]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/core/skbuff.c
Merge tag 'mtd/fixes-for-5.8-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / net / core / skbuff.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31 /*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
69 #include <net/xfrm.h>
70 #include <net/mpls.h>
71 #include <net/mptcp.h>
72
73 #include <linux/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
76 #include <linux/capability.h>
77 #include <linux/user_namespace.h>
78 #include <linux/indirect_call_wrapper.h>
79
80 #include "datagram.h"
81
82 struct kmem_cache *skbuff_head_cache __ro_after_init;
83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
84 #ifdef CONFIG_SKB_EXTENSIONS
85 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
86 #endif
87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
88 EXPORT_SYMBOL(sysctl_max_skb_frags);
89
90 /**
91 * skb_panic - private function for out-of-line support
92 * @skb: buffer
93 * @sz: size
94 * @addr: address
95 * @msg: skb_over_panic or skb_under_panic
96 *
97 * Out-of-line support for skb_put() and skb_push().
98 * Called via the wrapper skb_over_panic() or skb_under_panic().
99 * Keep out of line to prevent kernel bloat.
100 * __builtin_return_address is not used because it is not always reliable.
101 */
102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
103 const char msg[])
104 {
105 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
106 msg, addr, skb->len, sz, skb->head, skb->data,
107 (unsigned long)skb->tail, (unsigned long)skb->end,
108 skb->dev ? skb->dev->name : "<NULL>");
109 BUG();
110 }
111
112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 skb_panic(skb, sz, addr, __func__);
115 }
116
117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
118 {
119 skb_panic(skb, sz, addr, __func__);
120 }
121
122 /*
123 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
124 * the caller if emergency pfmemalloc reserves are being used. If it is and
125 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
126 * may be used. Otherwise, the packet data may be discarded until enough
127 * memory is free
128 */
129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
130 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
131
132 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
133 unsigned long ip, bool *pfmemalloc)
134 {
135 void *obj;
136 bool ret_pfmemalloc = false;
137
138 /*
139 * Try a regular allocation, when that fails and we're not entitled
140 * to the reserves, fail.
141 */
142 obj = kmalloc_node_track_caller(size,
143 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
144 node);
145 if (obj || !(gfp_pfmemalloc_allowed(flags)))
146 goto out;
147
148 /* Try again but now we are using pfmemalloc reserves */
149 ret_pfmemalloc = true;
150 obj = kmalloc_node_track_caller(size, flags, node);
151
152 out:
153 if (pfmemalloc)
154 *pfmemalloc = ret_pfmemalloc;
155
156 return obj;
157 }
158
159 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
160 * 'private' fields and also do memory statistics to find all the
161 * [BEEP] leaks.
162 *
163 */
164
165 /**
166 * __alloc_skb - allocate a network buffer
167 * @size: size to allocate
168 * @gfp_mask: allocation mask
169 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
170 * instead of head cache and allocate a cloned (child) skb.
171 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
172 * allocations in case the data is required for writeback
173 * @node: numa node to allocate memory on
174 *
175 * Allocate a new &sk_buff. The returned buffer has no headroom and a
176 * tail room of at least size bytes. The object has a reference count
177 * of one. The return is the buffer. On a failure the return is %NULL.
178 *
179 * Buffers may only be allocated from interrupts using a @gfp_mask of
180 * %GFP_ATOMIC.
181 */
182 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
183 int flags, int node)
184 {
185 struct kmem_cache *cache;
186 struct skb_shared_info *shinfo;
187 struct sk_buff *skb;
188 u8 *data;
189 bool pfmemalloc;
190
191 cache = (flags & SKB_ALLOC_FCLONE)
192 ? skbuff_fclone_cache : skbuff_head_cache;
193
194 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
195 gfp_mask |= __GFP_MEMALLOC;
196
197 /* Get the HEAD */
198 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
199 if (!skb)
200 goto out;
201 prefetchw(skb);
202
203 /* We do our best to align skb_shared_info on a separate cache
204 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
205 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
206 * Both skb->head and skb_shared_info are cache line aligned.
207 */
208 size = SKB_DATA_ALIGN(size);
209 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
210 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
211 if (!data)
212 goto nodata;
213 /* kmalloc(size) might give us more room than requested.
214 * Put skb_shared_info exactly at the end of allocated zone,
215 * to allow max possible filling before reallocation.
216 */
217 size = SKB_WITH_OVERHEAD(ksize(data));
218 prefetchw(data + size);
219
220 /*
221 * Only clear those fields we need to clear, not those that we will
222 * actually initialise below. Hence, don't put any more fields after
223 * the tail pointer in struct sk_buff!
224 */
225 memset(skb, 0, offsetof(struct sk_buff, tail));
226 /* Account for allocated memory : skb + skb->head */
227 skb->truesize = SKB_TRUESIZE(size);
228 skb->pfmemalloc = pfmemalloc;
229 refcount_set(&skb->users, 1);
230 skb->head = data;
231 skb->data = data;
232 skb_reset_tail_pointer(skb);
233 skb->end = skb->tail + size;
234 skb->mac_header = (typeof(skb->mac_header))~0U;
235 skb->transport_header = (typeof(skb->transport_header))~0U;
236
237 /* make sure we initialize shinfo sequentially */
238 shinfo = skb_shinfo(skb);
239 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
240 atomic_set(&shinfo->dataref, 1);
241
242 if (flags & SKB_ALLOC_FCLONE) {
243 struct sk_buff_fclones *fclones;
244
245 fclones = container_of(skb, struct sk_buff_fclones, skb1);
246
247 skb->fclone = SKB_FCLONE_ORIG;
248 refcount_set(&fclones->fclone_ref, 1);
249
250 fclones->skb2.fclone = SKB_FCLONE_CLONE;
251 }
252 out:
253 return skb;
254 nodata:
255 kmem_cache_free(cache, skb);
256 skb = NULL;
257 goto out;
258 }
259 EXPORT_SYMBOL(__alloc_skb);
260
261 /* Caller must provide SKB that is memset cleared */
262 static struct sk_buff *__build_skb_around(struct sk_buff *skb,
263 void *data, unsigned int frag_size)
264 {
265 struct skb_shared_info *shinfo;
266 unsigned int size = frag_size ? : ksize(data);
267
268 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
269
270 /* Assumes caller memset cleared SKB */
271 skb->truesize = SKB_TRUESIZE(size);
272 refcount_set(&skb->users, 1);
273 skb->head = data;
274 skb->data = data;
275 skb_reset_tail_pointer(skb);
276 skb->end = skb->tail + size;
277 skb->mac_header = (typeof(skb->mac_header))~0U;
278 skb->transport_header = (typeof(skb->transport_header))~0U;
279
280 /* make sure we initialize shinfo sequentially */
281 shinfo = skb_shinfo(skb);
282 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
283 atomic_set(&shinfo->dataref, 1);
284
285 return skb;
286 }
287
288 /**
289 * __build_skb - build a network buffer
290 * @data: data buffer provided by caller
291 * @frag_size: size of data, or 0 if head was kmalloced
292 *
293 * Allocate a new &sk_buff. Caller provides space holding head and
294 * skb_shared_info. @data must have been allocated by kmalloc() only if
295 * @frag_size is 0, otherwise data should come from the page allocator
296 * or vmalloc()
297 * The return is the new skb buffer.
298 * On a failure the return is %NULL, and @data is not freed.
299 * Notes :
300 * Before IO, driver allocates only data buffer where NIC put incoming frame
301 * Driver should add room at head (NET_SKB_PAD) and
302 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
303 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
304 * before giving packet to stack.
305 * RX rings only contains data buffers, not full skbs.
306 */
307 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
308 {
309 struct sk_buff *skb;
310
311 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
312 if (unlikely(!skb))
313 return NULL;
314
315 memset(skb, 0, offsetof(struct sk_buff, tail));
316
317 return __build_skb_around(skb, data, frag_size);
318 }
319
320 /* build_skb() is wrapper over __build_skb(), that specifically
321 * takes care of skb->head and skb->pfmemalloc
322 * This means that if @frag_size is not zero, then @data must be backed
323 * by a page fragment, not kmalloc() or vmalloc()
324 */
325 struct sk_buff *build_skb(void *data, unsigned int frag_size)
326 {
327 struct sk_buff *skb = __build_skb(data, frag_size);
328
329 if (skb && frag_size) {
330 skb->head_frag = 1;
331 if (page_is_pfmemalloc(virt_to_head_page(data)))
332 skb->pfmemalloc = 1;
333 }
334 return skb;
335 }
336 EXPORT_SYMBOL(build_skb);
337
338 /**
339 * build_skb_around - build a network buffer around provided skb
340 * @skb: sk_buff provide by caller, must be memset cleared
341 * @data: data buffer provided by caller
342 * @frag_size: size of data, or 0 if head was kmalloced
343 */
344 struct sk_buff *build_skb_around(struct sk_buff *skb,
345 void *data, unsigned int frag_size)
346 {
347 if (unlikely(!skb))
348 return NULL;
349
350 skb = __build_skb_around(skb, data, frag_size);
351
352 if (skb && frag_size) {
353 skb->head_frag = 1;
354 if (page_is_pfmemalloc(virt_to_head_page(data)))
355 skb->pfmemalloc = 1;
356 }
357 return skb;
358 }
359 EXPORT_SYMBOL(build_skb_around);
360
361 #define NAPI_SKB_CACHE_SIZE 64
362
363 struct napi_alloc_cache {
364 struct page_frag_cache page;
365 unsigned int skb_count;
366 void *skb_cache[NAPI_SKB_CACHE_SIZE];
367 };
368
369 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
370 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
371
372 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
373 {
374 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
375
376 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
377 }
378
379 void *napi_alloc_frag(unsigned int fragsz)
380 {
381 fragsz = SKB_DATA_ALIGN(fragsz);
382
383 return __napi_alloc_frag(fragsz, GFP_ATOMIC);
384 }
385 EXPORT_SYMBOL(napi_alloc_frag);
386
387 /**
388 * netdev_alloc_frag - allocate a page fragment
389 * @fragsz: fragment size
390 *
391 * Allocates a frag from a page for receive buffer.
392 * Uses GFP_ATOMIC allocations.
393 */
394 void *netdev_alloc_frag(unsigned int fragsz)
395 {
396 struct page_frag_cache *nc;
397 void *data;
398
399 fragsz = SKB_DATA_ALIGN(fragsz);
400 if (in_irq() || irqs_disabled()) {
401 nc = this_cpu_ptr(&netdev_alloc_cache);
402 data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
403 } else {
404 local_bh_disable();
405 data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
406 local_bh_enable();
407 }
408 return data;
409 }
410 EXPORT_SYMBOL(netdev_alloc_frag);
411
412 /**
413 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
414 * @dev: network device to receive on
415 * @len: length to allocate
416 * @gfp_mask: get_free_pages mask, passed to alloc_skb
417 *
418 * Allocate a new &sk_buff and assign it a usage count of one. The
419 * buffer has NET_SKB_PAD headroom built in. Users should allocate
420 * the headroom they think they need without accounting for the
421 * built in space. The built in space is used for optimisations.
422 *
423 * %NULL is returned if there is no free memory.
424 */
425 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
426 gfp_t gfp_mask)
427 {
428 struct page_frag_cache *nc;
429 struct sk_buff *skb;
430 bool pfmemalloc;
431 void *data;
432
433 len += NET_SKB_PAD;
434
435 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
436 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
437 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
438 if (!skb)
439 goto skb_fail;
440 goto skb_success;
441 }
442
443 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
444 len = SKB_DATA_ALIGN(len);
445
446 if (sk_memalloc_socks())
447 gfp_mask |= __GFP_MEMALLOC;
448
449 if (in_irq() || irqs_disabled()) {
450 nc = this_cpu_ptr(&netdev_alloc_cache);
451 data = page_frag_alloc(nc, len, gfp_mask);
452 pfmemalloc = nc->pfmemalloc;
453 } else {
454 local_bh_disable();
455 nc = this_cpu_ptr(&napi_alloc_cache.page);
456 data = page_frag_alloc(nc, len, gfp_mask);
457 pfmemalloc = nc->pfmemalloc;
458 local_bh_enable();
459 }
460
461 if (unlikely(!data))
462 return NULL;
463
464 skb = __build_skb(data, len);
465 if (unlikely(!skb)) {
466 skb_free_frag(data);
467 return NULL;
468 }
469
470 if (pfmemalloc)
471 skb->pfmemalloc = 1;
472 skb->head_frag = 1;
473
474 skb_success:
475 skb_reserve(skb, NET_SKB_PAD);
476 skb->dev = dev;
477
478 skb_fail:
479 return skb;
480 }
481 EXPORT_SYMBOL(__netdev_alloc_skb);
482
483 /**
484 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
485 * @napi: napi instance this buffer was allocated for
486 * @len: length to allocate
487 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
488 *
489 * Allocate a new sk_buff for use in NAPI receive. This buffer will
490 * attempt to allocate the head from a special reserved region used
491 * only for NAPI Rx allocation. By doing this we can save several
492 * CPU cycles by avoiding having to disable and re-enable IRQs.
493 *
494 * %NULL is returned if there is no free memory.
495 */
496 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
497 gfp_t gfp_mask)
498 {
499 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
500 struct sk_buff *skb;
501 void *data;
502
503 len += NET_SKB_PAD + NET_IP_ALIGN;
504
505 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
506 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
507 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
508 if (!skb)
509 goto skb_fail;
510 goto skb_success;
511 }
512
513 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
514 len = SKB_DATA_ALIGN(len);
515
516 if (sk_memalloc_socks())
517 gfp_mask |= __GFP_MEMALLOC;
518
519 data = page_frag_alloc(&nc->page, len, gfp_mask);
520 if (unlikely(!data))
521 return NULL;
522
523 skb = __build_skb(data, len);
524 if (unlikely(!skb)) {
525 skb_free_frag(data);
526 return NULL;
527 }
528
529 if (nc->page.pfmemalloc)
530 skb->pfmemalloc = 1;
531 skb->head_frag = 1;
532
533 skb_success:
534 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
535 skb->dev = napi->dev;
536
537 skb_fail:
538 return skb;
539 }
540 EXPORT_SYMBOL(__napi_alloc_skb);
541
542 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
543 int size, unsigned int truesize)
544 {
545 skb_fill_page_desc(skb, i, page, off, size);
546 skb->len += size;
547 skb->data_len += size;
548 skb->truesize += truesize;
549 }
550 EXPORT_SYMBOL(skb_add_rx_frag);
551
552 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
553 unsigned int truesize)
554 {
555 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
556
557 skb_frag_size_add(frag, size);
558 skb->len += size;
559 skb->data_len += size;
560 skb->truesize += truesize;
561 }
562 EXPORT_SYMBOL(skb_coalesce_rx_frag);
563
564 static void skb_drop_list(struct sk_buff **listp)
565 {
566 kfree_skb_list(*listp);
567 *listp = NULL;
568 }
569
570 static inline void skb_drop_fraglist(struct sk_buff *skb)
571 {
572 skb_drop_list(&skb_shinfo(skb)->frag_list);
573 }
574
575 static void skb_clone_fraglist(struct sk_buff *skb)
576 {
577 struct sk_buff *list;
578
579 skb_walk_frags(skb, list)
580 skb_get(list);
581 }
582
583 static void skb_free_head(struct sk_buff *skb)
584 {
585 unsigned char *head = skb->head;
586
587 if (skb->head_frag)
588 skb_free_frag(head);
589 else
590 kfree(head);
591 }
592
593 static void skb_release_data(struct sk_buff *skb)
594 {
595 struct skb_shared_info *shinfo = skb_shinfo(skb);
596 int i;
597
598 if (skb->cloned &&
599 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
600 &shinfo->dataref))
601 return;
602
603 for (i = 0; i < shinfo->nr_frags; i++)
604 __skb_frag_unref(&shinfo->frags[i]);
605
606 if (shinfo->frag_list)
607 kfree_skb_list(shinfo->frag_list);
608
609 skb_zcopy_clear(skb, true);
610 skb_free_head(skb);
611 }
612
613 /*
614 * Free an skbuff by memory without cleaning the state.
615 */
616 static void kfree_skbmem(struct sk_buff *skb)
617 {
618 struct sk_buff_fclones *fclones;
619
620 switch (skb->fclone) {
621 case SKB_FCLONE_UNAVAILABLE:
622 kmem_cache_free(skbuff_head_cache, skb);
623 return;
624
625 case SKB_FCLONE_ORIG:
626 fclones = container_of(skb, struct sk_buff_fclones, skb1);
627
628 /* We usually free the clone (TX completion) before original skb
629 * This test would have no chance to be true for the clone,
630 * while here, branch prediction will be good.
631 */
632 if (refcount_read(&fclones->fclone_ref) == 1)
633 goto fastpath;
634 break;
635
636 default: /* SKB_FCLONE_CLONE */
637 fclones = container_of(skb, struct sk_buff_fclones, skb2);
638 break;
639 }
640 if (!refcount_dec_and_test(&fclones->fclone_ref))
641 return;
642 fastpath:
643 kmem_cache_free(skbuff_fclone_cache, fclones);
644 }
645
646 void skb_release_head_state(struct sk_buff *skb)
647 {
648 skb_dst_drop(skb);
649 if (skb->destructor) {
650 WARN_ON(in_irq());
651 skb->destructor(skb);
652 }
653 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
654 nf_conntrack_put(skb_nfct(skb));
655 #endif
656 skb_ext_put(skb);
657 }
658
659 /* Free everything but the sk_buff shell. */
660 static void skb_release_all(struct sk_buff *skb)
661 {
662 skb_release_head_state(skb);
663 if (likely(skb->head))
664 skb_release_data(skb);
665 }
666
667 /**
668 * __kfree_skb - private function
669 * @skb: buffer
670 *
671 * Free an sk_buff. Release anything attached to the buffer.
672 * Clean the state. This is an internal helper function. Users should
673 * always call kfree_skb
674 */
675
676 void __kfree_skb(struct sk_buff *skb)
677 {
678 skb_release_all(skb);
679 kfree_skbmem(skb);
680 }
681 EXPORT_SYMBOL(__kfree_skb);
682
683 /**
684 * kfree_skb - free an sk_buff
685 * @skb: buffer to free
686 *
687 * Drop a reference to the buffer and free it if the usage count has
688 * hit zero.
689 */
690 void kfree_skb(struct sk_buff *skb)
691 {
692 if (!skb_unref(skb))
693 return;
694
695 trace_kfree_skb(skb, __builtin_return_address(0));
696 __kfree_skb(skb);
697 }
698 EXPORT_SYMBOL(kfree_skb);
699
700 void kfree_skb_list(struct sk_buff *segs)
701 {
702 while (segs) {
703 struct sk_buff *next = segs->next;
704
705 kfree_skb(segs);
706 segs = next;
707 }
708 }
709 EXPORT_SYMBOL(kfree_skb_list);
710
711 /* Dump skb information and contents.
712 *
713 * Must only be called from net_ratelimit()-ed paths.
714 *
715 * Dumps up to can_dump_full whole packets if full_pkt, headers otherwise.
716 */
717 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
718 {
719 static atomic_t can_dump_full = ATOMIC_INIT(5);
720 struct skb_shared_info *sh = skb_shinfo(skb);
721 struct net_device *dev = skb->dev;
722 struct sock *sk = skb->sk;
723 struct sk_buff *list_skb;
724 bool has_mac, has_trans;
725 int headroom, tailroom;
726 int i, len, seg_len;
727
728 if (full_pkt)
729 full_pkt = atomic_dec_if_positive(&can_dump_full) >= 0;
730
731 if (full_pkt)
732 len = skb->len;
733 else
734 len = min_t(int, skb->len, MAX_HEADER + 128);
735
736 headroom = skb_headroom(skb);
737 tailroom = skb_tailroom(skb);
738
739 has_mac = skb_mac_header_was_set(skb);
740 has_trans = skb_transport_header_was_set(skb);
741
742 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
743 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
744 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
745 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
746 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
747 level, skb->len, headroom, skb_headlen(skb), tailroom,
748 has_mac ? skb->mac_header : -1,
749 has_mac ? skb_mac_header_len(skb) : -1,
750 skb->network_header,
751 has_trans ? skb_network_header_len(skb) : -1,
752 has_trans ? skb->transport_header : -1,
753 sh->tx_flags, sh->nr_frags,
754 sh->gso_size, sh->gso_type, sh->gso_segs,
755 skb->csum, skb->ip_summed, skb->csum_complete_sw,
756 skb->csum_valid, skb->csum_level,
757 skb->hash, skb->sw_hash, skb->l4_hash,
758 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
759
760 if (dev)
761 printk("%sdev name=%s feat=0x%pNF\n",
762 level, dev->name, &dev->features);
763 if (sk)
764 printk("%ssk family=%hu type=%u proto=%u\n",
765 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
766
767 if (full_pkt && headroom)
768 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
769 16, 1, skb->head, headroom, false);
770
771 seg_len = min_t(int, skb_headlen(skb), len);
772 if (seg_len)
773 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
774 16, 1, skb->data, seg_len, false);
775 len -= seg_len;
776
777 if (full_pkt && tailroom)
778 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
779 16, 1, skb_tail_pointer(skb), tailroom, false);
780
781 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
782 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
783 u32 p_off, p_len, copied;
784 struct page *p;
785 u8 *vaddr;
786
787 skb_frag_foreach_page(frag, skb_frag_off(frag),
788 skb_frag_size(frag), p, p_off, p_len,
789 copied) {
790 seg_len = min_t(int, p_len, len);
791 vaddr = kmap_atomic(p);
792 print_hex_dump(level, "skb frag: ",
793 DUMP_PREFIX_OFFSET,
794 16, 1, vaddr + p_off, seg_len, false);
795 kunmap_atomic(vaddr);
796 len -= seg_len;
797 if (!len)
798 break;
799 }
800 }
801
802 if (full_pkt && skb_has_frag_list(skb)) {
803 printk("skb fraglist:\n");
804 skb_walk_frags(skb, list_skb)
805 skb_dump(level, list_skb, true);
806 }
807 }
808 EXPORT_SYMBOL(skb_dump);
809
810 /**
811 * skb_tx_error - report an sk_buff xmit error
812 * @skb: buffer that triggered an error
813 *
814 * Report xmit error if a device callback is tracking this skb.
815 * skb must be freed afterwards.
816 */
817 void skb_tx_error(struct sk_buff *skb)
818 {
819 skb_zcopy_clear(skb, true);
820 }
821 EXPORT_SYMBOL(skb_tx_error);
822
823 /**
824 * consume_skb - free an skbuff
825 * @skb: buffer to free
826 *
827 * Drop a ref to the buffer and free it if the usage count has hit zero
828 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
829 * is being dropped after a failure and notes that
830 */
831 void consume_skb(struct sk_buff *skb)
832 {
833 if (!skb_unref(skb))
834 return;
835
836 trace_consume_skb(skb);
837 __kfree_skb(skb);
838 }
839 EXPORT_SYMBOL(consume_skb);
840
841 /**
842 * consume_stateless_skb - free an skbuff, assuming it is stateless
843 * @skb: buffer to free
844 *
845 * Alike consume_skb(), but this variant assumes that this is the last
846 * skb reference and all the head states have been already dropped
847 */
848 void __consume_stateless_skb(struct sk_buff *skb)
849 {
850 trace_consume_skb(skb);
851 skb_release_data(skb);
852 kfree_skbmem(skb);
853 }
854
855 void __kfree_skb_flush(void)
856 {
857 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
858
859 /* flush skb_cache if containing objects */
860 if (nc->skb_count) {
861 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
862 nc->skb_cache);
863 nc->skb_count = 0;
864 }
865 }
866
867 static inline void _kfree_skb_defer(struct sk_buff *skb)
868 {
869 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
870
871 /* drop skb->head and call any destructors for packet */
872 skb_release_all(skb);
873
874 /* record skb to CPU local list */
875 nc->skb_cache[nc->skb_count++] = skb;
876
877 #ifdef CONFIG_SLUB
878 /* SLUB writes into objects when freeing */
879 prefetchw(skb);
880 #endif
881
882 /* flush skb_cache if it is filled */
883 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
884 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
885 nc->skb_cache);
886 nc->skb_count = 0;
887 }
888 }
889 void __kfree_skb_defer(struct sk_buff *skb)
890 {
891 _kfree_skb_defer(skb);
892 }
893
894 void napi_consume_skb(struct sk_buff *skb, int budget)
895 {
896 if (unlikely(!skb))
897 return;
898
899 /* Zero budget indicate non-NAPI context called us, like netpoll */
900 if (unlikely(!budget)) {
901 dev_consume_skb_any(skb);
902 return;
903 }
904
905 if (!skb_unref(skb))
906 return;
907
908 /* if reaching here SKB is ready to free */
909 trace_consume_skb(skb);
910
911 /* if SKB is a clone, don't handle this case */
912 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
913 __kfree_skb(skb);
914 return;
915 }
916
917 _kfree_skb_defer(skb);
918 }
919 EXPORT_SYMBOL(napi_consume_skb);
920
921 /* Make sure a field is enclosed inside headers_start/headers_end section */
922 #define CHECK_SKB_FIELD(field) \
923 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
924 offsetof(struct sk_buff, headers_start)); \
925 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
926 offsetof(struct sk_buff, headers_end)); \
927
928 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
929 {
930 new->tstamp = old->tstamp;
931 /* We do not copy old->sk */
932 new->dev = old->dev;
933 memcpy(new->cb, old->cb, sizeof(old->cb));
934 skb_dst_copy(new, old);
935 __skb_ext_copy(new, old);
936 __nf_copy(new, old, false);
937
938 /* Note : this field could be in headers_start/headers_end section
939 * It is not yet because we do not want to have a 16 bit hole
940 */
941 new->queue_mapping = old->queue_mapping;
942
943 memcpy(&new->headers_start, &old->headers_start,
944 offsetof(struct sk_buff, headers_end) -
945 offsetof(struct sk_buff, headers_start));
946 CHECK_SKB_FIELD(protocol);
947 CHECK_SKB_FIELD(csum);
948 CHECK_SKB_FIELD(hash);
949 CHECK_SKB_FIELD(priority);
950 CHECK_SKB_FIELD(skb_iif);
951 CHECK_SKB_FIELD(vlan_proto);
952 CHECK_SKB_FIELD(vlan_tci);
953 CHECK_SKB_FIELD(transport_header);
954 CHECK_SKB_FIELD(network_header);
955 CHECK_SKB_FIELD(mac_header);
956 CHECK_SKB_FIELD(inner_protocol);
957 CHECK_SKB_FIELD(inner_transport_header);
958 CHECK_SKB_FIELD(inner_network_header);
959 CHECK_SKB_FIELD(inner_mac_header);
960 CHECK_SKB_FIELD(mark);
961 #ifdef CONFIG_NETWORK_SECMARK
962 CHECK_SKB_FIELD(secmark);
963 #endif
964 #ifdef CONFIG_NET_RX_BUSY_POLL
965 CHECK_SKB_FIELD(napi_id);
966 #endif
967 #ifdef CONFIG_XPS
968 CHECK_SKB_FIELD(sender_cpu);
969 #endif
970 #ifdef CONFIG_NET_SCHED
971 CHECK_SKB_FIELD(tc_index);
972 #endif
973
974 }
975
976 /*
977 * You should not add any new code to this function. Add it to
978 * __copy_skb_header above instead.
979 */
980 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
981 {
982 #define C(x) n->x = skb->x
983
984 n->next = n->prev = NULL;
985 n->sk = NULL;
986 __copy_skb_header(n, skb);
987
988 C(len);
989 C(data_len);
990 C(mac_len);
991 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
992 n->cloned = 1;
993 n->nohdr = 0;
994 n->peeked = 0;
995 C(pfmemalloc);
996 n->destructor = NULL;
997 C(tail);
998 C(end);
999 C(head);
1000 C(head_frag);
1001 C(data);
1002 C(truesize);
1003 refcount_set(&n->users, 1);
1004
1005 atomic_inc(&(skb_shinfo(skb)->dataref));
1006 skb->cloned = 1;
1007
1008 return n;
1009 #undef C
1010 }
1011
1012 /**
1013 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1014 * @first: first sk_buff of the msg
1015 */
1016 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1017 {
1018 struct sk_buff *n;
1019
1020 n = alloc_skb(0, GFP_ATOMIC);
1021 if (!n)
1022 return NULL;
1023
1024 n->len = first->len;
1025 n->data_len = first->len;
1026 n->truesize = first->truesize;
1027
1028 skb_shinfo(n)->frag_list = first;
1029
1030 __copy_skb_header(n, first);
1031 n->destructor = NULL;
1032
1033 return n;
1034 }
1035 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1036
1037 /**
1038 * skb_morph - morph one skb into another
1039 * @dst: the skb to receive the contents
1040 * @src: the skb to supply the contents
1041 *
1042 * This is identical to skb_clone except that the target skb is
1043 * supplied by the user.
1044 *
1045 * The target skb is returned upon exit.
1046 */
1047 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1048 {
1049 skb_release_all(dst);
1050 return __skb_clone(dst, src);
1051 }
1052 EXPORT_SYMBOL_GPL(skb_morph);
1053
1054 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1055 {
1056 unsigned long max_pg, num_pg, new_pg, old_pg;
1057 struct user_struct *user;
1058
1059 if (capable(CAP_IPC_LOCK) || !size)
1060 return 0;
1061
1062 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1063 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1064 user = mmp->user ? : current_user();
1065
1066 do {
1067 old_pg = atomic_long_read(&user->locked_vm);
1068 new_pg = old_pg + num_pg;
1069 if (new_pg > max_pg)
1070 return -ENOBUFS;
1071 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1072 old_pg);
1073
1074 if (!mmp->user) {
1075 mmp->user = get_uid(user);
1076 mmp->num_pg = num_pg;
1077 } else {
1078 mmp->num_pg += num_pg;
1079 }
1080
1081 return 0;
1082 }
1083 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1084
1085 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1086 {
1087 if (mmp->user) {
1088 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1089 free_uid(mmp->user);
1090 }
1091 }
1092 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1093
1094 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1095 {
1096 struct ubuf_info *uarg;
1097 struct sk_buff *skb;
1098
1099 WARN_ON_ONCE(!in_task());
1100
1101 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1102 if (!skb)
1103 return NULL;
1104
1105 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1106 uarg = (void *)skb->cb;
1107 uarg->mmp.user = NULL;
1108
1109 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1110 kfree_skb(skb);
1111 return NULL;
1112 }
1113
1114 uarg->callback = sock_zerocopy_callback;
1115 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1116 uarg->len = 1;
1117 uarg->bytelen = size;
1118 uarg->zerocopy = 1;
1119 refcount_set(&uarg->refcnt, 1);
1120 sock_hold(sk);
1121
1122 return uarg;
1123 }
1124 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1125
1126 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1127 {
1128 return container_of((void *)uarg, struct sk_buff, cb);
1129 }
1130
1131 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1132 struct ubuf_info *uarg)
1133 {
1134 if (uarg) {
1135 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1136 u32 bytelen, next;
1137
1138 /* realloc only when socket is locked (TCP, UDP cork),
1139 * so uarg->len and sk_zckey access is serialized
1140 */
1141 if (!sock_owned_by_user(sk)) {
1142 WARN_ON_ONCE(1);
1143 return NULL;
1144 }
1145
1146 bytelen = uarg->bytelen + size;
1147 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1148 /* TCP can create new skb to attach new uarg */
1149 if (sk->sk_type == SOCK_STREAM)
1150 goto new_alloc;
1151 return NULL;
1152 }
1153
1154 next = (u32)atomic_read(&sk->sk_zckey);
1155 if ((u32)(uarg->id + uarg->len) == next) {
1156 if (mm_account_pinned_pages(&uarg->mmp, size))
1157 return NULL;
1158 uarg->len++;
1159 uarg->bytelen = bytelen;
1160 atomic_set(&sk->sk_zckey, ++next);
1161
1162 /* no extra ref when appending to datagram (MSG_MORE) */
1163 if (sk->sk_type == SOCK_STREAM)
1164 sock_zerocopy_get(uarg);
1165
1166 return uarg;
1167 }
1168 }
1169
1170 new_alloc:
1171 return sock_zerocopy_alloc(sk, size);
1172 }
1173 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1174
1175 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1176 {
1177 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1178 u32 old_lo, old_hi;
1179 u64 sum_len;
1180
1181 old_lo = serr->ee.ee_info;
1182 old_hi = serr->ee.ee_data;
1183 sum_len = old_hi - old_lo + 1ULL + len;
1184
1185 if (sum_len >= (1ULL << 32))
1186 return false;
1187
1188 if (lo != old_hi + 1)
1189 return false;
1190
1191 serr->ee.ee_data += len;
1192 return true;
1193 }
1194
1195 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1196 {
1197 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1198 struct sock_exterr_skb *serr;
1199 struct sock *sk = skb->sk;
1200 struct sk_buff_head *q;
1201 unsigned long flags;
1202 u32 lo, hi;
1203 u16 len;
1204
1205 mm_unaccount_pinned_pages(&uarg->mmp);
1206
1207 /* if !len, there was only 1 call, and it was aborted
1208 * so do not queue a completion notification
1209 */
1210 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1211 goto release;
1212
1213 len = uarg->len;
1214 lo = uarg->id;
1215 hi = uarg->id + len - 1;
1216
1217 serr = SKB_EXT_ERR(skb);
1218 memset(serr, 0, sizeof(*serr));
1219 serr->ee.ee_errno = 0;
1220 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1221 serr->ee.ee_data = hi;
1222 serr->ee.ee_info = lo;
1223 if (!success)
1224 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1225
1226 q = &sk->sk_error_queue;
1227 spin_lock_irqsave(&q->lock, flags);
1228 tail = skb_peek_tail(q);
1229 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1230 !skb_zerocopy_notify_extend(tail, lo, len)) {
1231 __skb_queue_tail(q, skb);
1232 skb = NULL;
1233 }
1234 spin_unlock_irqrestore(&q->lock, flags);
1235
1236 sk->sk_error_report(sk);
1237
1238 release:
1239 consume_skb(skb);
1240 sock_put(sk);
1241 }
1242 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1243
1244 void sock_zerocopy_put(struct ubuf_info *uarg)
1245 {
1246 if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1247 if (uarg->callback)
1248 uarg->callback(uarg, uarg->zerocopy);
1249 else
1250 consume_skb(skb_from_uarg(uarg));
1251 }
1252 }
1253 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1254
1255 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1256 {
1257 if (uarg) {
1258 struct sock *sk = skb_from_uarg(uarg)->sk;
1259
1260 atomic_dec(&sk->sk_zckey);
1261 uarg->len--;
1262
1263 if (have_uref)
1264 sock_zerocopy_put(uarg);
1265 }
1266 }
1267 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1268
1269 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1270 {
1271 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1272 }
1273 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1274
1275 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1276 struct msghdr *msg, int len,
1277 struct ubuf_info *uarg)
1278 {
1279 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1280 struct iov_iter orig_iter = msg->msg_iter;
1281 int err, orig_len = skb->len;
1282
1283 /* An skb can only point to one uarg. This edge case happens when
1284 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1285 */
1286 if (orig_uarg && uarg != orig_uarg)
1287 return -EEXIST;
1288
1289 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1290 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1291 struct sock *save_sk = skb->sk;
1292
1293 /* Streams do not free skb on error. Reset to prev state. */
1294 msg->msg_iter = orig_iter;
1295 skb->sk = sk;
1296 ___pskb_trim(skb, orig_len);
1297 skb->sk = save_sk;
1298 return err;
1299 }
1300
1301 skb_zcopy_set(skb, uarg, NULL);
1302 return skb->len - orig_len;
1303 }
1304 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1305
1306 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1307 gfp_t gfp_mask)
1308 {
1309 if (skb_zcopy(orig)) {
1310 if (skb_zcopy(nskb)) {
1311 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1312 if (!gfp_mask) {
1313 WARN_ON_ONCE(1);
1314 return -ENOMEM;
1315 }
1316 if (skb_uarg(nskb) == skb_uarg(orig))
1317 return 0;
1318 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1319 return -EIO;
1320 }
1321 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1322 }
1323 return 0;
1324 }
1325
1326 /**
1327 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1328 * @skb: the skb to modify
1329 * @gfp_mask: allocation priority
1330 *
1331 * This must be called on SKBTX_DEV_ZEROCOPY skb.
1332 * It will copy all frags into kernel and drop the reference
1333 * to userspace pages.
1334 *
1335 * If this function is called from an interrupt gfp_mask() must be
1336 * %GFP_ATOMIC.
1337 *
1338 * Returns 0 on success or a negative error code on failure
1339 * to allocate kernel memory to copy to.
1340 */
1341 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1342 {
1343 int num_frags = skb_shinfo(skb)->nr_frags;
1344 struct page *page, *head = NULL;
1345 int i, new_frags;
1346 u32 d_off;
1347
1348 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1349 return -EINVAL;
1350
1351 if (!num_frags)
1352 goto release;
1353
1354 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1355 for (i = 0; i < new_frags; i++) {
1356 page = alloc_page(gfp_mask);
1357 if (!page) {
1358 while (head) {
1359 struct page *next = (struct page *)page_private(head);
1360 put_page(head);
1361 head = next;
1362 }
1363 return -ENOMEM;
1364 }
1365 set_page_private(page, (unsigned long)head);
1366 head = page;
1367 }
1368
1369 page = head;
1370 d_off = 0;
1371 for (i = 0; i < num_frags; i++) {
1372 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1373 u32 p_off, p_len, copied;
1374 struct page *p;
1375 u8 *vaddr;
1376
1377 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1378 p, p_off, p_len, copied) {
1379 u32 copy, done = 0;
1380 vaddr = kmap_atomic(p);
1381
1382 while (done < p_len) {
1383 if (d_off == PAGE_SIZE) {
1384 d_off = 0;
1385 page = (struct page *)page_private(page);
1386 }
1387 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1388 memcpy(page_address(page) + d_off,
1389 vaddr + p_off + done, copy);
1390 done += copy;
1391 d_off += copy;
1392 }
1393 kunmap_atomic(vaddr);
1394 }
1395 }
1396
1397 /* skb frags release userspace buffers */
1398 for (i = 0; i < num_frags; i++)
1399 skb_frag_unref(skb, i);
1400
1401 /* skb frags point to kernel buffers */
1402 for (i = 0; i < new_frags - 1; i++) {
1403 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1404 head = (struct page *)page_private(head);
1405 }
1406 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1407 skb_shinfo(skb)->nr_frags = new_frags;
1408
1409 release:
1410 skb_zcopy_clear(skb, false);
1411 return 0;
1412 }
1413 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1414
1415 /**
1416 * skb_clone - duplicate an sk_buff
1417 * @skb: buffer to clone
1418 * @gfp_mask: allocation priority
1419 *
1420 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1421 * copies share the same packet data but not structure. The new
1422 * buffer has a reference count of 1. If the allocation fails the
1423 * function returns %NULL otherwise the new buffer is returned.
1424 *
1425 * If this function is called from an interrupt gfp_mask() must be
1426 * %GFP_ATOMIC.
1427 */
1428
1429 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1430 {
1431 struct sk_buff_fclones *fclones = container_of(skb,
1432 struct sk_buff_fclones,
1433 skb1);
1434 struct sk_buff *n;
1435
1436 if (skb_orphan_frags(skb, gfp_mask))
1437 return NULL;
1438
1439 if (skb->fclone == SKB_FCLONE_ORIG &&
1440 refcount_read(&fclones->fclone_ref) == 1) {
1441 n = &fclones->skb2;
1442 refcount_set(&fclones->fclone_ref, 2);
1443 } else {
1444 if (skb_pfmemalloc(skb))
1445 gfp_mask |= __GFP_MEMALLOC;
1446
1447 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1448 if (!n)
1449 return NULL;
1450
1451 n->fclone = SKB_FCLONE_UNAVAILABLE;
1452 }
1453
1454 return __skb_clone(n, skb);
1455 }
1456 EXPORT_SYMBOL(skb_clone);
1457
1458 void skb_headers_offset_update(struct sk_buff *skb, int off)
1459 {
1460 /* Only adjust this if it actually is csum_start rather than csum */
1461 if (skb->ip_summed == CHECKSUM_PARTIAL)
1462 skb->csum_start += off;
1463 /* {transport,network,mac}_header and tail are relative to skb->head */
1464 skb->transport_header += off;
1465 skb->network_header += off;
1466 if (skb_mac_header_was_set(skb))
1467 skb->mac_header += off;
1468 skb->inner_transport_header += off;
1469 skb->inner_network_header += off;
1470 skb->inner_mac_header += off;
1471 }
1472 EXPORT_SYMBOL(skb_headers_offset_update);
1473
1474 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1475 {
1476 __copy_skb_header(new, old);
1477
1478 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1479 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1480 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1481 }
1482 EXPORT_SYMBOL(skb_copy_header);
1483
1484 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1485 {
1486 if (skb_pfmemalloc(skb))
1487 return SKB_ALLOC_RX;
1488 return 0;
1489 }
1490
1491 /**
1492 * skb_copy - create private copy of an sk_buff
1493 * @skb: buffer to copy
1494 * @gfp_mask: allocation priority
1495 *
1496 * Make a copy of both an &sk_buff and its data. This is used when the
1497 * caller wishes to modify the data and needs a private copy of the
1498 * data to alter. Returns %NULL on failure or the pointer to the buffer
1499 * on success. The returned buffer has a reference count of 1.
1500 *
1501 * As by-product this function converts non-linear &sk_buff to linear
1502 * one, so that &sk_buff becomes completely private and caller is allowed
1503 * to modify all the data of returned buffer. This means that this
1504 * function is not recommended for use in circumstances when only
1505 * header is going to be modified. Use pskb_copy() instead.
1506 */
1507
1508 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1509 {
1510 int headerlen = skb_headroom(skb);
1511 unsigned int size = skb_end_offset(skb) + skb->data_len;
1512 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1513 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1514
1515 if (!n)
1516 return NULL;
1517
1518 /* Set the data pointer */
1519 skb_reserve(n, headerlen);
1520 /* Set the tail pointer and length */
1521 skb_put(n, skb->len);
1522
1523 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1524
1525 skb_copy_header(n, skb);
1526 return n;
1527 }
1528 EXPORT_SYMBOL(skb_copy);
1529
1530 /**
1531 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1532 * @skb: buffer to copy
1533 * @headroom: headroom of new skb
1534 * @gfp_mask: allocation priority
1535 * @fclone: if true allocate the copy of the skb from the fclone
1536 * cache instead of the head cache; it is recommended to set this
1537 * to true for the cases where the copy will likely be cloned
1538 *
1539 * Make a copy of both an &sk_buff and part of its data, located
1540 * in header. Fragmented data remain shared. This is used when
1541 * the caller wishes to modify only header of &sk_buff and needs
1542 * private copy of the header to alter. Returns %NULL on failure
1543 * or the pointer to the buffer on success.
1544 * The returned buffer has a reference count of 1.
1545 */
1546
1547 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1548 gfp_t gfp_mask, bool fclone)
1549 {
1550 unsigned int size = skb_headlen(skb) + headroom;
1551 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1552 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1553
1554 if (!n)
1555 goto out;
1556
1557 /* Set the data pointer */
1558 skb_reserve(n, headroom);
1559 /* Set the tail pointer and length */
1560 skb_put(n, skb_headlen(skb));
1561 /* Copy the bytes */
1562 skb_copy_from_linear_data(skb, n->data, n->len);
1563
1564 n->truesize += skb->data_len;
1565 n->data_len = skb->data_len;
1566 n->len = skb->len;
1567
1568 if (skb_shinfo(skb)->nr_frags) {
1569 int i;
1570
1571 if (skb_orphan_frags(skb, gfp_mask) ||
1572 skb_zerocopy_clone(n, skb, gfp_mask)) {
1573 kfree_skb(n);
1574 n = NULL;
1575 goto out;
1576 }
1577 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1578 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1579 skb_frag_ref(skb, i);
1580 }
1581 skb_shinfo(n)->nr_frags = i;
1582 }
1583
1584 if (skb_has_frag_list(skb)) {
1585 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1586 skb_clone_fraglist(n);
1587 }
1588
1589 skb_copy_header(n, skb);
1590 out:
1591 return n;
1592 }
1593 EXPORT_SYMBOL(__pskb_copy_fclone);
1594
1595 /**
1596 * pskb_expand_head - reallocate header of &sk_buff
1597 * @skb: buffer to reallocate
1598 * @nhead: room to add at head
1599 * @ntail: room to add at tail
1600 * @gfp_mask: allocation priority
1601 *
1602 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1603 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1604 * reference count of 1. Returns zero in the case of success or error,
1605 * if expansion failed. In the last case, &sk_buff is not changed.
1606 *
1607 * All the pointers pointing into skb header may change and must be
1608 * reloaded after call to this function.
1609 */
1610
1611 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1612 gfp_t gfp_mask)
1613 {
1614 int i, osize = skb_end_offset(skb);
1615 int size = osize + nhead + ntail;
1616 long off;
1617 u8 *data;
1618
1619 BUG_ON(nhead < 0);
1620
1621 BUG_ON(skb_shared(skb));
1622
1623 size = SKB_DATA_ALIGN(size);
1624
1625 if (skb_pfmemalloc(skb))
1626 gfp_mask |= __GFP_MEMALLOC;
1627 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1628 gfp_mask, NUMA_NO_NODE, NULL);
1629 if (!data)
1630 goto nodata;
1631 size = SKB_WITH_OVERHEAD(ksize(data));
1632
1633 /* Copy only real data... and, alas, header. This should be
1634 * optimized for the cases when header is void.
1635 */
1636 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1637
1638 memcpy((struct skb_shared_info *)(data + size),
1639 skb_shinfo(skb),
1640 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1641
1642 /*
1643 * if shinfo is shared we must drop the old head gracefully, but if it
1644 * is not we can just drop the old head and let the existing refcount
1645 * be since all we did is relocate the values
1646 */
1647 if (skb_cloned(skb)) {
1648 if (skb_orphan_frags(skb, gfp_mask))
1649 goto nofrags;
1650 if (skb_zcopy(skb))
1651 refcount_inc(&skb_uarg(skb)->refcnt);
1652 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1653 skb_frag_ref(skb, i);
1654
1655 if (skb_has_frag_list(skb))
1656 skb_clone_fraglist(skb);
1657
1658 skb_release_data(skb);
1659 } else {
1660 skb_free_head(skb);
1661 }
1662 off = (data + nhead) - skb->head;
1663
1664 skb->head = data;
1665 skb->head_frag = 0;
1666 skb->data += off;
1667 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1668 skb->end = size;
1669 off = nhead;
1670 #else
1671 skb->end = skb->head + size;
1672 #endif
1673 skb->tail += off;
1674 skb_headers_offset_update(skb, nhead);
1675 skb->cloned = 0;
1676 skb->hdr_len = 0;
1677 skb->nohdr = 0;
1678 atomic_set(&skb_shinfo(skb)->dataref, 1);
1679
1680 skb_metadata_clear(skb);
1681
1682 /* It is not generally safe to change skb->truesize.
1683 * For the moment, we really care of rx path, or
1684 * when skb is orphaned (not attached to a socket).
1685 */
1686 if (!skb->sk || skb->destructor == sock_edemux)
1687 skb->truesize += size - osize;
1688
1689 return 0;
1690
1691 nofrags:
1692 kfree(data);
1693 nodata:
1694 return -ENOMEM;
1695 }
1696 EXPORT_SYMBOL(pskb_expand_head);
1697
1698 /* Make private copy of skb with writable head and some headroom */
1699
1700 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1701 {
1702 struct sk_buff *skb2;
1703 int delta = headroom - skb_headroom(skb);
1704
1705 if (delta <= 0)
1706 skb2 = pskb_copy(skb, GFP_ATOMIC);
1707 else {
1708 skb2 = skb_clone(skb, GFP_ATOMIC);
1709 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1710 GFP_ATOMIC)) {
1711 kfree_skb(skb2);
1712 skb2 = NULL;
1713 }
1714 }
1715 return skb2;
1716 }
1717 EXPORT_SYMBOL(skb_realloc_headroom);
1718
1719 /**
1720 * skb_copy_expand - copy and expand sk_buff
1721 * @skb: buffer to copy
1722 * @newheadroom: new free bytes at head
1723 * @newtailroom: new free bytes at tail
1724 * @gfp_mask: allocation priority
1725 *
1726 * Make a copy of both an &sk_buff and its data and while doing so
1727 * allocate additional space.
1728 *
1729 * This is used when the caller wishes to modify the data and needs a
1730 * private copy of the data to alter as well as more space for new fields.
1731 * Returns %NULL on failure or the pointer to the buffer
1732 * on success. The returned buffer has a reference count of 1.
1733 *
1734 * You must pass %GFP_ATOMIC as the allocation priority if this function
1735 * is called from an interrupt.
1736 */
1737 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1738 int newheadroom, int newtailroom,
1739 gfp_t gfp_mask)
1740 {
1741 /*
1742 * Allocate the copy buffer
1743 */
1744 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1745 gfp_mask, skb_alloc_rx_flag(skb),
1746 NUMA_NO_NODE);
1747 int oldheadroom = skb_headroom(skb);
1748 int head_copy_len, head_copy_off;
1749
1750 if (!n)
1751 return NULL;
1752
1753 skb_reserve(n, newheadroom);
1754
1755 /* Set the tail pointer and length */
1756 skb_put(n, skb->len);
1757
1758 head_copy_len = oldheadroom;
1759 head_copy_off = 0;
1760 if (newheadroom <= head_copy_len)
1761 head_copy_len = newheadroom;
1762 else
1763 head_copy_off = newheadroom - head_copy_len;
1764
1765 /* Copy the linear header and data. */
1766 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1767 skb->len + head_copy_len));
1768
1769 skb_copy_header(n, skb);
1770
1771 skb_headers_offset_update(n, newheadroom - oldheadroom);
1772
1773 return n;
1774 }
1775 EXPORT_SYMBOL(skb_copy_expand);
1776
1777 /**
1778 * __skb_pad - zero pad the tail of an skb
1779 * @skb: buffer to pad
1780 * @pad: space to pad
1781 * @free_on_error: free buffer on error
1782 *
1783 * Ensure that a buffer is followed by a padding area that is zero
1784 * filled. Used by network drivers which may DMA or transfer data
1785 * beyond the buffer end onto the wire.
1786 *
1787 * May return error in out of memory cases. The skb is freed on error
1788 * if @free_on_error is true.
1789 */
1790
1791 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1792 {
1793 int err;
1794 int ntail;
1795
1796 /* If the skbuff is non linear tailroom is always zero.. */
1797 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1798 memset(skb->data+skb->len, 0, pad);
1799 return 0;
1800 }
1801
1802 ntail = skb->data_len + pad - (skb->end - skb->tail);
1803 if (likely(skb_cloned(skb) || ntail > 0)) {
1804 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1805 if (unlikely(err))
1806 goto free_skb;
1807 }
1808
1809 /* FIXME: The use of this function with non-linear skb's really needs
1810 * to be audited.
1811 */
1812 err = skb_linearize(skb);
1813 if (unlikely(err))
1814 goto free_skb;
1815
1816 memset(skb->data + skb->len, 0, pad);
1817 return 0;
1818
1819 free_skb:
1820 if (free_on_error)
1821 kfree_skb(skb);
1822 return err;
1823 }
1824 EXPORT_SYMBOL(__skb_pad);
1825
1826 /**
1827 * pskb_put - add data to the tail of a potentially fragmented buffer
1828 * @skb: start of the buffer to use
1829 * @tail: tail fragment of the buffer to use
1830 * @len: amount of data to add
1831 *
1832 * This function extends the used data area of the potentially
1833 * fragmented buffer. @tail must be the last fragment of @skb -- or
1834 * @skb itself. If this would exceed the total buffer size the kernel
1835 * will panic. A pointer to the first byte of the extra data is
1836 * returned.
1837 */
1838
1839 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1840 {
1841 if (tail != skb) {
1842 skb->data_len += len;
1843 skb->len += len;
1844 }
1845 return skb_put(tail, len);
1846 }
1847 EXPORT_SYMBOL_GPL(pskb_put);
1848
1849 /**
1850 * skb_put - add data to a buffer
1851 * @skb: buffer to use
1852 * @len: amount of data to add
1853 *
1854 * This function extends the used data area of the buffer. If this would
1855 * exceed the total buffer size the kernel will panic. A pointer to the
1856 * first byte of the extra data is returned.
1857 */
1858 void *skb_put(struct sk_buff *skb, unsigned int len)
1859 {
1860 void *tmp = skb_tail_pointer(skb);
1861 SKB_LINEAR_ASSERT(skb);
1862 skb->tail += len;
1863 skb->len += len;
1864 if (unlikely(skb->tail > skb->end))
1865 skb_over_panic(skb, len, __builtin_return_address(0));
1866 return tmp;
1867 }
1868 EXPORT_SYMBOL(skb_put);
1869
1870 /**
1871 * skb_push - add data to the start of a buffer
1872 * @skb: buffer to use
1873 * @len: amount of data to add
1874 *
1875 * This function extends the used data area of the buffer at the buffer
1876 * start. If this would exceed the total buffer headroom the kernel will
1877 * panic. A pointer to the first byte of the extra data is returned.
1878 */
1879 void *skb_push(struct sk_buff *skb, unsigned int len)
1880 {
1881 skb->data -= len;
1882 skb->len += len;
1883 if (unlikely(skb->data < skb->head))
1884 skb_under_panic(skb, len, __builtin_return_address(0));
1885 return skb->data;
1886 }
1887 EXPORT_SYMBOL(skb_push);
1888
1889 /**
1890 * skb_pull - remove data from the start of a buffer
1891 * @skb: buffer to use
1892 * @len: amount of data to remove
1893 *
1894 * This function removes data from the start of a buffer, returning
1895 * the memory to the headroom. A pointer to the next data in the buffer
1896 * is returned. Once the data has been pulled future pushes will overwrite
1897 * the old data.
1898 */
1899 void *skb_pull(struct sk_buff *skb, unsigned int len)
1900 {
1901 return skb_pull_inline(skb, len);
1902 }
1903 EXPORT_SYMBOL(skb_pull);
1904
1905 /**
1906 * skb_trim - remove end from a buffer
1907 * @skb: buffer to alter
1908 * @len: new length
1909 *
1910 * Cut the length of a buffer down by removing data from the tail. If
1911 * the buffer is already under the length specified it is not modified.
1912 * The skb must be linear.
1913 */
1914 void skb_trim(struct sk_buff *skb, unsigned int len)
1915 {
1916 if (skb->len > len)
1917 __skb_trim(skb, len);
1918 }
1919 EXPORT_SYMBOL(skb_trim);
1920
1921 /* Trims skb to length len. It can change skb pointers.
1922 */
1923
1924 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1925 {
1926 struct sk_buff **fragp;
1927 struct sk_buff *frag;
1928 int offset = skb_headlen(skb);
1929 int nfrags = skb_shinfo(skb)->nr_frags;
1930 int i;
1931 int err;
1932
1933 if (skb_cloned(skb) &&
1934 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1935 return err;
1936
1937 i = 0;
1938 if (offset >= len)
1939 goto drop_pages;
1940
1941 for (; i < nfrags; i++) {
1942 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1943
1944 if (end < len) {
1945 offset = end;
1946 continue;
1947 }
1948
1949 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1950
1951 drop_pages:
1952 skb_shinfo(skb)->nr_frags = i;
1953
1954 for (; i < nfrags; i++)
1955 skb_frag_unref(skb, i);
1956
1957 if (skb_has_frag_list(skb))
1958 skb_drop_fraglist(skb);
1959 goto done;
1960 }
1961
1962 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1963 fragp = &frag->next) {
1964 int end = offset + frag->len;
1965
1966 if (skb_shared(frag)) {
1967 struct sk_buff *nfrag;
1968
1969 nfrag = skb_clone(frag, GFP_ATOMIC);
1970 if (unlikely(!nfrag))
1971 return -ENOMEM;
1972
1973 nfrag->next = frag->next;
1974 consume_skb(frag);
1975 frag = nfrag;
1976 *fragp = frag;
1977 }
1978
1979 if (end < len) {
1980 offset = end;
1981 continue;
1982 }
1983
1984 if (end > len &&
1985 unlikely((err = pskb_trim(frag, len - offset))))
1986 return err;
1987
1988 if (frag->next)
1989 skb_drop_list(&frag->next);
1990 break;
1991 }
1992
1993 done:
1994 if (len > skb_headlen(skb)) {
1995 skb->data_len -= skb->len - len;
1996 skb->len = len;
1997 } else {
1998 skb->len = len;
1999 skb->data_len = 0;
2000 skb_set_tail_pointer(skb, len);
2001 }
2002
2003 if (!skb->sk || skb->destructor == sock_edemux)
2004 skb_condense(skb);
2005 return 0;
2006 }
2007 EXPORT_SYMBOL(___pskb_trim);
2008
2009 /* Note : use pskb_trim_rcsum() instead of calling this directly
2010 */
2011 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2012 {
2013 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2014 int delta = skb->len - len;
2015
2016 skb->csum = csum_block_sub(skb->csum,
2017 skb_checksum(skb, len, delta, 0),
2018 len);
2019 }
2020 return __pskb_trim(skb, len);
2021 }
2022 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2023
2024 /**
2025 * __pskb_pull_tail - advance tail of skb header
2026 * @skb: buffer to reallocate
2027 * @delta: number of bytes to advance tail
2028 *
2029 * The function makes a sense only on a fragmented &sk_buff,
2030 * it expands header moving its tail forward and copying necessary
2031 * data from fragmented part.
2032 *
2033 * &sk_buff MUST have reference count of 1.
2034 *
2035 * Returns %NULL (and &sk_buff does not change) if pull failed
2036 * or value of new tail of skb in the case of success.
2037 *
2038 * All the pointers pointing into skb header may change and must be
2039 * reloaded after call to this function.
2040 */
2041
2042 /* Moves tail of skb head forward, copying data from fragmented part,
2043 * when it is necessary.
2044 * 1. It may fail due to malloc failure.
2045 * 2. It may change skb pointers.
2046 *
2047 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2048 */
2049 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2050 {
2051 /* If skb has not enough free space at tail, get new one
2052 * plus 128 bytes for future expansions. If we have enough
2053 * room at tail, reallocate without expansion only if skb is cloned.
2054 */
2055 int i, k, eat = (skb->tail + delta) - skb->end;
2056
2057 if (eat > 0 || skb_cloned(skb)) {
2058 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2059 GFP_ATOMIC))
2060 return NULL;
2061 }
2062
2063 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2064 skb_tail_pointer(skb), delta));
2065
2066 /* Optimization: no fragments, no reasons to preestimate
2067 * size of pulled pages. Superb.
2068 */
2069 if (!skb_has_frag_list(skb))
2070 goto pull_pages;
2071
2072 /* Estimate size of pulled pages. */
2073 eat = delta;
2074 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2075 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2076
2077 if (size >= eat)
2078 goto pull_pages;
2079 eat -= size;
2080 }
2081
2082 /* If we need update frag list, we are in troubles.
2083 * Certainly, it is possible to add an offset to skb data,
2084 * but taking into account that pulling is expected to
2085 * be very rare operation, it is worth to fight against
2086 * further bloating skb head and crucify ourselves here instead.
2087 * Pure masohism, indeed. 8)8)
2088 */
2089 if (eat) {
2090 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2091 struct sk_buff *clone = NULL;
2092 struct sk_buff *insp = NULL;
2093
2094 do {
2095 if (list->len <= eat) {
2096 /* Eaten as whole. */
2097 eat -= list->len;
2098 list = list->next;
2099 insp = list;
2100 } else {
2101 /* Eaten partially. */
2102
2103 if (skb_shared(list)) {
2104 /* Sucks! We need to fork list. :-( */
2105 clone = skb_clone(list, GFP_ATOMIC);
2106 if (!clone)
2107 return NULL;
2108 insp = list->next;
2109 list = clone;
2110 } else {
2111 /* This may be pulled without
2112 * problems. */
2113 insp = list;
2114 }
2115 if (!pskb_pull(list, eat)) {
2116 kfree_skb(clone);
2117 return NULL;
2118 }
2119 break;
2120 }
2121 } while (eat);
2122
2123 /* Free pulled out fragments. */
2124 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2125 skb_shinfo(skb)->frag_list = list->next;
2126 kfree_skb(list);
2127 }
2128 /* And insert new clone at head. */
2129 if (clone) {
2130 clone->next = list;
2131 skb_shinfo(skb)->frag_list = clone;
2132 }
2133 }
2134 /* Success! Now we may commit changes to skb data. */
2135
2136 pull_pages:
2137 eat = delta;
2138 k = 0;
2139 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2140 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2141
2142 if (size <= eat) {
2143 skb_frag_unref(skb, i);
2144 eat -= size;
2145 } else {
2146 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2147
2148 *frag = skb_shinfo(skb)->frags[i];
2149 if (eat) {
2150 skb_frag_off_add(frag, eat);
2151 skb_frag_size_sub(frag, eat);
2152 if (!i)
2153 goto end;
2154 eat = 0;
2155 }
2156 k++;
2157 }
2158 }
2159 skb_shinfo(skb)->nr_frags = k;
2160
2161 end:
2162 skb->tail += delta;
2163 skb->data_len -= delta;
2164
2165 if (!skb->data_len)
2166 skb_zcopy_clear(skb, false);
2167
2168 return skb_tail_pointer(skb);
2169 }
2170 EXPORT_SYMBOL(__pskb_pull_tail);
2171
2172 /**
2173 * skb_copy_bits - copy bits from skb to kernel buffer
2174 * @skb: source skb
2175 * @offset: offset in source
2176 * @to: destination buffer
2177 * @len: number of bytes to copy
2178 *
2179 * Copy the specified number of bytes from the source skb to the
2180 * destination buffer.
2181 *
2182 * CAUTION ! :
2183 * If its prototype is ever changed,
2184 * check arch/{*}/net/{*}.S files,
2185 * since it is called from BPF assembly code.
2186 */
2187 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2188 {
2189 int start = skb_headlen(skb);
2190 struct sk_buff *frag_iter;
2191 int i, copy;
2192
2193 if (offset > (int)skb->len - len)
2194 goto fault;
2195
2196 /* Copy header. */
2197 if ((copy = start - offset) > 0) {
2198 if (copy > len)
2199 copy = len;
2200 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2201 if ((len -= copy) == 0)
2202 return 0;
2203 offset += copy;
2204 to += copy;
2205 }
2206
2207 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2208 int end;
2209 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2210
2211 WARN_ON(start > offset + len);
2212
2213 end = start + skb_frag_size(f);
2214 if ((copy = end - offset) > 0) {
2215 u32 p_off, p_len, copied;
2216 struct page *p;
2217 u8 *vaddr;
2218
2219 if (copy > len)
2220 copy = len;
2221
2222 skb_frag_foreach_page(f,
2223 skb_frag_off(f) + offset - start,
2224 copy, p, p_off, p_len, copied) {
2225 vaddr = kmap_atomic(p);
2226 memcpy(to + copied, vaddr + p_off, p_len);
2227 kunmap_atomic(vaddr);
2228 }
2229
2230 if ((len -= copy) == 0)
2231 return 0;
2232 offset += copy;
2233 to += copy;
2234 }
2235 start = end;
2236 }
2237
2238 skb_walk_frags(skb, frag_iter) {
2239 int end;
2240
2241 WARN_ON(start > offset + len);
2242
2243 end = start + frag_iter->len;
2244 if ((copy = end - offset) > 0) {
2245 if (copy > len)
2246 copy = len;
2247 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2248 goto fault;
2249 if ((len -= copy) == 0)
2250 return 0;
2251 offset += copy;
2252 to += copy;
2253 }
2254 start = end;
2255 }
2256
2257 if (!len)
2258 return 0;
2259
2260 fault:
2261 return -EFAULT;
2262 }
2263 EXPORT_SYMBOL(skb_copy_bits);
2264
2265 /*
2266 * Callback from splice_to_pipe(), if we need to release some pages
2267 * at the end of the spd in case we error'ed out in filling the pipe.
2268 */
2269 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2270 {
2271 put_page(spd->pages[i]);
2272 }
2273
2274 static struct page *linear_to_page(struct page *page, unsigned int *len,
2275 unsigned int *offset,
2276 struct sock *sk)
2277 {
2278 struct page_frag *pfrag = sk_page_frag(sk);
2279
2280 if (!sk_page_frag_refill(sk, pfrag))
2281 return NULL;
2282
2283 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2284
2285 memcpy(page_address(pfrag->page) + pfrag->offset,
2286 page_address(page) + *offset, *len);
2287 *offset = pfrag->offset;
2288 pfrag->offset += *len;
2289
2290 return pfrag->page;
2291 }
2292
2293 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2294 struct page *page,
2295 unsigned int offset)
2296 {
2297 return spd->nr_pages &&
2298 spd->pages[spd->nr_pages - 1] == page &&
2299 (spd->partial[spd->nr_pages - 1].offset +
2300 spd->partial[spd->nr_pages - 1].len == offset);
2301 }
2302
2303 /*
2304 * Fill page/offset/length into spd, if it can hold more pages.
2305 */
2306 static bool spd_fill_page(struct splice_pipe_desc *spd,
2307 struct pipe_inode_info *pipe, struct page *page,
2308 unsigned int *len, unsigned int offset,
2309 bool linear,
2310 struct sock *sk)
2311 {
2312 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2313 return true;
2314
2315 if (linear) {
2316 page = linear_to_page(page, len, &offset, sk);
2317 if (!page)
2318 return true;
2319 }
2320 if (spd_can_coalesce(spd, page, offset)) {
2321 spd->partial[spd->nr_pages - 1].len += *len;
2322 return false;
2323 }
2324 get_page(page);
2325 spd->pages[spd->nr_pages] = page;
2326 spd->partial[spd->nr_pages].len = *len;
2327 spd->partial[spd->nr_pages].offset = offset;
2328 spd->nr_pages++;
2329
2330 return false;
2331 }
2332
2333 static bool __splice_segment(struct page *page, unsigned int poff,
2334 unsigned int plen, unsigned int *off,
2335 unsigned int *len,
2336 struct splice_pipe_desc *spd, bool linear,
2337 struct sock *sk,
2338 struct pipe_inode_info *pipe)
2339 {
2340 if (!*len)
2341 return true;
2342
2343 /* skip this segment if already processed */
2344 if (*off >= plen) {
2345 *off -= plen;
2346 return false;
2347 }
2348
2349 /* ignore any bits we already processed */
2350 poff += *off;
2351 plen -= *off;
2352 *off = 0;
2353
2354 do {
2355 unsigned int flen = min(*len, plen);
2356
2357 if (spd_fill_page(spd, pipe, page, &flen, poff,
2358 linear, sk))
2359 return true;
2360 poff += flen;
2361 plen -= flen;
2362 *len -= flen;
2363 } while (*len && plen);
2364
2365 return false;
2366 }
2367
2368 /*
2369 * Map linear and fragment data from the skb to spd. It reports true if the
2370 * pipe is full or if we already spliced the requested length.
2371 */
2372 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2373 unsigned int *offset, unsigned int *len,
2374 struct splice_pipe_desc *spd, struct sock *sk)
2375 {
2376 int seg;
2377 struct sk_buff *iter;
2378
2379 /* map the linear part :
2380 * If skb->head_frag is set, this 'linear' part is backed by a
2381 * fragment, and if the head is not shared with any clones then
2382 * we can avoid a copy since we own the head portion of this page.
2383 */
2384 if (__splice_segment(virt_to_page(skb->data),
2385 (unsigned long) skb->data & (PAGE_SIZE - 1),
2386 skb_headlen(skb),
2387 offset, len, spd,
2388 skb_head_is_locked(skb),
2389 sk, pipe))
2390 return true;
2391
2392 /*
2393 * then map the fragments
2394 */
2395 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2396 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2397
2398 if (__splice_segment(skb_frag_page(f),
2399 skb_frag_off(f), skb_frag_size(f),
2400 offset, len, spd, false, sk, pipe))
2401 return true;
2402 }
2403
2404 skb_walk_frags(skb, iter) {
2405 if (*offset >= iter->len) {
2406 *offset -= iter->len;
2407 continue;
2408 }
2409 /* __skb_splice_bits() only fails if the output has no room
2410 * left, so no point in going over the frag_list for the error
2411 * case.
2412 */
2413 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2414 return true;
2415 }
2416
2417 return false;
2418 }
2419
2420 /*
2421 * Map data from the skb to a pipe. Should handle both the linear part,
2422 * the fragments, and the frag list.
2423 */
2424 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2425 struct pipe_inode_info *pipe, unsigned int tlen,
2426 unsigned int flags)
2427 {
2428 struct partial_page partial[MAX_SKB_FRAGS];
2429 struct page *pages[MAX_SKB_FRAGS];
2430 struct splice_pipe_desc spd = {
2431 .pages = pages,
2432 .partial = partial,
2433 .nr_pages_max = MAX_SKB_FRAGS,
2434 .ops = &nosteal_pipe_buf_ops,
2435 .spd_release = sock_spd_release,
2436 };
2437 int ret = 0;
2438
2439 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2440
2441 if (spd.nr_pages)
2442 ret = splice_to_pipe(pipe, &spd);
2443
2444 return ret;
2445 }
2446 EXPORT_SYMBOL_GPL(skb_splice_bits);
2447
2448 /* Send skb data on a socket. Socket must be locked. */
2449 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2450 int len)
2451 {
2452 unsigned int orig_len = len;
2453 struct sk_buff *head = skb;
2454 unsigned short fragidx;
2455 int slen, ret;
2456
2457 do_frag_list:
2458
2459 /* Deal with head data */
2460 while (offset < skb_headlen(skb) && len) {
2461 struct kvec kv;
2462 struct msghdr msg;
2463
2464 slen = min_t(int, len, skb_headlen(skb) - offset);
2465 kv.iov_base = skb->data + offset;
2466 kv.iov_len = slen;
2467 memset(&msg, 0, sizeof(msg));
2468 msg.msg_flags = MSG_DONTWAIT;
2469
2470 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2471 if (ret <= 0)
2472 goto error;
2473
2474 offset += ret;
2475 len -= ret;
2476 }
2477
2478 /* All the data was skb head? */
2479 if (!len)
2480 goto out;
2481
2482 /* Make offset relative to start of frags */
2483 offset -= skb_headlen(skb);
2484
2485 /* Find where we are in frag list */
2486 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2487 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2488
2489 if (offset < skb_frag_size(frag))
2490 break;
2491
2492 offset -= skb_frag_size(frag);
2493 }
2494
2495 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2496 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2497
2498 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2499
2500 while (slen) {
2501 ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2502 skb_frag_off(frag) + offset,
2503 slen, MSG_DONTWAIT);
2504 if (ret <= 0)
2505 goto error;
2506
2507 len -= ret;
2508 offset += ret;
2509 slen -= ret;
2510 }
2511
2512 offset = 0;
2513 }
2514
2515 if (len) {
2516 /* Process any frag lists */
2517
2518 if (skb == head) {
2519 if (skb_has_frag_list(skb)) {
2520 skb = skb_shinfo(skb)->frag_list;
2521 goto do_frag_list;
2522 }
2523 } else if (skb->next) {
2524 skb = skb->next;
2525 goto do_frag_list;
2526 }
2527 }
2528
2529 out:
2530 return orig_len - len;
2531
2532 error:
2533 return orig_len == len ? ret : orig_len - len;
2534 }
2535 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2536
2537 /**
2538 * skb_store_bits - store bits from kernel buffer to skb
2539 * @skb: destination buffer
2540 * @offset: offset in destination
2541 * @from: source buffer
2542 * @len: number of bytes to copy
2543 *
2544 * Copy the specified number of bytes from the source buffer to the
2545 * destination skb. This function handles all the messy bits of
2546 * traversing fragment lists and such.
2547 */
2548
2549 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2550 {
2551 int start = skb_headlen(skb);
2552 struct sk_buff *frag_iter;
2553 int i, copy;
2554
2555 if (offset > (int)skb->len - len)
2556 goto fault;
2557
2558 if ((copy = start - offset) > 0) {
2559 if (copy > len)
2560 copy = len;
2561 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2562 if ((len -= copy) == 0)
2563 return 0;
2564 offset += copy;
2565 from += copy;
2566 }
2567
2568 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2569 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2570 int end;
2571
2572 WARN_ON(start > offset + len);
2573
2574 end = start + skb_frag_size(frag);
2575 if ((copy = end - offset) > 0) {
2576 u32 p_off, p_len, copied;
2577 struct page *p;
2578 u8 *vaddr;
2579
2580 if (copy > len)
2581 copy = len;
2582
2583 skb_frag_foreach_page(frag,
2584 skb_frag_off(frag) + offset - start,
2585 copy, p, p_off, p_len, copied) {
2586 vaddr = kmap_atomic(p);
2587 memcpy(vaddr + p_off, from + copied, p_len);
2588 kunmap_atomic(vaddr);
2589 }
2590
2591 if ((len -= copy) == 0)
2592 return 0;
2593 offset += copy;
2594 from += copy;
2595 }
2596 start = end;
2597 }
2598
2599 skb_walk_frags(skb, frag_iter) {
2600 int end;
2601
2602 WARN_ON(start > offset + len);
2603
2604 end = start + frag_iter->len;
2605 if ((copy = end - offset) > 0) {
2606 if (copy > len)
2607 copy = len;
2608 if (skb_store_bits(frag_iter, offset - start,
2609 from, copy))
2610 goto fault;
2611 if ((len -= copy) == 0)
2612 return 0;
2613 offset += copy;
2614 from += copy;
2615 }
2616 start = end;
2617 }
2618 if (!len)
2619 return 0;
2620
2621 fault:
2622 return -EFAULT;
2623 }
2624 EXPORT_SYMBOL(skb_store_bits);
2625
2626 /* Checksum skb data. */
2627 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2628 __wsum csum, const struct skb_checksum_ops *ops)
2629 {
2630 int start = skb_headlen(skb);
2631 int i, copy = start - offset;
2632 struct sk_buff *frag_iter;
2633 int pos = 0;
2634
2635 /* Checksum header. */
2636 if (copy > 0) {
2637 if (copy > len)
2638 copy = len;
2639 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2640 skb->data + offset, copy, csum);
2641 if ((len -= copy) == 0)
2642 return csum;
2643 offset += copy;
2644 pos = copy;
2645 }
2646
2647 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2648 int end;
2649 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2650
2651 WARN_ON(start > offset + len);
2652
2653 end = start + skb_frag_size(frag);
2654 if ((copy = end - offset) > 0) {
2655 u32 p_off, p_len, copied;
2656 struct page *p;
2657 __wsum csum2;
2658 u8 *vaddr;
2659
2660 if (copy > len)
2661 copy = len;
2662
2663 skb_frag_foreach_page(frag,
2664 skb_frag_off(frag) + offset - start,
2665 copy, p, p_off, p_len, copied) {
2666 vaddr = kmap_atomic(p);
2667 csum2 = INDIRECT_CALL_1(ops->update,
2668 csum_partial_ext,
2669 vaddr + p_off, p_len, 0);
2670 kunmap_atomic(vaddr);
2671 csum = INDIRECT_CALL_1(ops->combine,
2672 csum_block_add_ext, csum,
2673 csum2, pos, p_len);
2674 pos += p_len;
2675 }
2676
2677 if (!(len -= copy))
2678 return csum;
2679 offset += copy;
2680 }
2681 start = end;
2682 }
2683
2684 skb_walk_frags(skb, frag_iter) {
2685 int end;
2686
2687 WARN_ON(start > offset + len);
2688
2689 end = start + frag_iter->len;
2690 if ((copy = end - offset) > 0) {
2691 __wsum csum2;
2692 if (copy > len)
2693 copy = len;
2694 csum2 = __skb_checksum(frag_iter, offset - start,
2695 copy, 0, ops);
2696 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2697 csum, csum2, pos, copy);
2698 if ((len -= copy) == 0)
2699 return csum;
2700 offset += copy;
2701 pos += copy;
2702 }
2703 start = end;
2704 }
2705 BUG_ON(len);
2706
2707 return csum;
2708 }
2709 EXPORT_SYMBOL(__skb_checksum);
2710
2711 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2712 int len, __wsum csum)
2713 {
2714 const struct skb_checksum_ops ops = {
2715 .update = csum_partial_ext,
2716 .combine = csum_block_add_ext,
2717 };
2718
2719 return __skb_checksum(skb, offset, len, csum, &ops);
2720 }
2721 EXPORT_SYMBOL(skb_checksum);
2722
2723 /* Both of above in one bottle. */
2724
2725 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2726 u8 *to, int len, __wsum csum)
2727 {
2728 int start = skb_headlen(skb);
2729 int i, copy = start - offset;
2730 struct sk_buff *frag_iter;
2731 int pos = 0;
2732
2733 /* Copy header. */
2734 if (copy > 0) {
2735 if (copy > len)
2736 copy = len;
2737 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2738 copy, csum);
2739 if ((len -= copy) == 0)
2740 return csum;
2741 offset += copy;
2742 to += copy;
2743 pos = copy;
2744 }
2745
2746 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2747 int end;
2748
2749 WARN_ON(start > offset + len);
2750
2751 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2752 if ((copy = end - offset) > 0) {
2753 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2754 u32 p_off, p_len, copied;
2755 struct page *p;
2756 __wsum csum2;
2757 u8 *vaddr;
2758
2759 if (copy > len)
2760 copy = len;
2761
2762 skb_frag_foreach_page(frag,
2763 skb_frag_off(frag) + offset - start,
2764 copy, p, p_off, p_len, copied) {
2765 vaddr = kmap_atomic(p);
2766 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2767 to + copied,
2768 p_len, 0);
2769 kunmap_atomic(vaddr);
2770 csum = csum_block_add(csum, csum2, pos);
2771 pos += p_len;
2772 }
2773
2774 if (!(len -= copy))
2775 return csum;
2776 offset += copy;
2777 to += copy;
2778 }
2779 start = end;
2780 }
2781
2782 skb_walk_frags(skb, frag_iter) {
2783 __wsum csum2;
2784 int end;
2785
2786 WARN_ON(start > offset + len);
2787
2788 end = start + frag_iter->len;
2789 if ((copy = end - offset) > 0) {
2790 if (copy > len)
2791 copy = len;
2792 csum2 = skb_copy_and_csum_bits(frag_iter,
2793 offset - start,
2794 to, copy, 0);
2795 csum = csum_block_add(csum, csum2, pos);
2796 if ((len -= copy) == 0)
2797 return csum;
2798 offset += copy;
2799 to += copy;
2800 pos += copy;
2801 }
2802 start = end;
2803 }
2804 BUG_ON(len);
2805 return csum;
2806 }
2807 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2808
2809 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2810 {
2811 __sum16 sum;
2812
2813 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2814 /* See comments in __skb_checksum_complete(). */
2815 if (likely(!sum)) {
2816 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2817 !skb->csum_complete_sw)
2818 netdev_rx_csum_fault(skb->dev, skb);
2819 }
2820 if (!skb_shared(skb))
2821 skb->csum_valid = !sum;
2822 return sum;
2823 }
2824 EXPORT_SYMBOL(__skb_checksum_complete_head);
2825
2826 /* This function assumes skb->csum already holds pseudo header's checksum,
2827 * which has been changed from the hardware checksum, for example, by
2828 * __skb_checksum_validate_complete(). And, the original skb->csum must
2829 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2830 *
2831 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2832 * zero. The new checksum is stored back into skb->csum unless the skb is
2833 * shared.
2834 */
2835 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2836 {
2837 __wsum csum;
2838 __sum16 sum;
2839
2840 csum = skb_checksum(skb, 0, skb->len, 0);
2841
2842 sum = csum_fold(csum_add(skb->csum, csum));
2843 /* This check is inverted, because we already knew the hardware
2844 * checksum is invalid before calling this function. So, if the
2845 * re-computed checksum is valid instead, then we have a mismatch
2846 * between the original skb->csum and skb_checksum(). This means either
2847 * the original hardware checksum is incorrect or we screw up skb->csum
2848 * when moving skb->data around.
2849 */
2850 if (likely(!sum)) {
2851 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2852 !skb->csum_complete_sw)
2853 netdev_rx_csum_fault(skb->dev, skb);
2854 }
2855
2856 if (!skb_shared(skb)) {
2857 /* Save full packet checksum */
2858 skb->csum = csum;
2859 skb->ip_summed = CHECKSUM_COMPLETE;
2860 skb->csum_complete_sw = 1;
2861 skb->csum_valid = !sum;
2862 }
2863
2864 return sum;
2865 }
2866 EXPORT_SYMBOL(__skb_checksum_complete);
2867
2868 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2869 {
2870 net_warn_ratelimited(
2871 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2872 __func__);
2873 return 0;
2874 }
2875
2876 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2877 int offset, int len)
2878 {
2879 net_warn_ratelimited(
2880 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2881 __func__);
2882 return 0;
2883 }
2884
2885 static const struct skb_checksum_ops default_crc32c_ops = {
2886 .update = warn_crc32c_csum_update,
2887 .combine = warn_crc32c_csum_combine,
2888 };
2889
2890 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2891 &default_crc32c_ops;
2892 EXPORT_SYMBOL(crc32c_csum_stub);
2893
2894 /**
2895 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2896 * @from: source buffer
2897 *
2898 * Calculates the amount of linear headroom needed in the 'to' skb passed
2899 * into skb_zerocopy().
2900 */
2901 unsigned int
2902 skb_zerocopy_headlen(const struct sk_buff *from)
2903 {
2904 unsigned int hlen = 0;
2905
2906 if (!from->head_frag ||
2907 skb_headlen(from) < L1_CACHE_BYTES ||
2908 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2909 hlen = skb_headlen(from);
2910
2911 if (skb_has_frag_list(from))
2912 hlen = from->len;
2913
2914 return hlen;
2915 }
2916 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2917
2918 /**
2919 * skb_zerocopy - Zero copy skb to skb
2920 * @to: destination buffer
2921 * @from: source buffer
2922 * @len: number of bytes to copy from source buffer
2923 * @hlen: size of linear headroom in destination buffer
2924 *
2925 * Copies up to `len` bytes from `from` to `to` by creating references
2926 * to the frags in the source buffer.
2927 *
2928 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2929 * headroom in the `to` buffer.
2930 *
2931 * Return value:
2932 * 0: everything is OK
2933 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2934 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2935 */
2936 int
2937 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2938 {
2939 int i, j = 0;
2940 int plen = 0; /* length of skb->head fragment */
2941 int ret;
2942 struct page *page;
2943 unsigned int offset;
2944
2945 BUG_ON(!from->head_frag && !hlen);
2946
2947 /* dont bother with small payloads */
2948 if (len <= skb_tailroom(to))
2949 return skb_copy_bits(from, 0, skb_put(to, len), len);
2950
2951 if (hlen) {
2952 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2953 if (unlikely(ret))
2954 return ret;
2955 len -= hlen;
2956 } else {
2957 plen = min_t(int, skb_headlen(from), len);
2958 if (plen) {
2959 page = virt_to_head_page(from->head);
2960 offset = from->data - (unsigned char *)page_address(page);
2961 __skb_fill_page_desc(to, 0, page, offset, plen);
2962 get_page(page);
2963 j = 1;
2964 len -= plen;
2965 }
2966 }
2967
2968 to->truesize += len + plen;
2969 to->len += len + plen;
2970 to->data_len += len + plen;
2971
2972 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2973 skb_tx_error(from);
2974 return -ENOMEM;
2975 }
2976 skb_zerocopy_clone(to, from, GFP_ATOMIC);
2977
2978 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2979 int size;
2980
2981 if (!len)
2982 break;
2983 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2984 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
2985 len);
2986 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
2987 len -= size;
2988 skb_frag_ref(to, j);
2989 j++;
2990 }
2991 skb_shinfo(to)->nr_frags = j;
2992
2993 return 0;
2994 }
2995 EXPORT_SYMBOL_GPL(skb_zerocopy);
2996
2997 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2998 {
2999 __wsum csum;
3000 long csstart;
3001
3002 if (skb->ip_summed == CHECKSUM_PARTIAL)
3003 csstart = skb_checksum_start_offset(skb);
3004 else
3005 csstart = skb_headlen(skb);
3006
3007 BUG_ON(csstart > skb_headlen(skb));
3008
3009 skb_copy_from_linear_data(skb, to, csstart);
3010
3011 csum = 0;
3012 if (csstart != skb->len)
3013 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3014 skb->len - csstart, 0);
3015
3016 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3017 long csstuff = csstart + skb->csum_offset;
3018
3019 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3020 }
3021 }
3022 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3023
3024 /**
3025 * skb_dequeue - remove from the head of the queue
3026 * @list: list to dequeue from
3027 *
3028 * Remove the head of the list. The list lock is taken so the function
3029 * may be used safely with other locking list functions. The head item is
3030 * returned or %NULL if the list is empty.
3031 */
3032
3033 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3034 {
3035 unsigned long flags;
3036 struct sk_buff *result;
3037
3038 spin_lock_irqsave(&list->lock, flags);
3039 result = __skb_dequeue(list);
3040 spin_unlock_irqrestore(&list->lock, flags);
3041 return result;
3042 }
3043 EXPORT_SYMBOL(skb_dequeue);
3044
3045 /**
3046 * skb_dequeue_tail - remove from the tail of the queue
3047 * @list: list to dequeue from
3048 *
3049 * Remove the tail of the list. The list lock is taken so the function
3050 * may be used safely with other locking list functions. The tail item is
3051 * returned or %NULL if the list is empty.
3052 */
3053 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3054 {
3055 unsigned long flags;
3056 struct sk_buff *result;
3057
3058 spin_lock_irqsave(&list->lock, flags);
3059 result = __skb_dequeue_tail(list);
3060 spin_unlock_irqrestore(&list->lock, flags);
3061 return result;
3062 }
3063 EXPORT_SYMBOL(skb_dequeue_tail);
3064
3065 /**
3066 * skb_queue_purge - empty a list
3067 * @list: list to empty
3068 *
3069 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3070 * the list and one reference dropped. This function takes the list
3071 * lock and is atomic with respect to other list locking functions.
3072 */
3073 void skb_queue_purge(struct sk_buff_head *list)
3074 {
3075 struct sk_buff *skb;
3076 while ((skb = skb_dequeue(list)) != NULL)
3077 kfree_skb(skb);
3078 }
3079 EXPORT_SYMBOL(skb_queue_purge);
3080
3081 /**
3082 * skb_rbtree_purge - empty a skb rbtree
3083 * @root: root of the rbtree to empty
3084 * Return value: the sum of truesizes of all purged skbs.
3085 *
3086 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3087 * the list and one reference dropped. This function does not take
3088 * any lock. Synchronization should be handled by the caller (e.g., TCP
3089 * out-of-order queue is protected by the socket lock).
3090 */
3091 unsigned int skb_rbtree_purge(struct rb_root *root)
3092 {
3093 struct rb_node *p = rb_first(root);
3094 unsigned int sum = 0;
3095
3096 while (p) {
3097 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3098
3099 p = rb_next(p);
3100 rb_erase(&skb->rbnode, root);
3101 sum += skb->truesize;
3102 kfree_skb(skb);
3103 }
3104 return sum;
3105 }
3106
3107 /**
3108 * skb_queue_head - queue a buffer at the list head
3109 * @list: list to use
3110 * @newsk: buffer to queue
3111 *
3112 * Queue a buffer at the start of the list. This function takes the
3113 * list lock and can be used safely with other locking &sk_buff functions
3114 * safely.
3115 *
3116 * A buffer cannot be placed on two lists at the same time.
3117 */
3118 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3119 {
3120 unsigned long flags;
3121
3122 spin_lock_irqsave(&list->lock, flags);
3123 __skb_queue_head(list, newsk);
3124 spin_unlock_irqrestore(&list->lock, flags);
3125 }
3126 EXPORT_SYMBOL(skb_queue_head);
3127
3128 /**
3129 * skb_queue_tail - queue a buffer at the list tail
3130 * @list: list to use
3131 * @newsk: buffer to queue
3132 *
3133 * Queue a buffer at the tail of the list. This function takes the
3134 * list lock and can be used safely with other locking &sk_buff functions
3135 * safely.
3136 *
3137 * A buffer cannot be placed on two lists at the same time.
3138 */
3139 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3140 {
3141 unsigned long flags;
3142
3143 spin_lock_irqsave(&list->lock, flags);
3144 __skb_queue_tail(list, newsk);
3145 spin_unlock_irqrestore(&list->lock, flags);
3146 }
3147 EXPORT_SYMBOL(skb_queue_tail);
3148
3149 /**
3150 * skb_unlink - remove a buffer from a list
3151 * @skb: buffer to remove
3152 * @list: list to use
3153 *
3154 * Remove a packet from a list. The list locks are taken and this
3155 * function is atomic with respect to other list locked calls
3156 *
3157 * You must know what list the SKB is on.
3158 */
3159 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3160 {
3161 unsigned long flags;
3162
3163 spin_lock_irqsave(&list->lock, flags);
3164 __skb_unlink(skb, list);
3165 spin_unlock_irqrestore(&list->lock, flags);
3166 }
3167 EXPORT_SYMBOL(skb_unlink);
3168
3169 /**
3170 * skb_append - append a buffer
3171 * @old: buffer to insert after
3172 * @newsk: buffer to insert
3173 * @list: list to use
3174 *
3175 * Place a packet after a given packet in a list. The list locks are taken
3176 * and this function is atomic with respect to other list locked calls.
3177 * A buffer cannot be placed on two lists at the same time.
3178 */
3179 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3180 {
3181 unsigned long flags;
3182
3183 spin_lock_irqsave(&list->lock, flags);
3184 __skb_queue_after(list, old, newsk);
3185 spin_unlock_irqrestore(&list->lock, flags);
3186 }
3187 EXPORT_SYMBOL(skb_append);
3188
3189 static inline void skb_split_inside_header(struct sk_buff *skb,
3190 struct sk_buff* skb1,
3191 const u32 len, const int pos)
3192 {
3193 int i;
3194
3195 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3196 pos - len);
3197 /* And move data appendix as is. */
3198 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3199 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3200
3201 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3202 skb_shinfo(skb)->nr_frags = 0;
3203 skb1->data_len = skb->data_len;
3204 skb1->len += skb1->data_len;
3205 skb->data_len = 0;
3206 skb->len = len;
3207 skb_set_tail_pointer(skb, len);
3208 }
3209
3210 static inline void skb_split_no_header(struct sk_buff *skb,
3211 struct sk_buff* skb1,
3212 const u32 len, int pos)
3213 {
3214 int i, k = 0;
3215 const int nfrags = skb_shinfo(skb)->nr_frags;
3216
3217 skb_shinfo(skb)->nr_frags = 0;
3218 skb1->len = skb1->data_len = skb->len - len;
3219 skb->len = len;
3220 skb->data_len = len - pos;
3221
3222 for (i = 0; i < nfrags; i++) {
3223 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3224
3225 if (pos + size > len) {
3226 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3227
3228 if (pos < len) {
3229 /* Split frag.
3230 * We have two variants in this case:
3231 * 1. Move all the frag to the second
3232 * part, if it is possible. F.e.
3233 * this approach is mandatory for TUX,
3234 * where splitting is expensive.
3235 * 2. Split is accurately. We make this.
3236 */
3237 skb_frag_ref(skb, i);
3238 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3239 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3240 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3241 skb_shinfo(skb)->nr_frags++;
3242 }
3243 k++;
3244 } else
3245 skb_shinfo(skb)->nr_frags++;
3246 pos += size;
3247 }
3248 skb_shinfo(skb1)->nr_frags = k;
3249 }
3250
3251 /**
3252 * skb_split - Split fragmented skb to two parts at length len.
3253 * @skb: the buffer to split
3254 * @skb1: the buffer to receive the second part
3255 * @len: new length for skb
3256 */
3257 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3258 {
3259 int pos = skb_headlen(skb);
3260
3261 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3262 SKBTX_SHARED_FRAG;
3263 skb_zerocopy_clone(skb1, skb, 0);
3264 if (len < pos) /* Split line is inside header. */
3265 skb_split_inside_header(skb, skb1, len, pos);
3266 else /* Second chunk has no header, nothing to copy. */
3267 skb_split_no_header(skb, skb1, len, pos);
3268 }
3269 EXPORT_SYMBOL(skb_split);
3270
3271 /* Shifting from/to a cloned skb is a no-go.
3272 *
3273 * Caller cannot keep skb_shinfo related pointers past calling here!
3274 */
3275 static int skb_prepare_for_shift(struct sk_buff *skb)
3276 {
3277 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3278 }
3279
3280 /**
3281 * skb_shift - Shifts paged data partially from skb to another
3282 * @tgt: buffer into which tail data gets added
3283 * @skb: buffer from which the paged data comes from
3284 * @shiftlen: shift up to this many bytes
3285 *
3286 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3287 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3288 * It's up to caller to free skb if everything was shifted.
3289 *
3290 * If @tgt runs out of frags, the whole operation is aborted.
3291 *
3292 * Skb cannot include anything else but paged data while tgt is allowed
3293 * to have non-paged data as well.
3294 *
3295 * TODO: full sized shift could be optimized but that would need
3296 * specialized skb free'er to handle frags without up-to-date nr_frags.
3297 */
3298 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3299 {
3300 int from, to, merge, todo;
3301 skb_frag_t *fragfrom, *fragto;
3302
3303 BUG_ON(shiftlen > skb->len);
3304
3305 if (skb_headlen(skb))
3306 return 0;
3307 if (skb_zcopy(tgt) || skb_zcopy(skb))
3308 return 0;
3309
3310 todo = shiftlen;
3311 from = 0;
3312 to = skb_shinfo(tgt)->nr_frags;
3313 fragfrom = &skb_shinfo(skb)->frags[from];
3314
3315 /* Actual merge is delayed until the point when we know we can
3316 * commit all, so that we don't have to undo partial changes
3317 */
3318 if (!to ||
3319 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3320 skb_frag_off(fragfrom))) {
3321 merge = -1;
3322 } else {
3323 merge = to - 1;
3324
3325 todo -= skb_frag_size(fragfrom);
3326 if (todo < 0) {
3327 if (skb_prepare_for_shift(skb) ||
3328 skb_prepare_for_shift(tgt))
3329 return 0;
3330
3331 /* All previous frag pointers might be stale! */
3332 fragfrom = &skb_shinfo(skb)->frags[from];
3333 fragto = &skb_shinfo(tgt)->frags[merge];
3334
3335 skb_frag_size_add(fragto, shiftlen);
3336 skb_frag_size_sub(fragfrom, shiftlen);
3337 skb_frag_off_add(fragfrom, shiftlen);
3338
3339 goto onlymerged;
3340 }
3341
3342 from++;
3343 }
3344
3345 /* Skip full, not-fitting skb to avoid expensive operations */
3346 if ((shiftlen == skb->len) &&
3347 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3348 return 0;
3349
3350 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3351 return 0;
3352
3353 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3354 if (to == MAX_SKB_FRAGS)
3355 return 0;
3356
3357 fragfrom = &skb_shinfo(skb)->frags[from];
3358 fragto = &skb_shinfo(tgt)->frags[to];
3359
3360 if (todo >= skb_frag_size(fragfrom)) {
3361 *fragto = *fragfrom;
3362 todo -= skb_frag_size(fragfrom);
3363 from++;
3364 to++;
3365
3366 } else {
3367 __skb_frag_ref(fragfrom);
3368 skb_frag_page_copy(fragto, fragfrom);
3369 skb_frag_off_copy(fragto, fragfrom);
3370 skb_frag_size_set(fragto, todo);
3371
3372 skb_frag_off_add(fragfrom, todo);
3373 skb_frag_size_sub(fragfrom, todo);
3374 todo = 0;
3375
3376 to++;
3377 break;
3378 }
3379 }
3380
3381 /* Ready to "commit" this state change to tgt */
3382 skb_shinfo(tgt)->nr_frags = to;
3383
3384 if (merge >= 0) {
3385 fragfrom = &skb_shinfo(skb)->frags[0];
3386 fragto = &skb_shinfo(tgt)->frags[merge];
3387
3388 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3389 __skb_frag_unref(fragfrom);
3390 }
3391
3392 /* Reposition in the original skb */
3393 to = 0;
3394 while (from < skb_shinfo(skb)->nr_frags)
3395 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3396 skb_shinfo(skb)->nr_frags = to;
3397
3398 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3399
3400 onlymerged:
3401 /* Most likely the tgt won't ever need its checksum anymore, skb on
3402 * the other hand might need it if it needs to be resent
3403 */
3404 tgt->ip_summed = CHECKSUM_PARTIAL;
3405 skb->ip_summed = CHECKSUM_PARTIAL;
3406
3407 /* Yak, is it really working this way? Some helper please? */
3408 skb->len -= shiftlen;
3409 skb->data_len -= shiftlen;
3410 skb->truesize -= shiftlen;
3411 tgt->len += shiftlen;
3412 tgt->data_len += shiftlen;
3413 tgt->truesize += shiftlen;
3414
3415 return shiftlen;
3416 }
3417
3418 /**
3419 * skb_prepare_seq_read - Prepare a sequential read of skb data
3420 * @skb: the buffer to read
3421 * @from: lower offset of data to be read
3422 * @to: upper offset of data to be read
3423 * @st: state variable
3424 *
3425 * Initializes the specified state variable. Must be called before
3426 * invoking skb_seq_read() for the first time.
3427 */
3428 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3429 unsigned int to, struct skb_seq_state *st)
3430 {
3431 st->lower_offset = from;
3432 st->upper_offset = to;
3433 st->root_skb = st->cur_skb = skb;
3434 st->frag_idx = st->stepped_offset = 0;
3435 st->frag_data = NULL;
3436 }
3437 EXPORT_SYMBOL(skb_prepare_seq_read);
3438
3439 /**
3440 * skb_seq_read - Sequentially read skb data
3441 * @consumed: number of bytes consumed by the caller so far
3442 * @data: destination pointer for data to be returned
3443 * @st: state variable
3444 *
3445 * Reads a block of skb data at @consumed relative to the
3446 * lower offset specified to skb_prepare_seq_read(). Assigns
3447 * the head of the data block to @data and returns the length
3448 * of the block or 0 if the end of the skb data or the upper
3449 * offset has been reached.
3450 *
3451 * The caller is not required to consume all of the data
3452 * returned, i.e. @consumed is typically set to the number
3453 * of bytes already consumed and the next call to
3454 * skb_seq_read() will return the remaining part of the block.
3455 *
3456 * Note 1: The size of each block of data returned can be arbitrary,
3457 * this limitation is the cost for zerocopy sequential
3458 * reads of potentially non linear data.
3459 *
3460 * Note 2: Fragment lists within fragments are not implemented
3461 * at the moment, state->root_skb could be replaced with
3462 * a stack for this purpose.
3463 */
3464 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3465 struct skb_seq_state *st)
3466 {
3467 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3468 skb_frag_t *frag;
3469
3470 if (unlikely(abs_offset >= st->upper_offset)) {
3471 if (st->frag_data) {
3472 kunmap_atomic(st->frag_data);
3473 st->frag_data = NULL;
3474 }
3475 return 0;
3476 }
3477
3478 next_skb:
3479 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3480
3481 if (abs_offset < block_limit && !st->frag_data) {
3482 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3483 return block_limit - abs_offset;
3484 }
3485
3486 if (st->frag_idx == 0 && !st->frag_data)
3487 st->stepped_offset += skb_headlen(st->cur_skb);
3488
3489 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3490 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3491 block_limit = skb_frag_size(frag) + st->stepped_offset;
3492
3493 if (abs_offset < block_limit) {
3494 if (!st->frag_data)
3495 st->frag_data = kmap_atomic(skb_frag_page(frag));
3496
3497 *data = (u8 *) st->frag_data + skb_frag_off(frag) +
3498 (abs_offset - st->stepped_offset);
3499
3500 return block_limit - abs_offset;
3501 }
3502
3503 if (st->frag_data) {
3504 kunmap_atomic(st->frag_data);
3505 st->frag_data = NULL;
3506 }
3507
3508 st->frag_idx++;
3509 st->stepped_offset += skb_frag_size(frag);
3510 }
3511
3512 if (st->frag_data) {
3513 kunmap_atomic(st->frag_data);
3514 st->frag_data = NULL;
3515 }
3516
3517 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3518 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3519 st->frag_idx = 0;
3520 goto next_skb;
3521 } else if (st->cur_skb->next) {
3522 st->cur_skb = st->cur_skb->next;
3523 st->frag_idx = 0;
3524 goto next_skb;
3525 }
3526
3527 return 0;
3528 }
3529 EXPORT_SYMBOL(skb_seq_read);
3530
3531 /**
3532 * skb_abort_seq_read - Abort a sequential read of skb data
3533 * @st: state variable
3534 *
3535 * Must be called if skb_seq_read() was not called until it
3536 * returned 0.
3537 */
3538 void skb_abort_seq_read(struct skb_seq_state *st)
3539 {
3540 if (st->frag_data)
3541 kunmap_atomic(st->frag_data);
3542 }
3543 EXPORT_SYMBOL(skb_abort_seq_read);
3544
3545 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3546
3547 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3548 struct ts_config *conf,
3549 struct ts_state *state)
3550 {
3551 return skb_seq_read(offset, text, TS_SKB_CB(state));
3552 }
3553
3554 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3555 {
3556 skb_abort_seq_read(TS_SKB_CB(state));
3557 }
3558
3559 /**
3560 * skb_find_text - Find a text pattern in skb data
3561 * @skb: the buffer to look in
3562 * @from: search offset
3563 * @to: search limit
3564 * @config: textsearch configuration
3565 *
3566 * Finds a pattern in the skb data according to the specified
3567 * textsearch configuration. Use textsearch_next() to retrieve
3568 * subsequent occurrences of the pattern. Returns the offset
3569 * to the first occurrence or UINT_MAX if no match was found.
3570 */
3571 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3572 unsigned int to, struct ts_config *config)
3573 {
3574 struct ts_state state;
3575 unsigned int ret;
3576
3577 config->get_next_block = skb_ts_get_next_block;
3578 config->finish = skb_ts_finish;
3579
3580 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3581
3582 ret = textsearch_find(config, &state);
3583 return (ret <= to - from ? ret : UINT_MAX);
3584 }
3585 EXPORT_SYMBOL(skb_find_text);
3586
3587 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3588 int offset, size_t size)
3589 {
3590 int i = skb_shinfo(skb)->nr_frags;
3591
3592 if (skb_can_coalesce(skb, i, page, offset)) {
3593 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3594 } else if (i < MAX_SKB_FRAGS) {
3595 get_page(page);
3596 skb_fill_page_desc(skb, i, page, offset, size);
3597 } else {
3598 return -EMSGSIZE;
3599 }
3600
3601 return 0;
3602 }
3603 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3604
3605 /**
3606 * skb_pull_rcsum - pull skb and update receive checksum
3607 * @skb: buffer to update
3608 * @len: length of data pulled
3609 *
3610 * This function performs an skb_pull on the packet and updates
3611 * the CHECKSUM_COMPLETE checksum. It should be used on
3612 * receive path processing instead of skb_pull unless you know
3613 * that the checksum difference is zero (e.g., a valid IP header)
3614 * or you are setting ip_summed to CHECKSUM_NONE.
3615 */
3616 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3617 {
3618 unsigned char *data = skb->data;
3619
3620 BUG_ON(len > skb->len);
3621 __skb_pull(skb, len);
3622 skb_postpull_rcsum(skb, data, len);
3623 return skb->data;
3624 }
3625 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3626
3627 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3628 {
3629 skb_frag_t head_frag;
3630 struct page *page;
3631
3632 page = virt_to_head_page(frag_skb->head);
3633 __skb_frag_set_page(&head_frag, page);
3634 skb_frag_off_set(&head_frag, frag_skb->data -
3635 (unsigned char *)page_address(page));
3636 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3637 return head_frag;
3638 }
3639
3640 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3641 netdev_features_t features,
3642 unsigned int offset)
3643 {
3644 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3645 unsigned int tnl_hlen = skb_tnl_header_len(skb);
3646 unsigned int delta_truesize = 0;
3647 unsigned int delta_len = 0;
3648 struct sk_buff *tail = NULL;
3649 struct sk_buff *nskb;
3650
3651 skb_push(skb, -skb_network_offset(skb) + offset);
3652
3653 skb_shinfo(skb)->frag_list = NULL;
3654
3655 do {
3656 nskb = list_skb;
3657 list_skb = list_skb->next;
3658
3659 if (!tail)
3660 skb->next = nskb;
3661 else
3662 tail->next = nskb;
3663
3664 tail = nskb;
3665
3666 delta_len += nskb->len;
3667 delta_truesize += nskb->truesize;
3668
3669 skb_push(nskb, -skb_network_offset(nskb) + offset);
3670
3671 skb_release_head_state(nskb);
3672 __copy_skb_header(nskb, skb);
3673
3674 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3675 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3676 nskb->data - tnl_hlen,
3677 offset + tnl_hlen);
3678
3679 if (skb_needs_linearize(nskb, features) &&
3680 __skb_linearize(nskb))
3681 goto err_linearize;
3682
3683 } while (list_skb);
3684
3685 skb->truesize = skb->truesize - delta_truesize;
3686 skb->data_len = skb->data_len - delta_len;
3687 skb->len = skb->len - delta_len;
3688
3689 skb_gso_reset(skb);
3690
3691 skb->prev = tail;
3692
3693 if (skb_needs_linearize(skb, features) &&
3694 __skb_linearize(skb))
3695 goto err_linearize;
3696
3697 skb_get(skb);
3698
3699 return skb;
3700
3701 err_linearize:
3702 kfree_skb_list(skb->next);
3703 skb->next = NULL;
3704 return ERR_PTR(-ENOMEM);
3705 }
3706 EXPORT_SYMBOL_GPL(skb_segment_list);
3707
3708 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3709 {
3710 if (unlikely(p->len + skb->len >= 65536))
3711 return -E2BIG;
3712
3713 if (NAPI_GRO_CB(p)->last == p)
3714 skb_shinfo(p)->frag_list = skb;
3715 else
3716 NAPI_GRO_CB(p)->last->next = skb;
3717
3718 skb_pull(skb, skb_gro_offset(skb));
3719
3720 NAPI_GRO_CB(p)->last = skb;
3721 NAPI_GRO_CB(p)->count++;
3722 p->data_len += skb->len;
3723 p->truesize += skb->truesize;
3724 p->len += skb->len;
3725
3726 NAPI_GRO_CB(skb)->same_flow = 1;
3727
3728 return 0;
3729 }
3730
3731 /**
3732 * skb_segment - Perform protocol segmentation on skb.
3733 * @head_skb: buffer to segment
3734 * @features: features for the output path (see dev->features)
3735 *
3736 * This function performs segmentation on the given skb. It returns
3737 * a pointer to the first in a list of new skbs for the segments.
3738 * In case of error it returns ERR_PTR(err).
3739 */
3740 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3741 netdev_features_t features)
3742 {
3743 struct sk_buff *segs = NULL;
3744 struct sk_buff *tail = NULL;
3745 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3746 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3747 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3748 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3749 struct sk_buff *frag_skb = head_skb;
3750 unsigned int offset = doffset;
3751 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3752 unsigned int partial_segs = 0;
3753 unsigned int headroom;
3754 unsigned int len = head_skb->len;
3755 __be16 proto;
3756 bool csum, sg;
3757 int nfrags = skb_shinfo(head_skb)->nr_frags;
3758 int err = -ENOMEM;
3759 int i = 0;
3760 int pos;
3761 int dummy;
3762
3763 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3764 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3765 /* gso_size is untrusted, and we have a frag_list with a linear
3766 * non head_frag head.
3767 *
3768 * (we assume checking the first list_skb member suffices;
3769 * i.e if either of the list_skb members have non head_frag
3770 * head, then the first one has too).
3771 *
3772 * If head_skb's headlen does not fit requested gso_size, it
3773 * means that the frag_list members do NOT terminate on exact
3774 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3775 * sharing. Therefore we must fallback to copying the frag_list
3776 * skbs; we do so by disabling SG.
3777 */
3778 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3779 features &= ~NETIF_F_SG;
3780 }
3781
3782 __skb_push(head_skb, doffset);
3783 proto = skb_network_protocol(head_skb, &dummy);
3784 if (unlikely(!proto))
3785 return ERR_PTR(-EINVAL);
3786
3787 sg = !!(features & NETIF_F_SG);
3788 csum = !!can_checksum_protocol(features, proto);
3789
3790 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3791 if (!(features & NETIF_F_GSO_PARTIAL)) {
3792 struct sk_buff *iter;
3793 unsigned int frag_len;
3794
3795 if (!list_skb ||
3796 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3797 goto normal;
3798
3799 /* If we get here then all the required
3800 * GSO features except frag_list are supported.
3801 * Try to split the SKB to multiple GSO SKBs
3802 * with no frag_list.
3803 * Currently we can do that only when the buffers don't
3804 * have a linear part and all the buffers except
3805 * the last are of the same length.
3806 */
3807 frag_len = list_skb->len;
3808 skb_walk_frags(head_skb, iter) {
3809 if (frag_len != iter->len && iter->next)
3810 goto normal;
3811 if (skb_headlen(iter) && !iter->head_frag)
3812 goto normal;
3813
3814 len -= iter->len;
3815 }
3816
3817 if (len != frag_len)
3818 goto normal;
3819 }
3820
3821 /* GSO partial only requires that we trim off any excess that
3822 * doesn't fit into an MSS sized block, so take care of that
3823 * now.
3824 */
3825 partial_segs = len / mss;
3826 if (partial_segs > 1)
3827 mss *= partial_segs;
3828 else
3829 partial_segs = 0;
3830 }
3831
3832 normal:
3833 headroom = skb_headroom(head_skb);
3834 pos = skb_headlen(head_skb);
3835
3836 do {
3837 struct sk_buff *nskb;
3838 skb_frag_t *nskb_frag;
3839 int hsize;
3840 int size;
3841
3842 if (unlikely(mss == GSO_BY_FRAGS)) {
3843 len = list_skb->len;
3844 } else {
3845 len = head_skb->len - offset;
3846 if (len > mss)
3847 len = mss;
3848 }
3849
3850 hsize = skb_headlen(head_skb) - offset;
3851 if (hsize < 0)
3852 hsize = 0;
3853 if (hsize > len || !sg)
3854 hsize = len;
3855
3856 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3857 (skb_headlen(list_skb) == len || sg)) {
3858 BUG_ON(skb_headlen(list_skb) > len);
3859
3860 i = 0;
3861 nfrags = skb_shinfo(list_skb)->nr_frags;
3862 frag = skb_shinfo(list_skb)->frags;
3863 frag_skb = list_skb;
3864 pos += skb_headlen(list_skb);
3865
3866 while (pos < offset + len) {
3867 BUG_ON(i >= nfrags);
3868
3869 size = skb_frag_size(frag);
3870 if (pos + size > offset + len)
3871 break;
3872
3873 i++;
3874 pos += size;
3875 frag++;
3876 }
3877
3878 nskb = skb_clone(list_skb, GFP_ATOMIC);
3879 list_skb = list_skb->next;
3880
3881 if (unlikely(!nskb))
3882 goto err;
3883
3884 if (unlikely(pskb_trim(nskb, len))) {
3885 kfree_skb(nskb);
3886 goto err;
3887 }
3888
3889 hsize = skb_end_offset(nskb);
3890 if (skb_cow_head(nskb, doffset + headroom)) {
3891 kfree_skb(nskb);
3892 goto err;
3893 }
3894
3895 nskb->truesize += skb_end_offset(nskb) - hsize;
3896 skb_release_head_state(nskb);
3897 __skb_push(nskb, doffset);
3898 } else {
3899 nskb = __alloc_skb(hsize + doffset + headroom,
3900 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3901 NUMA_NO_NODE);
3902
3903 if (unlikely(!nskb))
3904 goto err;
3905
3906 skb_reserve(nskb, headroom);
3907 __skb_put(nskb, doffset);
3908 }
3909
3910 if (segs)
3911 tail->next = nskb;
3912 else
3913 segs = nskb;
3914 tail = nskb;
3915
3916 __copy_skb_header(nskb, head_skb);
3917
3918 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3919 skb_reset_mac_len(nskb);
3920
3921 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3922 nskb->data - tnl_hlen,
3923 doffset + tnl_hlen);
3924
3925 if (nskb->len == len + doffset)
3926 goto perform_csum_check;
3927
3928 if (!sg) {
3929 if (!csum) {
3930 if (!nskb->remcsum_offload)
3931 nskb->ip_summed = CHECKSUM_NONE;
3932 SKB_GSO_CB(nskb)->csum =
3933 skb_copy_and_csum_bits(head_skb, offset,
3934 skb_put(nskb,
3935 len),
3936 len, 0);
3937 SKB_GSO_CB(nskb)->csum_start =
3938 skb_headroom(nskb) + doffset;
3939 } else {
3940 skb_copy_bits(head_skb, offset,
3941 skb_put(nskb, len),
3942 len);
3943 }
3944 continue;
3945 }
3946
3947 nskb_frag = skb_shinfo(nskb)->frags;
3948
3949 skb_copy_from_linear_data_offset(head_skb, offset,
3950 skb_put(nskb, hsize), hsize);
3951
3952 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3953 SKBTX_SHARED_FRAG;
3954
3955 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3956 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3957 goto err;
3958
3959 while (pos < offset + len) {
3960 if (i >= nfrags) {
3961 i = 0;
3962 nfrags = skb_shinfo(list_skb)->nr_frags;
3963 frag = skb_shinfo(list_skb)->frags;
3964 frag_skb = list_skb;
3965 if (!skb_headlen(list_skb)) {
3966 BUG_ON(!nfrags);
3967 } else {
3968 BUG_ON(!list_skb->head_frag);
3969
3970 /* to make room for head_frag. */
3971 i--;
3972 frag--;
3973 }
3974 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3975 skb_zerocopy_clone(nskb, frag_skb,
3976 GFP_ATOMIC))
3977 goto err;
3978
3979 list_skb = list_skb->next;
3980 }
3981
3982 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3983 MAX_SKB_FRAGS)) {
3984 net_warn_ratelimited(
3985 "skb_segment: too many frags: %u %u\n",
3986 pos, mss);
3987 err = -EINVAL;
3988 goto err;
3989 }
3990
3991 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3992 __skb_frag_ref(nskb_frag);
3993 size = skb_frag_size(nskb_frag);
3994
3995 if (pos < offset) {
3996 skb_frag_off_add(nskb_frag, offset - pos);
3997 skb_frag_size_sub(nskb_frag, offset - pos);
3998 }
3999
4000 skb_shinfo(nskb)->nr_frags++;
4001
4002 if (pos + size <= offset + len) {
4003 i++;
4004 frag++;
4005 pos += size;
4006 } else {
4007 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4008 goto skip_fraglist;
4009 }
4010
4011 nskb_frag++;
4012 }
4013
4014 skip_fraglist:
4015 nskb->data_len = len - hsize;
4016 nskb->len += nskb->data_len;
4017 nskb->truesize += nskb->data_len;
4018
4019 perform_csum_check:
4020 if (!csum) {
4021 if (skb_has_shared_frag(nskb) &&
4022 __skb_linearize(nskb))
4023 goto err;
4024
4025 if (!nskb->remcsum_offload)
4026 nskb->ip_summed = CHECKSUM_NONE;
4027 SKB_GSO_CB(nskb)->csum =
4028 skb_checksum(nskb, doffset,
4029 nskb->len - doffset, 0);
4030 SKB_GSO_CB(nskb)->csum_start =
4031 skb_headroom(nskb) + doffset;
4032 }
4033 } while ((offset += len) < head_skb->len);
4034
4035 /* Some callers want to get the end of the list.
4036 * Put it in segs->prev to avoid walking the list.
4037 * (see validate_xmit_skb_list() for example)
4038 */
4039 segs->prev = tail;
4040
4041 if (partial_segs) {
4042 struct sk_buff *iter;
4043 int type = skb_shinfo(head_skb)->gso_type;
4044 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4045
4046 /* Update type to add partial and then remove dodgy if set */
4047 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4048 type &= ~SKB_GSO_DODGY;
4049
4050 /* Update GSO info and prepare to start updating headers on
4051 * our way back down the stack of protocols.
4052 */
4053 for (iter = segs; iter; iter = iter->next) {
4054 skb_shinfo(iter)->gso_size = gso_size;
4055 skb_shinfo(iter)->gso_segs = partial_segs;
4056 skb_shinfo(iter)->gso_type = type;
4057 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4058 }
4059
4060 if (tail->len - doffset <= gso_size)
4061 skb_shinfo(tail)->gso_size = 0;
4062 else if (tail != segs)
4063 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4064 }
4065
4066 /* Following permits correct backpressure, for protocols
4067 * using skb_set_owner_w().
4068 * Idea is to tranfert ownership from head_skb to last segment.
4069 */
4070 if (head_skb->destructor == sock_wfree) {
4071 swap(tail->truesize, head_skb->truesize);
4072 swap(tail->destructor, head_skb->destructor);
4073 swap(tail->sk, head_skb->sk);
4074 }
4075 return segs;
4076
4077 err:
4078 kfree_skb_list(segs);
4079 return ERR_PTR(err);
4080 }
4081 EXPORT_SYMBOL_GPL(skb_segment);
4082
4083 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4084 {
4085 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4086 unsigned int offset = skb_gro_offset(skb);
4087 unsigned int headlen = skb_headlen(skb);
4088 unsigned int len = skb_gro_len(skb);
4089 unsigned int delta_truesize;
4090 struct sk_buff *lp;
4091
4092 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4093 return -E2BIG;
4094
4095 lp = NAPI_GRO_CB(p)->last;
4096 pinfo = skb_shinfo(lp);
4097
4098 if (headlen <= offset) {
4099 skb_frag_t *frag;
4100 skb_frag_t *frag2;
4101 int i = skbinfo->nr_frags;
4102 int nr_frags = pinfo->nr_frags + i;
4103
4104 if (nr_frags > MAX_SKB_FRAGS)
4105 goto merge;
4106
4107 offset -= headlen;
4108 pinfo->nr_frags = nr_frags;
4109 skbinfo->nr_frags = 0;
4110
4111 frag = pinfo->frags + nr_frags;
4112 frag2 = skbinfo->frags + i;
4113 do {
4114 *--frag = *--frag2;
4115 } while (--i);
4116
4117 skb_frag_off_add(frag, offset);
4118 skb_frag_size_sub(frag, offset);
4119
4120 /* all fragments truesize : remove (head size + sk_buff) */
4121 delta_truesize = skb->truesize -
4122 SKB_TRUESIZE(skb_end_offset(skb));
4123
4124 skb->truesize -= skb->data_len;
4125 skb->len -= skb->data_len;
4126 skb->data_len = 0;
4127
4128 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4129 goto done;
4130 } else if (skb->head_frag) {
4131 int nr_frags = pinfo->nr_frags;
4132 skb_frag_t *frag = pinfo->frags + nr_frags;
4133 struct page *page = virt_to_head_page(skb->head);
4134 unsigned int first_size = headlen - offset;
4135 unsigned int first_offset;
4136
4137 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4138 goto merge;
4139
4140 first_offset = skb->data -
4141 (unsigned char *)page_address(page) +
4142 offset;
4143
4144 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4145
4146 __skb_frag_set_page(frag, page);
4147 skb_frag_off_set(frag, first_offset);
4148 skb_frag_size_set(frag, first_size);
4149
4150 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4151 /* We dont need to clear skbinfo->nr_frags here */
4152
4153 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4154 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4155 goto done;
4156 }
4157
4158 merge:
4159 delta_truesize = skb->truesize;
4160 if (offset > headlen) {
4161 unsigned int eat = offset - headlen;
4162
4163 skb_frag_off_add(&skbinfo->frags[0], eat);
4164 skb_frag_size_sub(&skbinfo->frags[0], eat);
4165 skb->data_len -= eat;
4166 skb->len -= eat;
4167 offset = headlen;
4168 }
4169
4170 __skb_pull(skb, offset);
4171
4172 if (NAPI_GRO_CB(p)->last == p)
4173 skb_shinfo(p)->frag_list = skb;
4174 else
4175 NAPI_GRO_CB(p)->last->next = skb;
4176 NAPI_GRO_CB(p)->last = skb;
4177 __skb_header_release(skb);
4178 lp = p;
4179
4180 done:
4181 NAPI_GRO_CB(p)->count++;
4182 p->data_len += len;
4183 p->truesize += delta_truesize;
4184 p->len += len;
4185 if (lp != p) {
4186 lp->data_len += len;
4187 lp->truesize += delta_truesize;
4188 lp->len += len;
4189 }
4190 NAPI_GRO_CB(skb)->same_flow = 1;
4191 return 0;
4192 }
4193
4194 #ifdef CONFIG_SKB_EXTENSIONS
4195 #define SKB_EXT_ALIGN_VALUE 8
4196 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4197
4198 static const u8 skb_ext_type_len[] = {
4199 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4200 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4201 #endif
4202 #ifdef CONFIG_XFRM
4203 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4204 #endif
4205 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4206 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4207 #endif
4208 #if IS_ENABLED(CONFIG_MPTCP)
4209 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4210 #endif
4211 };
4212
4213 static __always_inline unsigned int skb_ext_total_length(void)
4214 {
4215 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4216 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4217 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4218 #endif
4219 #ifdef CONFIG_XFRM
4220 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4221 #endif
4222 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4223 skb_ext_type_len[TC_SKB_EXT] +
4224 #endif
4225 #if IS_ENABLED(CONFIG_MPTCP)
4226 skb_ext_type_len[SKB_EXT_MPTCP] +
4227 #endif
4228 0;
4229 }
4230
4231 static void skb_extensions_init(void)
4232 {
4233 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4234 BUILD_BUG_ON(skb_ext_total_length() > 255);
4235
4236 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4237 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4238 0,
4239 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4240 NULL);
4241 }
4242 #else
4243 static void skb_extensions_init(void) {}
4244 #endif
4245
4246 void __init skb_init(void)
4247 {
4248 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4249 sizeof(struct sk_buff),
4250 0,
4251 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4252 offsetof(struct sk_buff, cb),
4253 sizeof_field(struct sk_buff, cb),
4254 NULL);
4255 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4256 sizeof(struct sk_buff_fclones),
4257 0,
4258 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4259 NULL);
4260 skb_extensions_init();
4261 }
4262
4263 static int
4264 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4265 unsigned int recursion_level)
4266 {
4267 int start = skb_headlen(skb);
4268 int i, copy = start - offset;
4269 struct sk_buff *frag_iter;
4270 int elt = 0;
4271
4272 if (unlikely(recursion_level >= 24))
4273 return -EMSGSIZE;
4274
4275 if (copy > 0) {
4276 if (copy > len)
4277 copy = len;
4278 sg_set_buf(sg, skb->data + offset, copy);
4279 elt++;
4280 if ((len -= copy) == 0)
4281 return elt;
4282 offset += copy;
4283 }
4284
4285 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4286 int end;
4287
4288 WARN_ON(start > offset + len);
4289
4290 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4291 if ((copy = end - offset) > 0) {
4292 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4293 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4294 return -EMSGSIZE;
4295
4296 if (copy > len)
4297 copy = len;
4298 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4299 skb_frag_off(frag) + offset - start);
4300 elt++;
4301 if (!(len -= copy))
4302 return elt;
4303 offset += copy;
4304 }
4305 start = end;
4306 }
4307
4308 skb_walk_frags(skb, frag_iter) {
4309 int end, ret;
4310
4311 WARN_ON(start > offset + len);
4312
4313 end = start + frag_iter->len;
4314 if ((copy = end - offset) > 0) {
4315 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4316 return -EMSGSIZE;
4317
4318 if (copy > len)
4319 copy = len;
4320 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4321 copy, recursion_level + 1);
4322 if (unlikely(ret < 0))
4323 return ret;
4324 elt += ret;
4325 if ((len -= copy) == 0)
4326 return elt;
4327 offset += copy;
4328 }
4329 start = end;
4330 }
4331 BUG_ON(len);
4332 return elt;
4333 }
4334
4335 /**
4336 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4337 * @skb: Socket buffer containing the buffers to be mapped
4338 * @sg: The scatter-gather list to map into
4339 * @offset: The offset into the buffer's contents to start mapping
4340 * @len: Length of buffer space to be mapped
4341 *
4342 * Fill the specified scatter-gather list with mappings/pointers into a
4343 * region of the buffer space attached to a socket buffer. Returns either
4344 * the number of scatterlist items used, or -EMSGSIZE if the contents
4345 * could not fit.
4346 */
4347 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4348 {
4349 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4350
4351 if (nsg <= 0)
4352 return nsg;
4353
4354 sg_mark_end(&sg[nsg - 1]);
4355
4356 return nsg;
4357 }
4358 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4359
4360 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4361 * sglist without mark the sg which contain last skb data as the end.
4362 * So the caller can mannipulate sg list as will when padding new data after
4363 * the first call without calling sg_unmark_end to expend sg list.
4364 *
4365 * Scenario to use skb_to_sgvec_nomark:
4366 * 1. sg_init_table
4367 * 2. skb_to_sgvec_nomark(payload1)
4368 * 3. skb_to_sgvec_nomark(payload2)
4369 *
4370 * This is equivalent to:
4371 * 1. sg_init_table
4372 * 2. skb_to_sgvec(payload1)
4373 * 3. sg_unmark_end
4374 * 4. skb_to_sgvec(payload2)
4375 *
4376 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4377 * is more preferable.
4378 */
4379 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4380 int offset, int len)
4381 {
4382 return __skb_to_sgvec(skb, sg, offset, len, 0);
4383 }
4384 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4385
4386
4387
4388 /**
4389 * skb_cow_data - Check that a socket buffer's data buffers are writable
4390 * @skb: The socket buffer to check.
4391 * @tailbits: Amount of trailing space to be added
4392 * @trailer: Returned pointer to the skb where the @tailbits space begins
4393 *
4394 * Make sure that the data buffers attached to a socket buffer are
4395 * writable. If they are not, private copies are made of the data buffers
4396 * and the socket buffer is set to use these instead.
4397 *
4398 * If @tailbits is given, make sure that there is space to write @tailbits
4399 * bytes of data beyond current end of socket buffer. @trailer will be
4400 * set to point to the skb in which this space begins.
4401 *
4402 * The number of scatterlist elements required to completely map the
4403 * COW'd and extended socket buffer will be returned.
4404 */
4405 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4406 {
4407 int copyflag;
4408 int elt;
4409 struct sk_buff *skb1, **skb_p;
4410
4411 /* If skb is cloned or its head is paged, reallocate
4412 * head pulling out all the pages (pages are considered not writable
4413 * at the moment even if they are anonymous).
4414 */
4415 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4416 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4417 return -ENOMEM;
4418
4419 /* Easy case. Most of packets will go this way. */
4420 if (!skb_has_frag_list(skb)) {
4421 /* A little of trouble, not enough of space for trailer.
4422 * This should not happen, when stack is tuned to generate
4423 * good frames. OK, on miss we reallocate and reserve even more
4424 * space, 128 bytes is fair. */
4425
4426 if (skb_tailroom(skb) < tailbits &&
4427 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4428 return -ENOMEM;
4429
4430 /* Voila! */
4431 *trailer = skb;
4432 return 1;
4433 }
4434
4435 /* Misery. We are in troubles, going to mincer fragments... */
4436
4437 elt = 1;
4438 skb_p = &skb_shinfo(skb)->frag_list;
4439 copyflag = 0;
4440
4441 while ((skb1 = *skb_p) != NULL) {
4442 int ntail = 0;
4443
4444 /* The fragment is partially pulled by someone,
4445 * this can happen on input. Copy it and everything
4446 * after it. */
4447
4448 if (skb_shared(skb1))
4449 copyflag = 1;
4450
4451 /* If the skb is the last, worry about trailer. */
4452
4453 if (skb1->next == NULL && tailbits) {
4454 if (skb_shinfo(skb1)->nr_frags ||
4455 skb_has_frag_list(skb1) ||
4456 skb_tailroom(skb1) < tailbits)
4457 ntail = tailbits + 128;
4458 }
4459
4460 if (copyflag ||
4461 skb_cloned(skb1) ||
4462 ntail ||
4463 skb_shinfo(skb1)->nr_frags ||
4464 skb_has_frag_list(skb1)) {
4465 struct sk_buff *skb2;
4466
4467 /* Fuck, we are miserable poor guys... */
4468 if (ntail == 0)
4469 skb2 = skb_copy(skb1, GFP_ATOMIC);
4470 else
4471 skb2 = skb_copy_expand(skb1,
4472 skb_headroom(skb1),
4473 ntail,
4474 GFP_ATOMIC);
4475 if (unlikely(skb2 == NULL))
4476 return -ENOMEM;
4477
4478 if (skb1->sk)
4479 skb_set_owner_w(skb2, skb1->sk);
4480
4481 /* Looking around. Are we still alive?
4482 * OK, link new skb, drop old one */
4483
4484 skb2->next = skb1->next;
4485 *skb_p = skb2;
4486 kfree_skb(skb1);
4487 skb1 = skb2;
4488 }
4489 elt++;
4490 *trailer = skb1;
4491 skb_p = &skb1->next;
4492 }
4493
4494 return elt;
4495 }
4496 EXPORT_SYMBOL_GPL(skb_cow_data);
4497
4498 static void sock_rmem_free(struct sk_buff *skb)
4499 {
4500 struct sock *sk = skb->sk;
4501
4502 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4503 }
4504
4505 static void skb_set_err_queue(struct sk_buff *skb)
4506 {
4507 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4508 * So, it is safe to (mis)use it to mark skbs on the error queue.
4509 */
4510 skb->pkt_type = PACKET_OUTGOING;
4511 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4512 }
4513
4514 /*
4515 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4516 */
4517 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4518 {
4519 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4520 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4521 return -ENOMEM;
4522
4523 skb_orphan(skb);
4524 skb->sk = sk;
4525 skb->destructor = sock_rmem_free;
4526 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4527 skb_set_err_queue(skb);
4528
4529 /* before exiting rcu section, make sure dst is refcounted */
4530 skb_dst_force(skb);
4531
4532 skb_queue_tail(&sk->sk_error_queue, skb);
4533 if (!sock_flag(sk, SOCK_DEAD))
4534 sk->sk_error_report(sk);
4535 return 0;
4536 }
4537 EXPORT_SYMBOL(sock_queue_err_skb);
4538
4539 static bool is_icmp_err_skb(const struct sk_buff *skb)
4540 {
4541 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4542 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4543 }
4544
4545 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4546 {
4547 struct sk_buff_head *q = &sk->sk_error_queue;
4548 struct sk_buff *skb, *skb_next = NULL;
4549 bool icmp_next = false;
4550 unsigned long flags;
4551
4552 spin_lock_irqsave(&q->lock, flags);
4553 skb = __skb_dequeue(q);
4554 if (skb && (skb_next = skb_peek(q))) {
4555 icmp_next = is_icmp_err_skb(skb_next);
4556 if (icmp_next)
4557 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4558 }
4559 spin_unlock_irqrestore(&q->lock, flags);
4560
4561 if (is_icmp_err_skb(skb) && !icmp_next)
4562 sk->sk_err = 0;
4563
4564 if (skb_next)
4565 sk->sk_error_report(sk);
4566
4567 return skb;
4568 }
4569 EXPORT_SYMBOL(sock_dequeue_err_skb);
4570
4571 /**
4572 * skb_clone_sk - create clone of skb, and take reference to socket
4573 * @skb: the skb to clone
4574 *
4575 * This function creates a clone of a buffer that holds a reference on
4576 * sk_refcnt. Buffers created via this function are meant to be
4577 * returned using sock_queue_err_skb, or free via kfree_skb.
4578 *
4579 * When passing buffers allocated with this function to sock_queue_err_skb
4580 * it is necessary to wrap the call with sock_hold/sock_put in order to
4581 * prevent the socket from being released prior to being enqueued on
4582 * the sk_error_queue.
4583 */
4584 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4585 {
4586 struct sock *sk = skb->sk;
4587 struct sk_buff *clone;
4588
4589 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4590 return NULL;
4591
4592 clone = skb_clone(skb, GFP_ATOMIC);
4593 if (!clone) {
4594 sock_put(sk);
4595 return NULL;
4596 }
4597
4598 clone->sk = sk;
4599 clone->destructor = sock_efree;
4600
4601 return clone;
4602 }
4603 EXPORT_SYMBOL(skb_clone_sk);
4604
4605 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4606 struct sock *sk,
4607 int tstype,
4608 bool opt_stats)
4609 {
4610 struct sock_exterr_skb *serr;
4611 int err;
4612
4613 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4614
4615 serr = SKB_EXT_ERR(skb);
4616 memset(serr, 0, sizeof(*serr));
4617 serr->ee.ee_errno = ENOMSG;
4618 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4619 serr->ee.ee_info = tstype;
4620 serr->opt_stats = opt_stats;
4621 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4622 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4623 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4624 if (sk->sk_protocol == IPPROTO_TCP &&
4625 sk->sk_type == SOCK_STREAM)
4626 serr->ee.ee_data -= sk->sk_tskey;
4627 }
4628
4629 err = sock_queue_err_skb(sk, skb);
4630
4631 if (err)
4632 kfree_skb(skb);
4633 }
4634
4635 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4636 {
4637 bool ret;
4638
4639 if (likely(sysctl_tstamp_allow_data || tsonly))
4640 return true;
4641
4642 read_lock_bh(&sk->sk_callback_lock);
4643 ret = sk->sk_socket && sk->sk_socket->file &&
4644 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4645 read_unlock_bh(&sk->sk_callback_lock);
4646 return ret;
4647 }
4648
4649 void skb_complete_tx_timestamp(struct sk_buff *skb,
4650 struct skb_shared_hwtstamps *hwtstamps)
4651 {
4652 struct sock *sk = skb->sk;
4653
4654 if (!skb_may_tx_timestamp(sk, false))
4655 goto err;
4656
4657 /* Take a reference to prevent skb_orphan() from freeing the socket,
4658 * but only if the socket refcount is not zero.
4659 */
4660 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4661 *skb_hwtstamps(skb) = *hwtstamps;
4662 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4663 sock_put(sk);
4664 return;
4665 }
4666
4667 err:
4668 kfree_skb(skb);
4669 }
4670 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4671
4672 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4673 struct skb_shared_hwtstamps *hwtstamps,
4674 struct sock *sk, int tstype)
4675 {
4676 struct sk_buff *skb;
4677 bool tsonly, opt_stats = false;
4678
4679 if (!sk)
4680 return;
4681
4682 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4683 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4684 return;
4685
4686 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4687 if (!skb_may_tx_timestamp(sk, tsonly))
4688 return;
4689
4690 if (tsonly) {
4691 #ifdef CONFIG_INET
4692 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4693 sk->sk_protocol == IPPROTO_TCP &&
4694 sk->sk_type == SOCK_STREAM) {
4695 skb = tcp_get_timestamping_opt_stats(sk);
4696 opt_stats = true;
4697 } else
4698 #endif
4699 skb = alloc_skb(0, GFP_ATOMIC);
4700 } else {
4701 skb = skb_clone(orig_skb, GFP_ATOMIC);
4702 }
4703 if (!skb)
4704 return;
4705
4706 if (tsonly) {
4707 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4708 SKBTX_ANY_TSTAMP;
4709 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4710 }
4711
4712 if (hwtstamps)
4713 *skb_hwtstamps(skb) = *hwtstamps;
4714 else
4715 skb->tstamp = ktime_get_real();
4716
4717 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4718 }
4719 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4720
4721 void skb_tstamp_tx(struct sk_buff *orig_skb,
4722 struct skb_shared_hwtstamps *hwtstamps)
4723 {
4724 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4725 SCM_TSTAMP_SND);
4726 }
4727 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4728
4729 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4730 {
4731 struct sock *sk = skb->sk;
4732 struct sock_exterr_skb *serr;
4733 int err = 1;
4734
4735 skb->wifi_acked_valid = 1;
4736 skb->wifi_acked = acked;
4737
4738 serr = SKB_EXT_ERR(skb);
4739 memset(serr, 0, sizeof(*serr));
4740 serr->ee.ee_errno = ENOMSG;
4741 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4742
4743 /* Take a reference to prevent skb_orphan() from freeing the socket,
4744 * but only if the socket refcount is not zero.
4745 */
4746 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4747 err = sock_queue_err_skb(sk, skb);
4748 sock_put(sk);
4749 }
4750 if (err)
4751 kfree_skb(skb);
4752 }
4753 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4754
4755 /**
4756 * skb_partial_csum_set - set up and verify partial csum values for packet
4757 * @skb: the skb to set
4758 * @start: the number of bytes after skb->data to start checksumming.
4759 * @off: the offset from start to place the checksum.
4760 *
4761 * For untrusted partially-checksummed packets, we need to make sure the values
4762 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4763 *
4764 * This function checks and sets those values and skb->ip_summed: if this
4765 * returns false you should drop the packet.
4766 */
4767 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4768 {
4769 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4770 u32 csum_start = skb_headroom(skb) + (u32)start;
4771
4772 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4773 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4774 start, off, skb_headroom(skb), skb_headlen(skb));
4775 return false;
4776 }
4777 skb->ip_summed = CHECKSUM_PARTIAL;
4778 skb->csum_start = csum_start;
4779 skb->csum_offset = off;
4780 skb_set_transport_header(skb, start);
4781 return true;
4782 }
4783 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4784
4785 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4786 unsigned int max)
4787 {
4788 if (skb_headlen(skb) >= len)
4789 return 0;
4790
4791 /* If we need to pullup then pullup to the max, so we
4792 * won't need to do it again.
4793 */
4794 if (max > skb->len)
4795 max = skb->len;
4796
4797 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4798 return -ENOMEM;
4799
4800 if (skb_headlen(skb) < len)
4801 return -EPROTO;
4802
4803 return 0;
4804 }
4805
4806 #define MAX_TCP_HDR_LEN (15 * 4)
4807
4808 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4809 typeof(IPPROTO_IP) proto,
4810 unsigned int off)
4811 {
4812 int err;
4813
4814 switch (proto) {
4815 case IPPROTO_TCP:
4816 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4817 off + MAX_TCP_HDR_LEN);
4818 if (!err && !skb_partial_csum_set(skb, off,
4819 offsetof(struct tcphdr,
4820 check)))
4821 err = -EPROTO;
4822 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4823
4824 case IPPROTO_UDP:
4825 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4826 off + sizeof(struct udphdr));
4827 if (!err && !skb_partial_csum_set(skb, off,
4828 offsetof(struct udphdr,
4829 check)))
4830 err = -EPROTO;
4831 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4832 }
4833
4834 return ERR_PTR(-EPROTO);
4835 }
4836
4837 /* This value should be large enough to cover a tagged ethernet header plus
4838 * maximally sized IP and TCP or UDP headers.
4839 */
4840 #define MAX_IP_HDR_LEN 128
4841
4842 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4843 {
4844 unsigned int off;
4845 bool fragment;
4846 __sum16 *csum;
4847 int err;
4848
4849 fragment = false;
4850
4851 err = skb_maybe_pull_tail(skb,
4852 sizeof(struct iphdr),
4853 MAX_IP_HDR_LEN);
4854 if (err < 0)
4855 goto out;
4856
4857 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4858 fragment = true;
4859
4860 off = ip_hdrlen(skb);
4861
4862 err = -EPROTO;
4863
4864 if (fragment)
4865 goto out;
4866
4867 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4868 if (IS_ERR(csum))
4869 return PTR_ERR(csum);
4870
4871 if (recalculate)
4872 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4873 ip_hdr(skb)->daddr,
4874 skb->len - off,
4875 ip_hdr(skb)->protocol, 0);
4876 err = 0;
4877
4878 out:
4879 return err;
4880 }
4881
4882 /* This value should be large enough to cover a tagged ethernet header plus
4883 * an IPv6 header, all options, and a maximal TCP or UDP header.
4884 */
4885 #define MAX_IPV6_HDR_LEN 256
4886
4887 #define OPT_HDR(type, skb, off) \
4888 (type *)(skb_network_header(skb) + (off))
4889
4890 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4891 {
4892 int err;
4893 u8 nexthdr;
4894 unsigned int off;
4895 unsigned int len;
4896 bool fragment;
4897 bool done;
4898 __sum16 *csum;
4899
4900 fragment = false;
4901 done = false;
4902
4903 off = sizeof(struct ipv6hdr);
4904
4905 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4906 if (err < 0)
4907 goto out;
4908
4909 nexthdr = ipv6_hdr(skb)->nexthdr;
4910
4911 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4912 while (off <= len && !done) {
4913 switch (nexthdr) {
4914 case IPPROTO_DSTOPTS:
4915 case IPPROTO_HOPOPTS:
4916 case IPPROTO_ROUTING: {
4917 struct ipv6_opt_hdr *hp;
4918
4919 err = skb_maybe_pull_tail(skb,
4920 off +
4921 sizeof(struct ipv6_opt_hdr),
4922 MAX_IPV6_HDR_LEN);
4923 if (err < 0)
4924 goto out;
4925
4926 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4927 nexthdr = hp->nexthdr;
4928 off += ipv6_optlen(hp);
4929 break;
4930 }
4931 case IPPROTO_AH: {
4932 struct ip_auth_hdr *hp;
4933
4934 err = skb_maybe_pull_tail(skb,
4935 off +
4936 sizeof(struct ip_auth_hdr),
4937 MAX_IPV6_HDR_LEN);
4938 if (err < 0)
4939 goto out;
4940
4941 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4942 nexthdr = hp->nexthdr;
4943 off += ipv6_authlen(hp);
4944 break;
4945 }
4946 case IPPROTO_FRAGMENT: {
4947 struct frag_hdr *hp;
4948
4949 err = skb_maybe_pull_tail(skb,
4950 off +
4951 sizeof(struct frag_hdr),
4952 MAX_IPV6_HDR_LEN);
4953 if (err < 0)
4954 goto out;
4955
4956 hp = OPT_HDR(struct frag_hdr, skb, off);
4957
4958 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4959 fragment = true;
4960
4961 nexthdr = hp->nexthdr;
4962 off += sizeof(struct frag_hdr);
4963 break;
4964 }
4965 default:
4966 done = true;
4967 break;
4968 }
4969 }
4970
4971 err = -EPROTO;
4972
4973 if (!done || fragment)
4974 goto out;
4975
4976 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4977 if (IS_ERR(csum))
4978 return PTR_ERR(csum);
4979
4980 if (recalculate)
4981 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4982 &ipv6_hdr(skb)->daddr,
4983 skb->len - off, nexthdr, 0);
4984 err = 0;
4985
4986 out:
4987 return err;
4988 }
4989
4990 /**
4991 * skb_checksum_setup - set up partial checksum offset
4992 * @skb: the skb to set up
4993 * @recalculate: if true the pseudo-header checksum will be recalculated
4994 */
4995 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4996 {
4997 int err;
4998
4999 switch (skb->protocol) {
5000 case htons(ETH_P_IP):
5001 err = skb_checksum_setup_ipv4(skb, recalculate);
5002 break;
5003
5004 case htons(ETH_P_IPV6):
5005 err = skb_checksum_setup_ipv6(skb, recalculate);
5006 break;
5007
5008 default:
5009 err = -EPROTO;
5010 break;
5011 }
5012
5013 return err;
5014 }
5015 EXPORT_SYMBOL(skb_checksum_setup);
5016
5017 /**
5018 * skb_checksum_maybe_trim - maybe trims the given skb
5019 * @skb: the skb to check
5020 * @transport_len: the data length beyond the network header
5021 *
5022 * Checks whether the given skb has data beyond the given transport length.
5023 * If so, returns a cloned skb trimmed to this transport length.
5024 * Otherwise returns the provided skb. Returns NULL in error cases
5025 * (e.g. transport_len exceeds skb length or out-of-memory).
5026 *
5027 * Caller needs to set the skb transport header and free any returned skb if it
5028 * differs from the provided skb.
5029 */
5030 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5031 unsigned int transport_len)
5032 {
5033 struct sk_buff *skb_chk;
5034 unsigned int len = skb_transport_offset(skb) + transport_len;
5035 int ret;
5036
5037 if (skb->len < len)
5038 return NULL;
5039 else if (skb->len == len)
5040 return skb;
5041
5042 skb_chk = skb_clone(skb, GFP_ATOMIC);
5043 if (!skb_chk)
5044 return NULL;
5045
5046 ret = pskb_trim_rcsum(skb_chk, len);
5047 if (ret) {
5048 kfree_skb(skb_chk);
5049 return NULL;
5050 }
5051
5052 return skb_chk;
5053 }
5054
5055 /**
5056 * skb_checksum_trimmed - validate checksum of an skb
5057 * @skb: the skb to check
5058 * @transport_len: the data length beyond the network header
5059 * @skb_chkf: checksum function to use
5060 *
5061 * Applies the given checksum function skb_chkf to the provided skb.
5062 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5063 *
5064 * If the skb has data beyond the given transport length, then a
5065 * trimmed & cloned skb is checked and returned.
5066 *
5067 * Caller needs to set the skb transport header and free any returned skb if it
5068 * differs from the provided skb.
5069 */
5070 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5071 unsigned int transport_len,
5072 __sum16(*skb_chkf)(struct sk_buff *skb))
5073 {
5074 struct sk_buff *skb_chk;
5075 unsigned int offset = skb_transport_offset(skb);
5076 __sum16 ret;
5077
5078 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5079 if (!skb_chk)
5080 goto err;
5081
5082 if (!pskb_may_pull(skb_chk, offset))
5083 goto err;
5084
5085 skb_pull_rcsum(skb_chk, offset);
5086 ret = skb_chkf(skb_chk);
5087 skb_push_rcsum(skb_chk, offset);
5088
5089 if (ret)
5090 goto err;
5091
5092 return skb_chk;
5093
5094 err:
5095 if (skb_chk && skb_chk != skb)
5096 kfree_skb(skb_chk);
5097
5098 return NULL;
5099
5100 }
5101 EXPORT_SYMBOL(skb_checksum_trimmed);
5102
5103 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5104 {
5105 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5106 skb->dev->name);
5107 }
5108 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5109
5110 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5111 {
5112 if (head_stolen) {
5113 skb_release_head_state(skb);
5114 kmem_cache_free(skbuff_head_cache, skb);
5115 } else {
5116 __kfree_skb(skb);
5117 }
5118 }
5119 EXPORT_SYMBOL(kfree_skb_partial);
5120
5121 /**
5122 * skb_try_coalesce - try to merge skb to prior one
5123 * @to: prior buffer
5124 * @from: buffer to add
5125 * @fragstolen: pointer to boolean
5126 * @delta_truesize: how much more was allocated than was requested
5127 */
5128 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5129 bool *fragstolen, int *delta_truesize)
5130 {
5131 struct skb_shared_info *to_shinfo, *from_shinfo;
5132 int i, delta, len = from->len;
5133
5134 *fragstolen = false;
5135
5136 if (skb_cloned(to))
5137 return false;
5138
5139 if (len <= skb_tailroom(to)) {
5140 if (len)
5141 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5142 *delta_truesize = 0;
5143 return true;
5144 }
5145
5146 to_shinfo = skb_shinfo(to);
5147 from_shinfo = skb_shinfo(from);
5148 if (to_shinfo->frag_list || from_shinfo->frag_list)
5149 return false;
5150 if (skb_zcopy(to) || skb_zcopy(from))
5151 return false;
5152
5153 if (skb_headlen(from) != 0) {
5154 struct page *page;
5155 unsigned int offset;
5156
5157 if (to_shinfo->nr_frags +
5158 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5159 return false;
5160
5161 if (skb_head_is_locked(from))
5162 return false;
5163
5164 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5165
5166 page = virt_to_head_page(from->head);
5167 offset = from->data - (unsigned char *)page_address(page);
5168
5169 skb_fill_page_desc(to, to_shinfo->nr_frags,
5170 page, offset, skb_headlen(from));
5171 *fragstolen = true;
5172 } else {
5173 if (to_shinfo->nr_frags +
5174 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5175 return false;
5176
5177 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5178 }
5179
5180 WARN_ON_ONCE(delta < len);
5181
5182 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5183 from_shinfo->frags,
5184 from_shinfo->nr_frags * sizeof(skb_frag_t));
5185 to_shinfo->nr_frags += from_shinfo->nr_frags;
5186
5187 if (!skb_cloned(from))
5188 from_shinfo->nr_frags = 0;
5189
5190 /* if the skb is not cloned this does nothing
5191 * since we set nr_frags to 0.
5192 */
5193 for (i = 0; i < from_shinfo->nr_frags; i++)
5194 __skb_frag_ref(&from_shinfo->frags[i]);
5195
5196 to->truesize += delta;
5197 to->len += len;
5198 to->data_len += len;
5199
5200 *delta_truesize = delta;
5201 return true;
5202 }
5203 EXPORT_SYMBOL(skb_try_coalesce);
5204
5205 /**
5206 * skb_scrub_packet - scrub an skb
5207 *
5208 * @skb: buffer to clean
5209 * @xnet: packet is crossing netns
5210 *
5211 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5212 * into/from a tunnel. Some information have to be cleared during these
5213 * operations.
5214 * skb_scrub_packet can also be used to clean a skb before injecting it in
5215 * another namespace (@xnet == true). We have to clear all information in the
5216 * skb that could impact namespace isolation.
5217 */
5218 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5219 {
5220 skb->pkt_type = PACKET_HOST;
5221 skb->skb_iif = 0;
5222 skb->ignore_df = 0;
5223 skb_dst_drop(skb);
5224 skb_ext_reset(skb);
5225 nf_reset_ct(skb);
5226 nf_reset_trace(skb);
5227
5228 #ifdef CONFIG_NET_SWITCHDEV
5229 skb->offload_fwd_mark = 0;
5230 skb->offload_l3_fwd_mark = 0;
5231 #endif
5232
5233 if (!xnet)
5234 return;
5235
5236 ipvs_reset(skb);
5237 skb->mark = 0;
5238 skb->tstamp = 0;
5239 }
5240 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5241
5242 /**
5243 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5244 *
5245 * @skb: GSO skb
5246 *
5247 * skb_gso_transport_seglen is used to determine the real size of the
5248 * individual segments, including Layer4 headers (TCP/UDP).
5249 *
5250 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5251 */
5252 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5253 {
5254 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5255 unsigned int thlen = 0;
5256
5257 if (skb->encapsulation) {
5258 thlen = skb_inner_transport_header(skb) -
5259 skb_transport_header(skb);
5260
5261 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5262 thlen += inner_tcp_hdrlen(skb);
5263 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5264 thlen = tcp_hdrlen(skb);
5265 } else if (unlikely(skb_is_gso_sctp(skb))) {
5266 thlen = sizeof(struct sctphdr);
5267 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5268 thlen = sizeof(struct udphdr);
5269 }
5270 /* UFO sets gso_size to the size of the fragmentation
5271 * payload, i.e. the size of the L4 (UDP) header is already
5272 * accounted for.
5273 */
5274 return thlen + shinfo->gso_size;
5275 }
5276
5277 /**
5278 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5279 *
5280 * @skb: GSO skb
5281 *
5282 * skb_gso_network_seglen is used to determine the real size of the
5283 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5284 *
5285 * The MAC/L2 header is not accounted for.
5286 */
5287 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5288 {
5289 unsigned int hdr_len = skb_transport_header(skb) -
5290 skb_network_header(skb);
5291
5292 return hdr_len + skb_gso_transport_seglen(skb);
5293 }
5294
5295 /**
5296 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5297 *
5298 * @skb: GSO skb
5299 *
5300 * skb_gso_mac_seglen is used to determine the real size of the
5301 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5302 * headers (TCP/UDP).
5303 */
5304 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5305 {
5306 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5307
5308 return hdr_len + skb_gso_transport_seglen(skb);
5309 }
5310
5311 /**
5312 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5313 *
5314 * There are a couple of instances where we have a GSO skb, and we
5315 * want to determine what size it would be after it is segmented.
5316 *
5317 * We might want to check:
5318 * - L3+L4+payload size (e.g. IP forwarding)
5319 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5320 *
5321 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5322 *
5323 * @skb: GSO skb
5324 *
5325 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5326 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5327 *
5328 * @max_len: The maximum permissible length.
5329 *
5330 * Returns true if the segmented length <= max length.
5331 */
5332 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5333 unsigned int seg_len,
5334 unsigned int max_len) {
5335 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5336 const struct sk_buff *iter;
5337
5338 if (shinfo->gso_size != GSO_BY_FRAGS)
5339 return seg_len <= max_len;
5340
5341 /* Undo this so we can re-use header sizes */
5342 seg_len -= GSO_BY_FRAGS;
5343
5344 skb_walk_frags(skb, iter) {
5345 if (seg_len + skb_headlen(iter) > max_len)
5346 return false;
5347 }
5348
5349 return true;
5350 }
5351
5352 /**
5353 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5354 *
5355 * @skb: GSO skb
5356 * @mtu: MTU to validate against
5357 *
5358 * skb_gso_validate_network_len validates if a given skb will fit a
5359 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5360 * payload.
5361 */
5362 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5363 {
5364 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5365 }
5366 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5367
5368 /**
5369 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5370 *
5371 * @skb: GSO skb
5372 * @len: length to validate against
5373 *
5374 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5375 * length once split, including L2, L3 and L4 headers and the payload.
5376 */
5377 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5378 {
5379 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5380 }
5381 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5382
5383 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5384 {
5385 int mac_len, meta_len;
5386 void *meta;
5387
5388 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5389 kfree_skb(skb);
5390 return NULL;
5391 }
5392
5393 mac_len = skb->data - skb_mac_header(skb);
5394 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5395 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5396 mac_len - VLAN_HLEN - ETH_TLEN);
5397 }
5398
5399 meta_len = skb_metadata_len(skb);
5400 if (meta_len) {
5401 meta = skb_metadata_end(skb) - meta_len;
5402 memmove(meta + VLAN_HLEN, meta, meta_len);
5403 }
5404
5405 skb->mac_header += VLAN_HLEN;
5406 return skb;
5407 }
5408
5409 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5410 {
5411 struct vlan_hdr *vhdr;
5412 u16 vlan_tci;
5413
5414 if (unlikely(skb_vlan_tag_present(skb))) {
5415 /* vlan_tci is already set-up so leave this for another time */
5416 return skb;
5417 }
5418
5419 skb = skb_share_check(skb, GFP_ATOMIC);
5420 if (unlikely(!skb))
5421 goto err_free;
5422
5423 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5424 goto err_free;
5425
5426 vhdr = (struct vlan_hdr *)skb->data;
5427 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5428 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5429
5430 skb_pull_rcsum(skb, VLAN_HLEN);
5431 vlan_set_encap_proto(skb, vhdr);
5432
5433 skb = skb_reorder_vlan_header(skb);
5434 if (unlikely(!skb))
5435 goto err_free;
5436
5437 skb_reset_network_header(skb);
5438 skb_reset_transport_header(skb);
5439 skb_reset_mac_len(skb);
5440
5441 return skb;
5442
5443 err_free:
5444 kfree_skb(skb);
5445 return NULL;
5446 }
5447 EXPORT_SYMBOL(skb_vlan_untag);
5448
5449 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5450 {
5451 if (!pskb_may_pull(skb, write_len))
5452 return -ENOMEM;
5453
5454 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5455 return 0;
5456
5457 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5458 }
5459 EXPORT_SYMBOL(skb_ensure_writable);
5460
5461 /* remove VLAN header from packet and update csum accordingly.
5462 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5463 */
5464 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5465 {
5466 struct vlan_hdr *vhdr;
5467 int offset = skb->data - skb_mac_header(skb);
5468 int err;
5469
5470 if (WARN_ONCE(offset,
5471 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5472 offset)) {
5473 return -EINVAL;
5474 }
5475
5476 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5477 if (unlikely(err))
5478 return err;
5479
5480 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5481
5482 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5483 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5484
5485 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5486 __skb_pull(skb, VLAN_HLEN);
5487
5488 vlan_set_encap_proto(skb, vhdr);
5489 skb->mac_header += VLAN_HLEN;
5490
5491 if (skb_network_offset(skb) < ETH_HLEN)
5492 skb_set_network_header(skb, ETH_HLEN);
5493
5494 skb_reset_mac_len(skb);
5495
5496 return err;
5497 }
5498 EXPORT_SYMBOL(__skb_vlan_pop);
5499
5500 /* Pop a vlan tag either from hwaccel or from payload.
5501 * Expects skb->data at mac header.
5502 */
5503 int skb_vlan_pop(struct sk_buff *skb)
5504 {
5505 u16 vlan_tci;
5506 __be16 vlan_proto;
5507 int err;
5508
5509 if (likely(skb_vlan_tag_present(skb))) {
5510 __vlan_hwaccel_clear_tag(skb);
5511 } else {
5512 if (unlikely(!eth_type_vlan(skb->protocol)))
5513 return 0;
5514
5515 err = __skb_vlan_pop(skb, &vlan_tci);
5516 if (err)
5517 return err;
5518 }
5519 /* move next vlan tag to hw accel tag */
5520 if (likely(!eth_type_vlan(skb->protocol)))
5521 return 0;
5522
5523 vlan_proto = skb->protocol;
5524 err = __skb_vlan_pop(skb, &vlan_tci);
5525 if (unlikely(err))
5526 return err;
5527
5528 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5529 return 0;
5530 }
5531 EXPORT_SYMBOL(skb_vlan_pop);
5532
5533 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5534 * Expects skb->data at mac header.
5535 */
5536 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5537 {
5538 if (skb_vlan_tag_present(skb)) {
5539 int offset = skb->data - skb_mac_header(skb);
5540 int err;
5541
5542 if (WARN_ONCE(offset,
5543 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5544 offset)) {
5545 return -EINVAL;
5546 }
5547
5548 err = __vlan_insert_tag(skb, skb->vlan_proto,
5549 skb_vlan_tag_get(skb));
5550 if (err)
5551 return err;
5552
5553 skb->protocol = skb->vlan_proto;
5554 skb->mac_len += VLAN_HLEN;
5555
5556 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5557 }
5558 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5559 return 0;
5560 }
5561 EXPORT_SYMBOL(skb_vlan_push);
5562
5563 /* Update the ethertype of hdr and the skb csum value if required. */
5564 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5565 __be16 ethertype)
5566 {
5567 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5568 __be16 diff[] = { ~hdr->h_proto, ethertype };
5569
5570 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5571 }
5572
5573 hdr->h_proto = ethertype;
5574 }
5575
5576 /**
5577 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5578 * the packet
5579 *
5580 * @skb: buffer
5581 * @mpls_lse: MPLS label stack entry to push
5582 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5583 * @mac_len: length of the MAC header
5584 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5585 * ethernet
5586 *
5587 * Expects skb->data at mac header.
5588 *
5589 * Returns 0 on success, -errno otherwise.
5590 */
5591 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5592 int mac_len, bool ethernet)
5593 {
5594 struct mpls_shim_hdr *lse;
5595 int err;
5596
5597 if (unlikely(!eth_p_mpls(mpls_proto)))
5598 return -EINVAL;
5599
5600 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5601 if (skb->encapsulation)
5602 return -EINVAL;
5603
5604 err = skb_cow_head(skb, MPLS_HLEN);
5605 if (unlikely(err))
5606 return err;
5607
5608 if (!skb->inner_protocol) {
5609 skb_set_inner_network_header(skb, skb_network_offset(skb));
5610 skb_set_inner_protocol(skb, skb->protocol);
5611 }
5612
5613 skb_push(skb, MPLS_HLEN);
5614 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5615 mac_len);
5616 skb_reset_mac_header(skb);
5617 skb_set_network_header(skb, mac_len);
5618 skb_reset_mac_len(skb);
5619
5620 lse = mpls_hdr(skb);
5621 lse->label_stack_entry = mpls_lse;
5622 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5623
5624 if (ethernet)
5625 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5626 skb->protocol = mpls_proto;
5627
5628 return 0;
5629 }
5630 EXPORT_SYMBOL_GPL(skb_mpls_push);
5631
5632 /**
5633 * skb_mpls_pop() - pop the outermost MPLS header
5634 *
5635 * @skb: buffer
5636 * @next_proto: ethertype of header after popped MPLS header
5637 * @mac_len: length of the MAC header
5638 * @ethernet: flag to indicate if the packet is ethernet
5639 *
5640 * Expects skb->data at mac header.
5641 *
5642 * Returns 0 on success, -errno otherwise.
5643 */
5644 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5645 bool ethernet)
5646 {
5647 int err;
5648
5649 if (unlikely(!eth_p_mpls(skb->protocol)))
5650 return 0;
5651
5652 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5653 if (unlikely(err))
5654 return err;
5655
5656 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5657 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5658 mac_len);
5659
5660 __skb_pull(skb, MPLS_HLEN);
5661 skb_reset_mac_header(skb);
5662 skb_set_network_header(skb, mac_len);
5663
5664 if (ethernet) {
5665 struct ethhdr *hdr;
5666
5667 /* use mpls_hdr() to get ethertype to account for VLANs. */
5668 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5669 skb_mod_eth_type(skb, hdr, next_proto);
5670 }
5671 skb->protocol = next_proto;
5672
5673 return 0;
5674 }
5675 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5676
5677 /**
5678 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5679 *
5680 * @skb: buffer
5681 * @mpls_lse: new MPLS label stack entry to update to
5682 *
5683 * Expects skb->data at mac header.
5684 *
5685 * Returns 0 on success, -errno otherwise.
5686 */
5687 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5688 {
5689 int err;
5690
5691 if (unlikely(!eth_p_mpls(skb->protocol)))
5692 return -EINVAL;
5693
5694 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5695 if (unlikely(err))
5696 return err;
5697
5698 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5699 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5700
5701 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5702 }
5703
5704 mpls_hdr(skb)->label_stack_entry = mpls_lse;
5705
5706 return 0;
5707 }
5708 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5709
5710 /**
5711 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5712 *
5713 * @skb: buffer
5714 *
5715 * Expects skb->data at mac header.
5716 *
5717 * Returns 0 on success, -errno otherwise.
5718 */
5719 int skb_mpls_dec_ttl(struct sk_buff *skb)
5720 {
5721 u32 lse;
5722 u8 ttl;
5723
5724 if (unlikely(!eth_p_mpls(skb->protocol)))
5725 return -EINVAL;
5726
5727 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5728 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5729 if (!--ttl)
5730 return -EINVAL;
5731
5732 lse &= ~MPLS_LS_TTL_MASK;
5733 lse |= ttl << MPLS_LS_TTL_SHIFT;
5734
5735 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5736 }
5737 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5738
5739 /**
5740 * alloc_skb_with_frags - allocate skb with page frags
5741 *
5742 * @header_len: size of linear part
5743 * @data_len: needed length in frags
5744 * @max_page_order: max page order desired.
5745 * @errcode: pointer to error code if any
5746 * @gfp_mask: allocation mask
5747 *
5748 * This can be used to allocate a paged skb, given a maximal order for frags.
5749 */
5750 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5751 unsigned long data_len,
5752 int max_page_order,
5753 int *errcode,
5754 gfp_t gfp_mask)
5755 {
5756 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5757 unsigned long chunk;
5758 struct sk_buff *skb;
5759 struct page *page;
5760 int i;
5761
5762 *errcode = -EMSGSIZE;
5763 /* Note this test could be relaxed, if we succeed to allocate
5764 * high order pages...
5765 */
5766 if (npages > MAX_SKB_FRAGS)
5767 return NULL;
5768
5769 *errcode = -ENOBUFS;
5770 skb = alloc_skb(header_len, gfp_mask);
5771 if (!skb)
5772 return NULL;
5773
5774 skb->truesize += npages << PAGE_SHIFT;
5775
5776 for (i = 0; npages > 0; i++) {
5777 int order = max_page_order;
5778
5779 while (order) {
5780 if (npages >= 1 << order) {
5781 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5782 __GFP_COMP |
5783 __GFP_NOWARN,
5784 order);
5785 if (page)
5786 goto fill_page;
5787 /* Do not retry other high order allocations */
5788 order = 1;
5789 max_page_order = 0;
5790 }
5791 order--;
5792 }
5793 page = alloc_page(gfp_mask);
5794 if (!page)
5795 goto failure;
5796 fill_page:
5797 chunk = min_t(unsigned long, data_len,
5798 PAGE_SIZE << order);
5799 skb_fill_page_desc(skb, i, page, 0, chunk);
5800 data_len -= chunk;
5801 npages -= 1 << order;
5802 }
5803 return skb;
5804
5805 failure:
5806 kfree_skb(skb);
5807 return NULL;
5808 }
5809 EXPORT_SYMBOL(alloc_skb_with_frags);
5810
5811 /* carve out the first off bytes from skb when off < headlen */
5812 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5813 const int headlen, gfp_t gfp_mask)
5814 {
5815 int i;
5816 int size = skb_end_offset(skb);
5817 int new_hlen = headlen - off;
5818 u8 *data;
5819
5820 size = SKB_DATA_ALIGN(size);
5821
5822 if (skb_pfmemalloc(skb))
5823 gfp_mask |= __GFP_MEMALLOC;
5824 data = kmalloc_reserve(size +
5825 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5826 gfp_mask, NUMA_NO_NODE, NULL);
5827 if (!data)
5828 return -ENOMEM;
5829
5830 size = SKB_WITH_OVERHEAD(ksize(data));
5831
5832 /* Copy real data, and all frags */
5833 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5834 skb->len -= off;
5835
5836 memcpy((struct skb_shared_info *)(data + size),
5837 skb_shinfo(skb),
5838 offsetof(struct skb_shared_info,
5839 frags[skb_shinfo(skb)->nr_frags]));
5840 if (skb_cloned(skb)) {
5841 /* drop the old head gracefully */
5842 if (skb_orphan_frags(skb, gfp_mask)) {
5843 kfree(data);
5844 return -ENOMEM;
5845 }
5846 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5847 skb_frag_ref(skb, i);
5848 if (skb_has_frag_list(skb))
5849 skb_clone_fraglist(skb);
5850 skb_release_data(skb);
5851 } else {
5852 /* we can reuse existing recount- all we did was
5853 * relocate values
5854 */
5855 skb_free_head(skb);
5856 }
5857
5858 skb->head = data;
5859 skb->data = data;
5860 skb->head_frag = 0;
5861 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5862 skb->end = size;
5863 #else
5864 skb->end = skb->head + size;
5865 #endif
5866 skb_set_tail_pointer(skb, skb_headlen(skb));
5867 skb_headers_offset_update(skb, 0);
5868 skb->cloned = 0;
5869 skb->hdr_len = 0;
5870 skb->nohdr = 0;
5871 atomic_set(&skb_shinfo(skb)->dataref, 1);
5872
5873 return 0;
5874 }
5875
5876 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5877
5878 /* carve out the first eat bytes from skb's frag_list. May recurse into
5879 * pskb_carve()
5880 */
5881 static int pskb_carve_frag_list(struct sk_buff *skb,
5882 struct skb_shared_info *shinfo, int eat,
5883 gfp_t gfp_mask)
5884 {
5885 struct sk_buff *list = shinfo->frag_list;
5886 struct sk_buff *clone = NULL;
5887 struct sk_buff *insp = NULL;
5888
5889 do {
5890 if (!list) {
5891 pr_err("Not enough bytes to eat. Want %d\n", eat);
5892 return -EFAULT;
5893 }
5894 if (list->len <= eat) {
5895 /* Eaten as whole. */
5896 eat -= list->len;
5897 list = list->next;
5898 insp = list;
5899 } else {
5900 /* Eaten partially. */
5901 if (skb_shared(list)) {
5902 clone = skb_clone(list, gfp_mask);
5903 if (!clone)
5904 return -ENOMEM;
5905 insp = list->next;
5906 list = clone;
5907 } else {
5908 /* This may be pulled without problems. */
5909 insp = list;
5910 }
5911 if (pskb_carve(list, eat, gfp_mask) < 0) {
5912 kfree_skb(clone);
5913 return -ENOMEM;
5914 }
5915 break;
5916 }
5917 } while (eat);
5918
5919 /* Free pulled out fragments. */
5920 while ((list = shinfo->frag_list) != insp) {
5921 shinfo->frag_list = list->next;
5922 kfree_skb(list);
5923 }
5924 /* And insert new clone at head. */
5925 if (clone) {
5926 clone->next = list;
5927 shinfo->frag_list = clone;
5928 }
5929 return 0;
5930 }
5931
5932 /* carve off first len bytes from skb. Split line (off) is in the
5933 * non-linear part of skb
5934 */
5935 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5936 int pos, gfp_t gfp_mask)
5937 {
5938 int i, k = 0;
5939 int size = skb_end_offset(skb);
5940 u8 *data;
5941 const int nfrags = skb_shinfo(skb)->nr_frags;
5942 struct skb_shared_info *shinfo;
5943
5944 size = SKB_DATA_ALIGN(size);
5945
5946 if (skb_pfmemalloc(skb))
5947 gfp_mask |= __GFP_MEMALLOC;
5948 data = kmalloc_reserve(size +
5949 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5950 gfp_mask, NUMA_NO_NODE, NULL);
5951 if (!data)
5952 return -ENOMEM;
5953
5954 size = SKB_WITH_OVERHEAD(ksize(data));
5955
5956 memcpy((struct skb_shared_info *)(data + size),
5957 skb_shinfo(skb), offsetof(struct skb_shared_info,
5958 frags[skb_shinfo(skb)->nr_frags]));
5959 if (skb_orphan_frags(skb, gfp_mask)) {
5960 kfree(data);
5961 return -ENOMEM;
5962 }
5963 shinfo = (struct skb_shared_info *)(data + size);
5964 for (i = 0; i < nfrags; i++) {
5965 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5966
5967 if (pos + fsize > off) {
5968 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5969
5970 if (pos < off) {
5971 /* Split frag.
5972 * We have two variants in this case:
5973 * 1. Move all the frag to the second
5974 * part, if it is possible. F.e.
5975 * this approach is mandatory for TUX,
5976 * where splitting is expensive.
5977 * 2. Split is accurately. We make this.
5978 */
5979 skb_frag_off_add(&shinfo->frags[0], off - pos);
5980 skb_frag_size_sub(&shinfo->frags[0], off - pos);
5981 }
5982 skb_frag_ref(skb, i);
5983 k++;
5984 }
5985 pos += fsize;
5986 }
5987 shinfo->nr_frags = k;
5988 if (skb_has_frag_list(skb))
5989 skb_clone_fraglist(skb);
5990
5991 if (k == 0) {
5992 /* split line is in frag list */
5993 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5994 }
5995 skb_release_data(skb);
5996
5997 skb->head = data;
5998 skb->head_frag = 0;
5999 skb->data = data;
6000 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6001 skb->end = size;
6002 #else
6003 skb->end = skb->head + size;
6004 #endif
6005 skb_reset_tail_pointer(skb);
6006 skb_headers_offset_update(skb, 0);
6007 skb->cloned = 0;
6008 skb->hdr_len = 0;
6009 skb->nohdr = 0;
6010 skb->len -= off;
6011 skb->data_len = skb->len;
6012 atomic_set(&skb_shinfo(skb)->dataref, 1);
6013 return 0;
6014 }
6015
6016 /* remove len bytes from the beginning of the skb */
6017 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6018 {
6019 int headlen = skb_headlen(skb);
6020
6021 if (len < headlen)
6022 return pskb_carve_inside_header(skb, len, headlen, gfp);
6023 else
6024 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6025 }
6026
6027 /* Extract to_copy bytes starting at off from skb, and return this in
6028 * a new skb
6029 */
6030 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6031 int to_copy, gfp_t gfp)
6032 {
6033 struct sk_buff *clone = skb_clone(skb, gfp);
6034
6035 if (!clone)
6036 return NULL;
6037
6038 if (pskb_carve(clone, off, gfp) < 0 ||
6039 pskb_trim(clone, to_copy)) {
6040 kfree_skb(clone);
6041 return NULL;
6042 }
6043 return clone;
6044 }
6045 EXPORT_SYMBOL(pskb_extract);
6046
6047 /**
6048 * skb_condense - try to get rid of fragments/frag_list if possible
6049 * @skb: buffer
6050 *
6051 * Can be used to save memory before skb is added to a busy queue.
6052 * If packet has bytes in frags and enough tail room in skb->head,
6053 * pull all of them, so that we can free the frags right now and adjust
6054 * truesize.
6055 * Notes:
6056 * We do not reallocate skb->head thus can not fail.
6057 * Caller must re-evaluate skb->truesize if needed.
6058 */
6059 void skb_condense(struct sk_buff *skb)
6060 {
6061 if (skb->data_len) {
6062 if (skb->data_len > skb->end - skb->tail ||
6063 skb_cloned(skb))
6064 return;
6065
6066 /* Nice, we can free page frag(s) right now */
6067 __pskb_pull_tail(skb, skb->data_len);
6068 }
6069 /* At this point, skb->truesize might be over estimated,
6070 * because skb had a fragment, and fragments do not tell
6071 * their truesize.
6072 * When we pulled its content into skb->head, fragment
6073 * was freed, but __pskb_pull_tail() could not possibly
6074 * adjust skb->truesize, not knowing the frag truesize.
6075 */
6076 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6077 }
6078
6079 #ifdef CONFIG_SKB_EXTENSIONS
6080 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6081 {
6082 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6083 }
6084
6085 /**
6086 * __skb_ext_alloc - allocate a new skb extensions storage
6087 *
6088 * @flags: See kmalloc().
6089 *
6090 * Returns the newly allocated pointer. The pointer can later attached to a
6091 * skb via __skb_ext_set().
6092 * Note: caller must handle the skb_ext as an opaque data.
6093 */
6094 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6095 {
6096 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6097
6098 if (new) {
6099 memset(new->offset, 0, sizeof(new->offset));
6100 refcount_set(&new->refcnt, 1);
6101 }
6102
6103 return new;
6104 }
6105
6106 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6107 unsigned int old_active)
6108 {
6109 struct skb_ext *new;
6110
6111 if (refcount_read(&old->refcnt) == 1)
6112 return old;
6113
6114 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6115 if (!new)
6116 return NULL;
6117
6118 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6119 refcount_set(&new->refcnt, 1);
6120
6121 #ifdef CONFIG_XFRM
6122 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6123 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6124 unsigned int i;
6125
6126 for (i = 0; i < sp->len; i++)
6127 xfrm_state_hold(sp->xvec[i]);
6128 }
6129 #endif
6130 __skb_ext_put(old);
6131 return new;
6132 }
6133
6134 /**
6135 * __skb_ext_set - attach the specified extension storage to this skb
6136 * @skb: buffer
6137 * @id: extension id
6138 * @ext: extension storage previously allocated via __skb_ext_alloc()
6139 *
6140 * Existing extensions, if any, are cleared.
6141 *
6142 * Returns the pointer to the extension.
6143 */
6144 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6145 struct skb_ext *ext)
6146 {
6147 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6148
6149 skb_ext_put(skb);
6150 newlen = newoff + skb_ext_type_len[id];
6151 ext->chunks = newlen;
6152 ext->offset[id] = newoff;
6153 skb->extensions = ext;
6154 skb->active_extensions = 1 << id;
6155 return skb_ext_get_ptr(ext, id);
6156 }
6157
6158 /**
6159 * skb_ext_add - allocate space for given extension, COW if needed
6160 * @skb: buffer
6161 * @id: extension to allocate space for
6162 *
6163 * Allocates enough space for the given extension.
6164 * If the extension is already present, a pointer to that extension
6165 * is returned.
6166 *
6167 * If the skb was cloned, COW applies and the returned memory can be
6168 * modified without changing the extension space of clones buffers.
6169 *
6170 * Returns pointer to the extension or NULL on allocation failure.
6171 */
6172 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6173 {
6174 struct skb_ext *new, *old = NULL;
6175 unsigned int newlen, newoff;
6176
6177 if (skb->active_extensions) {
6178 old = skb->extensions;
6179
6180 new = skb_ext_maybe_cow(old, skb->active_extensions);
6181 if (!new)
6182 return NULL;
6183
6184 if (__skb_ext_exist(new, id))
6185 goto set_active;
6186
6187 newoff = new->chunks;
6188 } else {
6189 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6190
6191 new = __skb_ext_alloc(GFP_ATOMIC);
6192 if (!new)
6193 return NULL;
6194 }
6195
6196 newlen = newoff + skb_ext_type_len[id];
6197 new->chunks = newlen;
6198 new->offset[id] = newoff;
6199 set_active:
6200 skb->extensions = new;
6201 skb->active_extensions |= 1 << id;
6202 return skb_ext_get_ptr(new, id);
6203 }
6204 EXPORT_SYMBOL(skb_ext_add);
6205
6206 #ifdef CONFIG_XFRM
6207 static void skb_ext_put_sp(struct sec_path *sp)
6208 {
6209 unsigned int i;
6210
6211 for (i = 0; i < sp->len; i++)
6212 xfrm_state_put(sp->xvec[i]);
6213 }
6214 #endif
6215
6216 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6217 {
6218 struct skb_ext *ext = skb->extensions;
6219
6220 skb->active_extensions &= ~(1 << id);
6221 if (skb->active_extensions == 0) {
6222 skb->extensions = NULL;
6223 __skb_ext_put(ext);
6224 #ifdef CONFIG_XFRM
6225 } else if (id == SKB_EXT_SEC_PATH &&
6226 refcount_read(&ext->refcnt) == 1) {
6227 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6228
6229 skb_ext_put_sp(sp);
6230 sp->len = 0;
6231 #endif
6232 }
6233 }
6234 EXPORT_SYMBOL(__skb_ext_del);
6235
6236 void __skb_ext_put(struct skb_ext *ext)
6237 {
6238 /* If this is last clone, nothing can increment
6239 * it after check passes. Avoids one atomic op.
6240 */
6241 if (refcount_read(&ext->refcnt) == 1)
6242 goto free_now;
6243
6244 if (!refcount_dec_and_test(&ext->refcnt))
6245 return;
6246 free_now:
6247 #ifdef CONFIG_XFRM
6248 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6249 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6250 #endif
6251
6252 kmem_cache_free(skbuff_ext_cache, ext);
6253 }
6254 EXPORT_SYMBOL(__skb_ext_put);
6255 #endif /* CONFIG_SKB_EXTENSIONS */