]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/skbuff.c
Merge tag 'iio-for-4.13b' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-artful-kernel.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/sctp.h>
53 #include <linux/netdevice.h>
54 #ifdef CONFIG_NET_CLS_ACT
55 #include <net/pkt_sched.h>
56 #endif
57 #include <linux/string.h>
58 #include <linux/skbuff.h>
59 #include <linux/splice.h>
60 #include <linux/cache.h>
61 #include <linux/rtnetlink.h>
62 #include <linux/init.h>
63 #include <linux/scatterlist.h>
64 #include <linux/errqueue.h>
65 #include <linux/prefetch.h>
66 #include <linux/if_vlan.h>
67
68 #include <net/protocol.h>
69 #include <net/dst.h>
70 #include <net/sock.h>
71 #include <net/checksum.h>
72 #include <net/ip6_checksum.h>
73 #include <net/xfrm.h>
74
75 #include <linux/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
80
81 struct kmem_cache *skbuff_head_cache __read_mostly;
82 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
83 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
84 EXPORT_SYMBOL(sysctl_max_skb_frags);
85
86 /**
87 * skb_panic - private function for out-of-line support
88 * @skb: buffer
89 * @sz: size
90 * @addr: address
91 * @msg: skb_over_panic or skb_under_panic
92 *
93 * Out-of-line support for skb_put() and skb_push().
94 * Called via the wrapper skb_over_panic() or skb_under_panic().
95 * Keep out of line to prevent kernel bloat.
96 * __builtin_return_address is not used because it is not always reliable.
97 */
98 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
99 const char msg[])
100 {
101 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
102 msg, addr, skb->len, sz, skb->head, skb->data,
103 (unsigned long)skb->tail, (unsigned long)skb->end,
104 skb->dev ? skb->dev->name : "<NULL>");
105 BUG();
106 }
107
108 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
109 {
110 skb_panic(skb, sz, addr, __func__);
111 }
112
113 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
114 {
115 skb_panic(skb, sz, addr, __func__);
116 }
117
118 /*
119 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
120 * the caller if emergency pfmemalloc reserves are being used. If it is and
121 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
122 * may be used. Otherwise, the packet data may be discarded until enough
123 * memory is free
124 */
125 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
126 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
127
128 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
129 unsigned long ip, bool *pfmemalloc)
130 {
131 void *obj;
132 bool ret_pfmemalloc = false;
133
134 /*
135 * Try a regular allocation, when that fails and we're not entitled
136 * to the reserves, fail.
137 */
138 obj = kmalloc_node_track_caller(size,
139 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
140 node);
141 if (obj || !(gfp_pfmemalloc_allowed(flags)))
142 goto out;
143
144 /* Try again but now we are using pfmemalloc reserves */
145 ret_pfmemalloc = true;
146 obj = kmalloc_node_track_caller(size, flags, node);
147
148 out:
149 if (pfmemalloc)
150 *pfmemalloc = ret_pfmemalloc;
151
152 return obj;
153 }
154
155 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
156 * 'private' fields and also do memory statistics to find all the
157 * [BEEP] leaks.
158 *
159 */
160
161 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
162 {
163 struct sk_buff *skb;
164
165 /* Get the HEAD */
166 skb = kmem_cache_alloc_node(skbuff_head_cache,
167 gfp_mask & ~__GFP_DMA, node);
168 if (!skb)
169 goto out;
170
171 /*
172 * Only clear those fields we need to clear, not those that we will
173 * actually initialise below. Hence, don't put any more fields after
174 * the tail pointer in struct sk_buff!
175 */
176 memset(skb, 0, offsetof(struct sk_buff, tail));
177 skb->head = NULL;
178 skb->truesize = sizeof(struct sk_buff);
179 atomic_set(&skb->users, 1);
180
181 skb->mac_header = (typeof(skb->mac_header))~0U;
182 out:
183 return skb;
184 }
185
186 /**
187 * __alloc_skb - allocate a network buffer
188 * @size: size to allocate
189 * @gfp_mask: allocation mask
190 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
191 * instead of head cache and allocate a cloned (child) skb.
192 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
193 * allocations in case the data is required for writeback
194 * @node: numa node to allocate memory on
195 *
196 * Allocate a new &sk_buff. The returned buffer has no headroom and a
197 * tail room of at least size bytes. The object has a reference count
198 * of one. The return is the buffer. On a failure the return is %NULL.
199 *
200 * Buffers may only be allocated from interrupts using a @gfp_mask of
201 * %GFP_ATOMIC.
202 */
203 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
204 int flags, int node)
205 {
206 struct kmem_cache *cache;
207 struct skb_shared_info *shinfo;
208 struct sk_buff *skb;
209 u8 *data;
210 bool pfmemalloc;
211
212 cache = (flags & SKB_ALLOC_FCLONE)
213 ? skbuff_fclone_cache : skbuff_head_cache;
214
215 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
216 gfp_mask |= __GFP_MEMALLOC;
217
218 /* Get the HEAD */
219 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
220 if (!skb)
221 goto out;
222 prefetchw(skb);
223
224 /* We do our best to align skb_shared_info on a separate cache
225 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
226 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
227 * Both skb->head and skb_shared_info are cache line aligned.
228 */
229 size = SKB_DATA_ALIGN(size);
230 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
231 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
232 if (!data)
233 goto nodata;
234 /* kmalloc(size) might give us more room than requested.
235 * Put skb_shared_info exactly at the end of allocated zone,
236 * to allow max possible filling before reallocation.
237 */
238 size = SKB_WITH_OVERHEAD(ksize(data));
239 prefetchw(data + size);
240
241 /*
242 * Only clear those fields we need to clear, not those that we will
243 * actually initialise below. Hence, don't put any more fields after
244 * the tail pointer in struct sk_buff!
245 */
246 memset(skb, 0, offsetof(struct sk_buff, tail));
247 /* Account for allocated memory : skb + skb->head */
248 skb->truesize = SKB_TRUESIZE(size);
249 skb->pfmemalloc = pfmemalloc;
250 atomic_set(&skb->users, 1);
251 skb->head = data;
252 skb->data = data;
253 skb_reset_tail_pointer(skb);
254 skb->end = skb->tail + size;
255 skb->mac_header = (typeof(skb->mac_header))~0U;
256 skb->transport_header = (typeof(skb->transport_header))~0U;
257
258 /* make sure we initialize shinfo sequentially */
259 shinfo = skb_shinfo(skb);
260 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
261 atomic_set(&shinfo->dataref, 1);
262 kmemcheck_annotate_variable(shinfo->destructor_arg);
263
264 if (flags & SKB_ALLOC_FCLONE) {
265 struct sk_buff_fclones *fclones;
266
267 fclones = container_of(skb, struct sk_buff_fclones, skb1);
268
269 kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
270 skb->fclone = SKB_FCLONE_ORIG;
271 atomic_set(&fclones->fclone_ref, 1);
272
273 fclones->skb2.fclone = SKB_FCLONE_CLONE;
274 }
275 out:
276 return skb;
277 nodata:
278 kmem_cache_free(cache, skb);
279 skb = NULL;
280 goto out;
281 }
282 EXPORT_SYMBOL(__alloc_skb);
283
284 /**
285 * __build_skb - build a network buffer
286 * @data: data buffer provided by caller
287 * @frag_size: size of data, or 0 if head was kmalloced
288 *
289 * Allocate a new &sk_buff. Caller provides space holding head and
290 * skb_shared_info. @data must have been allocated by kmalloc() only if
291 * @frag_size is 0, otherwise data should come from the page allocator
292 * or vmalloc()
293 * The return is the new skb buffer.
294 * On a failure the return is %NULL, and @data is not freed.
295 * Notes :
296 * Before IO, driver allocates only data buffer where NIC put incoming frame
297 * Driver should add room at head (NET_SKB_PAD) and
298 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
299 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
300 * before giving packet to stack.
301 * RX rings only contains data buffers, not full skbs.
302 */
303 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
304 {
305 struct skb_shared_info *shinfo;
306 struct sk_buff *skb;
307 unsigned int size = frag_size ? : ksize(data);
308
309 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
310 if (!skb)
311 return NULL;
312
313 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
314
315 memset(skb, 0, offsetof(struct sk_buff, tail));
316 skb->truesize = SKB_TRUESIZE(size);
317 atomic_set(&skb->users, 1);
318 skb->head = data;
319 skb->data = data;
320 skb_reset_tail_pointer(skb);
321 skb->end = skb->tail + size;
322 skb->mac_header = (typeof(skb->mac_header))~0U;
323 skb->transport_header = (typeof(skb->transport_header))~0U;
324
325 /* make sure we initialize shinfo sequentially */
326 shinfo = skb_shinfo(skb);
327 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
328 atomic_set(&shinfo->dataref, 1);
329 kmemcheck_annotate_variable(shinfo->destructor_arg);
330
331 return skb;
332 }
333
334 /* build_skb() is wrapper over __build_skb(), that specifically
335 * takes care of skb->head and skb->pfmemalloc
336 * This means that if @frag_size is not zero, then @data must be backed
337 * by a page fragment, not kmalloc() or vmalloc()
338 */
339 struct sk_buff *build_skb(void *data, unsigned int frag_size)
340 {
341 struct sk_buff *skb = __build_skb(data, frag_size);
342
343 if (skb && frag_size) {
344 skb->head_frag = 1;
345 if (page_is_pfmemalloc(virt_to_head_page(data)))
346 skb->pfmemalloc = 1;
347 }
348 return skb;
349 }
350 EXPORT_SYMBOL(build_skb);
351
352 #define NAPI_SKB_CACHE_SIZE 64
353
354 struct napi_alloc_cache {
355 struct page_frag_cache page;
356 unsigned int skb_count;
357 void *skb_cache[NAPI_SKB_CACHE_SIZE];
358 };
359
360 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
361 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
362
363 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
364 {
365 struct page_frag_cache *nc;
366 unsigned long flags;
367 void *data;
368
369 local_irq_save(flags);
370 nc = this_cpu_ptr(&netdev_alloc_cache);
371 data = page_frag_alloc(nc, fragsz, gfp_mask);
372 local_irq_restore(flags);
373 return data;
374 }
375
376 /**
377 * netdev_alloc_frag - allocate a page fragment
378 * @fragsz: fragment size
379 *
380 * Allocates a frag from a page for receive buffer.
381 * Uses GFP_ATOMIC allocations.
382 */
383 void *netdev_alloc_frag(unsigned int fragsz)
384 {
385 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
386 }
387 EXPORT_SYMBOL(netdev_alloc_frag);
388
389 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
390 {
391 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
392
393 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
394 }
395
396 void *napi_alloc_frag(unsigned int fragsz)
397 {
398 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
399 }
400 EXPORT_SYMBOL(napi_alloc_frag);
401
402 /**
403 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
404 * @dev: network device to receive on
405 * @len: length to allocate
406 * @gfp_mask: get_free_pages mask, passed to alloc_skb
407 *
408 * Allocate a new &sk_buff and assign it a usage count of one. The
409 * buffer has NET_SKB_PAD headroom built in. Users should allocate
410 * the headroom they think they need without accounting for the
411 * built in space. The built in space is used for optimisations.
412 *
413 * %NULL is returned if there is no free memory.
414 */
415 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
416 gfp_t gfp_mask)
417 {
418 struct page_frag_cache *nc;
419 unsigned long flags;
420 struct sk_buff *skb;
421 bool pfmemalloc;
422 void *data;
423
424 len += NET_SKB_PAD;
425
426 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
427 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
428 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
429 if (!skb)
430 goto skb_fail;
431 goto skb_success;
432 }
433
434 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
435 len = SKB_DATA_ALIGN(len);
436
437 if (sk_memalloc_socks())
438 gfp_mask |= __GFP_MEMALLOC;
439
440 local_irq_save(flags);
441
442 nc = this_cpu_ptr(&netdev_alloc_cache);
443 data = page_frag_alloc(nc, len, gfp_mask);
444 pfmemalloc = nc->pfmemalloc;
445
446 local_irq_restore(flags);
447
448 if (unlikely(!data))
449 return NULL;
450
451 skb = __build_skb(data, len);
452 if (unlikely(!skb)) {
453 skb_free_frag(data);
454 return NULL;
455 }
456
457 /* use OR instead of assignment to avoid clearing of bits in mask */
458 if (pfmemalloc)
459 skb->pfmemalloc = 1;
460 skb->head_frag = 1;
461
462 skb_success:
463 skb_reserve(skb, NET_SKB_PAD);
464 skb->dev = dev;
465
466 skb_fail:
467 return skb;
468 }
469 EXPORT_SYMBOL(__netdev_alloc_skb);
470
471 /**
472 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
473 * @napi: napi instance this buffer was allocated for
474 * @len: length to allocate
475 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
476 *
477 * Allocate a new sk_buff for use in NAPI receive. This buffer will
478 * attempt to allocate the head from a special reserved region used
479 * only for NAPI Rx allocation. By doing this we can save several
480 * CPU cycles by avoiding having to disable and re-enable IRQs.
481 *
482 * %NULL is returned if there is no free memory.
483 */
484 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
485 gfp_t gfp_mask)
486 {
487 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
488 struct sk_buff *skb;
489 void *data;
490
491 len += NET_SKB_PAD + NET_IP_ALIGN;
492
493 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
494 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
495 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
496 if (!skb)
497 goto skb_fail;
498 goto skb_success;
499 }
500
501 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
502 len = SKB_DATA_ALIGN(len);
503
504 if (sk_memalloc_socks())
505 gfp_mask |= __GFP_MEMALLOC;
506
507 data = page_frag_alloc(&nc->page, len, gfp_mask);
508 if (unlikely(!data))
509 return NULL;
510
511 skb = __build_skb(data, len);
512 if (unlikely(!skb)) {
513 skb_free_frag(data);
514 return NULL;
515 }
516
517 /* use OR instead of assignment to avoid clearing of bits in mask */
518 if (nc->page.pfmemalloc)
519 skb->pfmemalloc = 1;
520 skb->head_frag = 1;
521
522 skb_success:
523 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
524 skb->dev = napi->dev;
525
526 skb_fail:
527 return skb;
528 }
529 EXPORT_SYMBOL(__napi_alloc_skb);
530
531 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
532 int size, unsigned int truesize)
533 {
534 skb_fill_page_desc(skb, i, page, off, size);
535 skb->len += size;
536 skb->data_len += size;
537 skb->truesize += truesize;
538 }
539 EXPORT_SYMBOL(skb_add_rx_frag);
540
541 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
542 unsigned int truesize)
543 {
544 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
545
546 skb_frag_size_add(frag, size);
547 skb->len += size;
548 skb->data_len += size;
549 skb->truesize += truesize;
550 }
551 EXPORT_SYMBOL(skb_coalesce_rx_frag);
552
553 static void skb_drop_list(struct sk_buff **listp)
554 {
555 kfree_skb_list(*listp);
556 *listp = NULL;
557 }
558
559 static inline void skb_drop_fraglist(struct sk_buff *skb)
560 {
561 skb_drop_list(&skb_shinfo(skb)->frag_list);
562 }
563
564 static void skb_clone_fraglist(struct sk_buff *skb)
565 {
566 struct sk_buff *list;
567
568 skb_walk_frags(skb, list)
569 skb_get(list);
570 }
571
572 static void skb_free_head(struct sk_buff *skb)
573 {
574 unsigned char *head = skb->head;
575
576 if (skb->head_frag)
577 skb_free_frag(head);
578 else
579 kfree(head);
580 }
581
582 static void skb_release_data(struct sk_buff *skb)
583 {
584 struct skb_shared_info *shinfo = skb_shinfo(skb);
585 int i;
586
587 if (skb->cloned &&
588 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
589 &shinfo->dataref))
590 return;
591
592 for (i = 0; i < shinfo->nr_frags; i++)
593 __skb_frag_unref(&shinfo->frags[i]);
594
595 /*
596 * If skb buf is from userspace, we need to notify the caller
597 * the lower device DMA has done;
598 */
599 if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
600 struct ubuf_info *uarg;
601
602 uarg = shinfo->destructor_arg;
603 if (uarg->callback)
604 uarg->callback(uarg, true);
605 }
606
607 if (shinfo->frag_list)
608 kfree_skb_list(shinfo->frag_list);
609
610 skb_free_head(skb);
611 }
612
613 /*
614 * Free an skbuff by memory without cleaning the state.
615 */
616 static void kfree_skbmem(struct sk_buff *skb)
617 {
618 struct sk_buff_fclones *fclones;
619
620 switch (skb->fclone) {
621 case SKB_FCLONE_UNAVAILABLE:
622 kmem_cache_free(skbuff_head_cache, skb);
623 return;
624
625 case SKB_FCLONE_ORIG:
626 fclones = container_of(skb, struct sk_buff_fclones, skb1);
627
628 /* We usually free the clone (TX completion) before original skb
629 * This test would have no chance to be true for the clone,
630 * while here, branch prediction will be good.
631 */
632 if (atomic_read(&fclones->fclone_ref) == 1)
633 goto fastpath;
634 break;
635
636 default: /* SKB_FCLONE_CLONE */
637 fclones = container_of(skb, struct sk_buff_fclones, skb2);
638 break;
639 }
640 if (!atomic_dec_and_test(&fclones->fclone_ref))
641 return;
642 fastpath:
643 kmem_cache_free(skbuff_fclone_cache, fclones);
644 }
645
646 static void skb_release_head_state(struct sk_buff *skb)
647 {
648 skb_dst_drop(skb);
649 #ifdef CONFIG_XFRM
650 secpath_put(skb->sp);
651 #endif
652 if (skb->destructor) {
653 WARN_ON(in_irq());
654 skb->destructor(skb);
655 }
656 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
657 nf_conntrack_put(skb_nfct(skb));
658 #endif
659 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
660 nf_bridge_put(skb->nf_bridge);
661 #endif
662 }
663
664 /* Free everything but the sk_buff shell. */
665 static void skb_release_all(struct sk_buff *skb)
666 {
667 skb_release_head_state(skb);
668 if (likely(skb->head))
669 skb_release_data(skb);
670 }
671
672 /**
673 * __kfree_skb - private function
674 * @skb: buffer
675 *
676 * Free an sk_buff. Release anything attached to the buffer.
677 * Clean the state. This is an internal helper function. Users should
678 * always call kfree_skb
679 */
680
681 void __kfree_skb(struct sk_buff *skb)
682 {
683 skb_release_all(skb);
684 kfree_skbmem(skb);
685 }
686 EXPORT_SYMBOL(__kfree_skb);
687
688 /**
689 * kfree_skb - free an sk_buff
690 * @skb: buffer to free
691 *
692 * Drop a reference to the buffer and free it if the usage count has
693 * hit zero.
694 */
695 void kfree_skb(struct sk_buff *skb)
696 {
697 if (unlikely(!skb))
698 return;
699 if (likely(atomic_read(&skb->users) == 1))
700 smp_rmb();
701 else if (likely(!atomic_dec_and_test(&skb->users)))
702 return;
703 trace_kfree_skb(skb, __builtin_return_address(0));
704 __kfree_skb(skb);
705 }
706 EXPORT_SYMBOL(kfree_skb);
707
708 void kfree_skb_list(struct sk_buff *segs)
709 {
710 while (segs) {
711 struct sk_buff *next = segs->next;
712
713 kfree_skb(segs);
714 segs = next;
715 }
716 }
717 EXPORT_SYMBOL(kfree_skb_list);
718
719 /**
720 * skb_tx_error - report an sk_buff xmit error
721 * @skb: buffer that triggered an error
722 *
723 * Report xmit error if a device callback is tracking this skb.
724 * skb must be freed afterwards.
725 */
726 void skb_tx_error(struct sk_buff *skb)
727 {
728 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
729 struct ubuf_info *uarg;
730
731 uarg = skb_shinfo(skb)->destructor_arg;
732 if (uarg->callback)
733 uarg->callback(uarg, false);
734 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
735 }
736 }
737 EXPORT_SYMBOL(skb_tx_error);
738
739 /**
740 * consume_skb - free an skbuff
741 * @skb: buffer to free
742 *
743 * Drop a ref to the buffer and free it if the usage count has hit zero
744 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
745 * is being dropped after a failure and notes that
746 */
747 void consume_skb(struct sk_buff *skb)
748 {
749 if (unlikely(!skb))
750 return;
751 if (likely(atomic_read(&skb->users) == 1))
752 smp_rmb();
753 else if (likely(!atomic_dec_and_test(&skb->users)))
754 return;
755 trace_consume_skb(skb);
756 __kfree_skb(skb);
757 }
758 EXPORT_SYMBOL(consume_skb);
759
760 void __kfree_skb_flush(void)
761 {
762 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
763
764 /* flush skb_cache if containing objects */
765 if (nc->skb_count) {
766 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
767 nc->skb_cache);
768 nc->skb_count = 0;
769 }
770 }
771
772 static inline void _kfree_skb_defer(struct sk_buff *skb)
773 {
774 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
775
776 /* drop skb->head and call any destructors for packet */
777 skb_release_all(skb);
778
779 /* record skb to CPU local list */
780 nc->skb_cache[nc->skb_count++] = skb;
781
782 #ifdef CONFIG_SLUB
783 /* SLUB writes into objects when freeing */
784 prefetchw(skb);
785 #endif
786
787 /* flush skb_cache if it is filled */
788 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
789 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
790 nc->skb_cache);
791 nc->skb_count = 0;
792 }
793 }
794 void __kfree_skb_defer(struct sk_buff *skb)
795 {
796 _kfree_skb_defer(skb);
797 }
798
799 void napi_consume_skb(struct sk_buff *skb, int budget)
800 {
801 if (unlikely(!skb))
802 return;
803
804 /* Zero budget indicate non-NAPI context called us, like netpoll */
805 if (unlikely(!budget)) {
806 dev_consume_skb_any(skb);
807 return;
808 }
809
810 if (likely(atomic_read(&skb->users) == 1))
811 smp_rmb();
812 else if (likely(!atomic_dec_and_test(&skb->users)))
813 return;
814 /* if reaching here SKB is ready to free */
815 trace_consume_skb(skb);
816
817 /* if SKB is a clone, don't handle this case */
818 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
819 __kfree_skb(skb);
820 return;
821 }
822
823 _kfree_skb_defer(skb);
824 }
825 EXPORT_SYMBOL(napi_consume_skb);
826
827 /* Make sure a field is enclosed inside headers_start/headers_end section */
828 #define CHECK_SKB_FIELD(field) \
829 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
830 offsetof(struct sk_buff, headers_start)); \
831 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
832 offsetof(struct sk_buff, headers_end)); \
833
834 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
835 {
836 new->tstamp = old->tstamp;
837 /* We do not copy old->sk */
838 new->dev = old->dev;
839 memcpy(new->cb, old->cb, sizeof(old->cb));
840 skb_dst_copy(new, old);
841 #ifdef CONFIG_XFRM
842 new->sp = secpath_get(old->sp);
843 #endif
844 __nf_copy(new, old, false);
845
846 /* Note : this field could be in headers_start/headers_end section
847 * It is not yet because we do not want to have a 16 bit hole
848 */
849 new->queue_mapping = old->queue_mapping;
850
851 memcpy(&new->headers_start, &old->headers_start,
852 offsetof(struct sk_buff, headers_end) -
853 offsetof(struct sk_buff, headers_start));
854 CHECK_SKB_FIELD(protocol);
855 CHECK_SKB_FIELD(csum);
856 CHECK_SKB_FIELD(hash);
857 CHECK_SKB_FIELD(priority);
858 CHECK_SKB_FIELD(skb_iif);
859 CHECK_SKB_FIELD(vlan_proto);
860 CHECK_SKB_FIELD(vlan_tci);
861 CHECK_SKB_FIELD(transport_header);
862 CHECK_SKB_FIELD(network_header);
863 CHECK_SKB_FIELD(mac_header);
864 CHECK_SKB_FIELD(inner_protocol);
865 CHECK_SKB_FIELD(inner_transport_header);
866 CHECK_SKB_FIELD(inner_network_header);
867 CHECK_SKB_FIELD(inner_mac_header);
868 CHECK_SKB_FIELD(mark);
869 #ifdef CONFIG_NETWORK_SECMARK
870 CHECK_SKB_FIELD(secmark);
871 #endif
872 #ifdef CONFIG_NET_RX_BUSY_POLL
873 CHECK_SKB_FIELD(napi_id);
874 #endif
875 #ifdef CONFIG_XPS
876 CHECK_SKB_FIELD(sender_cpu);
877 #endif
878 #ifdef CONFIG_NET_SCHED
879 CHECK_SKB_FIELD(tc_index);
880 #endif
881
882 }
883
884 /*
885 * You should not add any new code to this function. Add it to
886 * __copy_skb_header above instead.
887 */
888 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
889 {
890 #define C(x) n->x = skb->x
891
892 n->next = n->prev = NULL;
893 n->sk = NULL;
894 __copy_skb_header(n, skb);
895
896 C(len);
897 C(data_len);
898 C(mac_len);
899 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
900 n->cloned = 1;
901 n->nohdr = 0;
902 n->destructor = NULL;
903 C(tail);
904 C(end);
905 C(head);
906 C(head_frag);
907 C(data);
908 C(truesize);
909 atomic_set(&n->users, 1);
910
911 atomic_inc(&(skb_shinfo(skb)->dataref));
912 skb->cloned = 1;
913
914 return n;
915 #undef C
916 }
917
918 /**
919 * skb_morph - morph one skb into another
920 * @dst: the skb to receive the contents
921 * @src: the skb to supply the contents
922 *
923 * This is identical to skb_clone except that the target skb is
924 * supplied by the user.
925 *
926 * The target skb is returned upon exit.
927 */
928 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
929 {
930 skb_release_all(dst);
931 return __skb_clone(dst, src);
932 }
933 EXPORT_SYMBOL_GPL(skb_morph);
934
935 /**
936 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
937 * @skb: the skb to modify
938 * @gfp_mask: allocation priority
939 *
940 * This must be called on SKBTX_DEV_ZEROCOPY skb.
941 * It will copy all frags into kernel and drop the reference
942 * to userspace pages.
943 *
944 * If this function is called from an interrupt gfp_mask() must be
945 * %GFP_ATOMIC.
946 *
947 * Returns 0 on success or a negative error code on failure
948 * to allocate kernel memory to copy to.
949 */
950 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
951 {
952 int i;
953 int num_frags = skb_shinfo(skb)->nr_frags;
954 struct page *page, *head = NULL;
955 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
956
957 for (i = 0; i < num_frags; i++) {
958 u8 *vaddr;
959 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
960
961 page = alloc_page(gfp_mask);
962 if (!page) {
963 while (head) {
964 struct page *next = (struct page *)page_private(head);
965 put_page(head);
966 head = next;
967 }
968 return -ENOMEM;
969 }
970 vaddr = kmap_atomic(skb_frag_page(f));
971 memcpy(page_address(page),
972 vaddr + f->page_offset, skb_frag_size(f));
973 kunmap_atomic(vaddr);
974 set_page_private(page, (unsigned long)head);
975 head = page;
976 }
977
978 /* skb frags release userspace buffers */
979 for (i = 0; i < num_frags; i++)
980 skb_frag_unref(skb, i);
981
982 uarg->callback(uarg, false);
983
984 /* skb frags point to kernel buffers */
985 for (i = num_frags - 1; i >= 0; i--) {
986 __skb_fill_page_desc(skb, i, head, 0,
987 skb_shinfo(skb)->frags[i].size);
988 head = (struct page *)page_private(head);
989 }
990
991 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
992 return 0;
993 }
994 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
995
996 /**
997 * skb_clone - duplicate an sk_buff
998 * @skb: buffer to clone
999 * @gfp_mask: allocation priority
1000 *
1001 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1002 * copies share the same packet data but not structure. The new
1003 * buffer has a reference count of 1. If the allocation fails the
1004 * function returns %NULL otherwise the new buffer is returned.
1005 *
1006 * If this function is called from an interrupt gfp_mask() must be
1007 * %GFP_ATOMIC.
1008 */
1009
1010 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1011 {
1012 struct sk_buff_fclones *fclones = container_of(skb,
1013 struct sk_buff_fclones,
1014 skb1);
1015 struct sk_buff *n;
1016
1017 if (skb_orphan_frags(skb, gfp_mask))
1018 return NULL;
1019
1020 if (skb->fclone == SKB_FCLONE_ORIG &&
1021 atomic_read(&fclones->fclone_ref) == 1) {
1022 n = &fclones->skb2;
1023 atomic_set(&fclones->fclone_ref, 2);
1024 } else {
1025 if (skb_pfmemalloc(skb))
1026 gfp_mask |= __GFP_MEMALLOC;
1027
1028 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1029 if (!n)
1030 return NULL;
1031
1032 kmemcheck_annotate_bitfield(n, flags1);
1033 n->fclone = SKB_FCLONE_UNAVAILABLE;
1034 }
1035
1036 return __skb_clone(n, skb);
1037 }
1038 EXPORT_SYMBOL(skb_clone);
1039
1040 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1041 {
1042 /* Only adjust this if it actually is csum_start rather than csum */
1043 if (skb->ip_summed == CHECKSUM_PARTIAL)
1044 skb->csum_start += off;
1045 /* {transport,network,mac}_header and tail are relative to skb->head */
1046 skb->transport_header += off;
1047 skb->network_header += off;
1048 if (skb_mac_header_was_set(skb))
1049 skb->mac_header += off;
1050 skb->inner_transport_header += off;
1051 skb->inner_network_header += off;
1052 skb->inner_mac_header += off;
1053 }
1054
1055 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1056 {
1057 __copy_skb_header(new, old);
1058
1059 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1060 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1061 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1062 }
1063
1064 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1065 {
1066 if (skb_pfmemalloc(skb))
1067 return SKB_ALLOC_RX;
1068 return 0;
1069 }
1070
1071 /**
1072 * skb_copy - create private copy of an sk_buff
1073 * @skb: buffer to copy
1074 * @gfp_mask: allocation priority
1075 *
1076 * Make a copy of both an &sk_buff and its data. This is used when the
1077 * caller wishes to modify the data and needs a private copy of the
1078 * data to alter. Returns %NULL on failure or the pointer to the buffer
1079 * on success. The returned buffer has a reference count of 1.
1080 *
1081 * As by-product this function converts non-linear &sk_buff to linear
1082 * one, so that &sk_buff becomes completely private and caller is allowed
1083 * to modify all the data of returned buffer. This means that this
1084 * function is not recommended for use in circumstances when only
1085 * header is going to be modified. Use pskb_copy() instead.
1086 */
1087
1088 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1089 {
1090 int headerlen = skb_headroom(skb);
1091 unsigned int size = skb_end_offset(skb) + skb->data_len;
1092 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1093 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1094
1095 if (!n)
1096 return NULL;
1097
1098 /* Set the data pointer */
1099 skb_reserve(n, headerlen);
1100 /* Set the tail pointer and length */
1101 skb_put(n, skb->len);
1102
1103 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1104 BUG();
1105
1106 copy_skb_header(n, skb);
1107 return n;
1108 }
1109 EXPORT_SYMBOL(skb_copy);
1110
1111 /**
1112 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1113 * @skb: buffer to copy
1114 * @headroom: headroom of new skb
1115 * @gfp_mask: allocation priority
1116 * @fclone: if true allocate the copy of the skb from the fclone
1117 * cache instead of the head cache; it is recommended to set this
1118 * to true for the cases where the copy will likely be cloned
1119 *
1120 * Make a copy of both an &sk_buff and part of its data, located
1121 * in header. Fragmented data remain shared. This is used when
1122 * the caller wishes to modify only header of &sk_buff and needs
1123 * private copy of the header to alter. Returns %NULL on failure
1124 * or the pointer to the buffer on success.
1125 * The returned buffer has a reference count of 1.
1126 */
1127
1128 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1129 gfp_t gfp_mask, bool fclone)
1130 {
1131 unsigned int size = skb_headlen(skb) + headroom;
1132 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1133 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1134
1135 if (!n)
1136 goto out;
1137
1138 /* Set the data pointer */
1139 skb_reserve(n, headroom);
1140 /* Set the tail pointer and length */
1141 skb_put(n, skb_headlen(skb));
1142 /* Copy the bytes */
1143 skb_copy_from_linear_data(skb, n->data, n->len);
1144
1145 n->truesize += skb->data_len;
1146 n->data_len = skb->data_len;
1147 n->len = skb->len;
1148
1149 if (skb_shinfo(skb)->nr_frags) {
1150 int i;
1151
1152 if (skb_orphan_frags(skb, gfp_mask)) {
1153 kfree_skb(n);
1154 n = NULL;
1155 goto out;
1156 }
1157 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1158 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1159 skb_frag_ref(skb, i);
1160 }
1161 skb_shinfo(n)->nr_frags = i;
1162 }
1163
1164 if (skb_has_frag_list(skb)) {
1165 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1166 skb_clone_fraglist(n);
1167 }
1168
1169 copy_skb_header(n, skb);
1170 out:
1171 return n;
1172 }
1173 EXPORT_SYMBOL(__pskb_copy_fclone);
1174
1175 /**
1176 * pskb_expand_head - reallocate header of &sk_buff
1177 * @skb: buffer to reallocate
1178 * @nhead: room to add at head
1179 * @ntail: room to add at tail
1180 * @gfp_mask: allocation priority
1181 *
1182 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1183 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1184 * reference count of 1. Returns zero in the case of success or error,
1185 * if expansion failed. In the last case, &sk_buff is not changed.
1186 *
1187 * All the pointers pointing into skb header may change and must be
1188 * reloaded after call to this function.
1189 */
1190
1191 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1192 gfp_t gfp_mask)
1193 {
1194 int i, osize = skb_end_offset(skb);
1195 int size = osize + nhead + ntail;
1196 long off;
1197 u8 *data;
1198
1199 BUG_ON(nhead < 0);
1200
1201 if (skb_shared(skb))
1202 BUG();
1203
1204 size = SKB_DATA_ALIGN(size);
1205
1206 if (skb_pfmemalloc(skb))
1207 gfp_mask |= __GFP_MEMALLOC;
1208 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1209 gfp_mask, NUMA_NO_NODE, NULL);
1210 if (!data)
1211 goto nodata;
1212 size = SKB_WITH_OVERHEAD(ksize(data));
1213
1214 /* Copy only real data... and, alas, header. This should be
1215 * optimized for the cases when header is void.
1216 */
1217 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1218
1219 memcpy((struct skb_shared_info *)(data + size),
1220 skb_shinfo(skb),
1221 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1222
1223 /*
1224 * if shinfo is shared we must drop the old head gracefully, but if it
1225 * is not we can just drop the old head and let the existing refcount
1226 * be since all we did is relocate the values
1227 */
1228 if (skb_cloned(skb)) {
1229 /* copy this zero copy skb frags */
1230 if (skb_orphan_frags(skb, gfp_mask))
1231 goto nofrags;
1232 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1233 skb_frag_ref(skb, i);
1234
1235 if (skb_has_frag_list(skb))
1236 skb_clone_fraglist(skb);
1237
1238 skb_release_data(skb);
1239 } else {
1240 skb_free_head(skb);
1241 }
1242 off = (data + nhead) - skb->head;
1243
1244 skb->head = data;
1245 skb->head_frag = 0;
1246 skb->data += off;
1247 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1248 skb->end = size;
1249 off = nhead;
1250 #else
1251 skb->end = skb->head + size;
1252 #endif
1253 skb->tail += off;
1254 skb_headers_offset_update(skb, nhead);
1255 skb->cloned = 0;
1256 skb->hdr_len = 0;
1257 skb->nohdr = 0;
1258 atomic_set(&skb_shinfo(skb)->dataref, 1);
1259
1260 /* It is not generally safe to change skb->truesize.
1261 * For the moment, we really care of rx path, or
1262 * when skb is orphaned (not attached to a socket).
1263 */
1264 if (!skb->sk || skb->destructor == sock_edemux)
1265 skb->truesize += size - osize;
1266
1267 return 0;
1268
1269 nofrags:
1270 kfree(data);
1271 nodata:
1272 return -ENOMEM;
1273 }
1274 EXPORT_SYMBOL(pskb_expand_head);
1275
1276 /* Make private copy of skb with writable head and some headroom */
1277
1278 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1279 {
1280 struct sk_buff *skb2;
1281 int delta = headroom - skb_headroom(skb);
1282
1283 if (delta <= 0)
1284 skb2 = pskb_copy(skb, GFP_ATOMIC);
1285 else {
1286 skb2 = skb_clone(skb, GFP_ATOMIC);
1287 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1288 GFP_ATOMIC)) {
1289 kfree_skb(skb2);
1290 skb2 = NULL;
1291 }
1292 }
1293 return skb2;
1294 }
1295 EXPORT_SYMBOL(skb_realloc_headroom);
1296
1297 /**
1298 * skb_copy_expand - copy and expand sk_buff
1299 * @skb: buffer to copy
1300 * @newheadroom: new free bytes at head
1301 * @newtailroom: new free bytes at tail
1302 * @gfp_mask: allocation priority
1303 *
1304 * Make a copy of both an &sk_buff and its data and while doing so
1305 * allocate additional space.
1306 *
1307 * This is used when the caller wishes to modify the data and needs a
1308 * private copy of the data to alter as well as more space for new fields.
1309 * Returns %NULL on failure or the pointer to the buffer
1310 * on success. The returned buffer has a reference count of 1.
1311 *
1312 * You must pass %GFP_ATOMIC as the allocation priority if this function
1313 * is called from an interrupt.
1314 */
1315 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1316 int newheadroom, int newtailroom,
1317 gfp_t gfp_mask)
1318 {
1319 /*
1320 * Allocate the copy buffer
1321 */
1322 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1323 gfp_mask, skb_alloc_rx_flag(skb),
1324 NUMA_NO_NODE);
1325 int oldheadroom = skb_headroom(skb);
1326 int head_copy_len, head_copy_off;
1327
1328 if (!n)
1329 return NULL;
1330
1331 skb_reserve(n, newheadroom);
1332
1333 /* Set the tail pointer and length */
1334 skb_put(n, skb->len);
1335
1336 head_copy_len = oldheadroom;
1337 head_copy_off = 0;
1338 if (newheadroom <= head_copy_len)
1339 head_copy_len = newheadroom;
1340 else
1341 head_copy_off = newheadroom - head_copy_len;
1342
1343 /* Copy the linear header and data. */
1344 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1345 skb->len + head_copy_len))
1346 BUG();
1347
1348 copy_skb_header(n, skb);
1349
1350 skb_headers_offset_update(n, newheadroom - oldheadroom);
1351
1352 return n;
1353 }
1354 EXPORT_SYMBOL(skb_copy_expand);
1355
1356 /**
1357 * skb_pad - zero pad the tail of an skb
1358 * @skb: buffer to pad
1359 * @pad: space to pad
1360 *
1361 * Ensure that a buffer is followed by a padding area that is zero
1362 * filled. Used by network drivers which may DMA or transfer data
1363 * beyond the buffer end onto the wire.
1364 *
1365 * May return error in out of memory cases. The skb is freed on error.
1366 */
1367
1368 int skb_pad(struct sk_buff *skb, int pad)
1369 {
1370 int err;
1371 int ntail;
1372
1373 /* If the skbuff is non linear tailroom is always zero.. */
1374 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1375 memset(skb->data+skb->len, 0, pad);
1376 return 0;
1377 }
1378
1379 ntail = skb->data_len + pad - (skb->end - skb->tail);
1380 if (likely(skb_cloned(skb) || ntail > 0)) {
1381 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1382 if (unlikely(err))
1383 goto free_skb;
1384 }
1385
1386 /* FIXME: The use of this function with non-linear skb's really needs
1387 * to be audited.
1388 */
1389 err = skb_linearize(skb);
1390 if (unlikely(err))
1391 goto free_skb;
1392
1393 memset(skb->data + skb->len, 0, pad);
1394 return 0;
1395
1396 free_skb:
1397 kfree_skb(skb);
1398 return err;
1399 }
1400 EXPORT_SYMBOL(skb_pad);
1401
1402 /**
1403 * pskb_put - add data to the tail of a potentially fragmented buffer
1404 * @skb: start of the buffer to use
1405 * @tail: tail fragment of the buffer to use
1406 * @len: amount of data to add
1407 *
1408 * This function extends the used data area of the potentially
1409 * fragmented buffer. @tail must be the last fragment of @skb -- or
1410 * @skb itself. If this would exceed the total buffer size the kernel
1411 * will panic. A pointer to the first byte of the extra data is
1412 * returned.
1413 */
1414
1415 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1416 {
1417 if (tail != skb) {
1418 skb->data_len += len;
1419 skb->len += len;
1420 }
1421 return skb_put(tail, len);
1422 }
1423 EXPORT_SYMBOL_GPL(pskb_put);
1424
1425 /**
1426 * skb_put - add data to a buffer
1427 * @skb: buffer to use
1428 * @len: amount of data to add
1429 *
1430 * This function extends the used data area of the buffer. If this would
1431 * exceed the total buffer size the kernel will panic. A pointer to the
1432 * first byte of the extra data is returned.
1433 */
1434 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1435 {
1436 unsigned char *tmp = skb_tail_pointer(skb);
1437 SKB_LINEAR_ASSERT(skb);
1438 skb->tail += len;
1439 skb->len += len;
1440 if (unlikely(skb->tail > skb->end))
1441 skb_over_panic(skb, len, __builtin_return_address(0));
1442 return tmp;
1443 }
1444 EXPORT_SYMBOL(skb_put);
1445
1446 /**
1447 * skb_push - add data to the start of a buffer
1448 * @skb: buffer to use
1449 * @len: amount of data to add
1450 *
1451 * This function extends the used data area of the buffer at the buffer
1452 * start. If this would exceed the total buffer headroom the kernel will
1453 * panic. A pointer to the first byte of the extra data is returned.
1454 */
1455 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1456 {
1457 skb->data -= len;
1458 skb->len += len;
1459 if (unlikely(skb->data<skb->head))
1460 skb_under_panic(skb, len, __builtin_return_address(0));
1461 return skb->data;
1462 }
1463 EXPORT_SYMBOL(skb_push);
1464
1465 /**
1466 * skb_pull - remove data from the start of a buffer
1467 * @skb: buffer to use
1468 * @len: amount of data to remove
1469 *
1470 * This function removes data from the start of a buffer, returning
1471 * the memory to the headroom. A pointer to the next data in the buffer
1472 * is returned. Once the data has been pulled future pushes will overwrite
1473 * the old data.
1474 */
1475 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1476 {
1477 return skb_pull_inline(skb, len);
1478 }
1479 EXPORT_SYMBOL(skb_pull);
1480
1481 /**
1482 * skb_trim - remove end from a buffer
1483 * @skb: buffer to alter
1484 * @len: new length
1485 *
1486 * Cut the length of a buffer down by removing data from the tail. If
1487 * the buffer is already under the length specified it is not modified.
1488 * The skb must be linear.
1489 */
1490 void skb_trim(struct sk_buff *skb, unsigned int len)
1491 {
1492 if (skb->len > len)
1493 __skb_trim(skb, len);
1494 }
1495 EXPORT_SYMBOL(skb_trim);
1496
1497 /* Trims skb to length len. It can change skb pointers.
1498 */
1499
1500 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1501 {
1502 struct sk_buff **fragp;
1503 struct sk_buff *frag;
1504 int offset = skb_headlen(skb);
1505 int nfrags = skb_shinfo(skb)->nr_frags;
1506 int i;
1507 int err;
1508
1509 if (skb_cloned(skb) &&
1510 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1511 return err;
1512
1513 i = 0;
1514 if (offset >= len)
1515 goto drop_pages;
1516
1517 for (; i < nfrags; i++) {
1518 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1519
1520 if (end < len) {
1521 offset = end;
1522 continue;
1523 }
1524
1525 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1526
1527 drop_pages:
1528 skb_shinfo(skb)->nr_frags = i;
1529
1530 for (; i < nfrags; i++)
1531 skb_frag_unref(skb, i);
1532
1533 if (skb_has_frag_list(skb))
1534 skb_drop_fraglist(skb);
1535 goto done;
1536 }
1537
1538 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1539 fragp = &frag->next) {
1540 int end = offset + frag->len;
1541
1542 if (skb_shared(frag)) {
1543 struct sk_buff *nfrag;
1544
1545 nfrag = skb_clone(frag, GFP_ATOMIC);
1546 if (unlikely(!nfrag))
1547 return -ENOMEM;
1548
1549 nfrag->next = frag->next;
1550 consume_skb(frag);
1551 frag = nfrag;
1552 *fragp = frag;
1553 }
1554
1555 if (end < len) {
1556 offset = end;
1557 continue;
1558 }
1559
1560 if (end > len &&
1561 unlikely((err = pskb_trim(frag, len - offset))))
1562 return err;
1563
1564 if (frag->next)
1565 skb_drop_list(&frag->next);
1566 break;
1567 }
1568
1569 done:
1570 if (len > skb_headlen(skb)) {
1571 skb->data_len -= skb->len - len;
1572 skb->len = len;
1573 } else {
1574 skb->len = len;
1575 skb->data_len = 0;
1576 skb_set_tail_pointer(skb, len);
1577 }
1578
1579 if (!skb->sk || skb->destructor == sock_edemux)
1580 skb_condense(skb);
1581 return 0;
1582 }
1583 EXPORT_SYMBOL(___pskb_trim);
1584
1585 /**
1586 * __pskb_pull_tail - advance tail of skb header
1587 * @skb: buffer to reallocate
1588 * @delta: number of bytes to advance tail
1589 *
1590 * The function makes a sense only on a fragmented &sk_buff,
1591 * it expands header moving its tail forward and copying necessary
1592 * data from fragmented part.
1593 *
1594 * &sk_buff MUST have reference count of 1.
1595 *
1596 * Returns %NULL (and &sk_buff does not change) if pull failed
1597 * or value of new tail of skb in the case of success.
1598 *
1599 * All the pointers pointing into skb header may change and must be
1600 * reloaded after call to this function.
1601 */
1602
1603 /* Moves tail of skb head forward, copying data from fragmented part,
1604 * when it is necessary.
1605 * 1. It may fail due to malloc failure.
1606 * 2. It may change skb pointers.
1607 *
1608 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1609 */
1610 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1611 {
1612 /* If skb has not enough free space at tail, get new one
1613 * plus 128 bytes for future expansions. If we have enough
1614 * room at tail, reallocate without expansion only if skb is cloned.
1615 */
1616 int i, k, eat = (skb->tail + delta) - skb->end;
1617
1618 if (eat > 0 || skb_cloned(skb)) {
1619 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1620 GFP_ATOMIC))
1621 return NULL;
1622 }
1623
1624 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1625 BUG();
1626
1627 /* Optimization: no fragments, no reasons to preestimate
1628 * size of pulled pages. Superb.
1629 */
1630 if (!skb_has_frag_list(skb))
1631 goto pull_pages;
1632
1633 /* Estimate size of pulled pages. */
1634 eat = delta;
1635 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1636 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1637
1638 if (size >= eat)
1639 goto pull_pages;
1640 eat -= size;
1641 }
1642
1643 /* If we need update frag list, we are in troubles.
1644 * Certainly, it possible to add an offset to skb data,
1645 * but taking into account that pulling is expected to
1646 * be very rare operation, it is worth to fight against
1647 * further bloating skb head and crucify ourselves here instead.
1648 * Pure masohism, indeed. 8)8)
1649 */
1650 if (eat) {
1651 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1652 struct sk_buff *clone = NULL;
1653 struct sk_buff *insp = NULL;
1654
1655 do {
1656 BUG_ON(!list);
1657
1658 if (list->len <= eat) {
1659 /* Eaten as whole. */
1660 eat -= list->len;
1661 list = list->next;
1662 insp = list;
1663 } else {
1664 /* Eaten partially. */
1665
1666 if (skb_shared(list)) {
1667 /* Sucks! We need to fork list. :-( */
1668 clone = skb_clone(list, GFP_ATOMIC);
1669 if (!clone)
1670 return NULL;
1671 insp = list->next;
1672 list = clone;
1673 } else {
1674 /* This may be pulled without
1675 * problems. */
1676 insp = list;
1677 }
1678 if (!pskb_pull(list, eat)) {
1679 kfree_skb(clone);
1680 return NULL;
1681 }
1682 break;
1683 }
1684 } while (eat);
1685
1686 /* Free pulled out fragments. */
1687 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1688 skb_shinfo(skb)->frag_list = list->next;
1689 kfree_skb(list);
1690 }
1691 /* And insert new clone at head. */
1692 if (clone) {
1693 clone->next = list;
1694 skb_shinfo(skb)->frag_list = clone;
1695 }
1696 }
1697 /* Success! Now we may commit changes to skb data. */
1698
1699 pull_pages:
1700 eat = delta;
1701 k = 0;
1702 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1703 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1704
1705 if (size <= eat) {
1706 skb_frag_unref(skb, i);
1707 eat -= size;
1708 } else {
1709 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1710 if (eat) {
1711 skb_shinfo(skb)->frags[k].page_offset += eat;
1712 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1713 eat = 0;
1714 }
1715 k++;
1716 }
1717 }
1718 skb_shinfo(skb)->nr_frags = k;
1719
1720 skb->tail += delta;
1721 skb->data_len -= delta;
1722
1723 return skb_tail_pointer(skb);
1724 }
1725 EXPORT_SYMBOL(__pskb_pull_tail);
1726
1727 /**
1728 * skb_copy_bits - copy bits from skb to kernel buffer
1729 * @skb: source skb
1730 * @offset: offset in source
1731 * @to: destination buffer
1732 * @len: number of bytes to copy
1733 *
1734 * Copy the specified number of bytes from the source skb to the
1735 * destination buffer.
1736 *
1737 * CAUTION ! :
1738 * If its prototype is ever changed,
1739 * check arch/{*}/net/{*}.S files,
1740 * since it is called from BPF assembly code.
1741 */
1742 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1743 {
1744 int start = skb_headlen(skb);
1745 struct sk_buff *frag_iter;
1746 int i, copy;
1747
1748 if (offset > (int)skb->len - len)
1749 goto fault;
1750
1751 /* Copy header. */
1752 if ((copy = start - offset) > 0) {
1753 if (copy > len)
1754 copy = len;
1755 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1756 if ((len -= copy) == 0)
1757 return 0;
1758 offset += copy;
1759 to += copy;
1760 }
1761
1762 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1763 int end;
1764 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1765
1766 WARN_ON(start > offset + len);
1767
1768 end = start + skb_frag_size(f);
1769 if ((copy = end - offset) > 0) {
1770 u8 *vaddr;
1771
1772 if (copy > len)
1773 copy = len;
1774
1775 vaddr = kmap_atomic(skb_frag_page(f));
1776 memcpy(to,
1777 vaddr + f->page_offset + offset - start,
1778 copy);
1779 kunmap_atomic(vaddr);
1780
1781 if ((len -= copy) == 0)
1782 return 0;
1783 offset += copy;
1784 to += copy;
1785 }
1786 start = end;
1787 }
1788
1789 skb_walk_frags(skb, frag_iter) {
1790 int end;
1791
1792 WARN_ON(start > offset + len);
1793
1794 end = start + frag_iter->len;
1795 if ((copy = end - offset) > 0) {
1796 if (copy > len)
1797 copy = len;
1798 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1799 goto fault;
1800 if ((len -= copy) == 0)
1801 return 0;
1802 offset += copy;
1803 to += copy;
1804 }
1805 start = end;
1806 }
1807
1808 if (!len)
1809 return 0;
1810
1811 fault:
1812 return -EFAULT;
1813 }
1814 EXPORT_SYMBOL(skb_copy_bits);
1815
1816 /*
1817 * Callback from splice_to_pipe(), if we need to release some pages
1818 * at the end of the spd in case we error'ed out in filling the pipe.
1819 */
1820 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1821 {
1822 put_page(spd->pages[i]);
1823 }
1824
1825 static struct page *linear_to_page(struct page *page, unsigned int *len,
1826 unsigned int *offset,
1827 struct sock *sk)
1828 {
1829 struct page_frag *pfrag = sk_page_frag(sk);
1830
1831 if (!sk_page_frag_refill(sk, pfrag))
1832 return NULL;
1833
1834 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1835
1836 memcpy(page_address(pfrag->page) + pfrag->offset,
1837 page_address(page) + *offset, *len);
1838 *offset = pfrag->offset;
1839 pfrag->offset += *len;
1840
1841 return pfrag->page;
1842 }
1843
1844 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1845 struct page *page,
1846 unsigned int offset)
1847 {
1848 return spd->nr_pages &&
1849 spd->pages[spd->nr_pages - 1] == page &&
1850 (spd->partial[spd->nr_pages - 1].offset +
1851 spd->partial[spd->nr_pages - 1].len == offset);
1852 }
1853
1854 /*
1855 * Fill page/offset/length into spd, if it can hold more pages.
1856 */
1857 static bool spd_fill_page(struct splice_pipe_desc *spd,
1858 struct pipe_inode_info *pipe, struct page *page,
1859 unsigned int *len, unsigned int offset,
1860 bool linear,
1861 struct sock *sk)
1862 {
1863 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1864 return true;
1865
1866 if (linear) {
1867 page = linear_to_page(page, len, &offset, sk);
1868 if (!page)
1869 return true;
1870 }
1871 if (spd_can_coalesce(spd, page, offset)) {
1872 spd->partial[spd->nr_pages - 1].len += *len;
1873 return false;
1874 }
1875 get_page(page);
1876 spd->pages[spd->nr_pages] = page;
1877 spd->partial[spd->nr_pages].len = *len;
1878 spd->partial[spd->nr_pages].offset = offset;
1879 spd->nr_pages++;
1880
1881 return false;
1882 }
1883
1884 static bool __splice_segment(struct page *page, unsigned int poff,
1885 unsigned int plen, unsigned int *off,
1886 unsigned int *len,
1887 struct splice_pipe_desc *spd, bool linear,
1888 struct sock *sk,
1889 struct pipe_inode_info *pipe)
1890 {
1891 if (!*len)
1892 return true;
1893
1894 /* skip this segment if already processed */
1895 if (*off >= plen) {
1896 *off -= plen;
1897 return false;
1898 }
1899
1900 /* ignore any bits we already processed */
1901 poff += *off;
1902 plen -= *off;
1903 *off = 0;
1904
1905 do {
1906 unsigned int flen = min(*len, plen);
1907
1908 if (spd_fill_page(spd, pipe, page, &flen, poff,
1909 linear, sk))
1910 return true;
1911 poff += flen;
1912 plen -= flen;
1913 *len -= flen;
1914 } while (*len && plen);
1915
1916 return false;
1917 }
1918
1919 /*
1920 * Map linear and fragment data from the skb to spd. It reports true if the
1921 * pipe is full or if we already spliced the requested length.
1922 */
1923 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1924 unsigned int *offset, unsigned int *len,
1925 struct splice_pipe_desc *spd, struct sock *sk)
1926 {
1927 int seg;
1928 struct sk_buff *iter;
1929
1930 /* map the linear part :
1931 * If skb->head_frag is set, this 'linear' part is backed by a
1932 * fragment, and if the head is not shared with any clones then
1933 * we can avoid a copy since we own the head portion of this page.
1934 */
1935 if (__splice_segment(virt_to_page(skb->data),
1936 (unsigned long) skb->data & (PAGE_SIZE - 1),
1937 skb_headlen(skb),
1938 offset, len, spd,
1939 skb_head_is_locked(skb),
1940 sk, pipe))
1941 return true;
1942
1943 /*
1944 * then map the fragments
1945 */
1946 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1947 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1948
1949 if (__splice_segment(skb_frag_page(f),
1950 f->page_offset, skb_frag_size(f),
1951 offset, len, spd, false, sk, pipe))
1952 return true;
1953 }
1954
1955 skb_walk_frags(skb, iter) {
1956 if (*offset >= iter->len) {
1957 *offset -= iter->len;
1958 continue;
1959 }
1960 /* __skb_splice_bits() only fails if the output has no room
1961 * left, so no point in going over the frag_list for the error
1962 * case.
1963 */
1964 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
1965 return true;
1966 }
1967
1968 return false;
1969 }
1970
1971 /*
1972 * Map data from the skb to a pipe. Should handle both the linear part,
1973 * the fragments, and the frag list.
1974 */
1975 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1976 struct pipe_inode_info *pipe, unsigned int tlen,
1977 unsigned int flags)
1978 {
1979 struct partial_page partial[MAX_SKB_FRAGS];
1980 struct page *pages[MAX_SKB_FRAGS];
1981 struct splice_pipe_desc spd = {
1982 .pages = pages,
1983 .partial = partial,
1984 .nr_pages_max = MAX_SKB_FRAGS,
1985 .ops = &nosteal_pipe_buf_ops,
1986 .spd_release = sock_spd_release,
1987 };
1988 int ret = 0;
1989
1990 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
1991
1992 if (spd.nr_pages)
1993 ret = splice_to_pipe(pipe, &spd);
1994
1995 return ret;
1996 }
1997 EXPORT_SYMBOL_GPL(skb_splice_bits);
1998
1999 /**
2000 * skb_store_bits - store bits from kernel buffer to skb
2001 * @skb: destination buffer
2002 * @offset: offset in destination
2003 * @from: source buffer
2004 * @len: number of bytes to copy
2005 *
2006 * Copy the specified number of bytes from the source buffer to the
2007 * destination skb. This function handles all the messy bits of
2008 * traversing fragment lists and such.
2009 */
2010
2011 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2012 {
2013 int start = skb_headlen(skb);
2014 struct sk_buff *frag_iter;
2015 int i, copy;
2016
2017 if (offset > (int)skb->len - len)
2018 goto fault;
2019
2020 if ((copy = start - offset) > 0) {
2021 if (copy > len)
2022 copy = len;
2023 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2024 if ((len -= copy) == 0)
2025 return 0;
2026 offset += copy;
2027 from += copy;
2028 }
2029
2030 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2031 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2032 int end;
2033
2034 WARN_ON(start > offset + len);
2035
2036 end = start + skb_frag_size(frag);
2037 if ((copy = end - offset) > 0) {
2038 u8 *vaddr;
2039
2040 if (copy > len)
2041 copy = len;
2042
2043 vaddr = kmap_atomic(skb_frag_page(frag));
2044 memcpy(vaddr + frag->page_offset + offset - start,
2045 from, copy);
2046 kunmap_atomic(vaddr);
2047
2048 if ((len -= copy) == 0)
2049 return 0;
2050 offset += copy;
2051 from += copy;
2052 }
2053 start = end;
2054 }
2055
2056 skb_walk_frags(skb, frag_iter) {
2057 int end;
2058
2059 WARN_ON(start > offset + len);
2060
2061 end = start + frag_iter->len;
2062 if ((copy = end - offset) > 0) {
2063 if (copy > len)
2064 copy = len;
2065 if (skb_store_bits(frag_iter, offset - start,
2066 from, copy))
2067 goto fault;
2068 if ((len -= copy) == 0)
2069 return 0;
2070 offset += copy;
2071 from += copy;
2072 }
2073 start = end;
2074 }
2075 if (!len)
2076 return 0;
2077
2078 fault:
2079 return -EFAULT;
2080 }
2081 EXPORT_SYMBOL(skb_store_bits);
2082
2083 /* Checksum skb data. */
2084 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2085 __wsum csum, const struct skb_checksum_ops *ops)
2086 {
2087 int start = skb_headlen(skb);
2088 int i, copy = start - offset;
2089 struct sk_buff *frag_iter;
2090 int pos = 0;
2091
2092 /* Checksum header. */
2093 if (copy > 0) {
2094 if (copy > len)
2095 copy = len;
2096 csum = ops->update(skb->data + offset, copy, csum);
2097 if ((len -= copy) == 0)
2098 return csum;
2099 offset += copy;
2100 pos = copy;
2101 }
2102
2103 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2104 int end;
2105 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2106
2107 WARN_ON(start > offset + len);
2108
2109 end = start + skb_frag_size(frag);
2110 if ((copy = end - offset) > 0) {
2111 __wsum csum2;
2112 u8 *vaddr;
2113
2114 if (copy > len)
2115 copy = len;
2116 vaddr = kmap_atomic(skb_frag_page(frag));
2117 csum2 = ops->update(vaddr + frag->page_offset +
2118 offset - start, copy, 0);
2119 kunmap_atomic(vaddr);
2120 csum = ops->combine(csum, csum2, pos, copy);
2121 if (!(len -= copy))
2122 return csum;
2123 offset += copy;
2124 pos += copy;
2125 }
2126 start = end;
2127 }
2128
2129 skb_walk_frags(skb, frag_iter) {
2130 int end;
2131
2132 WARN_ON(start > offset + len);
2133
2134 end = start + frag_iter->len;
2135 if ((copy = end - offset) > 0) {
2136 __wsum csum2;
2137 if (copy > len)
2138 copy = len;
2139 csum2 = __skb_checksum(frag_iter, offset - start,
2140 copy, 0, ops);
2141 csum = ops->combine(csum, csum2, pos, copy);
2142 if ((len -= copy) == 0)
2143 return csum;
2144 offset += copy;
2145 pos += copy;
2146 }
2147 start = end;
2148 }
2149 BUG_ON(len);
2150
2151 return csum;
2152 }
2153 EXPORT_SYMBOL(__skb_checksum);
2154
2155 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2156 int len, __wsum csum)
2157 {
2158 const struct skb_checksum_ops ops = {
2159 .update = csum_partial_ext,
2160 .combine = csum_block_add_ext,
2161 };
2162
2163 return __skb_checksum(skb, offset, len, csum, &ops);
2164 }
2165 EXPORT_SYMBOL(skb_checksum);
2166
2167 /* Both of above in one bottle. */
2168
2169 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2170 u8 *to, int len, __wsum csum)
2171 {
2172 int start = skb_headlen(skb);
2173 int i, copy = start - offset;
2174 struct sk_buff *frag_iter;
2175 int pos = 0;
2176
2177 /* Copy header. */
2178 if (copy > 0) {
2179 if (copy > len)
2180 copy = len;
2181 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2182 copy, csum);
2183 if ((len -= copy) == 0)
2184 return csum;
2185 offset += copy;
2186 to += copy;
2187 pos = copy;
2188 }
2189
2190 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2191 int end;
2192
2193 WARN_ON(start > offset + len);
2194
2195 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2196 if ((copy = end - offset) > 0) {
2197 __wsum csum2;
2198 u8 *vaddr;
2199 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2200
2201 if (copy > len)
2202 copy = len;
2203 vaddr = kmap_atomic(skb_frag_page(frag));
2204 csum2 = csum_partial_copy_nocheck(vaddr +
2205 frag->page_offset +
2206 offset - start, to,
2207 copy, 0);
2208 kunmap_atomic(vaddr);
2209 csum = csum_block_add(csum, csum2, pos);
2210 if (!(len -= copy))
2211 return csum;
2212 offset += copy;
2213 to += copy;
2214 pos += copy;
2215 }
2216 start = end;
2217 }
2218
2219 skb_walk_frags(skb, frag_iter) {
2220 __wsum csum2;
2221 int end;
2222
2223 WARN_ON(start > offset + len);
2224
2225 end = start + frag_iter->len;
2226 if ((copy = end - offset) > 0) {
2227 if (copy > len)
2228 copy = len;
2229 csum2 = skb_copy_and_csum_bits(frag_iter,
2230 offset - start,
2231 to, copy, 0);
2232 csum = csum_block_add(csum, csum2, pos);
2233 if ((len -= copy) == 0)
2234 return csum;
2235 offset += copy;
2236 to += copy;
2237 pos += copy;
2238 }
2239 start = end;
2240 }
2241 BUG_ON(len);
2242 return csum;
2243 }
2244 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2245
2246 /**
2247 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2248 * @from: source buffer
2249 *
2250 * Calculates the amount of linear headroom needed in the 'to' skb passed
2251 * into skb_zerocopy().
2252 */
2253 unsigned int
2254 skb_zerocopy_headlen(const struct sk_buff *from)
2255 {
2256 unsigned int hlen = 0;
2257
2258 if (!from->head_frag ||
2259 skb_headlen(from) < L1_CACHE_BYTES ||
2260 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2261 hlen = skb_headlen(from);
2262
2263 if (skb_has_frag_list(from))
2264 hlen = from->len;
2265
2266 return hlen;
2267 }
2268 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2269
2270 /**
2271 * skb_zerocopy - Zero copy skb to skb
2272 * @to: destination buffer
2273 * @from: source buffer
2274 * @len: number of bytes to copy from source buffer
2275 * @hlen: size of linear headroom in destination buffer
2276 *
2277 * Copies up to `len` bytes from `from` to `to` by creating references
2278 * to the frags in the source buffer.
2279 *
2280 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2281 * headroom in the `to` buffer.
2282 *
2283 * Return value:
2284 * 0: everything is OK
2285 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2286 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2287 */
2288 int
2289 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2290 {
2291 int i, j = 0;
2292 int plen = 0; /* length of skb->head fragment */
2293 int ret;
2294 struct page *page;
2295 unsigned int offset;
2296
2297 BUG_ON(!from->head_frag && !hlen);
2298
2299 /* dont bother with small payloads */
2300 if (len <= skb_tailroom(to))
2301 return skb_copy_bits(from, 0, skb_put(to, len), len);
2302
2303 if (hlen) {
2304 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2305 if (unlikely(ret))
2306 return ret;
2307 len -= hlen;
2308 } else {
2309 plen = min_t(int, skb_headlen(from), len);
2310 if (plen) {
2311 page = virt_to_head_page(from->head);
2312 offset = from->data - (unsigned char *)page_address(page);
2313 __skb_fill_page_desc(to, 0, page, offset, plen);
2314 get_page(page);
2315 j = 1;
2316 len -= plen;
2317 }
2318 }
2319
2320 to->truesize += len + plen;
2321 to->len += len + plen;
2322 to->data_len += len + plen;
2323
2324 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2325 skb_tx_error(from);
2326 return -ENOMEM;
2327 }
2328
2329 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2330 if (!len)
2331 break;
2332 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2333 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2334 len -= skb_shinfo(to)->frags[j].size;
2335 skb_frag_ref(to, j);
2336 j++;
2337 }
2338 skb_shinfo(to)->nr_frags = j;
2339
2340 return 0;
2341 }
2342 EXPORT_SYMBOL_GPL(skb_zerocopy);
2343
2344 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2345 {
2346 __wsum csum;
2347 long csstart;
2348
2349 if (skb->ip_summed == CHECKSUM_PARTIAL)
2350 csstart = skb_checksum_start_offset(skb);
2351 else
2352 csstart = skb_headlen(skb);
2353
2354 BUG_ON(csstart > skb_headlen(skb));
2355
2356 skb_copy_from_linear_data(skb, to, csstart);
2357
2358 csum = 0;
2359 if (csstart != skb->len)
2360 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2361 skb->len - csstart, 0);
2362
2363 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2364 long csstuff = csstart + skb->csum_offset;
2365
2366 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2367 }
2368 }
2369 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2370
2371 /**
2372 * skb_dequeue - remove from the head of the queue
2373 * @list: list to dequeue from
2374 *
2375 * Remove the head of the list. The list lock is taken so the function
2376 * may be used safely with other locking list functions. The head item is
2377 * returned or %NULL if the list is empty.
2378 */
2379
2380 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2381 {
2382 unsigned long flags;
2383 struct sk_buff *result;
2384
2385 spin_lock_irqsave(&list->lock, flags);
2386 result = __skb_dequeue(list);
2387 spin_unlock_irqrestore(&list->lock, flags);
2388 return result;
2389 }
2390 EXPORT_SYMBOL(skb_dequeue);
2391
2392 /**
2393 * skb_dequeue_tail - remove from the tail of the queue
2394 * @list: list to dequeue from
2395 *
2396 * Remove the tail of the list. The list lock is taken so the function
2397 * may be used safely with other locking list functions. The tail item is
2398 * returned or %NULL if the list is empty.
2399 */
2400 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2401 {
2402 unsigned long flags;
2403 struct sk_buff *result;
2404
2405 spin_lock_irqsave(&list->lock, flags);
2406 result = __skb_dequeue_tail(list);
2407 spin_unlock_irqrestore(&list->lock, flags);
2408 return result;
2409 }
2410 EXPORT_SYMBOL(skb_dequeue_tail);
2411
2412 /**
2413 * skb_queue_purge - empty a list
2414 * @list: list to empty
2415 *
2416 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2417 * the list and one reference dropped. This function takes the list
2418 * lock and is atomic with respect to other list locking functions.
2419 */
2420 void skb_queue_purge(struct sk_buff_head *list)
2421 {
2422 struct sk_buff *skb;
2423 while ((skb = skb_dequeue(list)) != NULL)
2424 kfree_skb(skb);
2425 }
2426 EXPORT_SYMBOL(skb_queue_purge);
2427
2428 /**
2429 * skb_rbtree_purge - empty a skb rbtree
2430 * @root: root of the rbtree to empty
2431 *
2432 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2433 * the list and one reference dropped. This function does not take
2434 * any lock. Synchronization should be handled by the caller (e.g., TCP
2435 * out-of-order queue is protected by the socket lock).
2436 */
2437 void skb_rbtree_purge(struct rb_root *root)
2438 {
2439 struct sk_buff *skb, *next;
2440
2441 rbtree_postorder_for_each_entry_safe(skb, next, root, rbnode)
2442 kfree_skb(skb);
2443
2444 *root = RB_ROOT;
2445 }
2446
2447 /**
2448 * skb_queue_head - queue a buffer at the list head
2449 * @list: list to use
2450 * @newsk: buffer to queue
2451 *
2452 * Queue a buffer at the start of the list. This function takes the
2453 * list lock and can be used safely with other locking &sk_buff functions
2454 * safely.
2455 *
2456 * A buffer cannot be placed on two lists at the same time.
2457 */
2458 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2459 {
2460 unsigned long flags;
2461
2462 spin_lock_irqsave(&list->lock, flags);
2463 __skb_queue_head(list, newsk);
2464 spin_unlock_irqrestore(&list->lock, flags);
2465 }
2466 EXPORT_SYMBOL(skb_queue_head);
2467
2468 /**
2469 * skb_queue_tail - queue a buffer at the list tail
2470 * @list: list to use
2471 * @newsk: buffer to queue
2472 *
2473 * Queue a buffer at the tail of the list. This function takes the
2474 * list lock and can be used safely with other locking &sk_buff functions
2475 * safely.
2476 *
2477 * A buffer cannot be placed on two lists at the same time.
2478 */
2479 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2480 {
2481 unsigned long flags;
2482
2483 spin_lock_irqsave(&list->lock, flags);
2484 __skb_queue_tail(list, newsk);
2485 spin_unlock_irqrestore(&list->lock, flags);
2486 }
2487 EXPORT_SYMBOL(skb_queue_tail);
2488
2489 /**
2490 * skb_unlink - remove a buffer from a list
2491 * @skb: buffer to remove
2492 * @list: list to use
2493 *
2494 * Remove a packet from a list. The list locks are taken and this
2495 * function is atomic with respect to other list locked calls
2496 *
2497 * You must know what list the SKB is on.
2498 */
2499 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2500 {
2501 unsigned long flags;
2502
2503 spin_lock_irqsave(&list->lock, flags);
2504 __skb_unlink(skb, list);
2505 spin_unlock_irqrestore(&list->lock, flags);
2506 }
2507 EXPORT_SYMBOL(skb_unlink);
2508
2509 /**
2510 * skb_append - append a buffer
2511 * @old: buffer to insert after
2512 * @newsk: buffer to insert
2513 * @list: list to use
2514 *
2515 * Place a packet after a given packet in a list. The list locks are taken
2516 * and this function is atomic with respect to other list locked calls.
2517 * A buffer cannot be placed on two lists at the same time.
2518 */
2519 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2520 {
2521 unsigned long flags;
2522
2523 spin_lock_irqsave(&list->lock, flags);
2524 __skb_queue_after(list, old, newsk);
2525 spin_unlock_irqrestore(&list->lock, flags);
2526 }
2527 EXPORT_SYMBOL(skb_append);
2528
2529 /**
2530 * skb_insert - insert a buffer
2531 * @old: buffer to insert before
2532 * @newsk: buffer to insert
2533 * @list: list to use
2534 *
2535 * Place a packet before a given packet in a list. The list locks are
2536 * taken and this function is atomic with respect to other list locked
2537 * calls.
2538 *
2539 * A buffer cannot be placed on two lists at the same time.
2540 */
2541 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2542 {
2543 unsigned long flags;
2544
2545 spin_lock_irqsave(&list->lock, flags);
2546 __skb_insert(newsk, old->prev, old, list);
2547 spin_unlock_irqrestore(&list->lock, flags);
2548 }
2549 EXPORT_SYMBOL(skb_insert);
2550
2551 static inline void skb_split_inside_header(struct sk_buff *skb,
2552 struct sk_buff* skb1,
2553 const u32 len, const int pos)
2554 {
2555 int i;
2556
2557 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2558 pos - len);
2559 /* And move data appendix as is. */
2560 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2561 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2562
2563 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2564 skb_shinfo(skb)->nr_frags = 0;
2565 skb1->data_len = skb->data_len;
2566 skb1->len += skb1->data_len;
2567 skb->data_len = 0;
2568 skb->len = len;
2569 skb_set_tail_pointer(skb, len);
2570 }
2571
2572 static inline void skb_split_no_header(struct sk_buff *skb,
2573 struct sk_buff* skb1,
2574 const u32 len, int pos)
2575 {
2576 int i, k = 0;
2577 const int nfrags = skb_shinfo(skb)->nr_frags;
2578
2579 skb_shinfo(skb)->nr_frags = 0;
2580 skb1->len = skb1->data_len = skb->len - len;
2581 skb->len = len;
2582 skb->data_len = len - pos;
2583
2584 for (i = 0; i < nfrags; i++) {
2585 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2586
2587 if (pos + size > len) {
2588 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2589
2590 if (pos < len) {
2591 /* Split frag.
2592 * We have two variants in this case:
2593 * 1. Move all the frag to the second
2594 * part, if it is possible. F.e.
2595 * this approach is mandatory for TUX,
2596 * where splitting is expensive.
2597 * 2. Split is accurately. We make this.
2598 */
2599 skb_frag_ref(skb, i);
2600 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2601 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2602 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2603 skb_shinfo(skb)->nr_frags++;
2604 }
2605 k++;
2606 } else
2607 skb_shinfo(skb)->nr_frags++;
2608 pos += size;
2609 }
2610 skb_shinfo(skb1)->nr_frags = k;
2611 }
2612
2613 /**
2614 * skb_split - Split fragmented skb to two parts at length len.
2615 * @skb: the buffer to split
2616 * @skb1: the buffer to receive the second part
2617 * @len: new length for skb
2618 */
2619 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2620 {
2621 int pos = skb_headlen(skb);
2622
2623 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2624 if (len < pos) /* Split line is inside header. */
2625 skb_split_inside_header(skb, skb1, len, pos);
2626 else /* Second chunk has no header, nothing to copy. */
2627 skb_split_no_header(skb, skb1, len, pos);
2628 }
2629 EXPORT_SYMBOL(skb_split);
2630
2631 /* Shifting from/to a cloned skb is a no-go.
2632 *
2633 * Caller cannot keep skb_shinfo related pointers past calling here!
2634 */
2635 static int skb_prepare_for_shift(struct sk_buff *skb)
2636 {
2637 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2638 }
2639
2640 /**
2641 * skb_shift - Shifts paged data partially from skb to another
2642 * @tgt: buffer into which tail data gets added
2643 * @skb: buffer from which the paged data comes from
2644 * @shiftlen: shift up to this many bytes
2645 *
2646 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2647 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2648 * It's up to caller to free skb if everything was shifted.
2649 *
2650 * If @tgt runs out of frags, the whole operation is aborted.
2651 *
2652 * Skb cannot include anything else but paged data while tgt is allowed
2653 * to have non-paged data as well.
2654 *
2655 * TODO: full sized shift could be optimized but that would need
2656 * specialized skb free'er to handle frags without up-to-date nr_frags.
2657 */
2658 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2659 {
2660 int from, to, merge, todo;
2661 struct skb_frag_struct *fragfrom, *fragto;
2662
2663 BUG_ON(shiftlen > skb->len);
2664
2665 if (skb_headlen(skb))
2666 return 0;
2667
2668 todo = shiftlen;
2669 from = 0;
2670 to = skb_shinfo(tgt)->nr_frags;
2671 fragfrom = &skb_shinfo(skb)->frags[from];
2672
2673 /* Actual merge is delayed until the point when we know we can
2674 * commit all, so that we don't have to undo partial changes
2675 */
2676 if (!to ||
2677 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2678 fragfrom->page_offset)) {
2679 merge = -1;
2680 } else {
2681 merge = to - 1;
2682
2683 todo -= skb_frag_size(fragfrom);
2684 if (todo < 0) {
2685 if (skb_prepare_for_shift(skb) ||
2686 skb_prepare_for_shift(tgt))
2687 return 0;
2688
2689 /* All previous frag pointers might be stale! */
2690 fragfrom = &skb_shinfo(skb)->frags[from];
2691 fragto = &skb_shinfo(tgt)->frags[merge];
2692
2693 skb_frag_size_add(fragto, shiftlen);
2694 skb_frag_size_sub(fragfrom, shiftlen);
2695 fragfrom->page_offset += shiftlen;
2696
2697 goto onlymerged;
2698 }
2699
2700 from++;
2701 }
2702
2703 /* Skip full, not-fitting skb to avoid expensive operations */
2704 if ((shiftlen == skb->len) &&
2705 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2706 return 0;
2707
2708 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2709 return 0;
2710
2711 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2712 if (to == MAX_SKB_FRAGS)
2713 return 0;
2714
2715 fragfrom = &skb_shinfo(skb)->frags[from];
2716 fragto = &skb_shinfo(tgt)->frags[to];
2717
2718 if (todo >= skb_frag_size(fragfrom)) {
2719 *fragto = *fragfrom;
2720 todo -= skb_frag_size(fragfrom);
2721 from++;
2722 to++;
2723
2724 } else {
2725 __skb_frag_ref(fragfrom);
2726 fragto->page = fragfrom->page;
2727 fragto->page_offset = fragfrom->page_offset;
2728 skb_frag_size_set(fragto, todo);
2729
2730 fragfrom->page_offset += todo;
2731 skb_frag_size_sub(fragfrom, todo);
2732 todo = 0;
2733
2734 to++;
2735 break;
2736 }
2737 }
2738
2739 /* Ready to "commit" this state change to tgt */
2740 skb_shinfo(tgt)->nr_frags = to;
2741
2742 if (merge >= 0) {
2743 fragfrom = &skb_shinfo(skb)->frags[0];
2744 fragto = &skb_shinfo(tgt)->frags[merge];
2745
2746 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2747 __skb_frag_unref(fragfrom);
2748 }
2749
2750 /* Reposition in the original skb */
2751 to = 0;
2752 while (from < skb_shinfo(skb)->nr_frags)
2753 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2754 skb_shinfo(skb)->nr_frags = to;
2755
2756 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2757
2758 onlymerged:
2759 /* Most likely the tgt won't ever need its checksum anymore, skb on
2760 * the other hand might need it if it needs to be resent
2761 */
2762 tgt->ip_summed = CHECKSUM_PARTIAL;
2763 skb->ip_summed = CHECKSUM_PARTIAL;
2764
2765 /* Yak, is it really working this way? Some helper please? */
2766 skb->len -= shiftlen;
2767 skb->data_len -= shiftlen;
2768 skb->truesize -= shiftlen;
2769 tgt->len += shiftlen;
2770 tgt->data_len += shiftlen;
2771 tgt->truesize += shiftlen;
2772
2773 return shiftlen;
2774 }
2775
2776 /**
2777 * skb_prepare_seq_read - Prepare a sequential read of skb data
2778 * @skb: the buffer to read
2779 * @from: lower offset of data to be read
2780 * @to: upper offset of data to be read
2781 * @st: state variable
2782 *
2783 * Initializes the specified state variable. Must be called before
2784 * invoking skb_seq_read() for the first time.
2785 */
2786 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2787 unsigned int to, struct skb_seq_state *st)
2788 {
2789 st->lower_offset = from;
2790 st->upper_offset = to;
2791 st->root_skb = st->cur_skb = skb;
2792 st->frag_idx = st->stepped_offset = 0;
2793 st->frag_data = NULL;
2794 }
2795 EXPORT_SYMBOL(skb_prepare_seq_read);
2796
2797 /**
2798 * skb_seq_read - Sequentially read skb data
2799 * @consumed: number of bytes consumed by the caller so far
2800 * @data: destination pointer for data to be returned
2801 * @st: state variable
2802 *
2803 * Reads a block of skb data at @consumed relative to the
2804 * lower offset specified to skb_prepare_seq_read(). Assigns
2805 * the head of the data block to @data and returns the length
2806 * of the block or 0 if the end of the skb data or the upper
2807 * offset has been reached.
2808 *
2809 * The caller is not required to consume all of the data
2810 * returned, i.e. @consumed is typically set to the number
2811 * of bytes already consumed and the next call to
2812 * skb_seq_read() will return the remaining part of the block.
2813 *
2814 * Note 1: The size of each block of data returned can be arbitrary,
2815 * this limitation is the cost for zerocopy sequential
2816 * reads of potentially non linear data.
2817 *
2818 * Note 2: Fragment lists within fragments are not implemented
2819 * at the moment, state->root_skb could be replaced with
2820 * a stack for this purpose.
2821 */
2822 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2823 struct skb_seq_state *st)
2824 {
2825 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2826 skb_frag_t *frag;
2827
2828 if (unlikely(abs_offset >= st->upper_offset)) {
2829 if (st->frag_data) {
2830 kunmap_atomic(st->frag_data);
2831 st->frag_data = NULL;
2832 }
2833 return 0;
2834 }
2835
2836 next_skb:
2837 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2838
2839 if (abs_offset < block_limit && !st->frag_data) {
2840 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2841 return block_limit - abs_offset;
2842 }
2843
2844 if (st->frag_idx == 0 && !st->frag_data)
2845 st->stepped_offset += skb_headlen(st->cur_skb);
2846
2847 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2848 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2849 block_limit = skb_frag_size(frag) + st->stepped_offset;
2850
2851 if (abs_offset < block_limit) {
2852 if (!st->frag_data)
2853 st->frag_data = kmap_atomic(skb_frag_page(frag));
2854
2855 *data = (u8 *) st->frag_data + frag->page_offset +
2856 (abs_offset - st->stepped_offset);
2857
2858 return block_limit - abs_offset;
2859 }
2860
2861 if (st->frag_data) {
2862 kunmap_atomic(st->frag_data);
2863 st->frag_data = NULL;
2864 }
2865
2866 st->frag_idx++;
2867 st->stepped_offset += skb_frag_size(frag);
2868 }
2869
2870 if (st->frag_data) {
2871 kunmap_atomic(st->frag_data);
2872 st->frag_data = NULL;
2873 }
2874
2875 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2876 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2877 st->frag_idx = 0;
2878 goto next_skb;
2879 } else if (st->cur_skb->next) {
2880 st->cur_skb = st->cur_skb->next;
2881 st->frag_idx = 0;
2882 goto next_skb;
2883 }
2884
2885 return 0;
2886 }
2887 EXPORT_SYMBOL(skb_seq_read);
2888
2889 /**
2890 * skb_abort_seq_read - Abort a sequential read of skb data
2891 * @st: state variable
2892 *
2893 * Must be called if skb_seq_read() was not called until it
2894 * returned 0.
2895 */
2896 void skb_abort_seq_read(struct skb_seq_state *st)
2897 {
2898 if (st->frag_data)
2899 kunmap_atomic(st->frag_data);
2900 }
2901 EXPORT_SYMBOL(skb_abort_seq_read);
2902
2903 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2904
2905 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2906 struct ts_config *conf,
2907 struct ts_state *state)
2908 {
2909 return skb_seq_read(offset, text, TS_SKB_CB(state));
2910 }
2911
2912 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2913 {
2914 skb_abort_seq_read(TS_SKB_CB(state));
2915 }
2916
2917 /**
2918 * skb_find_text - Find a text pattern in skb data
2919 * @skb: the buffer to look in
2920 * @from: search offset
2921 * @to: search limit
2922 * @config: textsearch configuration
2923 *
2924 * Finds a pattern in the skb data according to the specified
2925 * textsearch configuration. Use textsearch_next() to retrieve
2926 * subsequent occurrences of the pattern. Returns the offset
2927 * to the first occurrence or UINT_MAX if no match was found.
2928 */
2929 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2930 unsigned int to, struct ts_config *config)
2931 {
2932 struct ts_state state;
2933 unsigned int ret;
2934
2935 config->get_next_block = skb_ts_get_next_block;
2936 config->finish = skb_ts_finish;
2937
2938 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2939
2940 ret = textsearch_find(config, &state);
2941 return (ret <= to - from ? ret : UINT_MAX);
2942 }
2943 EXPORT_SYMBOL(skb_find_text);
2944
2945 /**
2946 * skb_append_datato_frags - append the user data to a skb
2947 * @sk: sock structure
2948 * @skb: skb structure to be appended with user data.
2949 * @getfrag: call back function to be used for getting the user data
2950 * @from: pointer to user message iov
2951 * @length: length of the iov message
2952 *
2953 * Description: This procedure append the user data in the fragment part
2954 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2955 */
2956 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2957 int (*getfrag)(void *from, char *to, int offset,
2958 int len, int odd, struct sk_buff *skb),
2959 void *from, int length)
2960 {
2961 int frg_cnt = skb_shinfo(skb)->nr_frags;
2962 int copy;
2963 int offset = 0;
2964 int ret;
2965 struct page_frag *pfrag = &current->task_frag;
2966
2967 do {
2968 /* Return error if we don't have space for new frag */
2969 if (frg_cnt >= MAX_SKB_FRAGS)
2970 return -EMSGSIZE;
2971
2972 if (!sk_page_frag_refill(sk, pfrag))
2973 return -ENOMEM;
2974
2975 /* copy the user data to page */
2976 copy = min_t(int, length, pfrag->size - pfrag->offset);
2977
2978 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2979 offset, copy, 0, skb);
2980 if (ret < 0)
2981 return -EFAULT;
2982
2983 /* copy was successful so update the size parameters */
2984 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2985 copy);
2986 frg_cnt++;
2987 pfrag->offset += copy;
2988 get_page(pfrag->page);
2989
2990 skb->truesize += copy;
2991 atomic_add(copy, &sk->sk_wmem_alloc);
2992 skb->len += copy;
2993 skb->data_len += copy;
2994 offset += copy;
2995 length -= copy;
2996
2997 } while (length > 0);
2998
2999 return 0;
3000 }
3001 EXPORT_SYMBOL(skb_append_datato_frags);
3002
3003 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3004 int offset, size_t size)
3005 {
3006 int i = skb_shinfo(skb)->nr_frags;
3007
3008 if (skb_can_coalesce(skb, i, page, offset)) {
3009 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3010 } else if (i < MAX_SKB_FRAGS) {
3011 get_page(page);
3012 skb_fill_page_desc(skb, i, page, offset, size);
3013 } else {
3014 return -EMSGSIZE;
3015 }
3016
3017 return 0;
3018 }
3019 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3020
3021 /**
3022 * skb_pull_rcsum - pull skb and update receive checksum
3023 * @skb: buffer to update
3024 * @len: length of data pulled
3025 *
3026 * This function performs an skb_pull on the packet and updates
3027 * the CHECKSUM_COMPLETE checksum. It should be used on
3028 * receive path processing instead of skb_pull unless you know
3029 * that the checksum difference is zero (e.g., a valid IP header)
3030 * or you are setting ip_summed to CHECKSUM_NONE.
3031 */
3032 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3033 {
3034 unsigned char *data = skb->data;
3035
3036 BUG_ON(len > skb->len);
3037 __skb_pull(skb, len);
3038 skb_postpull_rcsum(skb, data, len);
3039 return skb->data;
3040 }
3041 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3042
3043 /**
3044 * skb_segment - Perform protocol segmentation on skb.
3045 * @head_skb: buffer to segment
3046 * @features: features for the output path (see dev->features)
3047 *
3048 * This function performs segmentation on the given skb. It returns
3049 * a pointer to the first in a list of new skbs for the segments.
3050 * In case of error it returns ERR_PTR(err).
3051 */
3052 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3053 netdev_features_t features)
3054 {
3055 struct sk_buff *segs = NULL;
3056 struct sk_buff *tail = NULL;
3057 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3058 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3059 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3060 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3061 struct sk_buff *frag_skb = head_skb;
3062 unsigned int offset = doffset;
3063 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3064 unsigned int partial_segs = 0;
3065 unsigned int headroom;
3066 unsigned int len = head_skb->len;
3067 __be16 proto;
3068 bool csum, sg;
3069 int nfrags = skb_shinfo(head_skb)->nr_frags;
3070 int err = -ENOMEM;
3071 int i = 0;
3072 int pos;
3073 int dummy;
3074
3075 __skb_push(head_skb, doffset);
3076 proto = skb_network_protocol(head_skb, &dummy);
3077 if (unlikely(!proto))
3078 return ERR_PTR(-EINVAL);
3079
3080 sg = !!(features & NETIF_F_SG);
3081 csum = !!can_checksum_protocol(features, proto);
3082
3083 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3084 if (!(features & NETIF_F_GSO_PARTIAL)) {
3085 struct sk_buff *iter;
3086 unsigned int frag_len;
3087
3088 if (!list_skb ||
3089 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3090 goto normal;
3091
3092 /* If we get here then all the required
3093 * GSO features except frag_list are supported.
3094 * Try to split the SKB to multiple GSO SKBs
3095 * with no frag_list.
3096 * Currently we can do that only when the buffers don't
3097 * have a linear part and all the buffers except
3098 * the last are of the same length.
3099 */
3100 frag_len = list_skb->len;
3101 skb_walk_frags(head_skb, iter) {
3102 if (frag_len != iter->len && iter->next)
3103 goto normal;
3104 if (skb_headlen(iter) && !iter->head_frag)
3105 goto normal;
3106
3107 len -= iter->len;
3108 }
3109
3110 if (len != frag_len)
3111 goto normal;
3112 }
3113
3114 /* GSO partial only requires that we trim off any excess that
3115 * doesn't fit into an MSS sized block, so take care of that
3116 * now.
3117 */
3118 partial_segs = len / mss;
3119 if (partial_segs > 1)
3120 mss *= partial_segs;
3121 else
3122 partial_segs = 0;
3123 }
3124
3125 normal:
3126 headroom = skb_headroom(head_skb);
3127 pos = skb_headlen(head_skb);
3128
3129 do {
3130 struct sk_buff *nskb;
3131 skb_frag_t *nskb_frag;
3132 int hsize;
3133 int size;
3134
3135 if (unlikely(mss == GSO_BY_FRAGS)) {
3136 len = list_skb->len;
3137 } else {
3138 len = head_skb->len - offset;
3139 if (len > mss)
3140 len = mss;
3141 }
3142
3143 hsize = skb_headlen(head_skb) - offset;
3144 if (hsize < 0)
3145 hsize = 0;
3146 if (hsize > len || !sg)
3147 hsize = len;
3148
3149 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3150 (skb_headlen(list_skb) == len || sg)) {
3151 BUG_ON(skb_headlen(list_skb) > len);
3152
3153 i = 0;
3154 nfrags = skb_shinfo(list_skb)->nr_frags;
3155 frag = skb_shinfo(list_skb)->frags;
3156 frag_skb = list_skb;
3157 pos += skb_headlen(list_skb);
3158
3159 while (pos < offset + len) {
3160 BUG_ON(i >= nfrags);
3161
3162 size = skb_frag_size(frag);
3163 if (pos + size > offset + len)
3164 break;
3165
3166 i++;
3167 pos += size;
3168 frag++;
3169 }
3170
3171 nskb = skb_clone(list_skb, GFP_ATOMIC);
3172 list_skb = list_skb->next;
3173
3174 if (unlikely(!nskb))
3175 goto err;
3176
3177 if (unlikely(pskb_trim(nskb, len))) {
3178 kfree_skb(nskb);
3179 goto err;
3180 }
3181
3182 hsize = skb_end_offset(nskb);
3183 if (skb_cow_head(nskb, doffset + headroom)) {
3184 kfree_skb(nskb);
3185 goto err;
3186 }
3187
3188 nskb->truesize += skb_end_offset(nskb) - hsize;
3189 skb_release_head_state(nskb);
3190 __skb_push(nskb, doffset);
3191 } else {
3192 nskb = __alloc_skb(hsize + doffset + headroom,
3193 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3194 NUMA_NO_NODE);
3195
3196 if (unlikely(!nskb))
3197 goto err;
3198
3199 skb_reserve(nskb, headroom);
3200 __skb_put(nskb, doffset);
3201 }
3202
3203 if (segs)
3204 tail->next = nskb;
3205 else
3206 segs = nskb;
3207 tail = nskb;
3208
3209 __copy_skb_header(nskb, head_skb);
3210
3211 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3212 skb_reset_mac_len(nskb);
3213
3214 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3215 nskb->data - tnl_hlen,
3216 doffset + tnl_hlen);
3217
3218 if (nskb->len == len + doffset)
3219 goto perform_csum_check;
3220
3221 if (!sg) {
3222 if (!nskb->remcsum_offload)
3223 nskb->ip_summed = CHECKSUM_NONE;
3224 SKB_GSO_CB(nskb)->csum =
3225 skb_copy_and_csum_bits(head_skb, offset,
3226 skb_put(nskb, len),
3227 len, 0);
3228 SKB_GSO_CB(nskb)->csum_start =
3229 skb_headroom(nskb) + doffset;
3230 continue;
3231 }
3232
3233 nskb_frag = skb_shinfo(nskb)->frags;
3234
3235 skb_copy_from_linear_data_offset(head_skb, offset,
3236 skb_put(nskb, hsize), hsize);
3237
3238 skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3239 SKBTX_SHARED_FRAG;
3240
3241 while (pos < offset + len) {
3242 if (i >= nfrags) {
3243 BUG_ON(skb_headlen(list_skb));
3244
3245 i = 0;
3246 nfrags = skb_shinfo(list_skb)->nr_frags;
3247 frag = skb_shinfo(list_skb)->frags;
3248 frag_skb = list_skb;
3249
3250 BUG_ON(!nfrags);
3251
3252 list_skb = list_skb->next;
3253 }
3254
3255 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3256 MAX_SKB_FRAGS)) {
3257 net_warn_ratelimited(
3258 "skb_segment: too many frags: %u %u\n",
3259 pos, mss);
3260 goto err;
3261 }
3262
3263 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3264 goto err;
3265
3266 *nskb_frag = *frag;
3267 __skb_frag_ref(nskb_frag);
3268 size = skb_frag_size(nskb_frag);
3269
3270 if (pos < offset) {
3271 nskb_frag->page_offset += offset - pos;
3272 skb_frag_size_sub(nskb_frag, offset - pos);
3273 }
3274
3275 skb_shinfo(nskb)->nr_frags++;
3276
3277 if (pos + size <= offset + len) {
3278 i++;
3279 frag++;
3280 pos += size;
3281 } else {
3282 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3283 goto skip_fraglist;
3284 }
3285
3286 nskb_frag++;
3287 }
3288
3289 skip_fraglist:
3290 nskb->data_len = len - hsize;
3291 nskb->len += nskb->data_len;
3292 nskb->truesize += nskb->data_len;
3293
3294 perform_csum_check:
3295 if (!csum) {
3296 if (skb_has_shared_frag(nskb)) {
3297 err = __skb_linearize(nskb);
3298 if (err)
3299 goto err;
3300 }
3301 if (!nskb->remcsum_offload)
3302 nskb->ip_summed = CHECKSUM_NONE;
3303 SKB_GSO_CB(nskb)->csum =
3304 skb_checksum(nskb, doffset,
3305 nskb->len - doffset, 0);
3306 SKB_GSO_CB(nskb)->csum_start =
3307 skb_headroom(nskb) + doffset;
3308 }
3309 } while ((offset += len) < head_skb->len);
3310
3311 /* Some callers want to get the end of the list.
3312 * Put it in segs->prev to avoid walking the list.
3313 * (see validate_xmit_skb_list() for example)
3314 */
3315 segs->prev = tail;
3316
3317 if (partial_segs) {
3318 struct sk_buff *iter;
3319 int type = skb_shinfo(head_skb)->gso_type;
3320 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3321
3322 /* Update type to add partial and then remove dodgy if set */
3323 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3324 type &= ~SKB_GSO_DODGY;
3325
3326 /* Update GSO info and prepare to start updating headers on
3327 * our way back down the stack of protocols.
3328 */
3329 for (iter = segs; iter; iter = iter->next) {
3330 skb_shinfo(iter)->gso_size = gso_size;
3331 skb_shinfo(iter)->gso_segs = partial_segs;
3332 skb_shinfo(iter)->gso_type = type;
3333 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3334 }
3335
3336 if (tail->len - doffset <= gso_size)
3337 skb_shinfo(tail)->gso_size = 0;
3338 else if (tail != segs)
3339 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3340 }
3341
3342 /* Following permits correct backpressure, for protocols
3343 * using skb_set_owner_w().
3344 * Idea is to tranfert ownership from head_skb to last segment.
3345 */
3346 if (head_skb->destructor == sock_wfree) {
3347 swap(tail->truesize, head_skb->truesize);
3348 swap(tail->destructor, head_skb->destructor);
3349 swap(tail->sk, head_skb->sk);
3350 }
3351 return segs;
3352
3353 err:
3354 kfree_skb_list(segs);
3355 return ERR_PTR(err);
3356 }
3357 EXPORT_SYMBOL_GPL(skb_segment);
3358
3359 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3360 {
3361 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3362 unsigned int offset = skb_gro_offset(skb);
3363 unsigned int headlen = skb_headlen(skb);
3364 unsigned int len = skb_gro_len(skb);
3365 struct sk_buff *lp, *p = *head;
3366 unsigned int delta_truesize;
3367
3368 if (unlikely(p->len + len >= 65536))
3369 return -E2BIG;
3370
3371 lp = NAPI_GRO_CB(p)->last;
3372 pinfo = skb_shinfo(lp);
3373
3374 if (headlen <= offset) {
3375 skb_frag_t *frag;
3376 skb_frag_t *frag2;
3377 int i = skbinfo->nr_frags;
3378 int nr_frags = pinfo->nr_frags + i;
3379
3380 if (nr_frags > MAX_SKB_FRAGS)
3381 goto merge;
3382
3383 offset -= headlen;
3384 pinfo->nr_frags = nr_frags;
3385 skbinfo->nr_frags = 0;
3386
3387 frag = pinfo->frags + nr_frags;
3388 frag2 = skbinfo->frags + i;
3389 do {
3390 *--frag = *--frag2;
3391 } while (--i);
3392
3393 frag->page_offset += offset;
3394 skb_frag_size_sub(frag, offset);
3395
3396 /* all fragments truesize : remove (head size + sk_buff) */
3397 delta_truesize = skb->truesize -
3398 SKB_TRUESIZE(skb_end_offset(skb));
3399
3400 skb->truesize -= skb->data_len;
3401 skb->len -= skb->data_len;
3402 skb->data_len = 0;
3403
3404 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3405 goto done;
3406 } else if (skb->head_frag) {
3407 int nr_frags = pinfo->nr_frags;
3408 skb_frag_t *frag = pinfo->frags + nr_frags;
3409 struct page *page = virt_to_head_page(skb->head);
3410 unsigned int first_size = headlen - offset;
3411 unsigned int first_offset;
3412
3413 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3414 goto merge;
3415
3416 first_offset = skb->data -
3417 (unsigned char *)page_address(page) +
3418 offset;
3419
3420 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3421
3422 frag->page.p = page;
3423 frag->page_offset = first_offset;
3424 skb_frag_size_set(frag, first_size);
3425
3426 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3427 /* We dont need to clear skbinfo->nr_frags here */
3428
3429 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3430 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3431 goto done;
3432 }
3433
3434 merge:
3435 delta_truesize = skb->truesize;
3436 if (offset > headlen) {
3437 unsigned int eat = offset - headlen;
3438
3439 skbinfo->frags[0].page_offset += eat;
3440 skb_frag_size_sub(&skbinfo->frags[0], eat);
3441 skb->data_len -= eat;
3442 skb->len -= eat;
3443 offset = headlen;
3444 }
3445
3446 __skb_pull(skb, offset);
3447
3448 if (NAPI_GRO_CB(p)->last == p)
3449 skb_shinfo(p)->frag_list = skb;
3450 else
3451 NAPI_GRO_CB(p)->last->next = skb;
3452 NAPI_GRO_CB(p)->last = skb;
3453 __skb_header_release(skb);
3454 lp = p;
3455
3456 done:
3457 NAPI_GRO_CB(p)->count++;
3458 p->data_len += len;
3459 p->truesize += delta_truesize;
3460 p->len += len;
3461 if (lp != p) {
3462 lp->data_len += len;
3463 lp->truesize += delta_truesize;
3464 lp->len += len;
3465 }
3466 NAPI_GRO_CB(skb)->same_flow = 1;
3467 return 0;
3468 }
3469 EXPORT_SYMBOL_GPL(skb_gro_receive);
3470
3471 void __init skb_init(void)
3472 {
3473 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3474 sizeof(struct sk_buff),
3475 0,
3476 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3477 NULL);
3478 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3479 sizeof(struct sk_buff_fclones),
3480 0,
3481 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3482 NULL);
3483 }
3484
3485 /**
3486 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3487 * @skb: Socket buffer containing the buffers to be mapped
3488 * @sg: The scatter-gather list to map into
3489 * @offset: The offset into the buffer's contents to start mapping
3490 * @len: Length of buffer space to be mapped
3491 *
3492 * Fill the specified scatter-gather list with mappings/pointers into a
3493 * region of the buffer space attached to a socket buffer.
3494 */
3495 static int
3496 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3497 {
3498 int start = skb_headlen(skb);
3499 int i, copy = start - offset;
3500 struct sk_buff *frag_iter;
3501 int elt = 0;
3502
3503 if (copy > 0) {
3504 if (copy > len)
3505 copy = len;
3506 sg_set_buf(sg, skb->data + offset, copy);
3507 elt++;
3508 if ((len -= copy) == 0)
3509 return elt;
3510 offset += copy;
3511 }
3512
3513 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3514 int end;
3515
3516 WARN_ON(start > offset + len);
3517
3518 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3519 if ((copy = end - offset) > 0) {
3520 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3521
3522 if (copy > len)
3523 copy = len;
3524 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3525 frag->page_offset+offset-start);
3526 elt++;
3527 if (!(len -= copy))
3528 return elt;
3529 offset += copy;
3530 }
3531 start = end;
3532 }
3533
3534 skb_walk_frags(skb, frag_iter) {
3535 int end;
3536
3537 WARN_ON(start > offset + len);
3538
3539 end = start + frag_iter->len;
3540 if ((copy = end - offset) > 0) {
3541 if (copy > len)
3542 copy = len;
3543 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3544 copy);
3545 if ((len -= copy) == 0)
3546 return elt;
3547 offset += copy;
3548 }
3549 start = end;
3550 }
3551 BUG_ON(len);
3552 return elt;
3553 }
3554
3555 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3556 * sglist without mark the sg which contain last skb data as the end.
3557 * So the caller can mannipulate sg list as will when padding new data after
3558 * the first call without calling sg_unmark_end to expend sg list.
3559 *
3560 * Scenario to use skb_to_sgvec_nomark:
3561 * 1. sg_init_table
3562 * 2. skb_to_sgvec_nomark(payload1)
3563 * 3. skb_to_sgvec_nomark(payload2)
3564 *
3565 * This is equivalent to:
3566 * 1. sg_init_table
3567 * 2. skb_to_sgvec(payload1)
3568 * 3. sg_unmark_end
3569 * 4. skb_to_sgvec(payload2)
3570 *
3571 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3572 * is more preferable.
3573 */
3574 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3575 int offset, int len)
3576 {
3577 return __skb_to_sgvec(skb, sg, offset, len);
3578 }
3579 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3580
3581 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3582 {
3583 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3584
3585 sg_mark_end(&sg[nsg - 1]);
3586
3587 return nsg;
3588 }
3589 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3590
3591 /**
3592 * skb_cow_data - Check that a socket buffer's data buffers are writable
3593 * @skb: The socket buffer to check.
3594 * @tailbits: Amount of trailing space to be added
3595 * @trailer: Returned pointer to the skb where the @tailbits space begins
3596 *
3597 * Make sure that the data buffers attached to a socket buffer are
3598 * writable. If they are not, private copies are made of the data buffers
3599 * and the socket buffer is set to use these instead.
3600 *
3601 * If @tailbits is given, make sure that there is space to write @tailbits
3602 * bytes of data beyond current end of socket buffer. @trailer will be
3603 * set to point to the skb in which this space begins.
3604 *
3605 * The number of scatterlist elements required to completely map the
3606 * COW'd and extended socket buffer will be returned.
3607 */
3608 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3609 {
3610 int copyflag;
3611 int elt;
3612 struct sk_buff *skb1, **skb_p;
3613
3614 /* If skb is cloned or its head is paged, reallocate
3615 * head pulling out all the pages (pages are considered not writable
3616 * at the moment even if they are anonymous).
3617 */
3618 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3619 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3620 return -ENOMEM;
3621
3622 /* Easy case. Most of packets will go this way. */
3623 if (!skb_has_frag_list(skb)) {
3624 /* A little of trouble, not enough of space for trailer.
3625 * This should not happen, when stack is tuned to generate
3626 * good frames. OK, on miss we reallocate and reserve even more
3627 * space, 128 bytes is fair. */
3628
3629 if (skb_tailroom(skb) < tailbits &&
3630 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3631 return -ENOMEM;
3632
3633 /* Voila! */
3634 *trailer = skb;
3635 return 1;
3636 }
3637
3638 /* Misery. We are in troubles, going to mincer fragments... */
3639
3640 elt = 1;
3641 skb_p = &skb_shinfo(skb)->frag_list;
3642 copyflag = 0;
3643
3644 while ((skb1 = *skb_p) != NULL) {
3645 int ntail = 0;
3646
3647 /* The fragment is partially pulled by someone,
3648 * this can happen on input. Copy it and everything
3649 * after it. */
3650
3651 if (skb_shared(skb1))
3652 copyflag = 1;
3653
3654 /* If the skb is the last, worry about trailer. */
3655
3656 if (skb1->next == NULL && tailbits) {
3657 if (skb_shinfo(skb1)->nr_frags ||
3658 skb_has_frag_list(skb1) ||
3659 skb_tailroom(skb1) < tailbits)
3660 ntail = tailbits + 128;
3661 }
3662
3663 if (copyflag ||
3664 skb_cloned(skb1) ||
3665 ntail ||
3666 skb_shinfo(skb1)->nr_frags ||
3667 skb_has_frag_list(skb1)) {
3668 struct sk_buff *skb2;
3669
3670 /* Fuck, we are miserable poor guys... */
3671 if (ntail == 0)
3672 skb2 = skb_copy(skb1, GFP_ATOMIC);
3673 else
3674 skb2 = skb_copy_expand(skb1,
3675 skb_headroom(skb1),
3676 ntail,
3677 GFP_ATOMIC);
3678 if (unlikely(skb2 == NULL))
3679 return -ENOMEM;
3680
3681 if (skb1->sk)
3682 skb_set_owner_w(skb2, skb1->sk);
3683
3684 /* Looking around. Are we still alive?
3685 * OK, link new skb, drop old one */
3686
3687 skb2->next = skb1->next;
3688 *skb_p = skb2;
3689 kfree_skb(skb1);
3690 skb1 = skb2;
3691 }
3692 elt++;
3693 *trailer = skb1;
3694 skb_p = &skb1->next;
3695 }
3696
3697 return elt;
3698 }
3699 EXPORT_SYMBOL_GPL(skb_cow_data);
3700
3701 static void sock_rmem_free(struct sk_buff *skb)
3702 {
3703 struct sock *sk = skb->sk;
3704
3705 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3706 }
3707
3708 static void skb_set_err_queue(struct sk_buff *skb)
3709 {
3710 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
3711 * So, it is safe to (mis)use it to mark skbs on the error queue.
3712 */
3713 skb->pkt_type = PACKET_OUTGOING;
3714 BUILD_BUG_ON(PACKET_OUTGOING == 0);
3715 }
3716
3717 /*
3718 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3719 */
3720 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3721 {
3722 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3723 (unsigned int)sk->sk_rcvbuf)
3724 return -ENOMEM;
3725
3726 skb_orphan(skb);
3727 skb->sk = sk;
3728 skb->destructor = sock_rmem_free;
3729 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3730 skb_set_err_queue(skb);
3731
3732 /* before exiting rcu section, make sure dst is refcounted */
3733 skb_dst_force(skb);
3734
3735 skb_queue_tail(&sk->sk_error_queue, skb);
3736 if (!sock_flag(sk, SOCK_DEAD))
3737 sk->sk_data_ready(sk);
3738 return 0;
3739 }
3740 EXPORT_SYMBOL(sock_queue_err_skb);
3741
3742 static bool is_icmp_err_skb(const struct sk_buff *skb)
3743 {
3744 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
3745 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
3746 }
3747
3748 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3749 {
3750 struct sk_buff_head *q = &sk->sk_error_queue;
3751 struct sk_buff *skb, *skb_next = NULL;
3752 bool icmp_next = false;
3753 unsigned long flags;
3754
3755 spin_lock_irqsave(&q->lock, flags);
3756 skb = __skb_dequeue(q);
3757 if (skb && (skb_next = skb_peek(q))) {
3758 icmp_next = is_icmp_err_skb(skb_next);
3759 if (icmp_next)
3760 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
3761 }
3762 spin_unlock_irqrestore(&q->lock, flags);
3763
3764 if (is_icmp_err_skb(skb) && !icmp_next)
3765 sk->sk_err = 0;
3766
3767 if (skb_next)
3768 sk->sk_error_report(sk);
3769
3770 return skb;
3771 }
3772 EXPORT_SYMBOL(sock_dequeue_err_skb);
3773
3774 /**
3775 * skb_clone_sk - create clone of skb, and take reference to socket
3776 * @skb: the skb to clone
3777 *
3778 * This function creates a clone of a buffer that holds a reference on
3779 * sk_refcnt. Buffers created via this function are meant to be
3780 * returned using sock_queue_err_skb, or free via kfree_skb.
3781 *
3782 * When passing buffers allocated with this function to sock_queue_err_skb
3783 * it is necessary to wrap the call with sock_hold/sock_put in order to
3784 * prevent the socket from being released prior to being enqueued on
3785 * the sk_error_queue.
3786 */
3787 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3788 {
3789 struct sock *sk = skb->sk;
3790 struct sk_buff *clone;
3791
3792 if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3793 return NULL;
3794
3795 clone = skb_clone(skb, GFP_ATOMIC);
3796 if (!clone) {
3797 sock_put(sk);
3798 return NULL;
3799 }
3800
3801 clone->sk = sk;
3802 clone->destructor = sock_efree;
3803
3804 return clone;
3805 }
3806 EXPORT_SYMBOL(skb_clone_sk);
3807
3808 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3809 struct sock *sk,
3810 int tstype,
3811 bool opt_stats)
3812 {
3813 struct sock_exterr_skb *serr;
3814 int err;
3815
3816 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
3817
3818 serr = SKB_EXT_ERR(skb);
3819 memset(serr, 0, sizeof(*serr));
3820 serr->ee.ee_errno = ENOMSG;
3821 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3822 serr->ee.ee_info = tstype;
3823 serr->opt_stats = opt_stats;
3824 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
3825 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3826 serr->ee.ee_data = skb_shinfo(skb)->tskey;
3827 if (sk->sk_protocol == IPPROTO_TCP &&
3828 sk->sk_type == SOCK_STREAM)
3829 serr->ee.ee_data -= sk->sk_tskey;
3830 }
3831
3832 err = sock_queue_err_skb(sk, skb);
3833
3834 if (err)
3835 kfree_skb(skb);
3836 }
3837
3838 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3839 {
3840 bool ret;
3841
3842 if (likely(sysctl_tstamp_allow_data || tsonly))
3843 return true;
3844
3845 read_lock_bh(&sk->sk_callback_lock);
3846 ret = sk->sk_socket && sk->sk_socket->file &&
3847 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3848 read_unlock_bh(&sk->sk_callback_lock);
3849 return ret;
3850 }
3851
3852 void skb_complete_tx_timestamp(struct sk_buff *skb,
3853 struct skb_shared_hwtstamps *hwtstamps)
3854 {
3855 struct sock *sk = skb->sk;
3856
3857 if (!skb_may_tx_timestamp(sk, false))
3858 return;
3859
3860 /* Take a reference to prevent skb_orphan() from freeing the socket,
3861 * but only if the socket refcount is not zero.
3862 */
3863 if (likely(atomic_inc_not_zero(&sk->sk_refcnt))) {
3864 *skb_hwtstamps(skb) = *hwtstamps;
3865 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
3866 sock_put(sk);
3867 }
3868 }
3869 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3870
3871 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3872 struct skb_shared_hwtstamps *hwtstamps,
3873 struct sock *sk, int tstype)
3874 {
3875 struct sk_buff *skb;
3876 bool tsonly, opt_stats = false;
3877
3878 if (!sk)
3879 return;
3880
3881 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3882 if (!skb_may_tx_timestamp(sk, tsonly))
3883 return;
3884
3885 if (tsonly) {
3886 #ifdef CONFIG_INET
3887 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
3888 sk->sk_protocol == IPPROTO_TCP &&
3889 sk->sk_type == SOCK_STREAM) {
3890 skb = tcp_get_timestamping_opt_stats(sk);
3891 opt_stats = true;
3892 } else
3893 #endif
3894 skb = alloc_skb(0, GFP_ATOMIC);
3895 } else {
3896 skb = skb_clone(orig_skb, GFP_ATOMIC);
3897 }
3898 if (!skb)
3899 return;
3900
3901 if (tsonly) {
3902 skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3903 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3904 }
3905
3906 if (hwtstamps)
3907 *skb_hwtstamps(skb) = *hwtstamps;
3908 else
3909 skb->tstamp = ktime_get_real();
3910
3911 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
3912 }
3913 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3914
3915 void skb_tstamp_tx(struct sk_buff *orig_skb,
3916 struct skb_shared_hwtstamps *hwtstamps)
3917 {
3918 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3919 SCM_TSTAMP_SND);
3920 }
3921 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3922
3923 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3924 {
3925 struct sock *sk = skb->sk;
3926 struct sock_exterr_skb *serr;
3927 int err = 1;
3928
3929 skb->wifi_acked_valid = 1;
3930 skb->wifi_acked = acked;
3931
3932 serr = SKB_EXT_ERR(skb);
3933 memset(serr, 0, sizeof(*serr));
3934 serr->ee.ee_errno = ENOMSG;
3935 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3936
3937 /* Take a reference to prevent skb_orphan() from freeing the socket,
3938 * but only if the socket refcount is not zero.
3939 */
3940 if (likely(atomic_inc_not_zero(&sk->sk_refcnt))) {
3941 err = sock_queue_err_skb(sk, skb);
3942 sock_put(sk);
3943 }
3944 if (err)
3945 kfree_skb(skb);
3946 }
3947 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3948
3949 /**
3950 * skb_partial_csum_set - set up and verify partial csum values for packet
3951 * @skb: the skb to set
3952 * @start: the number of bytes after skb->data to start checksumming.
3953 * @off: the offset from start to place the checksum.
3954 *
3955 * For untrusted partially-checksummed packets, we need to make sure the values
3956 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3957 *
3958 * This function checks and sets those values and skb->ip_summed: if this
3959 * returns false you should drop the packet.
3960 */
3961 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3962 {
3963 if (unlikely(start > skb_headlen(skb)) ||
3964 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3965 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3966 start, off, skb_headlen(skb));
3967 return false;
3968 }
3969 skb->ip_summed = CHECKSUM_PARTIAL;
3970 skb->csum_start = skb_headroom(skb) + start;
3971 skb->csum_offset = off;
3972 skb_set_transport_header(skb, start);
3973 return true;
3974 }
3975 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3976
3977 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3978 unsigned int max)
3979 {
3980 if (skb_headlen(skb) >= len)
3981 return 0;
3982
3983 /* If we need to pullup then pullup to the max, so we
3984 * won't need to do it again.
3985 */
3986 if (max > skb->len)
3987 max = skb->len;
3988
3989 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3990 return -ENOMEM;
3991
3992 if (skb_headlen(skb) < len)
3993 return -EPROTO;
3994
3995 return 0;
3996 }
3997
3998 #define MAX_TCP_HDR_LEN (15 * 4)
3999
4000 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4001 typeof(IPPROTO_IP) proto,
4002 unsigned int off)
4003 {
4004 switch (proto) {
4005 int err;
4006
4007 case IPPROTO_TCP:
4008 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4009 off + MAX_TCP_HDR_LEN);
4010 if (!err && !skb_partial_csum_set(skb, off,
4011 offsetof(struct tcphdr,
4012 check)))
4013 err = -EPROTO;
4014 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4015
4016 case IPPROTO_UDP:
4017 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4018 off + sizeof(struct udphdr));
4019 if (!err && !skb_partial_csum_set(skb, off,
4020 offsetof(struct udphdr,
4021 check)))
4022 err = -EPROTO;
4023 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4024 }
4025
4026 return ERR_PTR(-EPROTO);
4027 }
4028
4029 /* This value should be large enough to cover a tagged ethernet header plus
4030 * maximally sized IP and TCP or UDP headers.
4031 */
4032 #define MAX_IP_HDR_LEN 128
4033
4034 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4035 {
4036 unsigned int off;
4037 bool fragment;
4038 __sum16 *csum;
4039 int err;
4040
4041 fragment = false;
4042
4043 err = skb_maybe_pull_tail(skb,
4044 sizeof(struct iphdr),
4045 MAX_IP_HDR_LEN);
4046 if (err < 0)
4047 goto out;
4048
4049 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4050 fragment = true;
4051
4052 off = ip_hdrlen(skb);
4053
4054 err = -EPROTO;
4055
4056 if (fragment)
4057 goto out;
4058
4059 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4060 if (IS_ERR(csum))
4061 return PTR_ERR(csum);
4062
4063 if (recalculate)
4064 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4065 ip_hdr(skb)->daddr,
4066 skb->len - off,
4067 ip_hdr(skb)->protocol, 0);
4068 err = 0;
4069
4070 out:
4071 return err;
4072 }
4073
4074 /* This value should be large enough to cover a tagged ethernet header plus
4075 * an IPv6 header, all options, and a maximal TCP or UDP header.
4076 */
4077 #define MAX_IPV6_HDR_LEN 256
4078
4079 #define OPT_HDR(type, skb, off) \
4080 (type *)(skb_network_header(skb) + (off))
4081
4082 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4083 {
4084 int err;
4085 u8 nexthdr;
4086 unsigned int off;
4087 unsigned int len;
4088 bool fragment;
4089 bool done;
4090 __sum16 *csum;
4091
4092 fragment = false;
4093 done = false;
4094
4095 off = sizeof(struct ipv6hdr);
4096
4097 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4098 if (err < 0)
4099 goto out;
4100
4101 nexthdr = ipv6_hdr(skb)->nexthdr;
4102
4103 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4104 while (off <= len && !done) {
4105 switch (nexthdr) {
4106 case IPPROTO_DSTOPTS:
4107 case IPPROTO_HOPOPTS:
4108 case IPPROTO_ROUTING: {
4109 struct ipv6_opt_hdr *hp;
4110
4111 err = skb_maybe_pull_tail(skb,
4112 off +
4113 sizeof(struct ipv6_opt_hdr),
4114 MAX_IPV6_HDR_LEN);
4115 if (err < 0)
4116 goto out;
4117
4118 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4119 nexthdr = hp->nexthdr;
4120 off += ipv6_optlen(hp);
4121 break;
4122 }
4123 case IPPROTO_AH: {
4124 struct ip_auth_hdr *hp;
4125
4126 err = skb_maybe_pull_tail(skb,
4127 off +
4128 sizeof(struct ip_auth_hdr),
4129 MAX_IPV6_HDR_LEN);
4130 if (err < 0)
4131 goto out;
4132
4133 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4134 nexthdr = hp->nexthdr;
4135 off += ipv6_authlen(hp);
4136 break;
4137 }
4138 case IPPROTO_FRAGMENT: {
4139 struct frag_hdr *hp;
4140
4141 err = skb_maybe_pull_tail(skb,
4142 off +
4143 sizeof(struct frag_hdr),
4144 MAX_IPV6_HDR_LEN);
4145 if (err < 0)
4146 goto out;
4147
4148 hp = OPT_HDR(struct frag_hdr, skb, off);
4149
4150 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4151 fragment = true;
4152
4153 nexthdr = hp->nexthdr;
4154 off += sizeof(struct frag_hdr);
4155 break;
4156 }
4157 default:
4158 done = true;
4159 break;
4160 }
4161 }
4162
4163 err = -EPROTO;
4164
4165 if (!done || fragment)
4166 goto out;
4167
4168 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4169 if (IS_ERR(csum))
4170 return PTR_ERR(csum);
4171
4172 if (recalculate)
4173 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4174 &ipv6_hdr(skb)->daddr,
4175 skb->len - off, nexthdr, 0);
4176 err = 0;
4177
4178 out:
4179 return err;
4180 }
4181
4182 /**
4183 * skb_checksum_setup - set up partial checksum offset
4184 * @skb: the skb to set up
4185 * @recalculate: if true the pseudo-header checksum will be recalculated
4186 */
4187 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4188 {
4189 int err;
4190
4191 switch (skb->protocol) {
4192 case htons(ETH_P_IP):
4193 err = skb_checksum_setup_ipv4(skb, recalculate);
4194 break;
4195
4196 case htons(ETH_P_IPV6):
4197 err = skb_checksum_setup_ipv6(skb, recalculate);
4198 break;
4199
4200 default:
4201 err = -EPROTO;
4202 break;
4203 }
4204
4205 return err;
4206 }
4207 EXPORT_SYMBOL(skb_checksum_setup);
4208
4209 /**
4210 * skb_checksum_maybe_trim - maybe trims the given skb
4211 * @skb: the skb to check
4212 * @transport_len: the data length beyond the network header
4213 *
4214 * Checks whether the given skb has data beyond the given transport length.
4215 * If so, returns a cloned skb trimmed to this transport length.
4216 * Otherwise returns the provided skb. Returns NULL in error cases
4217 * (e.g. transport_len exceeds skb length or out-of-memory).
4218 *
4219 * Caller needs to set the skb transport header and free any returned skb if it
4220 * differs from the provided skb.
4221 */
4222 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4223 unsigned int transport_len)
4224 {
4225 struct sk_buff *skb_chk;
4226 unsigned int len = skb_transport_offset(skb) + transport_len;
4227 int ret;
4228
4229 if (skb->len < len)
4230 return NULL;
4231 else if (skb->len == len)
4232 return skb;
4233
4234 skb_chk = skb_clone(skb, GFP_ATOMIC);
4235 if (!skb_chk)
4236 return NULL;
4237
4238 ret = pskb_trim_rcsum(skb_chk, len);
4239 if (ret) {
4240 kfree_skb(skb_chk);
4241 return NULL;
4242 }
4243
4244 return skb_chk;
4245 }
4246
4247 /**
4248 * skb_checksum_trimmed - validate checksum of an skb
4249 * @skb: the skb to check
4250 * @transport_len: the data length beyond the network header
4251 * @skb_chkf: checksum function to use
4252 *
4253 * Applies the given checksum function skb_chkf to the provided skb.
4254 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4255 *
4256 * If the skb has data beyond the given transport length, then a
4257 * trimmed & cloned skb is checked and returned.
4258 *
4259 * Caller needs to set the skb transport header and free any returned skb if it
4260 * differs from the provided skb.
4261 */
4262 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4263 unsigned int transport_len,
4264 __sum16(*skb_chkf)(struct sk_buff *skb))
4265 {
4266 struct sk_buff *skb_chk;
4267 unsigned int offset = skb_transport_offset(skb);
4268 __sum16 ret;
4269
4270 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4271 if (!skb_chk)
4272 goto err;
4273
4274 if (!pskb_may_pull(skb_chk, offset))
4275 goto err;
4276
4277 skb_pull_rcsum(skb_chk, offset);
4278 ret = skb_chkf(skb_chk);
4279 skb_push_rcsum(skb_chk, offset);
4280
4281 if (ret)
4282 goto err;
4283
4284 return skb_chk;
4285
4286 err:
4287 if (skb_chk && skb_chk != skb)
4288 kfree_skb(skb_chk);
4289
4290 return NULL;
4291
4292 }
4293 EXPORT_SYMBOL(skb_checksum_trimmed);
4294
4295 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4296 {
4297 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4298 skb->dev->name);
4299 }
4300 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4301
4302 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4303 {
4304 if (head_stolen) {
4305 skb_release_head_state(skb);
4306 kmem_cache_free(skbuff_head_cache, skb);
4307 } else {
4308 __kfree_skb(skb);
4309 }
4310 }
4311 EXPORT_SYMBOL(kfree_skb_partial);
4312
4313 /**
4314 * skb_try_coalesce - try to merge skb to prior one
4315 * @to: prior buffer
4316 * @from: buffer to add
4317 * @fragstolen: pointer to boolean
4318 * @delta_truesize: how much more was allocated than was requested
4319 */
4320 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4321 bool *fragstolen, int *delta_truesize)
4322 {
4323 int i, delta, len = from->len;
4324
4325 *fragstolen = false;
4326
4327 if (skb_cloned(to))
4328 return false;
4329
4330 if (len <= skb_tailroom(to)) {
4331 if (len)
4332 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4333 *delta_truesize = 0;
4334 return true;
4335 }
4336
4337 if (skb_has_frag_list(to) || skb_has_frag_list(from))
4338 return false;
4339
4340 if (skb_headlen(from) != 0) {
4341 struct page *page;
4342 unsigned int offset;
4343
4344 if (skb_shinfo(to)->nr_frags +
4345 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4346 return false;
4347
4348 if (skb_head_is_locked(from))
4349 return false;
4350
4351 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4352
4353 page = virt_to_head_page(from->head);
4354 offset = from->data - (unsigned char *)page_address(page);
4355
4356 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4357 page, offset, skb_headlen(from));
4358 *fragstolen = true;
4359 } else {
4360 if (skb_shinfo(to)->nr_frags +
4361 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4362 return false;
4363
4364 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4365 }
4366
4367 WARN_ON_ONCE(delta < len);
4368
4369 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4370 skb_shinfo(from)->frags,
4371 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4372 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4373
4374 if (!skb_cloned(from))
4375 skb_shinfo(from)->nr_frags = 0;
4376
4377 /* if the skb is not cloned this does nothing
4378 * since we set nr_frags to 0.
4379 */
4380 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4381 skb_frag_ref(from, i);
4382
4383 to->truesize += delta;
4384 to->len += len;
4385 to->data_len += len;
4386
4387 *delta_truesize = delta;
4388 return true;
4389 }
4390 EXPORT_SYMBOL(skb_try_coalesce);
4391
4392 /**
4393 * skb_scrub_packet - scrub an skb
4394 *
4395 * @skb: buffer to clean
4396 * @xnet: packet is crossing netns
4397 *
4398 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4399 * into/from a tunnel. Some information have to be cleared during these
4400 * operations.
4401 * skb_scrub_packet can also be used to clean a skb before injecting it in
4402 * another namespace (@xnet == true). We have to clear all information in the
4403 * skb that could impact namespace isolation.
4404 */
4405 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4406 {
4407 skb->tstamp = 0;
4408 skb->pkt_type = PACKET_HOST;
4409 skb->skb_iif = 0;
4410 skb->ignore_df = 0;
4411 skb_dst_drop(skb);
4412 secpath_reset(skb);
4413 nf_reset(skb);
4414 nf_reset_trace(skb);
4415
4416 if (!xnet)
4417 return;
4418
4419 skb_orphan(skb);
4420 skb->mark = 0;
4421 }
4422 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4423
4424 /**
4425 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4426 *
4427 * @skb: GSO skb
4428 *
4429 * skb_gso_transport_seglen is used to determine the real size of the
4430 * individual segments, including Layer4 headers (TCP/UDP).
4431 *
4432 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4433 */
4434 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4435 {
4436 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4437 unsigned int thlen = 0;
4438
4439 if (skb->encapsulation) {
4440 thlen = skb_inner_transport_header(skb) -
4441 skb_transport_header(skb);
4442
4443 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4444 thlen += inner_tcp_hdrlen(skb);
4445 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4446 thlen = tcp_hdrlen(skb);
4447 } else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) {
4448 thlen = sizeof(struct sctphdr);
4449 }
4450 /* UFO sets gso_size to the size of the fragmentation
4451 * payload, i.e. the size of the L4 (UDP) header is already
4452 * accounted for.
4453 */
4454 return thlen + shinfo->gso_size;
4455 }
4456 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4457
4458 /**
4459 * skb_gso_validate_mtu - Return in case such skb fits a given MTU
4460 *
4461 * @skb: GSO skb
4462 * @mtu: MTU to validate against
4463 *
4464 * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
4465 * once split.
4466 */
4467 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu)
4468 {
4469 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4470 const struct sk_buff *iter;
4471 unsigned int hlen;
4472
4473 hlen = skb_gso_network_seglen(skb);
4474
4475 if (shinfo->gso_size != GSO_BY_FRAGS)
4476 return hlen <= mtu;
4477
4478 /* Undo this so we can re-use header sizes */
4479 hlen -= GSO_BY_FRAGS;
4480
4481 skb_walk_frags(skb, iter) {
4482 if (hlen + skb_headlen(iter) > mtu)
4483 return false;
4484 }
4485
4486 return true;
4487 }
4488 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu);
4489
4490 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4491 {
4492 if (skb_cow(skb, skb_headroom(skb)) < 0) {
4493 kfree_skb(skb);
4494 return NULL;
4495 }
4496
4497 memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4498 2 * ETH_ALEN);
4499 skb->mac_header += VLAN_HLEN;
4500 return skb;
4501 }
4502
4503 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4504 {
4505 struct vlan_hdr *vhdr;
4506 u16 vlan_tci;
4507
4508 if (unlikely(skb_vlan_tag_present(skb))) {
4509 /* vlan_tci is already set-up so leave this for another time */
4510 return skb;
4511 }
4512
4513 skb = skb_share_check(skb, GFP_ATOMIC);
4514 if (unlikely(!skb))
4515 goto err_free;
4516
4517 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4518 goto err_free;
4519
4520 vhdr = (struct vlan_hdr *)skb->data;
4521 vlan_tci = ntohs(vhdr->h_vlan_TCI);
4522 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4523
4524 skb_pull_rcsum(skb, VLAN_HLEN);
4525 vlan_set_encap_proto(skb, vhdr);
4526
4527 skb = skb_reorder_vlan_header(skb);
4528 if (unlikely(!skb))
4529 goto err_free;
4530
4531 skb_reset_network_header(skb);
4532 skb_reset_transport_header(skb);
4533 skb_reset_mac_len(skb);
4534
4535 return skb;
4536
4537 err_free:
4538 kfree_skb(skb);
4539 return NULL;
4540 }
4541 EXPORT_SYMBOL(skb_vlan_untag);
4542
4543 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4544 {
4545 if (!pskb_may_pull(skb, write_len))
4546 return -ENOMEM;
4547
4548 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4549 return 0;
4550
4551 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4552 }
4553 EXPORT_SYMBOL(skb_ensure_writable);
4554
4555 /* remove VLAN header from packet and update csum accordingly.
4556 * expects a non skb_vlan_tag_present skb with a vlan tag payload
4557 */
4558 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4559 {
4560 struct vlan_hdr *vhdr;
4561 int offset = skb->data - skb_mac_header(skb);
4562 int err;
4563
4564 if (WARN_ONCE(offset,
4565 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
4566 offset)) {
4567 return -EINVAL;
4568 }
4569
4570 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4571 if (unlikely(err))
4572 return err;
4573
4574 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4575
4576 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4577 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
4578
4579 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4580 __skb_pull(skb, VLAN_HLEN);
4581
4582 vlan_set_encap_proto(skb, vhdr);
4583 skb->mac_header += VLAN_HLEN;
4584
4585 if (skb_network_offset(skb) < ETH_HLEN)
4586 skb_set_network_header(skb, ETH_HLEN);
4587
4588 skb_reset_mac_len(skb);
4589
4590 return err;
4591 }
4592 EXPORT_SYMBOL(__skb_vlan_pop);
4593
4594 /* Pop a vlan tag either from hwaccel or from payload.
4595 * Expects skb->data at mac header.
4596 */
4597 int skb_vlan_pop(struct sk_buff *skb)
4598 {
4599 u16 vlan_tci;
4600 __be16 vlan_proto;
4601 int err;
4602
4603 if (likely(skb_vlan_tag_present(skb))) {
4604 skb->vlan_tci = 0;
4605 } else {
4606 if (unlikely(!eth_type_vlan(skb->protocol)))
4607 return 0;
4608
4609 err = __skb_vlan_pop(skb, &vlan_tci);
4610 if (err)
4611 return err;
4612 }
4613 /* move next vlan tag to hw accel tag */
4614 if (likely(!eth_type_vlan(skb->protocol)))
4615 return 0;
4616
4617 vlan_proto = skb->protocol;
4618 err = __skb_vlan_pop(skb, &vlan_tci);
4619 if (unlikely(err))
4620 return err;
4621
4622 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4623 return 0;
4624 }
4625 EXPORT_SYMBOL(skb_vlan_pop);
4626
4627 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
4628 * Expects skb->data at mac header.
4629 */
4630 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4631 {
4632 if (skb_vlan_tag_present(skb)) {
4633 int offset = skb->data - skb_mac_header(skb);
4634 int err;
4635
4636 if (WARN_ONCE(offset,
4637 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
4638 offset)) {
4639 return -EINVAL;
4640 }
4641
4642 err = __vlan_insert_tag(skb, skb->vlan_proto,
4643 skb_vlan_tag_get(skb));
4644 if (err)
4645 return err;
4646
4647 skb->protocol = skb->vlan_proto;
4648 skb->mac_len += VLAN_HLEN;
4649
4650 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4651 }
4652 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4653 return 0;
4654 }
4655 EXPORT_SYMBOL(skb_vlan_push);
4656
4657 /**
4658 * alloc_skb_with_frags - allocate skb with page frags
4659 *
4660 * @header_len: size of linear part
4661 * @data_len: needed length in frags
4662 * @max_page_order: max page order desired.
4663 * @errcode: pointer to error code if any
4664 * @gfp_mask: allocation mask
4665 *
4666 * This can be used to allocate a paged skb, given a maximal order for frags.
4667 */
4668 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4669 unsigned long data_len,
4670 int max_page_order,
4671 int *errcode,
4672 gfp_t gfp_mask)
4673 {
4674 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4675 unsigned long chunk;
4676 struct sk_buff *skb;
4677 struct page *page;
4678 gfp_t gfp_head;
4679 int i;
4680
4681 *errcode = -EMSGSIZE;
4682 /* Note this test could be relaxed, if we succeed to allocate
4683 * high order pages...
4684 */
4685 if (npages > MAX_SKB_FRAGS)
4686 return NULL;
4687
4688 gfp_head = gfp_mask;
4689 if (gfp_head & __GFP_DIRECT_RECLAIM)
4690 gfp_head |= __GFP_REPEAT;
4691
4692 *errcode = -ENOBUFS;
4693 skb = alloc_skb(header_len, gfp_head);
4694 if (!skb)
4695 return NULL;
4696
4697 skb->truesize += npages << PAGE_SHIFT;
4698
4699 for (i = 0; npages > 0; i++) {
4700 int order = max_page_order;
4701
4702 while (order) {
4703 if (npages >= 1 << order) {
4704 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4705 __GFP_COMP |
4706 __GFP_NOWARN |
4707 __GFP_NORETRY,
4708 order);
4709 if (page)
4710 goto fill_page;
4711 /* Do not retry other high order allocations */
4712 order = 1;
4713 max_page_order = 0;
4714 }
4715 order--;
4716 }
4717 page = alloc_page(gfp_mask);
4718 if (!page)
4719 goto failure;
4720 fill_page:
4721 chunk = min_t(unsigned long, data_len,
4722 PAGE_SIZE << order);
4723 skb_fill_page_desc(skb, i, page, 0, chunk);
4724 data_len -= chunk;
4725 npages -= 1 << order;
4726 }
4727 return skb;
4728
4729 failure:
4730 kfree_skb(skb);
4731 return NULL;
4732 }
4733 EXPORT_SYMBOL(alloc_skb_with_frags);
4734
4735 /* carve out the first off bytes from skb when off < headlen */
4736 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
4737 const int headlen, gfp_t gfp_mask)
4738 {
4739 int i;
4740 int size = skb_end_offset(skb);
4741 int new_hlen = headlen - off;
4742 u8 *data;
4743
4744 size = SKB_DATA_ALIGN(size);
4745
4746 if (skb_pfmemalloc(skb))
4747 gfp_mask |= __GFP_MEMALLOC;
4748 data = kmalloc_reserve(size +
4749 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4750 gfp_mask, NUMA_NO_NODE, NULL);
4751 if (!data)
4752 return -ENOMEM;
4753
4754 size = SKB_WITH_OVERHEAD(ksize(data));
4755
4756 /* Copy real data, and all frags */
4757 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
4758 skb->len -= off;
4759
4760 memcpy((struct skb_shared_info *)(data + size),
4761 skb_shinfo(skb),
4762 offsetof(struct skb_shared_info,
4763 frags[skb_shinfo(skb)->nr_frags]));
4764 if (skb_cloned(skb)) {
4765 /* drop the old head gracefully */
4766 if (skb_orphan_frags(skb, gfp_mask)) {
4767 kfree(data);
4768 return -ENOMEM;
4769 }
4770 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4771 skb_frag_ref(skb, i);
4772 if (skb_has_frag_list(skb))
4773 skb_clone_fraglist(skb);
4774 skb_release_data(skb);
4775 } else {
4776 /* we can reuse existing recount- all we did was
4777 * relocate values
4778 */
4779 skb_free_head(skb);
4780 }
4781
4782 skb->head = data;
4783 skb->data = data;
4784 skb->head_frag = 0;
4785 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4786 skb->end = size;
4787 #else
4788 skb->end = skb->head + size;
4789 #endif
4790 skb_set_tail_pointer(skb, skb_headlen(skb));
4791 skb_headers_offset_update(skb, 0);
4792 skb->cloned = 0;
4793 skb->hdr_len = 0;
4794 skb->nohdr = 0;
4795 atomic_set(&skb_shinfo(skb)->dataref, 1);
4796
4797 return 0;
4798 }
4799
4800 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
4801
4802 /* carve out the first eat bytes from skb's frag_list. May recurse into
4803 * pskb_carve()
4804 */
4805 static int pskb_carve_frag_list(struct sk_buff *skb,
4806 struct skb_shared_info *shinfo, int eat,
4807 gfp_t gfp_mask)
4808 {
4809 struct sk_buff *list = shinfo->frag_list;
4810 struct sk_buff *clone = NULL;
4811 struct sk_buff *insp = NULL;
4812
4813 do {
4814 if (!list) {
4815 pr_err("Not enough bytes to eat. Want %d\n", eat);
4816 return -EFAULT;
4817 }
4818 if (list->len <= eat) {
4819 /* Eaten as whole. */
4820 eat -= list->len;
4821 list = list->next;
4822 insp = list;
4823 } else {
4824 /* Eaten partially. */
4825 if (skb_shared(list)) {
4826 clone = skb_clone(list, gfp_mask);
4827 if (!clone)
4828 return -ENOMEM;
4829 insp = list->next;
4830 list = clone;
4831 } else {
4832 /* This may be pulled without problems. */
4833 insp = list;
4834 }
4835 if (pskb_carve(list, eat, gfp_mask) < 0) {
4836 kfree_skb(clone);
4837 return -ENOMEM;
4838 }
4839 break;
4840 }
4841 } while (eat);
4842
4843 /* Free pulled out fragments. */
4844 while ((list = shinfo->frag_list) != insp) {
4845 shinfo->frag_list = list->next;
4846 kfree_skb(list);
4847 }
4848 /* And insert new clone at head. */
4849 if (clone) {
4850 clone->next = list;
4851 shinfo->frag_list = clone;
4852 }
4853 return 0;
4854 }
4855
4856 /* carve off first len bytes from skb. Split line (off) is in the
4857 * non-linear part of skb
4858 */
4859 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
4860 int pos, gfp_t gfp_mask)
4861 {
4862 int i, k = 0;
4863 int size = skb_end_offset(skb);
4864 u8 *data;
4865 const int nfrags = skb_shinfo(skb)->nr_frags;
4866 struct skb_shared_info *shinfo;
4867
4868 size = SKB_DATA_ALIGN(size);
4869
4870 if (skb_pfmemalloc(skb))
4871 gfp_mask |= __GFP_MEMALLOC;
4872 data = kmalloc_reserve(size +
4873 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4874 gfp_mask, NUMA_NO_NODE, NULL);
4875 if (!data)
4876 return -ENOMEM;
4877
4878 size = SKB_WITH_OVERHEAD(ksize(data));
4879
4880 memcpy((struct skb_shared_info *)(data + size),
4881 skb_shinfo(skb), offsetof(struct skb_shared_info,
4882 frags[skb_shinfo(skb)->nr_frags]));
4883 if (skb_orphan_frags(skb, gfp_mask)) {
4884 kfree(data);
4885 return -ENOMEM;
4886 }
4887 shinfo = (struct skb_shared_info *)(data + size);
4888 for (i = 0; i < nfrags; i++) {
4889 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4890
4891 if (pos + fsize > off) {
4892 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
4893
4894 if (pos < off) {
4895 /* Split frag.
4896 * We have two variants in this case:
4897 * 1. Move all the frag to the second
4898 * part, if it is possible. F.e.
4899 * this approach is mandatory for TUX,
4900 * where splitting is expensive.
4901 * 2. Split is accurately. We make this.
4902 */
4903 shinfo->frags[0].page_offset += off - pos;
4904 skb_frag_size_sub(&shinfo->frags[0], off - pos);
4905 }
4906 skb_frag_ref(skb, i);
4907 k++;
4908 }
4909 pos += fsize;
4910 }
4911 shinfo->nr_frags = k;
4912 if (skb_has_frag_list(skb))
4913 skb_clone_fraglist(skb);
4914
4915 if (k == 0) {
4916 /* split line is in frag list */
4917 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
4918 }
4919 skb_release_data(skb);
4920
4921 skb->head = data;
4922 skb->head_frag = 0;
4923 skb->data = data;
4924 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4925 skb->end = size;
4926 #else
4927 skb->end = skb->head + size;
4928 #endif
4929 skb_reset_tail_pointer(skb);
4930 skb_headers_offset_update(skb, 0);
4931 skb->cloned = 0;
4932 skb->hdr_len = 0;
4933 skb->nohdr = 0;
4934 skb->len -= off;
4935 skb->data_len = skb->len;
4936 atomic_set(&skb_shinfo(skb)->dataref, 1);
4937 return 0;
4938 }
4939
4940 /* remove len bytes from the beginning of the skb */
4941 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
4942 {
4943 int headlen = skb_headlen(skb);
4944
4945 if (len < headlen)
4946 return pskb_carve_inside_header(skb, len, headlen, gfp);
4947 else
4948 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
4949 }
4950
4951 /* Extract to_copy bytes starting at off from skb, and return this in
4952 * a new skb
4953 */
4954 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
4955 int to_copy, gfp_t gfp)
4956 {
4957 struct sk_buff *clone = skb_clone(skb, gfp);
4958
4959 if (!clone)
4960 return NULL;
4961
4962 if (pskb_carve(clone, off, gfp) < 0 ||
4963 pskb_trim(clone, to_copy)) {
4964 kfree_skb(clone);
4965 return NULL;
4966 }
4967 return clone;
4968 }
4969 EXPORT_SYMBOL(pskb_extract);
4970
4971 /**
4972 * skb_condense - try to get rid of fragments/frag_list if possible
4973 * @skb: buffer
4974 *
4975 * Can be used to save memory before skb is added to a busy queue.
4976 * If packet has bytes in frags and enough tail room in skb->head,
4977 * pull all of them, so that we can free the frags right now and adjust
4978 * truesize.
4979 * Notes:
4980 * We do not reallocate skb->head thus can not fail.
4981 * Caller must re-evaluate skb->truesize if needed.
4982 */
4983 void skb_condense(struct sk_buff *skb)
4984 {
4985 if (skb->data_len) {
4986 if (skb->data_len > skb->end - skb->tail ||
4987 skb_cloned(skb))
4988 return;
4989
4990 /* Nice, we can free page frag(s) right now */
4991 __pskb_pull_tail(skb, skb->data_len);
4992 }
4993 /* At this point, skb->truesize might be over estimated,
4994 * because skb had a fragment, and fragments do not tell
4995 * their truesize.
4996 * When we pulled its content into skb->head, fragment
4997 * was freed, but __pskb_pull_tail() could not possibly
4998 * adjust skb->truesize, not knowing the frag truesize.
4999 */
5000 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5001 }