct page_frag_cache *nc;
366 unsigned long flags;
367 void *data;
368
369 local_irq_save(flags);
370 nc = this_cpu_ptr(&netdev_alloc_cache);
371 data = __alloc_page_frag(nc, fragsz, gfp_mask);
372 local_irq_restore(flags);
373 return data;
374 }
375
376 /**
377 * netdev_alloc_frag - allocate a page fragment
378 * @fragsz: fragment size
379 *
380 * Allocates a frag from a page for receive buffer.
381 * Uses GFP_ATOMIC allocations.
382 */
383 void *netdev_alloc_frag(unsigned int fragsz)
384 {
385 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
386 }
387 EXPORT_SYMBOL(netdev_alloc_frag);
388
389 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
390 {
391 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
392
393 return __alloc_page_frag(&nc->page, fragsz, gfp_mask);
394 }
395
396 void *napi_alloc_frag(unsigned int fragsz)
397 {
398 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
399 }
400 EXPORT_SYMBOL(napi_alloc_frag);
401
402 /**
403 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
404 * @dev: network device to receive on
405 * @len: length to allocate
406 * @gfp_mask: get_free_pages mask, passed to alloc_skb
407 *
408 * Allocate a new &sk_buff and assign it a usage count of one. The
409 * buffer has NET_SKB_PAD headroom built in. Users should allocate
410 * the headroom they think they need without accounting for the
411 * built in space. The built in space is used for optimisations.
412 *
413 * %NULL is returned if there is no free memory.
414 */
415 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
416 gfp_t gfp_mask)
417 {
418 struct page_frag_cache *nc;
419 unsigned long flags;
420 struct sk_buff *skb;
421 bool pfmemalloc;
422 void *data;
423
424 len += NET_SKB_PAD;
425
426 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
427 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
428 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
429 if (!skb)
430 goto skb_fail;
431 goto skb_success;
432 }
433
434 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
435 len = SKB_DATA_ALIGN(len);
436
437 if (sk_memalloc_socks())
438 gfp_mask |= __GFP_MEMALLOC;
439
440 local_irq_save(flags);
441
442 nc = this_cpu_ptr(&netdev_alloc_cache);
443 data = __alloc_page_frag(nc, len, gfp_mask);
444 pfmemalloc = nc->pfmemalloc;
445
446 local_irq_restore(flags);
447
448 if (unlikely(!data))
449 return NULL;
450
451 skb = __build_skb(data, len);
452 if (unlikely(!skb)) {
453 skb_free_frag(data);
454 return NULL;
455 }
456
457 /* use OR instead of assignment to avoid clearing of bits in mask */
458 if (pfmemalloc)
459 skb->pfmemalloc = 1;
460 skb->head_frag = 1;
461
462 skb_success:
463 skb_reserve(skb, NET_SKB_PAD);
464 skb->dev = dev;
465
466 skb_fail:
467 return skb;
468 }
469 EXPORT_SYMBOL(__netdev_alloc_skb);
470
471 /**
472 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
473 * @napi: napi instance this buffer was allocated for
474 * @len: length to allocate
475 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
476 *
477 * Allocate a new sk_buff for use in NAPI receive. This buffer will
478 * attempt to allocate the head from a special reserved region used
479 * only for NAPI Rx allocation. By doing this we can save several
480 * CPU cycles by avoiding having to disable and re-enable IRQs.
481 *
482 * %NULL is returned if there is no free memory.
483 */
484 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
485 gfp_t gfp_mask)
486 {
487 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
488 struct sk_buff *skb;
489 void *data;
490
491 len += NET_SKB_PAD + NET_IP_ALIGN;
492
493 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
494 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
495 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
496 if (!skb)
497 goto skb_fail;
498 goto skb_success;
499 }
500
501 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
502 len = SKB_DATA_ALIGN(len);
503
504 if (sk_memalloc_socks())
505 gfp_mask |= __GFP_MEMALLOC;
506
507 data = __alloc_page_frag(&nc->page, len, gfp_mask);
508 if (unlikely(!data))
509 return NULL;
510
511 skb = __build_skb(data, len);
512 if (unlikely(!skb)) {
513 skb_free_frag(data);
514 return NULL;
515 }
516
517 /* use OR instead of assignment to avoid clearing of bits in mask */
518 if (nc->page.pfmemalloc)
519 skb->pfmemalloc = 1;
520 skb->head_frag = 1;
521
522 skb_success:
523 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
524 skb->dev = napi->dev;
525
526 skb_fail:
527 return skb;
528 }
529 EXPORT_SYMBOL(__napi_alloc_skb);
530
531 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
532 int size, unsigned int truesize)
533 {
534 skb_fill_page_desc(skb, i, page, off, size);
535 skb->len += size;
536 skb->data_len += size;
537 skb->truesize += truesize;
538 }
539 EXPORT_SYMBOL(skb_add_rx_frag);
540
541 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
542 unsigned int truesize)
543 {
544 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
545
546 skb_frag_size_add(frag, size);
547 skb->len += size;
548 skb->data_len += size;
549 skb->truesize += truesize;
550 }
551 EXPORT_SYMBOL(skb_coalesce_rx_frag);
552
553 static void skb_drop_list(struct sk_buff **listp)
554 {
555 kfree_skb_list(*listp);
556 *listp = NULL;
557 }
558
559 static inline void skb_drop_fraglist(struct sk_buff *skb)
560 {
561 skb_drop_list(&skb_shinfo(skb)->frag_list);
562 }
563
564 static void skb_clone_fraglist(struct sk_buff *skb)
565 {
566 struct sk_buff *list;
567
568 skb_walk_frags(skb, list)
569 skb_get(list);
570 }
571
572 static void skb_free_head(struct sk_buff *skb)
573 {
574 unsigned char *head = skb->head;
575
576 if (skb->head_frag)
577 skb_free_frag(head);
578 else
579 kfree(head);
580 }
581
582 static void skb_release_data(struct sk_buff *skb)
583 {
584 struct skb_shared_info *shinfo = skb_shinfo(skb);
585 int i;
586
587 if (skb->cloned &&
588 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
589 &shinfo->dataref))
590 return;
591
592 for (i = 0; i < shinfo->nr_frags; i++)
593 __skb_frag_unref(&shinfo->frags[i]);
594
595 /*
596 * If skb buf is from userspace, we need to notify the caller
597 * the lower device DMA has done;
598 */
599 if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
600 struct ubuf_info *uarg;
601
602 uarg = shinfo->destructor_arg;
603 if (uarg->callback)
604 uarg->callback(uarg, true);
605 }
606
607 if (shinfo->frag_list)
608 kfree_skb_list(shinfo->frag_list);
609
610 skb_free_head(skb);
611 }
612
613 /*
614 * Free an skbuff by memory without cleaning the state.
615 */
616 static void kfree_skbmem(struct sk_buff *skb)
617 {
618 struct sk_buff_fclones *fclones;
619
620 switch (skb->fclone) {
621 case SKB_FCLONE_UNAVAILABLE:
622 kmem_cache_free(skbuff_head_cache, skb);
623 return;
624
625 case SKB_FCLONE_ORIG:
626 fclones = container_of(skb, struct sk_buff_fclones, skb1);
627
628 /* We usually free the clone (TX completion) before original skb
629 * This test would have no chance to be true for the clone,
630 * while here, branch prediction will be good.
631 */
632 if (atomic_read(&fclones->fclone_ref) == 1)
633 goto fastpath;
634 break;
635
636 default: /* SKB_FCLONE_CLONE */
637 fclones = container_of(skb, struct sk_buff_fclones, skb2);
638 break;
639 }
640 if (!atomic_dec_and_test(&fclones->fclone_ref))
641 return;
642 fastpath:
643 kmem_cache_free(skbuff_fclone_cache, fclones);
644 }
645
646 static void skb_release_head_state(struct sk_buff *skb)
647 {
648 skb_dst_drop(skb);
649 #ifdef CONFIG_XFRM
650 secpath_put(skb->sp);
651 #endif
652 if (skb->destructor) {
653 WARN_ON(in_irq());
654 skb->destructor(skb);
655 }
656 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
657 nf_conntrack_put(skb->nfct);
658 #endif
659 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
660 nf_bridge_put(skb->nf_bridge);
661 #endif
662 }
663
664 /* Free everything but the sk_buff shell. */
665 static void skb_release_all(struct sk_buff *skb)
666 {
667 skb_release_head_state(skb);
668 if (likely(skb->head))
669 skb_release_data(skb);
670 }
671
672 /**
673 * __kfree_skb - private function
674 * @skb: buffer
675 *
676 * Free an sk_buff. Release anything attached to the buffer.
677 * Clean the state. This is an internal helper function. Users should
678 * always call kfree_skb
679 */
680
681 void __kfree_skb(struct sk_buff *skb)
682 {
683 skb_release_all(skb);
684 kfree_skbmem(skb);
685 }
686 EXPORT_SYMBOL(__kfree_skb);
687
688 /**
689 * kfree_skb - free an sk_buff
690 * @skb: buffer to free
691 *
692 * Drop a reference to the buffer and free it if the usage count has
693 * hit zero.
694 */
695 void kfree_skb(struct sk_buff *skb)
696 {
697 if (unlikely(!skb))
698 return;
699 if (likely(atomic_read(&skb->users) == 1))
700 smp_rmb();
701 else if (likely(!atomic_dec_and_test(&skb->users)))
702 return;
703 trace_kfree_skb(skb, __builtin_return_address(0));
704 __kfree_skb(skb);
705 }
706 EXPORT_SYMBOL(kfree_skb);
707
708 void kfree_skb_list(struct sk_buff *segs)
709 {
710 while (segs) {
711 struct sk_buff *next = segs->next;
712
713 kfree_skb(segs);
714 segs = next;
715 }
716 }
717 EXPORT_SYMBOL(kfree_skb_list);
718
719 /**
720 * skb_tx_error - report an sk_buff xmit error
721 * @skb: buffer that triggered an error
722 *
723 * Report xmit error if a device callback is tracking this skb.
724 * skb must be freed afterwards.
725 */
726 void skb_tx_error(struct sk_buff *skb)
727 {
728 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
729 struct ubuf_info *uarg;
730
731 uarg = skb_shinfo(skb)->destructor_arg;
732 if (uarg->callback)
733 uarg->callback(uarg, false);
734 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
735 }
736 }
737 EXPORT_SYMBOL(skb_tx_error);
738
739 /**
740 * consume_skb - free an skbuff
741 * @skb: buffer to free
742 *
743 * Drop a ref to the buffer and free it if the usage count has hit zero
744 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
745 * is being dropped after a failure and notes that
746 */
747 void consume_skb(struct sk_buff *skb)
748 {
749 if (unlikely(!skb))
750 return;
751 if (likely(atomic_read(&skb->users) == 1))
752 smp_rmb();
753 else if (likely(!atomic_dec_and_test(&skb->users)))
754 return;
755 trace_consume_skb(skb);
756 __kfree_skb(skb);
757 }
758 EXPORT_SYMBOL(consume_skb);
759
760 void __kfree_skb_flush(void)
761 {
762 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
763
764 /* flush skb_cache if containing objects */
765 if (nc->skb_count) {
766 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
767 nc->skb_cache);
768 nc->skb_count = 0;
769 }
770 }
771
772 static inline void _kfree_skb_defer(struct sk_buff *skb)
773 {
774 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
775
776 /* drop skb->head and call any destructors for packet */
777 skb_release_all(skb);
778
779 /* record skb to CPU local list */
780 nc->skb_cache[nc->skb_count++] = skb;
781
782 #ifdef CONFIG_SLUB
783 /* SLUB writes into objects when freeing */
784 prefetchw(skb);
785 #endif
786
787 /* flush skb_cache if it is filled */
788 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
789 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
790 nc->skb_cache);
791 nc->skb_count = 0;
792 }
793 }
794 void __kfree_skb_defer(struct sk_buff *skb)
795 {
796 _kfree_skb_defer(skb);
797 }
798
799 void napi_consume_skb(struct sk_buff *skb, int budget)
800 {
801 if (unlikely(!skb))
802 return;
803
804 /* Zero budget indicate non-NAPI context called us, like netpoll */
805 if (unlikely(!budget)) {
806 dev_consume_skb_any(skb);
807 return;
808 }
809
810 if (likely(atomic_read(&skb->users) == 1))
811 smp_rmb();
812 else if (likely(!atomic_dec_and_test(&skb->users)))
813 return;
814 /* if reaching here SKB is ready to free */
815 trace_consume_skb(skb);
816
817 /* if SKB is a clone, don't handle this case */
818 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
819 __kfree_skb(skb);
820 return;
821 }
822
823 _kfree_skb_defer(skb);
824 }
825 EXPORT_SYMBOL(napi_consume_skb);
826
827 /* Make sure a field is enclosed inside headers_start/headers_end section */
828 #define CHECK_SKB_FIELD(field) \
829 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
830 offsetof(struct sk_buff, headers_start)); \
831 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
832 offsetof(struct sk_buff, headers_end)); \
833
834 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
835 {
836 new->tstamp = old->tstamp;
837 /* We do not copy old->sk */
838 new->dev = old->dev;
839 memcpy(new->cb, old->cb, sizeof(old->cb));
840 skb_dst_copy(new, old);
841 #ifdef CONFIG_XFRM
842 new->sp = secpath_get(old->sp);
843 #endif
844 __nf_copy(new, old, false);
845
846 /* Note : this field could be in headers_start/headers_end section
847 * It is not yet because we do not want to have a 16 bit hole
848 */
849 new->queue_mapping = old->queue_mapping;
850
851 memcpy(&new->headers_start, &old->headers_start,
852 offsetof(struct sk_buff, headers_end) -
853 offsetof(struct sk_buff, headers_start));
854 CHECK_SKB_FIELD(protocol);
855 CHECK_SKB_FIELD(csum);
856 CHECK_SKB_FIELD(hash);
857 CHECK_SKB_FIELD(priority);
858 CHECK_SKB_FIELD(skb_iif);
859 CHECK_SKB_FIELD(vlan_proto);
860 CHECK_SKB_FIELD(vlan_tci);
861 CHECK_SKB_FIELD(transport_header);
862 CHECK_SKB_FIELD(network_header);
863 CHECK_SKB_FIELD(mac_header);
864 CHECK_SKB_FIELD(inner_protocol);
865 CHECK_SKB_FIELD(inner_transport_header);
866 CHECK_SKB_FIELD(inner_network_header);
867 CHECK_SKB_FIELD(inner_mac_header);
868 CHECK_SKB_FIELD(mark);
869 #ifdef CONFIG_NETWORK_SECMARK
870 CHECK_SKB_FIELD(secmark);
871 #endif
872 #ifdef CONFIG_NET_RX_BUSY_POLL
873 CHECK_SKB_FIELD(napi_id);
874 #endif
875 #ifdef CONFIG_XPS
876 CHECK_SKB_FIELD(sender_cpu);
877 #endif
878 #ifdef CONFIG_NET_SCHED
879 CHECK_SKB_FIELD(tc_index);
880 #ifdef CONFIG_NET_CLS_ACT
881 CHECK_SKB_FIELD(tc_verd);
882 #endif
883 #endif
884
885 }
886
887 /*
888 * You should not add any new code to this function. Add it to
889 * __copy_skb_header above instead.
890 */
891 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
892 {
893 #define C(x) n->x = skb->x
894
895 n->next = n->prev = NULL;
896 n->sk = NULL;
897 __copy_skb_header(n, skb);
898
899 C(len);
900 C(data_len);
901 C(mac_len);
902 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
903 n->cloned = 1;
904 n->nohdr = 0;
905 n->destructor = NULL;
906 C(tail);
907 C(end);
908 C(head);
909 C(head_frag);
910 C(data);
911 C(truesize);
912 atomic_set(&n->users, 1);
913
914 atomic_inc(&(skb_shinfo(skb)->dataref));
915 skb->cloned = 1;
916
917 return n;
918 #undef C
919 }
920
921 /**
922 * skb_morph - morph one skb into another
923 * @dst: the skb to receive the contents
924 * @src: the skb to supply the contents
925 *
926 * This is identical to skb_clone except that the target skb is
927 * supplied by the user.
928 *
929 * The target skb is returned upon exit.
930 */
931 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
932 {
933 skb_release_all(dst);
934 return __skb_clone(dst, src);
935 }
936 EXPORT_SYMBOL_GPL(skb_morph);
937
938 /**
939 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
940 * @skb: the skb to modify
941 * @gfp_mask: allocation priority
942 *
943 * This must be called on SKBTX_DEV_ZEROCOPY skb.
944 * It will copy all frags into kernel and drop the reference
945 * to userspace pages.
946 *
947 * If this function is called from an interrupt gfp_mask() must be
948 * %GFP_ATOMIC.
949 *
950 * Returns 0 on success or a negative error code on failure
951 * to allocate kernel memory to copy to.
952 */
953 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
954 {
955 int i;
956 int num_frags = skb_shinfo(skb)->nr_frags;
957 struct page *page, *head = NULL;
958 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
959
960 for (i = 0; i < num_frags; i++) {
961 u8 *vaddr;
962 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
963
964 page = alloc_page(gfp_mask);
965 if (!page) {
966 while (head) {
967 struct page *next = (struct page *)page_private(head);
968 put_page(head);
969 head = next;
970 }
971 return -ENOMEM;
972 }
973 vaddr = kmap_atomic(skb_frag_page(f));
974 memcpy(page_address(page),
975 vaddr + f->page_offset, skb_frag_size(f));
976 kunmap_atomic(vaddr);
977 set_page_private(page, (unsigned long)head);
978 head = page;
979 }
980
981 /* skb frags release userspace buffers */
982 for (i = 0; i < num_frags; i++)
983 skb_frag_unref(skb, i);
984
985 uarg->callback(uarg, false);
986
987 /* skb frags point to kernel buffers */
988 for (i = num_frags - 1; i >= 0; i--) {
989 __skb_fill_page_desc(skb, i, head, 0,
990 skb_shinfo(skb)->frags[i].size);
991 head = (struct page *)page_private(head);
992 }
993
994 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
995 return 0;
996 }
997 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
998
999 /**
1000 * skb_clone - duplicate an sk_buff
1001 * @skb: buffer to clone
1002 * @gfp_mask: allocation priority
1003 *
1004 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1005 * copies share the same packet data but not structure. The new
1006 * buffer has a reference count of 1. If the allocation fails the
1007 * function returns %NULL otherwise the new buffer is returned.
1008 *
1009 * If this function is called from an interrupt gfp_mask() must be
1010 * %GFP_ATOMIC.
1011 */
1012
1013 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1014 {
1015 struct sk_buff_fclones *fclones = container_of(skb,
1016 struct sk_buff_fclones,
1017 skb1);
1018 struct sk_buff *n;
1019
1020 if (skb_orphan_frags(skb, gfp_mask))
1021 return NULL;
1022
1023 if (skb->fclone == SKB_FCLONE_ORIG &&
1024 atomic_read(&fclones->fclone_ref) == 1) {
1025 n = &fclones->skb2;
1026 atomic_set(&fclones->fclone_ref, 2);
1027 } else {
1028 if (skb_pfmemalloc(skb))
1029 gfp_mask |= __GFP_MEMALLOC;
1030
1031 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1032 if (!n)
1033 return NULL;
1034
1035 kmemcheck_annotate_bitfield(n, flags1);
1036 n->fclone = SKB_FCLONE_UNAVAILABLE;
1037 }
1038
1039 return __skb_clone(n, skb);
1040 }
1041 EXPORT_SYMBOL(skb_clone);
1042
1043 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1044 {
1045 /* Only adjust this if it actually is csum_start rather than csum */
1046 if (skb->ip_summed == CHECKSUM_PARTIAL)
1047 skb->csum_start += off;
1048 /* {transport,network,mac}_header and tail are relative to skb->head */
1049 skb->transport_header += off;
1050 skb->network_header += off;
1051 if (skb_mac_header_was_set(skb))
1052 skb->mac_header += off;
1053 skb->inner_transport_header += off;
1054 skb->inner_network_header += off;
1055 skb->inner_mac_header += off;
1056 }
1057
1058 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1059 {
1060 __copy_skb_header(new, old);
1061
1062 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1063 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1064 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1065 }
1066
1067 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1068 {
1069 if (skb_pfmemalloc(skb))
1070 return SKB_ALLOC_RX;
1071 return 0;
1072 }
1073
1074 /**
1075 * skb_copy - create private copy of an sk_buff
1076 * @skb: buffer to copy
1077 * @gfp_mask: allocation priority
1078 *
1079 * Make a copy of both an &sk_buff and its data. This is used when the
1080 * caller wishes to modify the data and needs a private copy of the
1081 * data to alter. Returns %NULL on failure or the pointer to the buffer
1082 * on success. The returned buffer has a reference count of 1.
1083 *
1084 * As by-product this function converts non-linear &sk_buff to linear
1085 * one, so that &sk_buff becomes completely private and caller is allowed
1086 * to modify all the data of returned buffer. This means that this
1087 * function is not recommended for use in circumstances when only
1088 * header is going to be modified. Use pskb_copy() instead.
1089 */
1090
1091 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1092 {
1093 int headerlen = skb_headroom(skb);
1094 unsigned int size = skb_end_offset(skb) + skb->data_len;
1095 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1096 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1097
1098 if (!n)
1099 return NULL;
1100
1101 /* Set the data pointer */
1102 skb_reserve(n, headerlen);
1103 /* Set the tail pointer and length */
1104 skb_put(n, skb->len);
1105
1106 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1107 BUG();
1108
1109 copy_skb_header(n, skb);
1110 return n;
1111 }
1112 EXPORT_SYMBOL(skb_copy);
1113
1114 /**
1115 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1116 * @skb: buffer to copy
1117 * @headroom: headroom of new skb
1118 * @gfp_mask: allocation priority
1119 * @fclone: if true allocate the copy of the skb from the fclone
1120 * cache instead of the head cache; it is recommended to set this
1121 * to true for the cases where the copy will likely be cloned
1122 *
1123 * Make a copy of both an &sk_buff and part of its data, located
1124 * in header. Fragmented data remain shared. This is used when
1125 * the caller wishes to modify only header of &sk_buff and needs
1126 * private copy of the header to alter. Returns %NULL on failure
1127 * or the pointer to the buffer on success.
1128 * The returned buffer has a reference count of 1.
1129 */
1130
1131 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1132 gfp_t gfp_mask, bool fclone)
1133 {
1134 unsigned int size = skb_headlen(skb) + headroom;
1135 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1136 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1137
1138 if (!n)
1139 goto out;
1140
1141 /* Set the data pointer */
1142 skb_reserve(n, headroom);
1143 /* Set the tail pointer and length */
1144 skb_put(n, skb_headlen(skb));
1145 /* Copy the bytes */
1146 skb_copy_from_linear_data(skb, n->data, n->len);
1147
1148 n->truesize += skb->data_len;
1149 n->data_len = skb->data_len;
1150 n->len = skb->len;
1151
1152 if (skb_shinfo(skb)->nr_frags) {
1153 int i;
1154
1155 if (skb_orphan_frags(skb, gfp_mask)) {
1156 kfree_skb(n);
1157 n = NULL;
1158 goto out;
1159 }
1160 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1161 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1162 skb_frag_ref(skb, i);
1163 }
1164 skb_shinfo(n)->nr_frags = i;
1165 }
1166
1167 if (skb_has_frag_list(skb)) {
1168 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1169 skb_clone_fraglist(n);
1170 }
1171
1172 copy_skb_header(n, skb);
1173 out:
1174 return n;
1175 }
1176 EXPORT_SYMBOL(__pskb_copy_fclone);
1177
1178 /**
1179 * pskb_expand_head - reallocate header of &sk_buff
1180 * @skb: buffer to reallocate
1181 * @nhead: room to add at head
1182 * @ntail: room to add at tail
1183 * @gfp_mask: allocation priority
1184 *
1185 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1186 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1187 * reference count of 1. Returns zero in the case of success or error,
1188 * if expansion failed. In the last case, &sk_buff is not changed.
1189 *
1190 * All the pointers pointing into skb header may change and must be
1191 * reloaded after call to this function.
1192 */
1193
1194 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1195 gfp_t gfp_mask)
1196 {
1197 int i;
1198 u8 *data;
1199 int size = nhead + skb_end_offset(skb) + ntail;
1200 long off;
1201
1202 BUG_ON(nhead < 0);
1203
1204 if (skb_shared(skb))
1205 BUG();
1206
1207 size = SKB_DATA_ALIGN(size);
1208
1209 if (skb_pfmemalloc(skb))
1210 gfp_mask |= __GFP_MEMALLOC;
1211 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1212 gfp_mask, NUMA_NO_NODE, NULL);
1213 if (!data)
1214 goto nodata;
1215 size = SKB_WITH_OVERHEAD(ksize(data));
1216
1217 /* Copy only real data... and, alas, header. This should be
1218 * optimized for the cases when header is void.
1219 */
1220 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1221
1222 memcpy((struct skb_shared_info *)(data + size),
1223 skb_shinfo(skb),
1224 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1225
1226 /*
1227 * if shinfo is shared we must drop the old head gracefully, but if it
1228 * is not we can just drop the old head and let the existing refcount
1229 * be since all we did is relocate the values
1230 */
1231 if (skb_cloned(skb)) {
1232 /* copy this zero copy skb frags */
1233 if (skb_orphan_frags(skb, gfp_mask))
1234 goto nofrags;
1235 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1236 skb_frag_ref(skb, i);
1237
1238 if (skb_has_frag_list(skb))
1239 skb_clone_fraglist(skb);
1240
1241 skb_release_data(skb);
1242 } else {
1243 skb_free_head(skb);
1244 }
1245 off = (data + nhead) - skb->head;
1246
1247 skb->head = data;
1248 skb->head_frag = 0;
1249 skb->data += off;
1250 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1251 skb->end = size;
1252 off = nhead;
1253 #else
1254 skb->end = skb->head + size;
1255 #endif
1256 skb->tail += off;
1257 skb_headers_offset_update(skb, nhead);
1258 skb->cloned = 0;
1259 skb->hdr_len = 0;
1260 skb->nohdr = 0;
1261 atomic_set(&skb_shinfo(skb)->dataref, 1);
1262 return 0;
1263
1264 nofrags:
1265 kfree(data);
1266 nodata:
1267 return -ENOMEM;
1268 }
1269 EXPORT_SYMBOL(pskb_expand_head);
1270
1271 /* Make private copy of skb with writable head and some headroom */
1272
1273 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1274 {
1275 struct sk_buff *skb2;
1276 int delta = headroom - skb_headroom(skb);
1277
1278 if (delta <= 0)
1279 skb2 = pskb_copy(skb, GFP_ATOMIC);
1280 else {
1281 skb2 = skb_clone(skb, GFP_ATOMIC);
1282 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1283 GFP_ATOMIC)) {
1284 kfree_skb(skb2);
1285 skb2 = NULL;
1286 }
1287 }
1288 return skb2;
1289 }
1290 EXPORT_SYMBOL(skb_realloc_headroom);
1291
1292 /**
1293 * skb_copy_expand - copy and expand sk_buff
1294 * @skb: buffer to copy
1295 * @newheadroom: new free bytes at head
1296 * @newtailroom: new free bytes at tail
1297 * @gfp_mask: allocation priority
1298 *
1299 * Make a copy of both an &sk_buff and its data and while doing so
1300 * allocate additional space.
1301 *
1302 * This is used when the caller wishes to modify the data and needs a
1303 * private copy of the data to alter as well as more space for new fields.
1304 * Returns %NULL on failure or the pointer to the buffer
1305 * on success. The returned buffer has a reference count of 1.
1306 *
1307 * You must pass %GFP_ATOMIC as the allocation priority if this function
1308 * is called from an interrupt.
1309 */
1310 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1311 int newheadroom, int newtailroom,
1312 gfp_t gfp_mask)
1313 {
1314 /*
1315 * Allocate the copy buffer
1316 */
1317 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1318 gfp_mask, skb_alloc_rx_flag(skb),
1319 NUMA_NO_NODE);
1320 int oldheadroom = skb_headroom(skb);
1321 int head_copy_len, head_copy_off;
1322
1323 if (!n)
1324 return NULL;
1325
1326 skb_reserve(n, newheadroom);
1327
1328 /* Set the tail pointer and length */
1329 skb_put(n, skb->len);
1330
1331 head_copy_len = oldheadroom;
1332 head_copy_off = 0;
1333 if (newheadroom <= head_copy_len)
1334 head_copy_len = newheadroom;
1335 else
1336 head_copy_off = newheadroom - head_copy_len;
1337
1338 /* Copy the linear header and data. */
1339 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1340 skb->len + head_copy_len))
1341 BUG();
1342
1343 copy_skb_header(n, skb);
1344
1345 skb_headers_offset_update(n, newheadroom - oldheadroom);
1346
1347 return n;
1348 }
1349 EXPORT_SYMBOL(skb_copy_expand);
1350
1351 /**
1352 * skb_pad - zero pad the tail of an skb
1353 * @skb: buffer to pad
1354 * @pad: space to pad
1355 *
1356 * Ensure that a buffer is followed by a padding area that is zero
1357 * filled. Used by network drivers which may DMA or transfer data
1358 * beyond the buffer end onto the wire.
1359 *
1360 * May return error in out of memory cases. The skb is freed on error.
1361 */
1362
1363 int skb_pad(struct sk_buff *skb, int pad)
1364 {
1365 int err;
1366 int ntail;
1367
1368 /* If the skbuff is non linear tailroom is always zero.. */
1369 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1370 memset(skb->data+skb->len, 0, pad);
1371 return 0;
1372 }
1373
1374 ntail = skb->data_len + pad - (skb->end - skb->tail);
1375 if (likely(skb_cloned(skb) || ntail > 0)) {
1376 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1377 if (unlikely(err))
1378 goto free_skb;
1379 }
1380
1381 /* FIXME: The use of this function with non-linear skb's really needs
1382 * to be audited.
1383 */
1384 err = skb_linearize(skb);
1385 if (unlikely(err))
1386 goto free_skb;
1387
1388 memset(skb->data + skb->len, 0, pad);
1389 return 0;
1390
1391 free_skb:
1392 kfree_skb(skb);
1393 return err;
1394 }
1395 EXPORT_SYMBOL(skb_pad);
1396
1397 /**
1398 * pskb_put - add data to the tail of a potentially fragmented buffer
1399 * @skb: start of the buffer to use
1400 * @tail: tail fragment of the buffer to use
1401 * @len: amount of data to add
1402 *
1403 * This function extends the used data area of the potentially
1404 * fragmented buffer. @tail must be the last fragment of @skb -- or
1405 * @skb itself. If this would exceed the total buffer size the kernel
1406 * will panic. A pointer to the first byte of the extra data is
1407 * returned.
1408 */
1409
1410 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1411 {
1412 if (tail != skb) {
1413 skb->data_len += len;
1414 skb->len += len;
1415 }
1416 return skb_put(tail, len);
1417 }
1418 EXPORT_SYMBOL_GPL(pskb_put);
1419
1420 /**
1421 * skb_put - add data to a buffer
1422 * @skb: buffer to use
1423 * @len: amount of data to add
1424 *
1425 * This function extends the used data area of the buffer. If this would
1426 * exceed the total buffer size the kernel will panic. A pointer to the
1427 * first byte of the extra data is returned.
1428 */
1429 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1430 {
1431 unsigned char *tmp = skb_tail_pointer(skb);
1432 SKB_LINEAR_ASSERT(skb);
1433 skb->tail += len;
1434 skb->len += len;
1435 if (unlikely(skb->tail > skb->end))
1436 skb_over_panic(skb, len, __builtin_return_address(0));
1437 return tmp;
1438 }
1439 EXPORT_SYMBOL(skb_put);
1440
1441 /**
1442 * skb_push - add data to the start of a buffer
1443 * @skb: buffer to use
1444 * @len: amount of data to add
1445 *
1446 * This function extends the used data area of the buffer at the buffer
1447 * start. If this would exceed the total buffer headroom the kernel will
1448 * panic. A pointer to the first byte of the extra data is returned.
1449 */
1450 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1451 {
1452 skb->data -= len;
1453 skb->len += len;
1454 if (unlikely(skb->data<skb->head))
1455 skb_under_panic(skb, len, __builtin_return_address(0));
1456 return skb->data;
1457 }
1458 EXPORT_SYMBOL(skb_push);
1459
1460 /**
1461 * skb_pull - remove data from the start of a buffer
1462 * @skb: buffer to use
1463 * @len: amount of data to remove
1464 *
1465 * This function removes data from the start of a buffer, returning
1466 * the memory to the headroom. A pointer to the next data in the buffer
1467 * is returned. Once the data has been pulled future pushes will overwrite
1468 * the old data.
1469 */
1470 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1471 {
1472 return skb_pull_inline(skb, len);
1473 }
1474 EXPORT_SYMBOL(skb_pull);
1475
1476 /**
1477 * skb_trim - remove end from a buffer
1478 * @skb: buffer to alter
1479 * @len: new length
1480 *
1481 * Cut the length of a buffer down by removing data from the tail. If
1482 * the buffer is already under the length specified it is not modified.
1483 * The skb must be linear.
1484 */
1485 void skb_trim(struct sk_buff *skb, unsigned int len)
1486 {
1487 if (skb->len > len)
1488 __skb_trim(skb, len);
1489 }
1490 EXPORT_SYMBOL(skb_trim);
1491
1492 /* Trims skb to length len. It can change skb pointers.
1493 */
1494
1495 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1496 {
1497 struct sk_buff **fragp;
1498 struct sk_buff *frag;
1499 int offset = skb_headlen(skb);
1500 int nfrags = skb_shinfo(skb)->nr_frags;
1501 int i;
1502 int err;
1503
1504 if (skb_cloned(skb) &&
1505 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1506 return err;
1507
1508 i = 0;
1509 if (offset >= len)
1510 goto drop_pages;
1511
1512 for (; i < nfrags; i++) {
1513 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1514
1515 if (end < len) {
1516 offset = end;
1517 continue;
1518 }
1519
1520 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1521
1522 drop_pages:
1523 skb_shinfo(skb)->nr_frags = i;
1524
1525 for (; i < nfrags; i++)
1526 skb_frag_unref(skb, i);
1527
1528 if (skb_has_frag_list(skb))
1529 skb_drop_fraglist(skb);
1530 goto done;
1531 }
1532
1533 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1534 fragp = &frag->next) {
1535 int end = offset + frag->len;
1536
1537 if (skb_shared(frag)) {
1538 struct sk_buff *nfrag;
1539
1540 nfrag = skb_clone(frag, GFP_ATOMIC);
1541 if (unlikely(!nfrag))
1542 return -ENOMEM;
1543
1544 nfrag->next = frag->next;
1545 consume_skb(frag);
1546 frag = nfrag;
1547 *fragp = frag;
1548 }
1549
1550 if (end < len) {
1551 offset = end;
1552 continue;
1553 }
1554
1555 if (end > len &&
1556 unlikely((err = pskb_trim(frag, len - offset))))
1557 return err;
1558
1559 if (frag->next)
1560 skb_drop_list(&frag->next);
1561 break;
1562 }
1563
1564 done:
1565 if (len > skb_headlen(skb)) {
1566 skb->data_len -= skb->len - len;
1567 skb->len = len;
1568 } else {
1569 skb->len = len;
1570 skb->data_len = 0;
1571 skb_set_tail_pointer(skb, len);
1572 }
1573
1574 return 0;
1575 }
1576 EXPORT_SYMBOL(___pskb_trim);
1577
1578 /**
1579 * __pskb_pull_tail - advance tail of skb header
1580 * @skb: buffer to reallocate
1581 * @delta: number of bytes to advance tail
1582 *
1583 * The function makes a sense only on a fragmented &sk_buff,
1584 * it expands header moving its tail forward and copying necessary
1585 * data from fragmented part.
1586 *
1587 * &sk_buff MUST have reference count of 1.
1588 *
1589 * Returns %NULL (and &sk_buff does not change) if pull failed
1590 * or value of new tail of skb in the case of success.
1591 *
1592 * All the pointers pointing into skb header may change and must be
1593 * reloaded after call to this function.
1594 */
1595
1596 /* Moves tail of skb head forward, copying data from fragmented part,
1597 * when it is necessary.
1598 * 1. It may fail due to malloc failure.
1599 * 2. It may change skb pointers.
1600 *
1601 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1602 */
1603 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1604 {
1605 /* If skb has not enough free space at tail, get new one
1606 * plus 128 bytes for future expansions. If we have enough
1607 * room at tail, reallocate without expansion only if skb is cloned.
1608 */
1609 int i, k, eat = (skb->tail + delta) - skb->end;
1610
1611 if (eat > 0 || skb_cloned(skb)) {
1612 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1613 GFP_ATOMIC))
1614 return NULL;
1615 }
1616
1617 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1618 BUG();
1619
1620 /* Optimization: no fragments, no reasons to preestimate
1621 * size of pulled pages. Superb.
1622 */
1623 if (!skb_has_frag_list(skb))
1624 goto pull_pages;
1625
1626 /* Estimate size of pulled pages. */
1627 eat = delta;
1628 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1629 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1630
1631 if (size >= eat)
1632 goto pull_pages;
1633 eat -= size;
1634 }
1635
1636 /* If we need update frag list, we are in troubles.
1637 * Certainly, it possible to add an offset to skb data,
1638 * but taking into account that pulling is expected to
1639 * be very rare operation, it is worth to fight against
1640 * further bloating skb head and crucify ourselves here instead.
1641 * Pure masohism, indeed. 8)8)
1642 */
1643 if (eat) {
1644 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1645 struct sk_buff *clone = NULL;
1646 struct sk_buff *insp = NULL;
1647
1648 do {
1649 BUG_ON(!list);
1650
1651 if (list->len <= eat) {
1652 /* Eaten as whole. */
1653 eat -= list->len;
1654 list = list->next;
1655 insp = list;
1656 } else {
1657 /* Eaten partially. */
1658
1659 if (skb_shared(list)) {
1660 /* Sucks! We need to fork list. :-( */
1661 clone = skb_clone(list, GFP_ATOMIC);
1662 if (!clone)
1663 return NULL;
1664 insp = list->next;
1665 list = clone;
1666 } else {
1667 /* This may be pulled without
1668 * problems. */
1669 insp = list;
1670 }
1671 if (!pskb_pull(list, eat)) {
1672 kfree_skb(clone);
1673 return NULL;
1674 }
1675 break;
1676 }
1677 } while (eat);
1678
1679 /* Free pulled out fragments. */
1680 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1681 skb_shinfo(skb)->frag_list = list->next;
1682 kfree_skb(list);
1683 }
1684 /* And insert new clone at head. */
1685 if (clone) {
1686 clone->next = list;
1687 skb_shinfo(skb)->frag_list = clone;
1688 }
1689 }
1690 /* Success! Now we may commit changes to skb data. */
1691
1692 pull_pages:
1693 eat = delta;
1694 k = 0;
1695 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1696 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1697
1698 if (size <= eat) {
1699 skb_frag_unref(skb, i);
1700 eat -= size;
1701 } else {
1702 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1703 if (eat) {
1704 skb_shinfo(skb)->frags[k].page_offset += eat;
1705 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1706 eat = 0;
1707 }
1708 k++;
1709 }
1710 }
1711 skb_shinfo(skb)->nr_frags = k;
1712
1713 skb->tail += delta;
1714 skb->data_len -= delta;
1715
1716 return skb_tail_pointer(skb);
1717 }
1718 EXPORT_SYMBOL(__pskb_pull_tail);
1719
1720 /**
1721 * skb_copy_bits - copy bits from skb to kernel buffer
1722 * @skb: source skb
1723 * @offset: offset in source
1724 * @to: destination buffer
1725 * @len: number of bytes to copy
1726 *
1727 * Copy the specified number of bytes from the source skb to the
1728 * destination buffer.
1729 *
1730 * CAUTION ! :
1731 * If its prototype is ever changed,
1732 * check arch/{*}/net/{*}.S files,
1733 * since it is called from BPF assembly code.
1734 */
1735 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1736 {
1737 int start = skb_headlen(skb);
1738 struct sk_buff *frag_iter;
1739 int i, copy;
1740
1741 if (offset > (int)skb->len - len)
1742 goto fault;
1743
1744 /* Copy header. */
1745 if ((copy = start - offset) > 0) {
1746 if (copy > len)
1747 copy = len;
1748 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1749 if ((len -= copy) == 0)
1750 return 0;
1751 offset += copy;
1752 to += copy;
1753 }
1754
1755 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1756 int end;
1757 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1758
1759 WARN_ON(start > offset + len);
1760
1761 end = start + skb_frag_size(f);
1762 if ((copy = end - offset) > 0) {
1763 u8 *vaddr;
1764
1765 if (copy > len)
1766 copy = len;
1767
1768 vaddr = kmap_atomic(skb_frag_page(f));
1769 memcpy(to,
1770 vaddr + f->page_offset + offset - start,
1771 copy);
1772 kunmap_atomic(vaddr);
1773
1774 if ((len -= copy) == 0)
1775 return 0;
1776 offset += copy;
1777 to += copy;
1778 }
1779 start = end;
1780 }
1781
1782 skb_walk_frags(skb, frag_iter) {
1783 int end;
1784
1785 WARN_ON(start > offset + len);
1786
1787 end = start + frag_iter->len;
1788 if ((copy = end - offset) > 0) {
1789 if (copy > len)
1790 copy = len;
1791 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1792 goto fault;
1793 if ((len -= copy) == 0)
1794 return 0;
1795 offset += copy;
1796 to += copy;
1797 }
1798 start = end;
1799 }
1800
1801 if (!len)
1802 return 0;
1803
1804 fault:
1805 return -EFAULT;
1806 }
1807 EXPORT_SYMBOL(skb_copy_bits);
1808
1809 /*
1810 * Callback from splice_to_pipe(), if we need to release some pages
1811 * at the end of the spd in case we error'ed out in filling the pipe.
1812 */
1813 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1814 {
1815 put_page(spd->pages[i]);
1816 }
1817
1818 static struct page *linear_to_page(struct page *page, unsigned int *len,
1819 unsigned int *offset,
1820 struct sock *sk)
1821 {
1822 struct page_frag *pfrag = sk_page_frag(sk);
1823
1824 if (!sk_page_frag_refill(sk, pfrag))
1825 return NULL;
1826
1827 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1828
1829 memcpy(page_address(pfrag->page) + pfrag->offset,
1830 page_address(page) + *offset, *len);
1831 *offset = pfrag->offset;
1832 pfrag->offset += *len;
1833
1834 return pfrag->page;
1835 }
1836
1837 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1838 struct page *page,
1839 unsigned int offset)
1840 {
1841 return spd->nr_pages &&
1842 spd->pages[spd->nr_pages - 1] == page &&
1843 (spd->partial[spd->nr_pages - 1].offset +
1844 spd->partial[spd->nr_pages - 1].len == offset);
1845 }
1846
1847 /*
1848 * Fill page/offset/length into spd, if it can hold more pages.
1849 */
1850 static bool spd_fill_page(struct splice_pipe_desc *spd,
1851 struct pipe_inode_info *pipe, struct page *page,
1852 unsigned int *len, unsigned int offset,
1853 bool linear,
1854 struct sock *sk)
1855 {
1856 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1857 return true;
1858
1859 if (linear) {
1860 page = linear_to_page(page, len, &offset, sk);
1861 if (!page)
1862 return true;
1863 }
1864 if (spd_can_coalesce(spd, page, offset)) {
1865 spd->partial[spd->nr_pages - 1].len += *len;
1866 return false;
1867 }
1868 get_page(page);
1869 spd->pages[spd->nr_pages] = page;
1870 spd->partial[spd->nr_pages].len = *len;
1871 spd->partial[spd->nr_pages].offset = offset;
1872 spd->nr_pages++;
1873
1874 return false;
1875 }
1876
1877 static bool __splice_segment(struct page *page, unsigned int poff,
1878 unsigned int plen, unsigned int *off,
1879 unsigned int *len,
1880 struct splice_pipe_desc *spd, bool linear,
1881 struct sock *sk,
1882 struct pipe_inode_info *pipe)
1883 {
1884 if (!*len)
1885 return true;
1886
1887 /* skip this segment if already processed */
1888 if (*off >= plen) {
1889 *off -= plen;
1890 return false;
1891 }
1892
1893 /* ignore any bits we already processed */
1894 poff += *off;
1895 plen -= *off;
1896 *off = 0;
1897
1898 do {
1899 unsigned int flen = min(*len, plen);
1900
1901 if (spd_fill_page(spd, pipe, page, &flen, poff,
1902 linear, sk))
1903 return true;
1904 poff += flen;
1905 plen -= flen;
1906 *len -= flen;
1907 } while (*len && plen);
1908
1909 return false;
1910 }
1911
1912 /*
1913 * Map linear and fragment data from the skb to spd. It reports true if the
1914 * pipe is full or if we already spliced the requested length.
1915 */
1916 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1917 unsigned int *offset, unsigned int *len,
1918 struct splice_pipe_desc *spd, struct sock *sk)
1919 {
1920 int seg;
1921 struct sk_buff *iter;
1922
1923 /* map the linear part :
1924 * If skb->head_frag is set, this 'linear' part is backed by a
1925 * fragment, and if the head is not shared with any clones then
1926 * we can avoid a copy since we own the head portion of this page.
1927 */
1928 if (__splice_segment(virt_to_page(skb->data),
1929 (unsigned long) skb->data & (PAGE_SIZE - 1),
1930 skb_headlen(skb),
1931 offset, len, spd,
1932 skb_head_is_locked(skb),
1933 sk, pipe))
1934 return true;
1935
1936 /*
1937 * then map the fragments
1938 */
1939 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1940 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1941
1942 if (__splice_segment(skb_frag_page(f),
1943 f->page_offset, skb_frag_size(f),
1944 offset, len, spd, false, sk, pipe))
1945 return true;
1946 }
1947
1948 skb_walk_frags(skb, iter) {
1949 if (*offset >= iter->len) {
1950 *offset -= iter->len;
1951 continue;
1952 }
1953 /* __skb_splice_bits() only fails if the output has no room
1954 * left, so no point in going over the frag_list for the error
1955 * case.
1956 */
1957 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
1958 return true;
1959 }
1960
1961 return false;
1962 }
1963
1964 ssize_t skb_socket_splice(struct sock *sk,
1965 struct pipe_inode_info *pipe,
1966 struct splice_pipe_desc *spd)
1967 {
1968 int ret;
1969
1970 /* Drop the socket lock, otherwise we have reverse
1971 * locking dependencies between sk_lock and i_mutex
1972 * here as compared to sendfile(). We enter here
1973 * with the socket lock held, and splice_to_pipe() will
1974 * grab the pipe inode lock. For sendfile() emulation,
1975 * we call into ->sendpage() with the i_mutex lock held
1976 * and networking will grab the socket lock.
1977 */
1978 release_sock(sk);
1979 ret = splice_to_pipe(pipe, spd);
1980 lock_sock(sk);
1981
1982 return ret;
1983 }
1984
1985 /*
1986 * Map data from the skb to a pipe. Should handle both the linear part,
1987 * the fragments, and the frag list.
1988 */
1989 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1990 struct pipe_inode_info *pipe, unsigned int tlen,
1991 unsigned int flags,
1992 ssize_t (*splice_cb)(struct sock *,
1993 struct pipe_inode_info *,
1994 struct splice_pipe_desc *))
1995 {
1996 struct partial_page partial[MAX_SKB_FRAGS];
1997 struct page *pages[MAX_SKB_FRAGS];
1998 struct splice_pipe_desc spd = {
1999 .pages = pages,
2000 .partial = partial,
2001 .nr_pages_max = MAX_SKB_FRAGS,
2002 .flags = flags,
2003 .ops = &nosteal_pipe_buf_ops,
2004 .spd_release = sock_spd_release,
2005 };
2006 int ret = 0;
2007
2008 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2009
2010 if (spd.nr_pages)
2011 ret = splice_cb(sk, pipe, &spd);
2012
2013 return ret;
2014 }
2015 EXPORT_SYMBOL_GPL(skb_splice_bits);
2016
2017 /**
2018 * skb_store_bits - store bits from kernel buffer to skb
2019 * @skb: destination buffer
2020 * @offset: offset in destination
2021 * @from: source buffer
2022 * @len: number of bytes to copy
2023 *
2024 * Copy the specified number of bytes from the source buffer to the
2025 * destination skb. This function handles all the messy bits of
2026 * traversing fragment lists and such.
2027 */
2028
2029 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2030 {
2031 int start = skb_headlen(skb);
2032 struct sk_buff *frag_iter;
2033 int i, copy;
2034
2035 if (offset > (int)skb->len - len)
2036 goto fault;
2037
2038 if ((copy = start - offset) > 0) {
2039 if (copy > len)
2040 copy = len;
2041 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2042 if ((len -= copy) == 0)
2043 return 0;
2044 offset += copy;
2045 from += copy;
2046 }
2047
2048 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2049 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2050 int end;
2051
2052 WARN_ON(start > offset + len);
2053
2054 end = start + skb_frag_size(frag);
2055 if ((copy = end - offset) > 0) {
2056 u8 *vaddr;
2057
2058 if (copy > len)
2059 copy = len;
2060
2061 vaddr = kmap_atomic(skb_frag_page(frag));
2062 memcpy(vaddr + frag->page_offset + offset - start,
2063 from, copy);
2064 kunmap_atomic(vaddr);
2065
2066 if ((len -= copy) == 0)
2067 return 0;
2068 offset += copy;
2069 from += copy;
2070 }
2071 start = end;
2072 }
2073
2074 skb_walk_frags(skb, frag_iter) {
2075 int end;
2076
2077 WARN_ON(start > offset + len);
2078
2079 end = start + frag_iter->len;
2080 if ((copy = end - offset) > 0) {
2081 if (copy > len)
2082 copy = len;
2083 if (skb_store_bits(frag_iter, offset - start,
2084 from, copy))
2085 goto fault;
2086 if ((len -= copy) == 0)
2087 return 0;
2088 offset += copy;
2089 from += copy;
2090 }
2091 start = end;
2092 }
2093 if (!len)
2094 return 0;
2095
2096 fault:
2097 return -EFAULT;
2098 }
2099 EXPORT_SYMBOL(skb_store_bits);
2100
2101 /* Checksum skb data. */
2102 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2103 __wsum csum, const struct skb_checksum_ops *ops)
2104 {
2105 int start = skb_headlen(skb);
2106 int i, copy = start - offset;
2107 struct sk_buff *frag_iter;
2108 int pos = 0;
2109
2110 /* Checksum header. */
2111 if (copy > 0) {
2112 if (copy > len)
2113 copy = len;
2114 csum = ops->update(skb->data + offset, copy, csum);
2115 if ((len -= copy) == 0)
2116 return csum;
2117 offset += copy;
2118 pos = copy;
2119 }
2120
2121 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2122 int end;
2123 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2124
2125 WARN_ON(start > offset + len);
2126
2127 end = start + skb_frag_size(frag);
2128 if ((copy = end - offset) > 0) {
2129 __wsum csum2;
2130 u8 *vaddr;
2131
2132 if (copy > len)
2133 copy = len;
2134 vaddr = kmap_atomic(skb_frag_page(frag));
2135 csum2 = ops->update(vaddr + frag->page_offset +
2136 offset - start, copy, 0);
2137 kunmap_atomic(vaddr);
2138 csum = ops->combine(csum, csum2, pos, copy);
2139 if (!(len -= copy))
2140 return csum;
2141 offset += copy;
2142 pos += copy;
2143 }
2144 start = end;
2145 }
2146
2147 skb_walk_frags(skb, frag_iter) {
2148 int end;
2149
2150 WARN_ON(start > offset + len);
2151
2152 end = start + frag_iter->len;
2153 if ((copy = end - offset) > 0) {
2154 __wsum csum2;
2155 if (copy > len)
2156 copy = len;
2157 csum2 = __skb_checksum(frag_iter, offset - start,
2158 copy, 0, ops);
2159 csum = ops->combine(csum, csum2, pos, copy);
2160 if ((len -= copy) == 0)
2161 return csum;
2162 offset += copy;
2163 pos += copy;
2164 }
2165 start = end;
2166 }
2167 BUG_ON(len);
2168
2169 return csum;
2170 }
2171 EXPORT_SYMBOL(__skb_checksum);
2172
2173 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2174 int len, __wsum csum)
2175 {
2176 const struct skb_checksum_ops ops = {
2177 .update = csum_partial_ext,
2178 .combine = csum_block_add_ext,
2179 };
2180
2181 return __skb_checksum(skb, offset, len, csum, &ops);
2182 }
2183 EXPORT_SYMBOL(skb_checksum);
2184
2185 /* Both of above in one bottle. */
2186
2187 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2188 u8 *to, int len, __wsum csum)
2189 {
2190 int start = skb_headlen(skb);
2191 int i, copy = start - offset;
2192 struct sk_buff *frag_iter;
2193 int pos = 0;
2194
2195 /* Copy header. */
2196 if (copy > 0) {
2197 if (copy > len)
2198 copy = len;
2199 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2200 copy, csum);
2201 if ((len -= copy) == 0)
2202 return csum;
2203 offset += copy;
2204 to += copy;
2205 pos = copy;
2206 }
2207
2208 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2209 int end;
2210
2211 WARN_ON(start > offset + len);
2212
2213 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2214 if ((copy = end - offset) > 0) {
2215 __wsum csum2;
2216 u8 *vaddr;
2217 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2218
2219 if (copy > len)
2220 copy = len;
2221 vaddr = kmap_atomic(skb_frag_page(frag));
2222 csum2 = csum_partial_copy_nocheck(vaddr +
2223 frag->page_offset +
2224 offset - start, to,
2225 copy, 0);
2226 kunmap_atomic(vaddr);
2227 csum = csum_block_add(csum, csum2, pos);
2228 if (!(len -= copy))
2229 return csum;
2230 offset += copy;
2231 to += copy;
2232 pos += copy;
2233 }
2234 start = end;
2235 }
2236
2237 skb_walk_frags(skb, frag_iter) {
2238 __wsum csum2;
2239 int end;
2240
2241 WARN_ON(start > offset + len);
2242
2243 end = start + frag_iter->len;
2244 if ((copy = end - offset) > 0) {
2245 if (copy > len)
2246 copy = len;
2247 csum2 = skb_copy_and_csum_bits(frag_iter,
2248 offset - start,
2249 to, copy, 0);
2250 csum = csum_block_add(csum, csum2, pos);
2251 if ((len -= copy) == 0)
2252 return csum;
2253 offset += copy;
2254 to += copy;
2255 pos += copy;
2256 }
2257 start = end;
2258 }
2259 BUG_ON(len);
2260 return csum;
2261 }
2262 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2263
2264 /**
2265 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2266 * @from: source buffer
2267 *
2268 * Calculates the amount of linear headroom needed in the 'to' skb passed
2269 * into skb_zerocopy().
2270 */
2271 unsigned int
2272 skb_zerocopy_headlen(const struct sk_buff *from)
2273 {
2274 unsigned int hlen = 0;
2275
2276 if (!from->head_frag ||
2277 skb_headlen(from) < L1_CACHE_BYTES ||
2278 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2279 hlen = skb_headlen(from);
2280
2281 if (skb_has_frag_list(from))
2282 hlen = from->len;
2283
2284 return hlen;
2285 }
2286 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2287
2288 /**
2289 * skb_zerocopy - Zero copy skb to skb
2290 * @to: destination buffer
2291 * @from: source buffer
2292 * @len: number of bytes to copy from source buffer
2293 * @hlen: size of linear headroom in destination buffer
2294 *
2295 * Copies up to `len` bytes from `from` to `to` by creating references
2296 * to the frags in the source buffer.
2297 *
2298 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2299 * headroom in the `to` buffer.
2300 *
2301 * Return value:
2302 * 0: everything is OK
2303 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2304 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2305 */
2306 int
2307 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2308 {
2309 int i, j = 0;
2310 int plen = 0; /* length of skb->head fragment */
2311 int ret;
2312 struct page *page;
2313 unsigned int offset;
2314
2315 BUG_ON(!from->head_frag && !hlen);
2316
2317 /* dont bother with small payloads */
2318 if (len <= skb_tailroom(to))
2319 return skb_copy_bits(from, 0, skb_put(to, len), len);
2320
2321 if (hlen) {
2322 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2323 if (unlikely(ret))
2324 return ret;
2325 len -= hlen;
2326 } else {
2327 plen = min_t(int, skb_headlen(from), len);
2328 if (plen) {
2329 page = virt_to_head_page(from->head);
2330 offset = from->data - (unsigned char *)page_address(page);
2331 __skb_fill_page_desc(to, 0, page, offset, plen);
2332 get_page(page);
2333 j = 1;
2334 len -= plen;
2335 }
2336 }
2337
2338 to->truesize += len + plen;
2339 to->len += len + plen;
2340 to->data_len += len + plen;
2341
2342 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2343 skb_tx_error(from);
2344 return -ENOMEM;
2345 }
2346
2347 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2348 if (!len)
2349 break;
2350 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2351 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2352 len -= skb_shinfo(to)->frags[j].size;
2353 skb_frag_ref(to, j);
2354 j++;
2355 }
2356 skb_shinfo(to)->nr_frags = j;
2357
2358 return 0;
2359 }
2360 EXPORT_SYMBOL_GPL(skb_zerocopy);
2361
2362 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2363 {
2364 __wsum csum;
2365 long csstart;
2366
2367 if (skb->ip_summed == CHECKSUM_PARTIAL)
2368 csstart = skb_checksum_start_offset(skb);
2369 else
2370 csstart = skb_headlen(skb);
2371
2372 BUG_ON(csstart > skb_headlen(skb));
2373
2374 skb_copy_from_linear_data(skb, to, csstart);
2375
2376 csum = 0;
2377 if (csstart != skb->len)
2378 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2379 skb->len - csstart, 0);
2380
2381 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2382 long csstuff = csstart + skb->csum_offset;
2383
2384 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2385 }
2386 }
2387 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2388
2389 /**
2390 * skb_dequeue - remove from the head of the queue
2391 * @list: list to dequeue from
2392 *
2393 * Remove the head of the list. The list lock is taken so the function
2394 * may be used safely with other locking list functions. The head item is
2395 * returned or %NULL if the list is empty.
2396 */
2397
2398 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2399 {
2400 unsigned long flags;
2401 struct sk_buff *result;
2402
2403 spin_lock_irqsave(&list->lock, flags);
2404 result = __skb_dequeue(list);
2405 spin_unlock_irqrestore(&list->lock, flags);
2406 return result;
2407 }
2408 EXPORT_SYMBOL(skb_dequeue);
2409
2410 /**
2411 * skb_dequeue_tail - remove from the tail of the queue
2412 * @list: list to dequeue from
2413 *
2414 * Remove the tail of the list. The list lock is taken so the function
2415 * may be used safely with other locking list functions. The tail item is
2416 * returned or %NULL if the list is empty.
2417 */
2418 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2419 {
2420 unsigned long flags;
2421 struct sk_buff *result;
2422
2423 spin_lock_irqsave(&list->lock, flags);
2424 result = __skb_dequeue_tail(list);
2425 spin_unlock_irqrestore(&list->lock, flags);
2426 return result;
2427 }
2428 EXPORT_SYMBOL(skb_dequeue_tail);
2429
2430 /**
2431 * skb_queue_purge - empty a list
2432 * @list: list to empty
2433 *
2434 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2435 * the list and one reference dropped. This function takes the list
2436 * lock and is atomic with respect to other list locking functions.
2437 */
2438 void skb_queue_purge(struct sk_buff_head *list)
2439 {
2440 struct sk_buff *skb;
2441 while ((skb = skb_dequeue(list)) != NULL)
2442 kfree_skb(skb);
2443 }
2444 EXPORT_SYMBOL(skb_queue_purge);
2445
2446 /**
2447 * skb_queue_head - queue a buffer at the list head
2448 * @list: list to use
2449 * @newsk: buffer to queue
2450 *
2451 * Queue a buffer at the start of the list. This function takes the
2452 * list lock and can be used safely with other locking &sk_buff functions
2453 * safely.
2454 *
2455 * A buffer cannot be placed on two lists at the same time.
2456 */
2457 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2458 {
2459 unsigned long flags;
2460
2461 spin_lock_irqsave(&list->lock, flags);
2462 __skb_queue_head(list, newsk);
2463 spin_unlock_irqrestore(&list->lock, flags);
2464 }
2465 EXPORT_SYMBOL(skb_queue_head);
2466
2467 /**
2468 * skb_queue_tail - queue a buffer at the list tail
2469 * @list: list to use
2470 * @newsk: buffer to queue
2471 *
2472 * Queue a buffer at the tail of the list. This function takes the
2473 * list lock and can be used safely with other locking &sk_buff functions
2474 * safely.
2475 *
2476 * A buffer cannot be placed on two lists at the same time.
2477 */
2478 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2479 {
2480 unsigned long flags;
2481
2482 spin_lock_irqsave(&list->lock, flags);
2483 __skb_queue_tail(list, newsk);
2484 spin_unlock_irqrestore(&list->lock, flags);
2485 }
2486 EXPORT_SYMBOL(skb_queue_tail);
2487
2488 /**
2489 * skb_unlink - remove a buffer from a list
2490 * @skb: buffer to remove
2491 * @list: list to use
2492 *
2493 * Remove a packet from a list. The list locks are taken and this
2494 * function is atomic with respect to other list locked calls
2495 *
2496 * You must know what list the SKB is on.
2497 */
2498 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2499 {
2500 unsigned long flags;
2501
2502 spin_lock_irqsave(&list->lock, flags);
2503 __skb_unlink(skb, list);
2504 spin_unlock_irqrestore(&list->lock, flags);
2505 }
2506 EXPORT_SYMBOL(skb_unlink);
2507
2508 /**
2509 * skb_append - append a buffer
2510 * @old: buffer to insert after
2511 * @newsk: buffer to insert
2512 * @list: list to use
2513 *
2514 * Place a packet after a given packet in a list. The list locks are taken
2515 * and this function is atomic with respect to other list locked calls.
2516 * A buffer cannot be placed on two lists at the same time.
2517 */
2518 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2519 {
2520 unsigned long flags;
2521
2522 spin_lock_irqsave(&list->lock, flags);
2523 __skb_queue_after(list, old, newsk);
2524 spin_unlock_irqrestore(&list->lock, flags);
2525 }
2526 EXPORT_SYMBOL(skb_append);
2527
2528 /**
2529 * skb_insert - insert a buffer
2530 * @old: buffer to insert before
2531 * @newsk: buffer to insert
2532 * @list: list to use
2533 *
2534 * Place a packet before a given packet in a list. The list locks are
2535 * taken and this function is atomic with respect to other list locked
2536 * calls.
2537 *
2538 * A buffer cannot be placed on two lists at the same time.
2539 */
2540 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2541 {
2542 unsigned long flags;
2543
2544 spin_lock_irqsave(&list->lock, flags);
2545 __skb_insert(newsk, old->prev, old, list);
2546 spin_unlock_irqrestore(&list->lock, flags);
2547 }
2548 EXPORT_SYMBOL(skb_insert);
2549
2550 static inline void skb_split_inside_header(struct sk_buff *skb,
2551 struct sk_buff* skb1,
2552 const u32 len, const int pos)
2553 {
2554 int i;
2555
2556 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2557 pos - len);
2558 /* And move data appendix as is. */
2559 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2560 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2561
2562 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2563 skb_shinfo(skb)->nr_frags = 0;
2564 skb1->data_len = skb->data_len;
2565 skb1->len += skb1->data_len;
2566 skb->data_len = 0;
2567 skb->len = len;
2568 skb_set_tail_pointer(skb, len);
2569 }
2570
2571 static inline void skb_split_no_header(struct sk_buff *skb,
2572 struct sk_buff* skb1,
2573 const u32 len, int pos)
2574 {
2575 int i, k = 0;
2576 const int nfrags = skb_shinfo(skb)->nr_frags;
2577
2578 skb_shinfo(skb)->nr_frags = 0;
2579 skb1->len = skb1->data_len = skb->len - len;
2580 skb->len = len;
2581 skb->data_len = len - pos;
2582
2583 for (i = 0; i < nfrags; i++) {
2584 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2585
2586 if (pos + size > len) {
2587 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2588
2589 if (pos < len) {
2590 /* Split frag.
2591 * We have two variants in this case:
2592 * 1. Move all the frag to the second
2593 * part, if it is possible. F.e.
2594 * this approach is mandatory for TUX,
2595 * where splitting is expensive.
2596 * 2. Split is accurately. We make this.
2597 */
2598 skb_frag_ref(skb, i);
2599 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2600 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2601 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2602 skb_shinfo(skb)->nr_frags++;
2603 }
2604 k++;
2605 } else
2606 skb_shinfo(skb)->nr_frags++;
2607 pos += size;
2608 }
2609 skb_shinfo(skb1)->nr_frags = k;
2610 }
2611
2612 /**
2613 * skb_split - Split fragmented skb to two parts at length len.
2614 * @skb: the buffer to split
2615 * @skb1: the buffer to receive the second part
2616 * @len: new length for skb
2617 */
2618 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2619 {
2620 int pos = skb_headlen(skb);
2621
2622 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2623 if (len < pos) /* Split line is inside header. */
2624 skb_split_inside_header(skb, skb1, len, pos);
2625 else /* Second chunk has no header, nothing to copy. */
2626 skb_split_no_header(skb, skb1, len, pos);
2627 }
2628 EXPORT_SYMBOL(skb_split);
2629
2630 /* Shifting from/to a cloned skb is a no-go.
2631 *
2632 * Caller cannot keep skb_shinfo related pointers past calling here!
2633 */
2634 static int skb_prepare_for_shift(struct sk_buff *skb)
2635 {
2636 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2637 }
2638
2639 /**
2640 * skb_shift - Shifts paged data partially from skb to another
2641 * @tgt: buffer into which tail data gets added
2642 * @skb: buffer from which the paged data comes from
2643 * @shiftlen: shift up to this many bytes
2644 *
2645 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2646 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2647 * It's up to caller to free skb if everything was shifted.
2648 *
2649 * If @tgt runs out of frags, the whole operation is aborted.
2650 *
2651 * Skb cannot include anything else but paged data while tgt is allowed
2652 * to have non-paged data as well.
2653 *
2654 * TODO: full sized shift could be optimized but that would need
2655 * specialized skb free'er to handle frags without up-to-date nr_frags.
2656 */
2657 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2658 {
2659 int from, to, merge, todo;
2660 struct skb_frag_struct *fragfrom, *fragto;
2661
2662 BUG_ON(shiftlen > skb->len);
2663 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2664
2665 todo = shiftlen;
2666 from = 0;
2667 to = skb_shinfo(tgt)->nr_frags;
2668 fragfrom = &skb_shinfo(skb)->frags[from];
2669
2670 /* Actual merge is delayed until the point when we know we can
2671 * commit all, so that we don't have to undo partial changes
2672 */
2673 if (!to ||
2674 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2675 fragfrom->page_offset)) {
2676 merge = -1;
2677 } else {
2678 merge = to - 1;
2679
2680 todo -= skb_frag_size(fragfrom);
2681 if (todo < 0) {
2682 if (skb_prepare_for_shift(skb) ||
2683 skb_prepare_for_shift(tgt))
2684 return 0;
2685
2686 /* All previous frag pointers might be stale! */
2687 fragfrom = &skb_shinfo(skb)->frags[from];
2688 fragto = &skb_shinfo(tgt)->frags[merge];
2689
2690 skb_frag_size_add(fragto, shiftlen);
2691 skb_frag_size_sub(fragfrom, shiftlen);
2692 fragfrom->page_offset += shiftlen;
2693
2694 goto onlymerged;
2695 }
2696
2697 from++;
2698 }
2699
2700 /* Skip full, not-fitting skb to avoid expensive operations */
2701 if ((shiftlen == skb->len) &&
2702 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2703 return 0;
2704
2705 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2706 return 0;
2707
2708 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2709 if (to == MAX_SKB_FRAGS)
2710 return 0;
2711
2712 fragfrom = &skb_shinfo(skb)->frags[from];
2713 fragto = &skb_shinfo(tgt)->frags[to];
2714
2715 if (todo >= skb_frag_size(fragfrom)) {
2716 *fragto = *fragfrom;
2717 todo -= skb_frag_size(fragfrom);
2718 from++;
2719 to++;
2720
2721 } else {
2722 __skb_frag_ref(fragfrom);
2723 fragto->page = fragfrom->page;
2724 fragto->page_offset = fragfrom->page_offset;
2725 skb_frag_size_set(fragto, todo);
2726
2727 fragfrom->page_offset += todo;
2728 skb_frag_size_sub(fragfrom, todo);
2729 todo = 0;
2730
2731 to++;
2732 break;
2733 }
2734 }
2735
2736 /* Ready to "commit" this state change to tgt */
2737 skb_shinfo(tgt)->nr_frags = to;
2738
2739 if (merge >= 0) {
2740 fragfrom = &skb_shinfo(skb)->frags[0];
2741 fragto = &skb_shinfo(tgt)->frags[merge];
2742
2743 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2744 __skb_frag_unref(fragfrom);
2745 }
2746
2747 /* Reposition in the original skb */
2748 to = 0;
2749 while (from < skb_shinfo(skb)->nr_frags)
2750 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2751 skb_shinfo(skb)->nr_frags = to;
2752
2753 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2754
2755 onlymerged:
2756 /* Most likely the tgt won't ever need its checksum anymore, skb on
2757 * the other hand might need it if it needs to be resent
2758 */
2759 tgt->ip_summed = CHECKSUM_PARTIAL;
2760 skb->ip_summed = CHECKSUM_PARTIAL;
2761
2762 /* Yak, is it really working this way? Some helper please? */
2763 skb->len -= shiftlen;
2764 skb->data_len -= shiftlen;
2765 skb->truesize -= shiftlen;
2766 tgt->len += shiftlen;
2767 tgt->data_len += shiftlen;
2768 tgt->truesize += shiftlen;
2769
2770 return shiftlen;
2771 }
2772
2773 /**
2774 * skb_prepare_seq_read - Prepare a sequential read of skb data
2775 * @skb: the buffer to read
2776 * @from: lower offset of data to be read
2777 * @to: upper offset of data to be read
2778 * @st: state variable
2779 *
2780 * Initializes the specified state variable. Must be called before
2781 * invoking skb_seq_read() for the first time.
2782 */
2783 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2784 unsigned int to, struct skb_seq_state *st)
2785 {
2786 st->lower_offset = from;
2787 st->upper_offset = to;
2788 st->root_skb = st->cur_skb = skb;
2789 st->frag_idx = st->stepped_offset = 0;
2790 st->frag_data = NULL;
2791 }
2792 EXPORT_SYMBOL(skb_prepare_seq_read);
2793
2794 /**
2795 * skb_seq_read - Sequentially read skb data
2796 * @consumed: number of bytes consumed by the caller so far
2797 * @data: destination pointer for data to be returned
2798 * @st: state variable
2799 *
2800 * Reads a block of skb data at @consumed relative to the
2801 * lower offset specified to skb_prepare_seq_read(). Assigns
2802 * the head of the data block to @data and returns the length
2803 * of the block or 0 if the end of the skb data or the upper
2804 * offset has been reached.
2805 *
2806 * The caller is not required to consume all of the data
2807 * returned, i.e. @consumed is typically set to the number
2808 * of bytes already consumed and the next call to
2809 * skb_seq_read() will return the remaining part of the block.
2810 *
2811 * Note 1: The size of each block of data returned can be arbitrary,
2812 * this limitation is the cost for zerocopy sequential
2813 * reads of potentially non linear data.
2814 *
2815 * Note 2: Fragment lists within fragments are not implemented
2816 * at the moment, state->root_skb could be replaced with
2817 * a stack for this purpose.
2818 */
2819 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2820 struct skb_seq_state *st)
2821 {
2822 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2823 skb_frag_t *frag;
2824
2825 if (unlikely(abs_offset >= st->upper_offset)) {
2826 if (st->frag_data) {
2827 kunmap_atomic(st->frag_data);
2828 st->frag_data = NULL;
2829 }
2830 return 0;
2831 }
2832
2833 next_skb:
2834 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2835
2836 if (abs_offset < block_limit && !st->frag_data) {
2837 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2838 return block_limit - abs_offset;
2839 }
2840
2841 if (st->frag_idx == 0 && !st->frag_data)
2842 st->stepped_offset += skb_headlen(st->cur_skb);
2843
2844 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2845 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2846 block_limit = skb_frag_size(frag) + st->stepped_offset;
2847
2848 if (abs_offset < block_limit) {
2849 if (!st->frag_data)
2850 st->frag_data = kmap_atomic(skb_frag_page(frag));
2851
2852 *data = (u8 *) st->frag_data + frag->page_offset +
2853 (abs_offset - st->stepped_offset);
2854
2855 return block_limit - abs_offset;
2856 }
2857
2858 if (st->frag_data) {
2859 kunmap_atomic(st->frag_data);
2860 st->frag_data = NULL;
2861 }
2862
2863 st->frag_idx++;
2864 st->stepped_offset += skb_frag_size(frag);
2865 }
2866
2867 if (st->frag_data) {
2868 kunmap_atomic(st->frag_data);
2869 st->frag_data = NULL;
2870 }
2871
2872 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2873 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2874 st->frag_idx = 0;
2875 goto next_skb;
2876 } else if (st->cur_skb->next) {
2877 st->cur_skb = st->cur_skb->next;
2878 st->frag_idx = 0;
2879 goto next_skb;
2880 }
2881
2882 return 0;
2883 }
2884 EXPORT_SYMBOL(skb_seq_read);
2885
2886 /**
2887 * skb_abort_seq_read - Abort a sequential read of skb data
2888 * @st: state variable
2889 *
2890 * Must be called if skb_seq_read() was not called until it
2891 * returned 0.
2892 */
2893 void skb_abort_seq_read(struct skb_seq_state *st)
2894 {
2895 if (st->frag_data)
2896 kunmap_atomic(st->frag_data);
2897 }
2898 EXPORT_SYMBOL(skb_abort_seq_read);
2899
2900 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2901
2902 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2903 struct ts_config *conf,
2904 struct ts_state *state)
2905 {
2906 return skb_seq_read(offset, text, TS_SKB_CB(state));
2907 }
2908
2909 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2910 {
2911 skb_abort_seq_read(TS_SKB_CB(state));
2912 }
2913
2914 /**
2915 * skb_find_text - Find a text pattern in skb data
2916 * @skb: the buffer to look in
2917 * @from: search offset
2918 * @to: search limit
2919 * @config: textsearch configuration
2920 *
2921 * Finds a pattern in the skb data according to the specified
2922 * textsearch configuration. Use textsearch_next() to retrieve
2923 * subsequent occurrences of the pattern. Returns the offset
2924 * to the first occurrence or UINT_MAX if no match was found.
2925 */
2926 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2927 unsigned int to, struct ts_config *config)
2928 {
2929 struct ts_state state;
2930 unsigned int ret;
2931
2932 config->get_next_block = skb_ts_get_next_block;
2933 config->finish = skb_ts_finish;
2934
2935 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2936
2937 ret = textsearch_find(config, &state);
2938 return (ret <= to - from ? ret : UINT_MAX);
2939 }
2940 EXPORT_SYMBOL(skb_find_text);
2941
2942 /**
2943 * skb_append_datato_frags - append the user data to a skb
2944 * @sk: sock structure
2945 * @skb: skb structure to be appended with user data.
2946 * @getfrag: call back function to be used for getting the user data
2947 * @from: pointer to user message iov
2948 * @length: length of the iov message
2949 *
2950 * Description: This procedure append the user data in the fragment part
2951 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2952 */
2953 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2954 int (*getfrag)(void *from, char *to, int offset,
2955 int len, int odd, struct sk_buff *skb),
2956 void *from, int length)
2957 {
2958 int frg_cnt = skb_shinfo(skb)->nr_frags;
2959 int copy;
2960 int offset = 0;
2961 int ret;
2962 struct page_frag *pfrag = &current->task_frag;
2963
2964 do {
2965 /* Return error if we don't have space for new frag */
2966 if (frg_cnt >= MAX_SKB_FRAGS)
2967 return -EMSGSIZE;
2968
2969 if (!sk_page_frag_refill(sk, pfrag))
2970 return -ENOMEM;
2971
2972 /* copy the user data to page */
2973 copy = min_t(int, length, pfrag->size - pfrag->offset);
2974
2975 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2976 offset, copy, 0, skb);
2977 if (ret < 0)
2978 return -EFAULT;
2979
2980 /* copy was successful so update the size parameters */
2981 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2982 copy);
2983 frg_cnt++;
2984 pfrag->offset += copy;
2985 get_page(pfrag->page);
2986
2987 skb->truesize += copy;
2988 atomic_add(copy, &sk->sk_wmem_alloc);
2989 skb->len += copy;
2990 skb->data_len += copy;
2991 offset += copy;
2992 length -= copy;
2993
2994 } while (length > 0);
2995
2996 return 0;
2997 }
2998 EXPORT_SYMBOL(skb_append_datato_frags);
2999
3000 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3001 int offset, size_t size)
3002 {
3003 int i = skb_shinfo(skb)->nr_frags;
3004
3005 if (skb_can_coalesce(skb, i, page, offset)) {
3006 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3007 } else if (i < MAX_SKB_FRAGS) {
3008 get_page(page);
3009 skb_fill_page_desc(skb, i, page, offset, size);
3010 } else {
3011 return -EMSGSIZE;
3012 }
3013
3014 return 0;
3015 }
3016 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3017
3018 /**
3019 * skb_push_rcsum - push skb and update receive checksum
3020 * @skb: buffer to update
3021 * @len: length of data pulled
3022 *
3023 * This function performs an skb_push on the packet and updates
3024 * the CHECKSUM_COMPLETE checksum. It should be used on
3025 * receive path processing instead of skb_push unless you know
3026 * that the checksum difference is zero (e.g., a valid IP header)
3027 * or you are setting ip_summed to CHECKSUM_NONE.
3028 */
3029 static unsigned char *skb_push_rcsum(struct sk_buff *skb, unsigned len)
3030 {
3031 skb_push(skb, len);
3032 skb_postpush_rcsum(skb, skb->data, len);
3033 return skb->data;
3034 }
3035
3036 /**
3037 * skb_pull_rcsum - pull skb and update receive checksum
3038 * @skb: buffer to update
3039 * @len: length of data pulled
3040 *
3041 * This function performs an skb_pull on the packet and updates
3042 * the CHECKSUM_COMPLETE checksum. It should be used on
3043 * receive path processing instead of skb_pull unless you know
3044 * that the checksum difference is zero (e.g., a valid IP header)
3045 * or you are setting ip_summed to CHECKSUM_NONE.
3046 */
3047 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3048 {
3049 unsigned char *data = skb->data;
3050
3051 BUG_ON(len > skb->len);
3052 __skb_pull(skb, len);
3053 skb_postpull_rcsum(skb, data, len);
3054 return skb->data;
3055 }
3056 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3057
3058 /**
3059 * skb_segment - Perform protocol segmentation on skb.
3060 * @head_skb: buffer to segment
3061 * @features: features for the output path (see dev->features)
3062 *
3063 * This function performs segmentation on the given skb. It returns
3064 * a pointer to the first in a list of new skbs for the segments.
3065 * In case of error it returns ERR_PTR(err).
3066 */
3067 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3068 netdev_features_t features)
3069 {
3070 struct sk_buff *segs = NULL;
3071 struct sk_buff *tail = NULL;
3072 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3073 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3074 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3075 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3076 struct sk_buff *frag_skb = head_skb;
3077 unsigned int offset = doffset;
3078 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3079 unsigned int partial_segs = 0;
3080 unsigned int headroom;
3081 unsigned int len = head_skb->len;
3082 __be16 proto;
3083 bool csum, sg;
3084 int nfrags = skb_shinfo(head_skb)->nr_frags;
3085 int err = -ENOMEM;
3086 int i = 0;
3087 int pos;
3088 int dummy;
3089
3090 __skb_push(head_skb, doffset);
3091 proto = skb_network_protocol(head_skb, &dummy);
3092 if (unlikely(!proto))
3093 return ERR_PTR(-EINVAL);
3094
3095 sg = !!(features & NETIF_F_SG);
3096 csum = !!can_checksum_protocol(features, proto);
3097
3098 /* GSO partial only requires that we trim off any excess that
3099 * doesn't fit into an MSS sized block, so take care of that
3100 * now.
3101 */
3102 if (sg && csum && (features & NETIF_F_GSO_PARTIAL)) {
3103 partial_segs = len / mss;
3104 if (partial_segs > 1)
3105 mss *= partial_segs;
3106 else
3107 partial_segs = 0;
3108 }
3109
3110 headroom = skb_headroom(head_skb);
3111 pos = skb_headlen(head_skb);
3112
3113 do {
3114 struct sk_buff *nskb;
3115 skb_frag_t *nskb_frag;
3116 int hsize;
3117 int size;
3118
3119 if (unlikely(mss == GSO_BY_FRAGS)) {
3120 len = list_skb->len;
3121 } else {
3122 len = head_skb->len - offset;
3123 if (len > mss)
3124 len = mss;
3125 }
3126
3127 hsize = skb_headlen(head_skb) - offset;
3128 if (hsize < 0)
3129 hsize = 0;
3130 if (hsize > len || !sg)
3131 hsize = len;
3132
3133 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3134 (skb_headlen(list_skb) == len || sg)) {
3135 BUG_ON(skb_headlen(list_skb) > len);
3136
3137 i = 0;
3138 nfrags = skb_shinfo(list_skb)->nr_frags;
3139 frag = skb_shinfo(list_skb)->frags;
3140 frag_skb = list_skb;
3141 pos += skb_headlen(list_skb);
3142
3143 while (pos < offset + len) {
3144 BUG_ON(i >= nfrags);
3145
3146 size = skb_frag_size(frag);
3147 if (pos + size > offset + len)
3148 break;
3149
3150 i++;
3151 pos += size;
3152 frag++;
3153 }
3154
3155 nskb = skb_clone(list_skb, GFP_ATOMIC);
3156 list_skb = list_skb->next;
3157
3158 if (unlikely(!nskb))
3159 goto err;
3160
3161 if (unlikely(pskb_trim(nskb, len))) {
3162 kfree_skb(nskb);
3163 goto err;
3164 }
3165
3166 hsize = skb_end_offset(nskb);
3167 if (skb_cow_head(nskb, doffset + headroom)) {
3168 kfree_skb(nskb);
3169 goto err;
3170 }
3171
3172 nskb->truesize += skb_end_offset(nskb) - hsize;
3173 skb_release_head_state(nskb);
3174 __skb_push(nskb, doffset);
3175 } else {
3176 nskb = __alloc_skb(hsize + doffset + headroom,
3177 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3178 NUMA_NO_NODE);
3179
3180 if (unlikely(!nskb))
3181 goto err;
3182
3183 skb_reserve(nskb, headroom);
3184 __skb_put(nskb, doffset);
3185 }
3186
3187 if (segs)
3188 tail->next = nskb;
3189 else
3190 segs = nskb;
3191 tail = nskb;
3192
3193 __copy_skb_header(nskb, head_skb);
3194
3195 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3196 skb_reset_mac_len(nskb);
3197
3198 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3199 nskb->data - tnl_hlen,
3200 doffset + tnl_hlen);
3201
3202 if (nskb->len == len + doffset)
3203 goto perform_csum_check;
3204
3205 if (!sg) {
3206 if (!nskb->remcsum_offload)
3207 nskb->ip_summed = CHECKSUM_NONE;
3208 SKB_GSO_CB(nskb)->csum =
3209 skb_copy_and_csum_bits(head_skb, offset,
3210 skb_put(nskb, len),
3211 len, 0);
3212 SKB_GSO_CB(nskb)->csum_start =
3213 skb_headroom(nskb) + doffset;
3214 continue;
3215 }
3216
3217 nskb_frag = skb_shinfo(nskb)->frags;
3218
3219 skb_copy_from_linear_data_offset(head_skb, offset,
3220 skb_put(nskb, hsize), hsize);
3221
3222 skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3223 SKBTX_SHARED_FRAG;
3224
3225 while (pos < offset + len) {
3226 if (i >= nfrags) {
3227 BUG_ON(skb_headlen(list_skb));
3228
3229 i = 0;
3230 nfrags = skb_shinfo(list_skb)->nr_frags;
3231 frag = skb_shinfo(list_skb)->frags;
3232 frag_skb = list_skb;
3233
3234 BUG_ON(!nfrags);
3235
3236 list_skb = list_skb->next;
3237 }
3238
3239 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3240 MAX_SKB_FRAGS)) {
3241 net_warn_ratelimited(
3242 "skb_segment: too many frags: %u %u\n",
3243 pos, mss);
3244 goto err;
3245 }
3246
3247 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3248 goto err;
3249
3250 *nskb_frag = *frag;
3251 __skb_frag_ref(nskb_frag);
3252 size = skb_frag_size(nskb_frag);
3253
3254 if (pos < offset) {
3255 nskb_frag->page_offset += offset - pos;
3256 skb_frag_size_sub(nskb_frag, offset - pos);
3257 }
3258
3259 skb_shinfo(nskb)->nr_frags++;
3260
3261 if (pos + size <= offset + len) {
3262 i++;
3263 frag++;
3264 pos += size;
3265 } else {
3266 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3267 goto skip_fraglist;
3268 }
3269
3270 nskb_frag++;
3271 }
3272
3273 skip_fraglist:
3274 nskb->data_len = len - hsize;
3275 nskb->len += nskb->data_len;
3276 nskb->truesize += nskb->data_len;
3277
3278 perform_csum_check:
3279 if (!csum) {
3280 if (skb_has_shared_frag(nskb)) {
3281 err = __skb_linearize(nskb);
3282 if (err)
3283 goto err;
3284 }
3285 if (!nskb->remcsum_offload)
3286 nskb->ip_summed = CHECKSUM_NONE;
3287 SKB_GSO_CB(nskb)->csum =
3288 skb_checksum(nskb, doffset,
3289 nskb->len - doffset, 0);
3290 SKB_GSO_CB(nskb)->csum_start =
3291 skb_headroom(nskb) + doffset;
3292 }
3293 } while ((offset += len) < head_skb->len);
3294
3295 /* Some callers want to get the end of the list.
3296 * Put it in segs->prev to avoid walking the list.
3297 * (see validate_xmit_skb_list() for example)
3298 */
3299 segs->prev = tail;
3300
3301 /* Update GSO info on first skb in partial sequence. */
3302 if (partial_segs) {
3303 int type = skb_shinfo(head_skb)->gso_type;
3304
3305 /* Update type to add partial and then remove dodgy if set */
3306 type |= SKB_GSO_PARTIAL;
3307 type &= ~SKB_GSO_DODGY;
3308
3309 /* Update GSO info and prepare to start updating headers on
3310 * our way back down the stack of protocols.
3311 */
3312 skb_shinfo(segs)->gso_size = skb_shinfo(head_skb)->gso_size;
3313 skb_shinfo(segs)->gso_segs = partial_segs;
3314 skb_shinfo(segs)->gso_type = type;
3315 SKB_GSO_CB(segs)->data_offset = skb_headroom(segs) + doffset;
3316 }
3317
3318 /* Following permits correct backpressure, for protocols
3319 * using skb_set_owner_w().
3320 * Idea is to tranfert ownership from head_skb to last segment.
3321 */
3322 if (head_skb->destructor == sock_wfree) {
3323 swap(tail->truesize, head_skb->truesize);
3324 swap(tail->destructor, head_skb->destructor);
3325 swap(tail->sk, head_skb->sk);
3326 }
3327 return segs;
3328
3329 err:
3330 kfree_skb_list(segs);
3331 return ERR_PTR(err);
3332 }
3333 EXPORT_SYMBOL_GPL(skb_segment);
3334
3335 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3336 {
3337 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3338 unsigned int offset = skb_gro_offset(skb);
3339 unsigned int headlen = skb_headlen(skb);
3340 unsigned int len = skb_gro_len(skb);
3341 struct sk_buff *lp, *p = *head;
3342 unsigned int delta_truesize;
3343
3344 if (unlikely(p->len + len >= 65536))
3345 return -E2BIG;
3346
3347 lp = NAPI_GRO_CB(p)->last;
3348 pinfo = skb_shinfo(lp);
3349
3350 if (headlen <= offset) {
3351 skb_frag_t *frag;
3352 skb_frag_t *frag2;
3353 int i = skbinfo->nr_frags;
3354 int nr_frags = pinfo->nr_frags + i;
3355
3356 if (nr_frags > MAX_SKB_FRAGS)
3357 goto merge;
3358
3359 offset -= headlen;
3360 pinfo->nr_frags = nr_frags;
3361 skbinfo->nr_frags = 0;
3362
3363 frag = pinfo->frags + nr_frags;
3364 frag2 = skbinfo->frags + i;
3365 do {
3366 *--frag = *--frag2;
3367 } while (--i);
3368
3369 frag->page_offset += offset;
3370 skb_frag_size_sub(frag, offset);
3371
3372 /* all fragments truesize : remove (head size + sk_buff) */
3373 delta_truesize = skb->truesize -
3374 SKB_TRUESIZE(skb_end_offset(skb));
3375
3376 skb->truesize -= skb->data_len;
3377 skb->len -= skb->data_len;
3378 skb->data_len = 0;
3379
3380 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3381 goto done;
3382 } else if (skb->head_frag) {
3383 int nr_frags = pinfo->nr_frags;
3384 skb_frag_t *frag = pinfo->frags + nr_frags;
3385 struct page *page = virt_to_head_page(skb->head);
3386 unsigned int first_size = headlen - offset;
3387 unsigned int first_offset;
3388
3389 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3390 goto merge;
3391
3392 first_offset = skb->data -
3393 (unsigned char *)page_address(page) +
3394 offset;
3395
3396 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3397
3398 frag->page.p = page;
3399 frag->page_offset = first_offset;
3400 skb_frag_size_set(frag, first_size);
3401
3402 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3403 /* We dont need to clear skbinfo->nr_frags here */
3404
3405 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3406 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3407 goto done;
3408 }
3409
3410 merge:
3411 delta_truesize = skb->truesize;
3412 if (offset > headlen) {
3413 unsigned int eat = offset - headlen;
3414
3415 skbinfo->frags[0].page_offset += eat;
3416 skb_frag_size_sub(&skbinfo->frags[0], eat);
3417 skb->data_len -= eat;
3418 skb->len -= eat;
3419 offset = headlen;
3420 }
3421
3422 __skb_pull(skb, offset);
3423
3424 if (NAPI_GRO_CB(p)->last == p)
3425 skb_shinfo(p)->frag_list = skb;
3426 else
3427 NAPI_GRO_CB(p)->last->next = skb;
3428 NAPI_GRO_CB(p)->last = skb;
3429 __skb_header_release(skb);
3430 lp = p;
3431
3432 done:
3433 NAPI_GRO_CB(p)->count++;
3434 p->data_len += len;
3435 p->truesize += delta_truesize;
3436 p->len += len;
3437 if (lp != p) {
3438 lp->data_len += len;
3439 lp->truesize += delta_truesize;
3440 lp->len += len;
3441 }
3442 NAPI_GRO_CB(skb)->same_flow = 1;
3443 return 0;
3444 }
3445 EXPORT_SYMBOL_GPL(skb_gro_receive);
3446
3447 void __init skb_init(void)
3448 {
3449 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3450 sizeof(struct sk_buff),
3451 0,
3452 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3453 NULL);
3454 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3455 sizeof(struct sk_buff_fclones),
3456 0,
3457 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3458 NULL);
3459 }
3460
3461 /**
3462 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3463 * @skb: Socket buffer containing the buffers to be mapped
3464 * @sg: The scatter-gather list to map into
3465 * @offset: The offset into the buffer's contents to start mapping
3466 * @len: Length of buffer space to be mapped
3467 *
3468 * Fill the specified scatter-gather list with mappings/pointers into a
3469 * region of the buffer space attached to a socket buffer.
3470 */
3471 static int
3472 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3473 {
3474 int start = skb_headlen(skb);
3475 int i, copy = start - offset;
3476 struct sk_buff *frag_iter;
3477 int elt = 0;
3478
3479 if (copy > 0) {
3480 if (copy > len)
3481 copy = len;
3482 sg_set_buf(sg, skb->data + offset, copy);
3483 elt++;
3484 if ((len -= copy) == 0)
3485 return elt;
3486 offset += copy;
3487 }
3488
3489 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3490 int end;
3491
3492 WARN_ON(start > offset + len);
3493
3494 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3495 if ((copy = end - offset) > 0) {
3496 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3497
3498 if (copy > len)
3499 copy = len;
3500 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3501 frag->page_offset+offset-start);
3502 elt++;
3503 if (!(len -= copy))
3504 return elt;
3505 offset += copy;
3506 }
3507 start = end;
3508 }
3509
3510 skb_walk_frags(skb, frag_iter) {
3511 int end;
3512
3513 WARN_ON(start > offset + len);
3514
3515 end = start + frag_iter->len;
3516 if ((copy = end - offset) > 0) {
3517 if (copy > len)
3518 copy = len;
3519 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3520 copy);
3521 if ((len -= copy) == 0)
3522 return elt;
3523 offset += copy;
3524 }
3525 start = end;
3526 }
3527 BUG_ON(len);
3528 return elt;
3529 }
3530
3531 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3532 * sglist without mark the sg which contain last skb data as the end.
3533 * So the caller can mannipulate sg list as will when padding new data after
3534 * the first call without calling sg_unmark_end to expend sg list.
3535 *
3536 * Scenario to use skb_to_sgvec_nomark:
3537 * 1. sg_init_table
3538 * 2. skb_to_sgvec_nomark(payload1)
3539 * 3. skb_to_sgvec_nomark(payload2)
3540 *
3541 * This is equivalent to:
3542 * 1. sg_init_table
3543 * 2. skb_to_sgvec(payload1)
3544 * 3. sg_unmark_end
3545 * 4. skb_to_sgvec(payload2)
3546 *
3547 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3548 * is more preferable.
3549 */
3550 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3551 int offset, int len)
3552 {
3553 return __skb_to_sgvec(skb, sg, offset, len);
3554 }
3555 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3556
3557 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3558 {
3559 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3560
3561 sg_mark_end(&sg[nsg - 1]);
3562
3563 return nsg;
3564 }
3565 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3566
3567 /**
3568 * skb_cow_data - Check that a socket buffer's data buffers are writable
3569 * @skb: The socket buffer to check.
3570 * @tailbits: Amount of trailing space to be added
3571 * @trailer: Returned pointer to the skb where the @tailbits space begins
3572 *
3573 * Make sure that the data buffers attached to a socket buffer are
3574 * writable. If they are not, private copies are made of the data buffers
3575 * and the socket buffer is set to use these instead.
3576 *
3577 * If @tailbits is given, make sure that there is space to write @tailbits
3578 * bytes of data beyond current end of socket buffer. @trailer will be
3579 * set to point to the skb in which this space begins.
3580 *
3581 * The number of scatterlist elements required to completely map the
3582 * COW'd and extended socket buffer will be returned.
3583 */
3584 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3585 {
3586 int copyflag;
3587 int elt;
3588 struct sk_buff *skb1, **skb_p;
3589
3590 /* If skb is cloned or its head is paged, reallocate
3591 * head pulling out all the pages (pages are considered not writable
3592 * at the moment even if they are anonymous).
3593 */
3594 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3595 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3596 return -ENOMEM;
3597
3598 /* Easy case. Most of packets will go this way. */
3599 if (!skb_has_frag_list(skb)) {
3600 /* A little of trouble, not enough of space for trailer.
3601 * This should not happen, when stack is tuned to generate
3602 * good frames. OK, on miss we reallocate and reserve even more
3603 * space, 128 bytes is fair. */
3604
3605 if (skb_tailroom(skb) < tailbits &&
3606 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3607 return -ENOMEM;
3608
3609 /* Voila! */
3610 *trailer = skb;
3611 return 1;
3612 }
3613
3614 /* Misery. We are in troubles, going to mincer fragments... */
3615
3616 elt = 1;
3617 skb_p = &skb_shinfo(skb)->frag_list;
3618 copyflag = 0;
3619
3620 while ((skb1 = *skb_p) != NULL) {
3621 int ntail = 0;
3622
3623 /* The fragment is partially pulled by someone,
3624 * this can happen on input. Copy it and everything
3625 * after it. */
3626
3627 if (skb_shared(skb1))
3628 copyflag = 1;
3629
3630 /* If the skb is the last, worry about trailer. */
3631
3632 if (skb1->next == NULL && tailbits) {
3633 if (skb_shinfo(skb1)->nr_frags ||
3634 skb_has_frag_list(skb1) ||
3635 skb_tailroom(skb1) < tailbits)
3636 ntail = tailbits + 128;
3637 }
3638
3639 if (copyflag ||
3640 skb_cloned(skb1) ||
3641 ntail ||
3642 skb_shinfo(skb1)->nr_frags ||
3643 skb_has_frag_list(skb1)) {
3644 struct sk_buff *skb2;
3645
3646 /* Fuck, we are miserable poor guys... */
3647 if (ntail == 0)
3648 skb2 = skb_copy(skb1, GFP_ATOMIC);
3649 else
3650 skb2 = skb_copy_expand(skb1,
3651 skb_headroom(skb1),
3652 ntail,
3653 GFP_ATOMIC);
3654 if (unlikely(skb2 == NULL))
3655 return -ENOMEM;
3656
3657 if (skb1->sk)
3658 skb_set_owner_w(skb2, skb1->sk);
3659
3660 /* Looking around. Are we still alive?
3661 * OK, link new skb, drop old one */
3662
3663 skb2->next = skb1->next;
3664 *skb_p = skb2;
3665 kfree_skb(skb1);
3666 skb1 = skb2;
3667 }
3668 elt++;
3669 *trailer = skb1;
3670 skb_p = &skb1->next;
3671 }
3672
3673 return elt;
3674 }
3675 EXPORT_SYMBOL_GPL(skb_cow_data);
3676
3677 static void sock_rmem_free(struct sk_buff *skb)
3678 {
3679 struct sock *sk = skb->sk;
3680
3681 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3682 }
3683
3684 /*
3685 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3686 */
3687 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3688 {
3689 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3690 (unsigned int)sk->sk_rcvbuf)
3691 return -ENOMEM;
3692
3693 skb_orphan(skb);
3694 skb->sk = sk;
3695 skb->destructor = sock_rmem_free;
3696 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3697
3698 /* before exiting rcu section, make sure dst is refcounted */
3699 skb_dst_force(skb);
3700
3701 skb_queue_tail(&sk->sk_error_queue, skb);
3702 if (!sock_flag(sk, SOCK_DEAD))
3703 sk->sk_data_ready(sk);
3704 return 0;
3705 }
3706 EXPORT_SYMBOL(sock_queue_err_skb);
3707
3708 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3709 {
3710 struct sk_buff_head *q = &sk->sk_error_queue;
3711 struct sk_buff *skb, *skb_next;
3712 unsigned long flags;
3713 int err = 0;
3714
3715 spin_lock_irqsave(&q->lock, flags);
3716 skb = __skb_dequeue(q);
3717 if (skb && (skb_next = skb_peek(q)))
3718 err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3719 spin_unlock_irqrestore(&q->lock, flags);
3720
3721 sk->sk_err = err;
3722 if (err)
3723 sk->sk_error_report(sk);
3724
3725 return skb;
3726 }
3727 EXPORT_SYMBOL(sock_dequeue_err_skb);
3728
3729 /**
3730 * skb_clone_sk - create clone of skb, and take reference to socket
3731 * @skb: the skb to clone
3732 *
3733 * This function creates a clone of a buffer that holds a reference on
3734 * sk_refcnt. Buffers created via this function are meant to be
3735 * returned using sock_queue_err_skb, or free via kfree_skb.
3736 *
3737 * When passing buffers allocated with this function to sock_queue_err_skb
3738 * it is necessary to wrap the call with sock_hold/sock_put in order to
3739 * prevent the socket from being released prior to being enqueued on
3740 * the sk_error_queue.
3741 */
3742 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3743 {
3744 struct sock *sk = skb->sk;
3745 struct sk_buff *clone;
3746
3747 if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3748 return NULL;
3749
3750 clone = skb_clone(skb, GFP_ATOMIC);
3751 if (!clone) {
3752 sock_put(sk);
3753 return NULL;
3754 }
3755
3756 clone->sk = sk;
3757 clone->destructor = sock_efree;
3758
3759 return clone;
3760 }
3761 EXPORT_SYMBOL(skb_clone_sk);
3762
3763 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3764 struct sock *sk,
3765 int tstype)
3766 {
3767 struct sock_exterr_skb *serr;
3768 int err;
3769
3770 serr = SKB_EXT_ERR(skb);
3771 memset(serr, 0, sizeof(*serr));
3772 serr->ee.ee_errno = ENOMSG;
3773 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3774 serr->ee.ee_info = tstype;
3775 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3776 serr->ee.ee_data = skb_shinfo(skb)->tskey;
3777 if (sk->sk_protocol == IPPROTO_TCP &&
3778 sk->sk_type == SOCK_STREAM)
3779 serr->ee.ee_data -= sk->sk_tskey;
3780 }
3781
3782 err = sock_queue_err_skb(sk, skb);
3783
3784 if (err)
3785 kfree_skb(skb);
3786 }
3787
3788 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3789 {
3790 bool ret;
3791
3792 if (likely(sysctl_tstamp_allow_data || tsonly))
3793 return true;
3794
3795 read_lock_bh(&sk->sk_callback_lock);
3796 ret = sk->sk_socket && sk->sk_socket->file &&
3797 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3798 read_unlock_bh(&sk->sk_callback_lock);
3799 return ret;
3800 }
3801
3802 void skb_complete_tx_timestamp(struct sk_buff *skb,
3803 struct skb_shared_hwtstamps *hwtstamps)
3804 {
3805 struct sock *sk = skb->sk;
3806
3807 if (!skb_may_tx_timestamp(sk, false))
3808 return;
3809
3810 /* take a reference to prevent skb_orphan() from freeing the socket */
3811 sock_hold(sk);
3812
3813 *skb_hwtstamps(skb) = *hwtstamps;
3814 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3815
3816 sock_put(sk);
3817 }
3818 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3819
3820 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3821 struct skb_shared_hwtstamps *hwtstamps,
3822 struct sock *sk, int tstype)
3823 {
3824 struct sk_buff *skb;
3825 bool tsonly;
3826
3827 if (!sk)
3828 return;
3829
3830 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3831 if (!skb_may_tx_timestamp(sk, tsonly))
3832 return;
3833
3834 if (tsonly)
3835 skb = alloc_skb(0, GFP_ATOMIC);
3836 else
3837 skb = skb_clone(orig_skb, GFP_ATOMIC);
3838 if (!skb)
3839 return;
3840
3841 if (tsonly) {
3842 skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3843 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3844 }
3845
3846 if (hwtstamps)
3847 *skb_hwtstamps(skb) = *hwtstamps;
3848 else
3849 skb->tstamp = ktime_get_real();
3850
3851 __skb_complete_tx_timestamp(skb, sk, tstype);
3852 }
3853 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3854
3855 void skb_tstamp_tx(struct sk_buff *orig_skb,
3856 struct skb_shared_hwtstamps *hwtstamps)
3857 {
3858 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3859 SCM_TSTAMP_SND);
3860 }
3861 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3862
3863 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3864 {
3865 struct sock *sk = skb->sk;
3866 struct sock_exterr_skb *serr;
3867 int err;
3868
3869 skb->wifi_acked_valid = 1;
3870 skb->wifi_acked = acked;
3871
3872 serr = SKB_EXT_ERR(skb);
3873 memset(serr, 0, sizeof(*serr));
3874 serr->ee.ee_errno = ENOMSG;
3875 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3876
3877 /* take a reference to prevent skb_orphan() from freeing the socket */
3878 sock_hold(sk);
3879
3880 err = sock_queue_err_skb(sk, skb);
3881 if (err)
3882 kfree_skb(skb);
3883
3884 sock_put(sk);
3885 }
3886 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3887
3888 /**
3889 * skb_partial_csum_set - set up and verify partial csum values for packet
3890 * @skb: the skb to set
3891 * @start: the number of bytes after skb->data to start checksumming.
3892 * @off: the offset from start to place the checksum.
3893 *
3894 * For untrusted partially-checksummed packets, we need to make sure the values
3895 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3896 *
3897 * This function checks and sets those values and skb->ip_summed: if this
3898 * returns false you should drop the packet.
3899 */
3900 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3901 {
3902 if (unlikely(start > skb_headlen(skb)) ||
3903 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3904 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3905 start, off, skb_headlen(skb));
3906 return false;
3907 }
3908 skb->ip_summed = CHECKSUM_PARTIAL;
3909 skb->csum_start = skb_headroom(skb) + start;
3910 skb->csum_offset = off;
3911 skb_set_transport_header(skb, start);
3912 return true;
3913 }
3914 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3915
3916 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3917 unsigned int max)
3918 {
3919 if (skb_headlen(skb) >= len)
3920 return 0;
3921
3922 /* If we need to pullup then pullup to the max, so we
3923 * won't need to do it again.
3924 */
3925 if (max > skb->len)
3926 max = skb->len;
3927
3928 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3929 return -ENOMEM;
3930
3931 if (skb_headlen(skb) < len)
3932 return -EPROTO;
3933
3934 return 0;
3935 }
3936
3937 #define MAX_TCP_HDR_LEN (15 * 4)
3938
3939 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3940 typeof(IPPROTO_IP) proto,
3941 unsigned int off)
3942 {
3943 switch (proto) {
3944 int err;
3945
3946 case IPPROTO_TCP:
3947 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3948 off + MAX_TCP_HDR_LEN);
3949 if (!err && !skb_partial_csum_set(skb, off,
3950 offsetof(struct tcphdr,
3951 check)))
3952 err = -EPROTO;
3953 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3954
3955 case IPPROTO_UDP:
3956 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3957 off + sizeof(struct udphdr));
3958 if (!err && !skb_partial_csum_set(skb, off,
3959 offsetof(struct udphdr,
3960 check)))
3961 err = -EPROTO;
3962 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3963 }
3964
3965 return ERR_PTR(-EPROTO);
3966 }
3967
3968 /* This value should be large enough to cover a tagged ethernet header plus
3969 * maximally sized IP and TCP or UDP headers.
3970 */
3971 #define MAX_IP_HDR_LEN 128
3972
3973 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3974 {
3975 unsigned int off;
3976 bool fragment;
3977 __sum16 *csum;
3978 int err;
3979
3980 fragment = false;
3981
3982 err = skb_maybe_pull_tail(skb,
3983 sizeof(struct iphdr),
3984 MAX_IP_HDR_LEN);
3985 if (err < 0)
3986 goto out;
3987
3988 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3989 fragment = true;
3990
3991 off = ip_hdrlen(skb);
3992
3993 err = -EPROTO;
3994
3995 if (fragment)
3996 goto out;
3997
3998 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3999 if (IS_ERR(csum))
4000 return PTR_ERR(csum);
4001
4002 if (recalculate)
4003 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4004 ip_hdr(skb)->daddr,
4005 skb->len - off,
4006 ip_hdr(skb)->protocol, 0);
4007 err = 0;
4008
4009 out:
4010 return err;
4011 }
4012
4013 /* This value should be large enough to cover a tagged ethernet header plus
4014 * an IPv6 header, all options, and a maximal TCP or UDP header.
4015 */
4016 #define MAX_IPV6_HDR_LEN 256
4017
4018 #define OPT_HDR(type, skb, off) \
4019 (type *)(skb_network_header(skb) + (off))
4020
4021 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4022 {
4023 int err;
4024 u8 nexthdr;
4025 unsigned int off;
4026 unsigned int len;
4027 bool fragment;
4028 bool done;
4029 __sum16 *csum;
4030
4031 fragment = false;
4032 done = false;
4033
4034 off = sizeof(struct ipv6hdr);
4035
4036 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4037 if (err < 0)
4038 goto out;
4039
4040 nexthdr = ipv6_hdr(skb)->nexthdr;
4041
4042 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4043 while (off <= len && !done) {
4044 switch (nexthdr) {
4045 case IPPROTO_DSTOPTS:
4046 case IPPROTO_HOPOPTS:
4047 case IPPROTO_ROUTING: {
4048 struct ipv6_opt_hdr *hp;
4049
4050 err = skb_maybe_pull_tail(skb,
4051 off +
4052 sizeof(struct ipv6_opt_hdr),
4053 MAX_IPV6_HDR_LEN);
4054 if (err < 0)
4055 goto out;
4056
4057 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4058 nexthdr = hp->nexthdr;
4059 off += ipv6_optlen(hp);
4060 break;
4061 }
4062 case IPPROTO_AH: {
4063 struct ip_auth_hdr *hp;
4064
4065 err = skb_maybe_pull_tail(skb,
4066 off +
4067 sizeof(struct ip_auth_hdr),
4068 MAX_IPV6_HDR_LEN);
4069 if (err < 0)
4070 goto out;
4071
4072 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4073 nexthdr = hp->nexthdr;
4074 off += ipv6_authlen(hp);
4075 break;
4076 }
4077 case IPPROTO_FRAGMENT: {
4078 struct frag_hdr *hp;
4079
4080 err = skb_maybe_pull_tail(skb,
4081 off +
4082 sizeof(struct frag_hdr),
4083 MAX_IPV6_HDR_LEN);
4084 if (err < 0)
4085 goto out;
4086
4087 hp = OPT_HDR(struct frag_hdr, skb, off);
4088
4089 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4090 fragment = true;
4091
4092 nexthdr = hp->nexthdr;
4093 off += sizeof(struct frag_hdr);
4094 break;
4095 }
4096 default:
4097 done = true;
4098 break;
4099 }
4100 }
4101
4102 err = -EPROTO;
4103
4104 if (!done || fragment)
4105 goto out;
4106
4107 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4108 if (IS_ERR(csum))
4109 return PTR_ERR(csum);
4110
4111 if (recalculate)
4112 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4113 &ipv6_hdr(skb)->daddr,
4114 skb->len - off, nexthdr, 0);
4115 err = 0;
4116
4117 out:
4118 return err;
4119 }
4120
4121 /**
4122 * skb_checksum_setup - set up partial checksum offset
4123 * @skb: the skb to set up
4124 * @recalculate: if true the pseudo-header checksum will be recalculated
4125 */
4126 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4127 {
4128 int err;
4129
4130 switch (skb->protocol) {
4131 case htons(ETH_P_IP):
4132 err = skb_checksum_setup_ipv4(skb, recalculate);
4133 break;
4134
4135 case htons(ETH_P_IPV6):
4136 err = skb_checksum_setup_ipv6(skb, recalculate);
4137 break;
4138
4139 default:
4140 err = -EPROTO;
4141 break;
4142 }
4143
4144 return err;
4145 }
4146 EXPORT_SYMBOL(skb_checksum_setup);
4147
4148 /**
4149 * skb_checksum_maybe_trim - maybe trims the given skb
4150 * @skb: the skb to check
4151 * @transport_len: the data length beyond the network header
4152 *
4153 * Checks whether the given skb has data beyond the given transport length.
4154 * If so, returns a cloned skb trimmed to this transport length.
4155 * Otherwise returns the provided skb. Returns NULL in error cases
4156 * (e.g. transport_len exceeds skb length or out-of-memory).
4157 *
4158 * Caller needs to set the skb transport header and free any returned skb if it
4159 * differs from the provided skb.
4160 */
4161 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4162 unsigned int transport_len)
4163 {
4164 struct sk_buff *skb_chk;
4165 unsigned int len = skb_transport_offset(skb) + transport_len;
4166 int ret;
4167
4168 if (skb->len < len)
4169 return NULL;
4170 else if (skb->len == len)
4171 return skb;
4172
4173 skb_chk = skb_clone(skb, GFP_ATOMIC);
4174 if (!skb_chk)
4175 return NULL;
4176
4177 ret = pskb_trim_rcsum(skb_chk, len);
4178 if (ret) {
4179 kfree_skb(skb_chk);
4180 return NULL;
4181 }
4182
4183 return skb_chk;
4184 }
4185
4186 /**
4187 * skb_checksum_trimmed - validate checksum of an skb
4188 * @skb: the skb to check
4189 * @transport_len: the data length beyond the network header
4190 * @skb_chkf: checksum function to use
4191 *
4192 * Applies the given checksum function skb_chkf to the provided skb.
4193 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4194 *
4195 * If the skb has data beyond the given transport length, then a
4196 * trimmed & cloned skb is checked and returned.
4197 *
4198 * Caller needs to set the skb transport header and free any returned skb if it
4199 * differs from the provided skb.
4200 */
4201 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4202 unsigned int transport_len,
4203 __sum16(*skb_chkf)(struct sk_buff *skb))
4204 {
4205 struct sk_buff *skb_chk;
4206 unsigned int offset = skb_transport_offset(skb);
4207 __sum16 ret;
4208
4209 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4210 if (!skb_chk)
4211 goto err;
4212
4213 if (!pskb_may_pull(skb_chk, offset))
4214 goto err;
4215
4216 skb_pull_rcsum(skb_chk, offset);
4217 ret = skb_chkf(skb_chk);
4218 skb_push_rcsum(skb_chk, offset);
4219
4220 if (ret)
4221 goto err;
4222
4223 return skb_chk;
4224
4225 err:
4226 if (skb_chk && skb_chk != skb)
4227 kfree_skb(skb_chk);
4228
4229 return NULL;
4230
4231 }
4232 EXPORT_SYMBOL(skb_checksum_trimmed);
4233
4234 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4235 {
4236 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4237 skb->dev->name);
4238 }
4239 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4240
4241 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4242 {
4243 if (head_stolen) {
4244 skb_release_head_state(skb);
4245 kmem_cache_free(skbuff_head_cache, skb);
4246 } else {
4247 __kfree_skb(skb);
4248 }
4249 }
4250 EXPORT_SYMBOL(kfree_skb_partial);
4251
4252 /**
4253 * skb_try_coalesce - try to merge skb to prior one
4254 * @to: prior buffer
4255 * @from: buffer to add
4256 * @fragstolen: pointer to boolean
4257 * @delta_truesize: how much more was allocated than was requested
4258 */
4259 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4260 bool *fragstolen, int *delta_truesize)
4261 {
4262 int i, delta, len = from->len;
4263
4264 *fragstolen = false;
4265
4266 if (skb_cloned(to))
4267 return false;
4268
4269 if (len <= skb_tailroom(to)) {
4270 if (len)
4271 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4272 *delta_truesize = 0;
4273 return true;
4274 }
4275
4276 if (skb_has_frag_list(to) || skb_has_frag_list(from))
4277 return false;
4278
4279 if (skb_headlen(from) != 0) {
4280 struct page *page;
4281 unsigned int offset;
4282
4283 if (skb_shinfo(to)->nr_frags +
4284 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4285 return false;
4286
4287 if (skb_head_is_locked(from))
4288 return false;
4289
4290 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4291
4292 page = virt_to_head_page(from->head);
4293 offset = from->data - (unsigned char *)page_address(page);
4294
4295 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4296 page, offset, skb_headlen(from));
4297 *fragstolen = true;
4298 } else {
4299 if (skb_shinfo(to)->nr_frags +
4300 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4301 return false;
4302
4303 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4304 }
4305
4306 WARN_ON_ONCE(delta < len);
4307
4308 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4309 skb_shinfo(from)->frags,
4310 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4311 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4312
4313 if (!skb_cloned(from))
4314 skb_shinfo(from)->nr_frags = 0;
4315
4316 /* if the skb is not cloned this does nothing
4317 * since we set nr_frags to 0.
4318 */
4319 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4320 skb_frag_ref(from, i);
4321
4322 to->truesize += delta;
4323 to->len += len;
4324 to->data_len += len;
4325
4326 *delta_truesize = delta;
4327 return true;
4328 }
4329 EXPORT_SYMBOL(skb_try_coalesce);
4330
4331 /**
4332 * skb_scrub_packet - scrub an skb
4333 *
4334 * @skb: buffer to clean
4335 * @xnet: packet is crossing netns
4336 *
4337 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4338 * into/from a tunnel. Some information have to be cleared during these
4339 * operations.
4340 * skb_scrub_packet can also be used to clean a skb before injecting it in
4341 * another namespace (@xnet == true). We have to clear all information in the
4342 * skb that could impact namespace isolation.
4343 */
4344 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4345 {
4346 skb->tstamp.tv64 = 0;
4347 skb->pkt_type = PACKET_HOST;
4348 skb->skb_iif = 0;
4349 skb->ignore_df = 0;
4350 skb_dst_drop(skb);
4351 secpath_reset(skb);
4352 nf_reset(skb);
4353 nf_reset_trace(skb);
4354
4355 if (!xnet)
4356 return;
4357
4358 skb_orphan(skb);
4359 skb->mark = 0;
4360 }
4361 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4362
4363 /**
4364 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4365 *
4366 * @skb: GSO skb
4367 *
4368 * skb_gso_transport_seglen is used to determine the real size of the
4369 * individual segments, including Layer4 headers (TCP/UDP).
4370 *
4371 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4372 */
4373 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4374 {
4375 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4376 unsigned int thlen = 0;
4377
4378 if (skb->encapsulation) {
4379 thlen = skb_inner_transport_header(skb) -
4380 skb_transport_header(skb);
4381
4382 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4383 thlen += inner_tcp_hdrlen(skb);
4384 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4385 thlen = tcp_hdrlen(skb);
4386 }
4387 /* UFO sets gso_size to the size of the fragmentation
4388 * payload, i.e. the size of the L4 (UDP) header is already
4389 * accounted for.
4390 */
4391 return thlen + shinfo->gso_size;
4392 }
4393 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4394
4395 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4396 {
4397 if (skb_cow(skb, skb_headroom(skb)) < 0) {
4398 kfree_skb(skb);
4399 return NULL;
4400 }
4401
4402 memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4403 2 * ETH_ALEN);
4404 skb->mac_header += VLAN_HLEN;
4405 return skb;
4406 }
4407
4408 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4409 {
4410 struct vlan_hdr *vhdr;
4411 u16 vlan_tci;
4412
4413 if (unlikely(skb_vlan_tag_present(skb))) {
4414 /* vlan_tci is already set-up so leave this for another time */
4415 return skb;
4416 }
4417
4418 skb = skb_share_check(skb, GFP_ATOMIC);
4419 if (unlikely(!skb))
4420 goto err_free;
4421
4422 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4423 goto err_free;
4424
4425 vhdr = (struct vlan_hdr *)skb->data;
4426 vlan_tci = ntohs(vhdr->h_vlan_TCI);
4427 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4428
4429 skb_pull_rcsum(skb, VLAN_HLEN);
4430 vlan_set_encap_proto(skb, vhdr);
4431
4432 skb = skb_reorder_vlan_header(skb);
4433 if (unlikely(!skb))
4434 goto err_free;
4435
4436 skb_reset_network_header(skb);
4437 skb_reset_transport_header(skb);
4438 skb_reset_mac_len(skb);
4439
4440 return skb;
4441
4442 err_free:
4443 kfree_skb(skb);
4444 return NULL;
4445 }
4446 EXPORT_SYMBOL(skb_vlan_untag);
4447
4448 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4449 {
4450 if (!pskb_may_pull(skb, write_len))
4451 return -ENOMEM;
4452
4453 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4454 return 0;
4455
4456 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4457 }
4458 EXPORT_SYMBOL(skb_ensure_writable);
4459
4460 /* remove VLAN header from packet and update csum accordingly. */
4461 static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4462 {
4463 struct vlan_hdr *vhdr;
4464 unsigned int offset = skb->data - skb_mac_header(skb);
4465 int err;
4466
4467 __skb_push(skb, offset);
4468 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4469 if (unlikely(err))
4470 goto pull;
4471
4472 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4473
4474 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4475 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
4476
4477 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4478 __skb_pull(skb, VLAN_HLEN);
4479
4480 vlan_set_encap_proto(skb, vhdr);
4481 skb->mac_header += VLAN_HLEN;
4482
4483 if (skb_network_offset(skb) < ETH_HLEN)
4484 skb_set_network_header(skb, ETH_HLEN);
4485
4486 skb_reset_mac_len(skb);
4487 pull:
4488 __skb_pull(skb, offset);
4489
4490 return err;
4491 }
4492
4493 int skb_vlan_pop(struct sk_buff *skb)
4494 {
4495 u16 vlan_tci;
4496 __be16 vlan_proto;
4497 int err;
4498
4499 if (likely(skb_vlan_tag_present(skb))) {
4500 skb->vlan_tci = 0;
4501 } else {
4502 if (unlikely((skb->protocol != htons(ETH_P_8021Q) &&
4503 skb->protocol != htons(ETH_P_8021AD)) ||
4504 skb->len < VLAN_ETH_HLEN))
4505 return 0;
4506
4507 err = __skb_vlan_pop(skb, &vlan_tci);
4508 if (err)
4509 return err;
4510 }
4511 /* move next vlan tag to hw accel tag */
4512 if (likely((skb->protocol != htons(ETH_P_8021Q) &&
4513 skb->protocol != htons(ETH_P_8021AD)) ||
4514 skb->len < VLAN_ETH_HLEN))
4515 return 0;
4516
4517 vlan_proto = skb->protocol;
4518 err = __skb_vlan_pop(skb, &vlan_tci);
4519 if (unlikely(err))
4520 return err;
4521
4522 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4523 return 0;
4524 }
4525 EXPORT_SYMBOL(skb_vlan_pop);
4526
4527 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4528 {
4529 if (skb_vlan_tag_present(skb)) {
4530 unsigned int offset = skb->data - skb_mac_header(skb);
4531 int err;
4532
4533 /* __vlan_insert_tag expect skb->data pointing to mac header.
4534 * So change skb->data before calling it and change back to
4535 * original position later
4536 */
4537 __skb_push(skb, offset);
4538 err = __vlan_insert_tag(skb, skb->vlan_proto,
4539 skb_vlan_tag_get(skb));
4540 if (err) {
4541 __skb_pull(skb, offset);
4542 return err;
4543 }
4544
4545 skb->protocol = skb->vlan_proto;
4546 skb->mac_len += VLAN_HLEN;
4547
4548 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4549 __skb_pull(skb, offset);
4550 }
4551 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4552 return 0;
4553 }
4554 EXPORT_SYMBOL(skb_vlan_push);
4555
4556 /**
4557 * alloc_skb_with_frags - allocate skb with page frags
4558 *
4559 * @header_len: size of linear part
4560 * @data_len: needed length in frags
4561 * @max_page_order: max page order desired.
4562 * @errcode: pointer to error code if any
4563 * @gfp_mask: allocation mask
4564 *
4565 * This can be used to allocate a paged skb, given a maximal order for frags.
4566 */
4567 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4568 unsigned long data_len,
4569 int max_page_order,
4570 int *errcode,
4571 gfp_t gfp_mask)
4572 {
4573 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4574 unsigned long chunk;
4575 struct sk_buff *skb;
4576 struct page *page;
4577 gfp_t gfp_head;
4578 int i;
4579
4580 *errcode = -EMSGSIZE;
4581 /* Note this test could be relaxed, if we succeed to allocate
4582 * high order pages...
4583 */
4584 if (npages > MAX_SKB_FRAGS)
4585 return NULL;
4586
4587 gfp_head = gfp_mask;
4588 if (gfp_head & __GFP_DIRECT_RECLAIM)
4589 gfp_head |= __GFP_REPEAT;
4590
4591 *errcode = -ENOBUFS;
4592 skb = alloc_skb(header_len, gfp_head);
4593 if (!skb)
4594 return NULL;
4595
4596 skb->truesize += npages << PAGE_SHIFT;
4597
4598 for (i = 0; npages > 0; i++) {
4599 int order = max_page_order;
4600
4601 while (order) {
4602 if (npages >= 1 << order) {
4603 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4604 __GFP_COMP |
4605 __GFP_NOWARN |
4606 __GFP_NORETRY,
4607 order);
4608 if (page)
4609 goto fill_page;
4610 /* Do not retry other high order allocations */
4611 order = 1;
4612 max_page_order = 0;
4613 }
4614 order--;
4615 }
4616 page = alloc_page(gfp_mask);
4617 if (!page)
4618 goto failure;
4619 fill_page:
4620 chunk = min_t(unsigned long, data_len,
4621 PAGE_SIZE << order);
4622 skb_fill_page_desc(skb, i, page, 0, chunk);
4623 data_len -= chunk;
4624 npages -= 1 << order;
4625 }
4626 return skb;
4627
4628 failure:
4629 kfree_skb(skb);
4630 return NULL;
4631 }
4632 EXPORT_SYMBOL(alloc_skb_with_frags);
4633
4634 /* carve out the first off bytes from skb when off < headlen */
4635 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
4636 const int headlen, gfp_t gfp_mask)
4637 {
4638 int i;
4639 int size = skb_end_offset(skb);
4640 int new_hlen = headlen - off;
4641 u8 *data;
4642
4643 size = SKB_DATA_ALIGN(size);
4644
4645 if (skb_pfmemalloc(skb))
4646 gfp_mask |= __GFP_MEMALLOC;
4647 data = kmalloc_reserve(size +
4648 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4649 gfp_mask, NUMA_NO_NODE, NULL);
4650 if (!data)
4651 return -ENOMEM;
4652
4653 size = SKB_WITH_OVERHEAD(ksize(data));
4654
4655 /* Copy real data, and all frags */
4656 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
4657 skb->len -= off;
4658
4659 memcpy((struct skb_shared_info *)(data + size),
4660 skb_shinfo(skb),
4661 offsetof(struct skb_shared_info,
4662 frags[skb_shinfo(skb)->nr_frags]));
4663 if (skb_cloned(skb)) {
4664 /* drop the old head gracefully */
4665 if (skb_orphan_frags(skb, gfp_mask)) {
4666 kfree(data);
4667 return -ENOMEM;
4668 }
4669 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4670 skb_frag_ref(skb, i);
4671 if (skb_has_frag_list(skb))
4672 skb_clone_fraglist(skb);
4673 skb_release_data(skb);
4674 } else {
4675 /* we can reuse existing recount- all we did was
4676 * relocate values
4677 */
4678 skb_free_head(skb);
4679 }
4680
4681 skb->head = data;
4682 skb->data = data;
4683 skb->head_frag = 0;
4684 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4685 skb->end = size;
4686 #else
4687 skb->end = skb->head + size;
4688 #endif
4689 skb_set_tail_pointer(skb, skb_headlen(skb));
4690 skb_headers_offset_update(skb, 0);
4691 skb->cloned = 0;
4692 skb->hdr_len = 0;
4693 skb->nohdr = 0;
4694 atomic_set(&skb_shinfo(skb)->dataref, 1);
4695
4696 return 0;
4697 }
4698
4699 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
4700
4701 /* carve out the first eat bytes from skb's frag_list. May recurse into
4702 * pskb_carve()
4703 */
4704 static int pskb_carve_frag_list(struct sk_buff *skb,
4705 struct skb_shared_info *shinfo, int eat,
4706 gfp_t gfp_mask)
4707 {
4708 struct sk_buff *list = shinfo->frag_list;
4709 struct sk_buff *clone = NULL;
4710 struct sk_buff *insp = NULL;
4711
4712 do {
4713 if (!list) {
4714 pr_err("Not enough bytes to eat. Want %d\n", eat);
4715 return -EFAULT;
4716 }
4717 if (list->len <= eat) {
4718 /* Eaten as whole. */
4719 eat -= list->len;
4720 list = list->next;
4721 insp = list;
4722 } else {
4723 /* Eaten partially. */
4724 if (skb_shared(list)) {
4725 clone = skb_clone(list, gfp_mask);
4726 if (!clone)
4727 return -ENOMEM;
4728 insp = list->next;
4729 list = clone;
4730 } else {
4731 /* This may be pulled without problems. */
4732 insp = list;
4733 }
4734 if (pskb_carve(list, eat, gfp_mask) < 0) {
4735 kfree_skb(clone);
4736 return -ENOMEM;
4737 }
4738 break;
4739 }
4740 } while (eat);
4741
4742 /* Free pulled out fragments. */
4743 while ((list = shinfo->frag_list) != insp) {
4744 shinfo->frag_list = list->next;
4745 kfree_skb(list);
4746 }
4747 /* And insert new clone at head. */
4748 if (clone) {
4749 clone->next = list;
4750 shinfo->frag_list = clone;
4751 }
4752 return 0;
4753 }
4754
4755 /* carve off first len bytes from skb. Split line (off) is in the
4756 * non-linear part of skb
4757 */
4758 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
4759 int pos, gfp_t gfp_mask)
4760 {
4761 int i, k = 0;
4762 int size = skb_end_offset(skb);
4763 u8 *data;
4764 const int nfrags = skb_shinfo(skb)->nr_frags;
4765 struct skb_shared_info *shinfo;
4766
4767 size = SKB_DATA_ALIGN(size);
4768
4769 if (skb_pfmemalloc(skb))
4770 gfp_mask |= __GFP_MEMALLOC;
4771 data = kmalloc_reserve(size +
4772 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4773 gfp_mask, NUMA_NO_NODE, NULL);
4774 if (!data)
4775 return -ENOMEM;
4776
4777 size = SKB_WITH_OVERHEAD(ksize(data));
4778
4779 memcpy((struct skb_shared_info *)(data + size),
4780 skb_shinfo(skb), offsetof(struct skb_shared_info,
4781 frags[skb_shinfo(skb)->nr_frags]));
4782 if (skb_orphan_frags(skb, gfp_mask)) {
4783 kfree(data);
4784 return -ENOMEM;
4785 }
4786 shinfo = (struct skb_shared_info *)(data + size);
4787 for (i = 0; i < nfrags; i++) {
4788 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4789
4790 if (pos + fsize > off) {
4791 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
4792
4793 if (pos < off) {
4794 /* Split frag.
4795 * We have two variants in this case:
4796 * 1. Move all the frag to the second
4797 * part, if it is possible. F.e.
4798 * this approach is mandatory for TUX,
4799 * where splitting is expensive.
4800 * 2. Split is accurately. We make this.
4801 */
4802 shinfo->frags[0].page_offset += off - pos;
4803 skb_frag_size_sub(&shinfo->frags[0], off - pos);
4804 }
4805 skb_frag_ref(skb, i);
4806 k++;
4807 }
4808 pos += fsize;
4809 }
4810 shinfo->nr_frags = k;
4811 if (skb_has_frag_list(skb))
4812 skb_clone_fraglist(skb);
4813
4814 if (k == 0) {
4815 /* split line is in frag list */
4816 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
4817 }
4818 skb_release_data(skb);
4819
4820 skb->head = data;
4821 skb->head_frag = 0;
4822 skb->data = data;
4823 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4824 skb->end = size;
4825 #else
4826 skb->end = skb->head + size;
4827 #endif
4828 skb_reset_tail_pointer(skb);
4829 skb_headers_offset_update(skb, 0);
4830 skb->cloned = 0;
4831 skb->hdr_len = 0;
4832 skb->nohdr = 0;
4833 skb->len -= off;
4834 skb->data_len = skb->len;
4835 atomic_set(&skb_shinfo(skb)->dataref, 1);
4836 return 0;
4837 }
4838
4839 /* remove len bytes from the beginning of the skb */
4840 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
4841 {
4842 int headlen = skb_headlen(skb);
4843
4844 if (len < headlen)
4845 return pskb_carve_inside_header(skb, len, headlen, gfp);
4846 else
4847 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
4848 }
4849
4850 /* Extract to_copy bytes starting at off from skb, and return this in
4851 * a new skb
4852 */
4853 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
4854 int to_copy, gfp_t gfp)
4855 {
4856 struct sk_buff *clone = skb_clone(skb, gfp);
4857
4858 if (!clone)
4859 return NULL;
4860
4861 if (pskb_carve(clone, off, gfp) < 0 ||
4862 pskb_trim(clone, to_copy)) {
4863 kfree_skb(clone);
4864 return NULL;
4865 }
4866 return clone;
4867 }
4868 EXPORT_SYMBOL(pskb_extract);