]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/skbuff.c
rps: Receive Packet Steering
[mirror_ubuntu-artful-kernel.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/mm.h>
44 #include <linux/interrupt.h>
45 #include <linux/in.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60
61 #include <net/protocol.h>
62 #include <net/dst.h>
63 #include <net/sock.h>
64 #include <net/checksum.h>
65 #include <net/xfrm.h>
66
67 #include <asm/uaccess.h>
68 #include <asm/system.h>
69 #include <trace/events/skb.h>
70
71 #include "kmap_skb.h"
72
73 static struct kmem_cache *skbuff_head_cache __read_mostly;
74 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
75
76 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
77 struct pipe_buffer *buf)
78 {
79 put_page(buf->page);
80 }
81
82 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
83 struct pipe_buffer *buf)
84 {
85 get_page(buf->page);
86 }
87
88 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
90 {
91 return 1;
92 }
93
94
95 /* Pipe buffer operations for a socket. */
96 static const struct pipe_buf_operations sock_pipe_buf_ops = {
97 .can_merge = 0,
98 .map = generic_pipe_buf_map,
99 .unmap = generic_pipe_buf_unmap,
100 .confirm = generic_pipe_buf_confirm,
101 .release = sock_pipe_buf_release,
102 .steal = sock_pipe_buf_steal,
103 .get = sock_pipe_buf_get,
104 };
105
106 /*
107 * Keep out-of-line to prevent kernel bloat.
108 * __builtin_return_address is not used because it is not always
109 * reliable.
110 */
111
112 /**
113 * skb_over_panic - private function
114 * @skb: buffer
115 * @sz: size
116 * @here: address
117 *
118 * Out of line support code for skb_put(). Not user callable.
119 */
120 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
121 {
122 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
123 "data:%p tail:%#lx end:%#lx dev:%s\n",
124 here, skb->len, sz, skb->head, skb->data,
125 (unsigned long)skb->tail, (unsigned long)skb->end,
126 skb->dev ? skb->dev->name : "<NULL>");
127 BUG();
128 }
129 EXPORT_SYMBOL(skb_over_panic);
130
131 /**
132 * skb_under_panic - private function
133 * @skb: buffer
134 * @sz: size
135 * @here: address
136 *
137 * Out of line support code for skb_push(). Not user callable.
138 */
139
140 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
141 {
142 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
143 "data:%p tail:%#lx end:%#lx dev:%s\n",
144 here, skb->len, sz, skb->head, skb->data,
145 (unsigned long)skb->tail, (unsigned long)skb->end,
146 skb->dev ? skb->dev->name : "<NULL>");
147 BUG();
148 }
149 EXPORT_SYMBOL(skb_under_panic);
150
151 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
152 * 'private' fields and also do memory statistics to find all the
153 * [BEEP] leaks.
154 *
155 */
156
157 /**
158 * __alloc_skb - allocate a network buffer
159 * @size: size to allocate
160 * @gfp_mask: allocation mask
161 * @fclone: allocate from fclone cache instead of head cache
162 * and allocate a cloned (child) skb
163 * @node: numa node to allocate memory on
164 *
165 * Allocate a new &sk_buff. The returned buffer has no headroom and a
166 * tail room of size bytes. The object has a reference count of one.
167 * The return is the buffer. On a failure the return is %NULL.
168 *
169 * Buffers may only be allocated from interrupts using a @gfp_mask of
170 * %GFP_ATOMIC.
171 */
172 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
173 int fclone, int node)
174 {
175 struct kmem_cache *cache;
176 struct skb_shared_info *shinfo;
177 struct sk_buff *skb;
178 u8 *data;
179
180 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
181
182 /* Get the HEAD */
183 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
184 if (!skb)
185 goto out;
186
187 size = SKB_DATA_ALIGN(size);
188 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
189 gfp_mask, node);
190 if (!data)
191 goto nodata;
192
193 /*
194 * Only clear those fields we need to clear, not those that we will
195 * actually initialise below. Hence, don't put any more fields after
196 * the tail pointer in struct sk_buff!
197 */
198 memset(skb, 0, offsetof(struct sk_buff, tail));
199 skb->truesize = size + sizeof(struct sk_buff);
200 atomic_set(&skb->users, 1);
201 skb->head = data;
202 skb->data = data;
203 skb_reset_tail_pointer(skb);
204 skb->end = skb->tail + size;
205 kmemcheck_annotate_bitfield(skb, flags1);
206 kmemcheck_annotate_bitfield(skb, flags2);
207 #ifdef NET_SKBUFF_DATA_USES_OFFSET
208 skb->mac_header = ~0U;
209 #endif
210
211 /* make sure we initialize shinfo sequentially */
212 shinfo = skb_shinfo(skb);
213 atomic_set(&shinfo->dataref, 1);
214 shinfo->nr_frags = 0;
215 shinfo->gso_size = 0;
216 shinfo->gso_segs = 0;
217 shinfo->gso_type = 0;
218 shinfo->ip6_frag_id = 0;
219 shinfo->tx_flags.flags = 0;
220 skb_frag_list_init(skb);
221 memset(&shinfo->hwtstamps, 0, sizeof(shinfo->hwtstamps));
222
223 if (fclone) {
224 struct sk_buff *child = skb + 1;
225 atomic_t *fclone_ref = (atomic_t *) (child + 1);
226
227 kmemcheck_annotate_bitfield(child, flags1);
228 kmemcheck_annotate_bitfield(child, flags2);
229 skb->fclone = SKB_FCLONE_ORIG;
230 atomic_set(fclone_ref, 1);
231
232 child->fclone = SKB_FCLONE_UNAVAILABLE;
233 }
234 out:
235 return skb;
236 nodata:
237 kmem_cache_free(cache, skb);
238 skb = NULL;
239 goto out;
240 }
241 EXPORT_SYMBOL(__alloc_skb);
242
243 /**
244 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
245 * @dev: network device to receive on
246 * @length: length to allocate
247 * @gfp_mask: get_free_pages mask, passed to alloc_skb
248 *
249 * Allocate a new &sk_buff and assign it a usage count of one. The
250 * buffer has unspecified headroom built in. Users should allocate
251 * the headroom they think they need without accounting for the
252 * built in space. The built in space is used for optimisations.
253 *
254 * %NULL is returned if there is no free memory.
255 */
256 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
257 unsigned int length, gfp_t gfp_mask)
258 {
259 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
260 struct sk_buff *skb;
261
262 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
263 if (likely(skb)) {
264 skb_reserve(skb, NET_SKB_PAD);
265 skb->dev = dev;
266 }
267 return skb;
268 }
269 EXPORT_SYMBOL(__netdev_alloc_skb);
270
271 struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
272 {
273 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
274 struct page *page;
275
276 page = alloc_pages_node(node, gfp_mask, 0);
277 return page;
278 }
279 EXPORT_SYMBOL(__netdev_alloc_page);
280
281 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
282 int size)
283 {
284 skb_fill_page_desc(skb, i, page, off, size);
285 skb->len += size;
286 skb->data_len += size;
287 skb->truesize += size;
288 }
289 EXPORT_SYMBOL(skb_add_rx_frag);
290
291 /**
292 * dev_alloc_skb - allocate an skbuff for receiving
293 * @length: length to allocate
294 *
295 * Allocate a new &sk_buff and assign it a usage count of one. The
296 * buffer has unspecified headroom built in. Users should allocate
297 * the headroom they think they need without accounting for the
298 * built in space. The built in space is used for optimisations.
299 *
300 * %NULL is returned if there is no free memory. Although this function
301 * allocates memory it can be called from an interrupt.
302 */
303 struct sk_buff *dev_alloc_skb(unsigned int length)
304 {
305 /*
306 * There is more code here than it seems:
307 * __dev_alloc_skb is an inline
308 */
309 return __dev_alloc_skb(length, GFP_ATOMIC);
310 }
311 EXPORT_SYMBOL(dev_alloc_skb);
312
313 static void skb_drop_list(struct sk_buff **listp)
314 {
315 struct sk_buff *list = *listp;
316
317 *listp = NULL;
318
319 do {
320 struct sk_buff *this = list;
321 list = list->next;
322 kfree_skb(this);
323 } while (list);
324 }
325
326 static inline void skb_drop_fraglist(struct sk_buff *skb)
327 {
328 skb_drop_list(&skb_shinfo(skb)->frag_list);
329 }
330
331 static void skb_clone_fraglist(struct sk_buff *skb)
332 {
333 struct sk_buff *list;
334
335 skb_walk_frags(skb, list)
336 skb_get(list);
337 }
338
339 static void skb_release_data(struct sk_buff *skb)
340 {
341 if (!skb->cloned ||
342 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
343 &skb_shinfo(skb)->dataref)) {
344 if (skb_shinfo(skb)->nr_frags) {
345 int i;
346 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
347 put_page(skb_shinfo(skb)->frags[i].page);
348 }
349
350 if (skb_has_frags(skb))
351 skb_drop_fraglist(skb);
352
353 kfree(skb->head);
354 }
355 }
356
357 /*
358 * Free an skbuff by memory without cleaning the state.
359 */
360 static void kfree_skbmem(struct sk_buff *skb)
361 {
362 struct sk_buff *other;
363 atomic_t *fclone_ref;
364
365 switch (skb->fclone) {
366 case SKB_FCLONE_UNAVAILABLE:
367 kmem_cache_free(skbuff_head_cache, skb);
368 break;
369
370 case SKB_FCLONE_ORIG:
371 fclone_ref = (atomic_t *) (skb + 2);
372 if (atomic_dec_and_test(fclone_ref))
373 kmem_cache_free(skbuff_fclone_cache, skb);
374 break;
375
376 case SKB_FCLONE_CLONE:
377 fclone_ref = (atomic_t *) (skb + 1);
378 other = skb - 1;
379
380 /* The clone portion is available for
381 * fast-cloning again.
382 */
383 skb->fclone = SKB_FCLONE_UNAVAILABLE;
384
385 if (atomic_dec_and_test(fclone_ref))
386 kmem_cache_free(skbuff_fclone_cache, other);
387 break;
388 }
389 }
390
391 static void skb_release_head_state(struct sk_buff *skb)
392 {
393 skb_dst_drop(skb);
394 #ifdef CONFIG_XFRM
395 secpath_put(skb->sp);
396 #endif
397 if (skb->destructor) {
398 WARN_ON(in_irq());
399 skb->destructor(skb);
400 }
401 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
402 nf_conntrack_put(skb->nfct);
403 nf_conntrack_put_reasm(skb->nfct_reasm);
404 #endif
405 #ifdef CONFIG_BRIDGE_NETFILTER
406 nf_bridge_put(skb->nf_bridge);
407 #endif
408 /* XXX: IS this still necessary? - JHS */
409 #ifdef CONFIG_NET_SCHED
410 skb->tc_index = 0;
411 #ifdef CONFIG_NET_CLS_ACT
412 skb->tc_verd = 0;
413 #endif
414 #endif
415 }
416
417 /* Free everything but the sk_buff shell. */
418 static void skb_release_all(struct sk_buff *skb)
419 {
420 skb_release_head_state(skb);
421 skb_release_data(skb);
422 }
423
424 /**
425 * __kfree_skb - private function
426 * @skb: buffer
427 *
428 * Free an sk_buff. Release anything attached to the buffer.
429 * Clean the state. This is an internal helper function. Users should
430 * always call kfree_skb
431 */
432
433 void __kfree_skb(struct sk_buff *skb)
434 {
435 skb_release_all(skb);
436 kfree_skbmem(skb);
437 }
438 EXPORT_SYMBOL(__kfree_skb);
439
440 /**
441 * kfree_skb - free an sk_buff
442 * @skb: buffer to free
443 *
444 * Drop a reference to the buffer and free it if the usage count has
445 * hit zero.
446 */
447 void kfree_skb(struct sk_buff *skb)
448 {
449 if (unlikely(!skb))
450 return;
451 if (likely(atomic_read(&skb->users) == 1))
452 smp_rmb();
453 else if (likely(!atomic_dec_and_test(&skb->users)))
454 return;
455 trace_kfree_skb(skb, __builtin_return_address(0));
456 __kfree_skb(skb);
457 }
458 EXPORT_SYMBOL(kfree_skb);
459
460 /**
461 * consume_skb - free an skbuff
462 * @skb: buffer to free
463 *
464 * Drop a ref to the buffer and free it if the usage count has hit zero
465 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
466 * is being dropped after a failure and notes that
467 */
468 void consume_skb(struct sk_buff *skb)
469 {
470 if (unlikely(!skb))
471 return;
472 if (likely(atomic_read(&skb->users) == 1))
473 smp_rmb();
474 else if (likely(!atomic_dec_and_test(&skb->users)))
475 return;
476 __kfree_skb(skb);
477 }
478 EXPORT_SYMBOL(consume_skb);
479
480 /**
481 * skb_recycle_check - check if skb can be reused for receive
482 * @skb: buffer
483 * @skb_size: minimum receive buffer size
484 *
485 * Checks that the skb passed in is not shared or cloned, and
486 * that it is linear and its head portion at least as large as
487 * skb_size so that it can be recycled as a receive buffer.
488 * If these conditions are met, this function does any necessary
489 * reference count dropping and cleans up the skbuff as if it
490 * just came from __alloc_skb().
491 */
492 int skb_recycle_check(struct sk_buff *skb, int skb_size)
493 {
494 struct skb_shared_info *shinfo;
495
496 if (irqs_disabled())
497 return 0;
498
499 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
500 return 0;
501
502 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
503 if (skb_end_pointer(skb) - skb->head < skb_size)
504 return 0;
505
506 if (skb_shared(skb) || skb_cloned(skb))
507 return 0;
508
509 skb_release_head_state(skb);
510 shinfo = skb_shinfo(skb);
511 atomic_set(&shinfo->dataref, 1);
512 shinfo->nr_frags = 0;
513 shinfo->gso_size = 0;
514 shinfo->gso_segs = 0;
515 shinfo->gso_type = 0;
516 shinfo->ip6_frag_id = 0;
517 shinfo->tx_flags.flags = 0;
518 skb_frag_list_init(skb);
519 memset(&shinfo->hwtstamps, 0, sizeof(shinfo->hwtstamps));
520
521 memset(skb, 0, offsetof(struct sk_buff, tail));
522 skb->data = skb->head + NET_SKB_PAD;
523 skb_reset_tail_pointer(skb);
524
525 return 1;
526 }
527 EXPORT_SYMBOL(skb_recycle_check);
528
529 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
530 {
531 new->tstamp = old->tstamp;
532 new->dev = old->dev;
533 new->transport_header = old->transport_header;
534 new->network_header = old->network_header;
535 new->mac_header = old->mac_header;
536 skb_dst_set(new, dst_clone(skb_dst(old)));
537 new->rxhash = old->rxhash;
538 #ifdef CONFIG_XFRM
539 new->sp = secpath_get(old->sp);
540 #endif
541 memcpy(new->cb, old->cb, sizeof(old->cb));
542 new->csum = old->csum;
543 new->local_df = old->local_df;
544 new->pkt_type = old->pkt_type;
545 new->ip_summed = old->ip_summed;
546 skb_copy_queue_mapping(new, old);
547 new->priority = old->priority;
548 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
549 new->ipvs_property = old->ipvs_property;
550 #endif
551 new->protocol = old->protocol;
552 new->mark = old->mark;
553 new->skb_iif = old->skb_iif;
554 __nf_copy(new, old);
555 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
556 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
557 new->nf_trace = old->nf_trace;
558 #endif
559 #ifdef CONFIG_NET_SCHED
560 new->tc_index = old->tc_index;
561 #ifdef CONFIG_NET_CLS_ACT
562 new->tc_verd = old->tc_verd;
563 #endif
564 #endif
565 new->vlan_tci = old->vlan_tci;
566
567 skb_copy_secmark(new, old);
568 }
569
570 /*
571 * You should not add any new code to this function. Add it to
572 * __copy_skb_header above instead.
573 */
574 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
575 {
576 #define C(x) n->x = skb->x
577
578 n->next = n->prev = NULL;
579 n->sk = NULL;
580 __copy_skb_header(n, skb);
581
582 C(len);
583 C(data_len);
584 C(mac_len);
585 C(rxhash);
586 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
587 n->cloned = 1;
588 n->nohdr = 0;
589 n->destructor = NULL;
590 C(tail);
591 C(end);
592 C(head);
593 C(data);
594 C(truesize);
595 atomic_set(&n->users, 1);
596
597 atomic_inc(&(skb_shinfo(skb)->dataref));
598 skb->cloned = 1;
599
600 return n;
601 #undef C
602 }
603
604 /**
605 * skb_morph - morph one skb into another
606 * @dst: the skb to receive the contents
607 * @src: the skb to supply the contents
608 *
609 * This is identical to skb_clone except that the target skb is
610 * supplied by the user.
611 *
612 * The target skb is returned upon exit.
613 */
614 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
615 {
616 skb_release_all(dst);
617 return __skb_clone(dst, src);
618 }
619 EXPORT_SYMBOL_GPL(skb_morph);
620
621 /**
622 * skb_clone - duplicate an sk_buff
623 * @skb: buffer to clone
624 * @gfp_mask: allocation priority
625 *
626 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
627 * copies share the same packet data but not structure. The new
628 * buffer has a reference count of 1. If the allocation fails the
629 * function returns %NULL otherwise the new buffer is returned.
630 *
631 * If this function is called from an interrupt gfp_mask() must be
632 * %GFP_ATOMIC.
633 */
634
635 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
636 {
637 struct sk_buff *n;
638
639 n = skb + 1;
640 if (skb->fclone == SKB_FCLONE_ORIG &&
641 n->fclone == SKB_FCLONE_UNAVAILABLE) {
642 atomic_t *fclone_ref = (atomic_t *) (n + 1);
643 n->fclone = SKB_FCLONE_CLONE;
644 atomic_inc(fclone_ref);
645 } else {
646 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
647 if (!n)
648 return NULL;
649
650 kmemcheck_annotate_bitfield(n, flags1);
651 kmemcheck_annotate_bitfield(n, flags2);
652 n->fclone = SKB_FCLONE_UNAVAILABLE;
653 }
654
655 return __skb_clone(n, skb);
656 }
657 EXPORT_SYMBOL(skb_clone);
658
659 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
660 {
661 #ifndef NET_SKBUFF_DATA_USES_OFFSET
662 /*
663 * Shift between the two data areas in bytes
664 */
665 unsigned long offset = new->data - old->data;
666 #endif
667
668 __copy_skb_header(new, old);
669
670 #ifndef NET_SKBUFF_DATA_USES_OFFSET
671 /* {transport,network,mac}_header are relative to skb->head */
672 new->transport_header += offset;
673 new->network_header += offset;
674 if (skb_mac_header_was_set(new))
675 new->mac_header += offset;
676 #endif
677 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
678 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
679 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
680 }
681
682 /**
683 * skb_copy - create private copy of an sk_buff
684 * @skb: buffer to copy
685 * @gfp_mask: allocation priority
686 *
687 * Make a copy of both an &sk_buff and its data. This is used when the
688 * caller wishes to modify the data and needs a private copy of the
689 * data to alter. Returns %NULL on failure or the pointer to the buffer
690 * on success. The returned buffer has a reference count of 1.
691 *
692 * As by-product this function converts non-linear &sk_buff to linear
693 * one, so that &sk_buff becomes completely private and caller is allowed
694 * to modify all the data of returned buffer. This means that this
695 * function is not recommended for use in circumstances when only
696 * header is going to be modified. Use pskb_copy() instead.
697 */
698
699 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
700 {
701 int headerlen = skb->data - skb->head;
702 /*
703 * Allocate the copy buffer
704 */
705 struct sk_buff *n;
706 #ifdef NET_SKBUFF_DATA_USES_OFFSET
707 n = alloc_skb(skb->end + skb->data_len, gfp_mask);
708 #else
709 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
710 #endif
711 if (!n)
712 return NULL;
713
714 /* Set the data pointer */
715 skb_reserve(n, headerlen);
716 /* Set the tail pointer and length */
717 skb_put(n, skb->len);
718
719 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
720 BUG();
721
722 copy_skb_header(n, skb);
723 return n;
724 }
725 EXPORT_SYMBOL(skb_copy);
726
727 /**
728 * pskb_copy - create copy of an sk_buff with private head.
729 * @skb: buffer to copy
730 * @gfp_mask: allocation priority
731 *
732 * Make a copy of both an &sk_buff and part of its data, located
733 * in header. Fragmented data remain shared. This is used when
734 * the caller wishes to modify only header of &sk_buff and needs
735 * private copy of the header to alter. Returns %NULL on failure
736 * or the pointer to the buffer on success.
737 * The returned buffer has a reference count of 1.
738 */
739
740 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
741 {
742 /*
743 * Allocate the copy buffer
744 */
745 struct sk_buff *n;
746 #ifdef NET_SKBUFF_DATA_USES_OFFSET
747 n = alloc_skb(skb->end, gfp_mask);
748 #else
749 n = alloc_skb(skb->end - skb->head, gfp_mask);
750 #endif
751 if (!n)
752 goto out;
753
754 /* Set the data pointer */
755 skb_reserve(n, skb->data - skb->head);
756 /* Set the tail pointer and length */
757 skb_put(n, skb_headlen(skb));
758 /* Copy the bytes */
759 skb_copy_from_linear_data(skb, n->data, n->len);
760
761 n->truesize += skb->data_len;
762 n->data_len = skb->data_len;
763 n->len = skb->len;
764
765 if (skb_shinfo(skb)->nr_frags) {
766 int i;
767
768 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
769 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
770 get_page(skb_shinfo(n)->frags[i].page);
771 }
772 skb_shinfo(n)->nr_frags = i;
773 }
774
775 if (skb_has_frags(skb)) {
776 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
777 skb_clone_fraglist(n);
778 }
779
780 copy_skb_header(n, skb);
781 out:
782 return n;
783 }
784 EXPORT_SYMBOL(pskb_copy);
785
786 /**
787 * pskb_expand_head - reallocate header of &sk_buff
788 * @skb: buffer to reallocate
789 * @nhead: room to add at head
790 * @ntail: room to add at tail
791 * @gfp_mask: allocation priority
792 *
793 * Expands (or creates identical copy, if &nhead and &ntail are zero)
794 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
795 * reference count of 1. Returns zero in the case of success or error,
796 * if expansion failed. In the last case, &sk_buff is not changed.
797 *
798 * All the pointers pointing into skb header may change and must be
799 * reloaded after call to this function.
800 */
801
802 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
803 gfp_t gfp_mask)
804 {
805 int i;
806 u8 *data;
807 #ifdef NET_SKBUFF_DATA_USES_OFFSET
808 int size = nhead + skb->end + ntail;
809 #else
810 int size = nhead + (skb->end - skb->head) + ntail;
811 #endif
812 long off;
813
814 BUG_ON(nhead < 0);
815
816 if (skb_shared(skb))
817 BUG();
818
819 size = SKB_DATA_ALIGN(size);
820
821 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
822 if (!data)
823 goto nodata;
824
825 /* Copy only real data... and, alas, header. This should be
826 * optimized for the cases when header is void. */
827 #ifdef NET_SKBUFF_DATA_USES_OFFSET
828 memcpy(data + nhead, skb->head, skb->tail);
829 #else
830 memcpy(data + nhead, skb->head, skb->tail - skb->head);
831 #endif
832 memcpy(data + size, skb_end_pointer(skb),
833 sizeof(struct skb_shared_info));
834
835 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
836 get_page(skb_shinfo(skb)->frags[i].page);
837
838 if (skb_has_frags(skb))
839 skb_clone_fraglist(skb);
840
841 skb_release_data(skb);
842
843 off = (data + nhead) - skb->head;
844
845 skb->head = data;
846 skb->data += off;
847 #ifdef NET_SKBUFF_DATA_USES_OFFSET
848 skb->end = size;
849 off = nhead;
850 #else
851 skb->end = skb->head + size;
852 #endif
853 /* {transport,network,mac}_header and tail are relative to skb->head */
854 skb->tail += off;
855 skb->transport_header += off;
856 skb->network_header += off;
857 if (skb_mac_header_was_set(skb))
858 skb->mac_header += off;
859 skb->csum_start += nhead;
860 skb->cloned = 0;
861 skb->hdr_len = 0;
862 skb->nohdr = 0;
863 atomic_set(&skb_shinfo(skb)->dataref, 1);
864 return 0;
865
866 nodata:
867 return -ENOMEM;
868 }
869 EXPORT_SYMBOL(pskb_expand_head);
870
871 /* Make private copy of skb with writable head and some headroom */
872
873 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
874 {
875 struct sk_buff *skb2;
876 int delta = headroom - skb_headroom(skb);
877
878 if (delta <= 0)
879 skb2 = pskb_copy(skb, GFP_ATOMIC);
880 else {
881 skb2 = skb_clone(skb, GFP_ATOMIC);
882 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
883 GFP_ATOMIC)) {
884 kfree_skb(skb2);
885 skb2 = NULL;
886 }
887 }
888 return skb2;
889 }
890 EXPORT_SYMBOL(skb_realloc_headroom);
891
892 /**
893 * skb_copy_expand - copy and expand sk_buff
894 * @skb: buffer to copy
895 * @newheadroom: new free bytes at head
896 * @newtailroom: new free bytes at tail
897 * @gfp_mask: allocation priority
898 *
899 * Make a copy of both an &sk_buff and its data and while doing so
900 * allocate additional space.
901 *
902 * This is used when the caller wishes to modify the data and needs a
903 * private copy of the data to alter as well as more space for new fields.
904 * Returns %NULL on failure or the pointer to the buffer
905 * on success. The returned buffer has a reference count of 1.
906 *
907 * You must pass %GFP_ATOMIC as the allocation priority if this function
908 * is called from an interrupt.
909 */
910 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
911 int newheadroom, int newtailroom,
912 gfp_t gfp_mask)
913 {
914 /*
915 * Allocate the copy buffer
916 */
917 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
918 gfp_mask);
919 int oldheadroom = skb_headroom(skb);
920 int head_copy_len, head_copy_off;
921 int off;
922
923 if (!n)
924 return NULL;
925
926 skb_reserve(n, newheadroom);
927
928 /* Set the tail pointer and length */
929 skb_put(n, skb->len);
930
931 head_copy_len = oldheadroom;
932 head_copy_off = 0;
933 if (newheadroom <= head_copy_len)
934 head_copy_len = newheadroom;
935 else
936 head_copy_off = newheadroom - head_copy_len;
937
938 /* Copy the linear header and data. */
939 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
940 skb->len + head_copy_len))
941 BUG();
942
943 copy_skb_header(n, skb);
944
945 off = newheadroom - oldheadroom;
946 n->csum_start += off;
947 #ifdef NET_SKBUFF_DATA_USES_OFFSET
948 n->transport_header += off;
949 n->network_header += off;
950 if (skb_mac_header_was_set(skb))
951 n->mac_header += off;
952 #endif
953
954 return n;
955 }
956 EXPORT_SYMBOL(skb_copy_expand);
957
958 /**
959 * skb_pad - zero pad the tail of an skb
960 * @skb: buffer to pad
961 * @pad: space to pad
962 *
963 * Ensure that a buffer is followed by a padding area that is zero
964 * filled. Used by network drivers which may DMA or transfer data
965 * beyond the buffer end onto the wire.
966 *
967 * May return error in out of memory cases. The skb is freed on error.
968 */
969
970 int skb_pad(struct sk_buff *skb, int pad)
971 {
972 int err;
973 int ntail;
974
975 /* If the skbuff is non linear tailroom is always zero.. */
976 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
977 memset(skb->data+skb->len, 0, pad);
978 return 0;
979 }
980
981 ntail = skb->data_len + pad - (skb->end - skb->tail);
982 if (likely(skb_cloned(skb) || ntail > 0)) {
983 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
984 if (unlikely(err))
985 goto free_skb;
986 }
987
988 /* FIXME: The use of this function with non-linear skb's really needs
989 * to be audited.
990 */
991 err = skb_linearize(skb);
992 if (unlikely(err))
993 goto free_skb;
994
995 memset(skb->data + skb->len, 0, pad);
996 return 0;
997
998 free_skb:
999 kfree_skb(skb);
1000 return err;
1001 }
1002 EXPORT_SYMBOL(skb_pad);
1003
1004 /**
1005 * skb_put - add data to a buffer
1006 * @skb: buffer to use
1007 * @len: amount of data to add
1008 *
1009 * This function extends the used data area of the buffer. If this would
1010 * exceed the total buffer size the kernel will panic. A pointer to the
1011 * first byte of the extra data is returned.
1012 */
1013 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1014 {
1015 unsigned char *tmp = skb_tail_pointer(skb);
1016 SKB_LINEAR_ASSERT(skb);
1017 skb->tail += len;
1018 skb->len += len;
1019 if (unlikely(skb->tail > skb->end))
1020 skb_over_panic(skb, len, __builtin_return_address(0));
1021 return tmp;
1022 }
1023 EXPORT_SYMBOL(skb_put);
1024
1025 /**
1026 * skb_push - add data to the start of a buffer
1027 * @skb: buffer to use
1028 * @len: amount of data to add
1029 *
1030 * This function extends the used data area of the buffer at the buffer
1031 * start. If this would exceed the total buffer headroom the kernel will
1032 * panic. A pointer to the first byte of the extra data is returned.
1033 */
1034 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1035 {
1036 skb->data -= len;
1037 skb->len += len;
1038 if (unlikely(skb->data<skb->head))
1039 skb_under_panic(skb, len, __builtin_return_address(0));
1040 return skb->data;
1041 }
1042 EXPORT_SYMBOL(skb_push);
1043
1044 /**
1045 * skb_pull - remove data from the start of a buffer
1046 * @skb: buffer to use
1047 * @len: amount of data to remove
1048 *
1049 * This function removes data from the start of a buffer, returning
1050 * the memory to the headroom. A pointer to the next data in the buffer
1051 * is returned. Once the data has been pulled future pushes will overwrite
1052 * the old data.
1053 */
1054 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1055 {
1056 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1057 }
1058 EXPORT_SYMBOL(skb_pull);
1059
1060 /**
1061 * skb_trim - remove end from a buffer
1062 * @skb: buffer to alter
1063 * @len: new length
1064 *
1065 * Cut the length of a buffer down by removing data from the tail. If
1066 * the buffer is already under the length specified it is not modified.
1067 * The skb must be linear.
1068 */
1069 void skb_trim(struct sk_buff *skb, unsigned int len)
1070 {
1071 if (skb->len > len)
1072 __skb_trim(skb, len);
1073 }
1074 EXPORT_SYMBOL(skb_trim);
1075
1076 /* Trims skb to length len. It can change skb pointers.
1077 */
1078
1079 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1080 {
1081 struct sk_buff **fragp;
1082 struct sk_buff *frag;
1083 int offset = skb_headlen(skb);
1084 int nfrags = skb_shinfo(skb)->nr_frags;
1085 int i;
1086 int err;
1087
1088 if (skb_cloned(skb) &&
1089 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1090 return err;
1091
1092 i = 0;
1093 if (offset >= len)
1094 goto drop_pages;
1095
1096 for (; i < nfrags; i++) {
1097 int end = offset + skb_shinfo(skb)->frags[i].size;
1098
1099 if (end < len) {
1100 offset = end;
1101 continue;
1102 }
1103
1104 skb_shinfo(skb)->frags[i++].size = len - offset;
1105
1106 drop_pages:
1107 skb_shinfo(skb)->nr_frags = i;
1108
1109 for (; i < nfrags; i++)
1110 put_page(skb_shinfo(skb)->frags[i].page);
1111
1112 if (skb_has_frags(skb))
1113 skb_drop_fraglist(skb);
1114 goto done;
1115 }
1116
1117 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1118 fragp = &frag->next) {
1119 int end = offset + frag->len;
1120
1121 if (skb_shared(frag)) {
1122 struct sk_buff *nfrag;
1123
1124 nfrag = skb_clone(frag, GFP_ATOMIC);
1125 if (unlikely(!nfrag))
1126 return -ENOMEM;
1127
1128 nfrag->next = frag->next;
1129 kfree_skb(frag);
1130 frag = nfrag;
1131 *fragp = frag;
1132 }
1133
1134 if (end < len) {
1135 offset = end;
1136 continue;
1137 }
1138
1139 if (end > len &&
1140 unlikely((err = pskb_trim(frag, len - offset))))
1141 return err;
1142
1143 if (frag->next)
1144 skb_drop_list(&frag->next);
1145 break;
1146 }
1147
1148 done:
1149 if (len > skb_headlen(skb)) {
1150 skb->data_len -= skb->len - len;
1151 skb->len = len;
1152 } else {
1153 skb->len = len;
1154 skb->data_len = 0;
1155 skb_set_tail_pointer(skb, len);
1156 }
1157
1158 return 0;
1159 }
1160 EXPORT_SYMBOL(___pskb_trim);
1161
1162 /**
1163 * __pskb_pull_tail - advance tail of skb header
1164 * @skb: buffer to reallocate
1165 * @delta: number of bytes to advance tail
1166 *
1167 * The function makes a sense only on a fragmented &sk_buff,
1168 * it expands header moving its tail forward and copying necessary
1169 * data from fragmented part.
1170 *
1171 * &sk_buff MUST have reference count of 1.
1172 *
1173 * Returns %NULL (and &sk_buff does not change) if pull failed
1174 * or value of new tail of skb in the case of success.
1175 *
1176 * All the pointers pointing into skb header may change and must be
1177 * reloaded after call to this function.
1178 */
1179
1180 /* Moves tail of skb head forward, copying data from fragmented part,
1181 * when it is necessary.
1182 * 1. It may fail due to malloc failure.
1183 * 2. It may change skb pointers.
1184 *
1185 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1186 */
1187 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1188 {
1189 /* If skb has not enough free space at tail, get new one
1190 * plus 128 bytes for future expansions. If we have enough
1191 * room at tail, reallocate without expansion only if skb is cloned.
1192 */
1193 int i, k, eat = (skb->tail + delta) - skb->end;
1194
1195 if (eat > 0 || skb_cloned(skb)) {
1196 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1197 GFP_ATOMIC))
1198 return NULL;
1199 }
1200
1201 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1202 BUG();
1203
1204 /* Optimization: no fragments, no reasons to preestimate
1205 * size of pulled pages. Superb.
1206 */
1207 if (!skb_has_frags(skb))
1208 goto pull_pages;
1209
1210 /* Estimate size of pulled pages. */
1211 eat = delta;
1212 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1213 if (skb_shinfo(skb)->frags[i].size >= eat)
1214 goto pull_pages;
1215 eat -= skb_shinfo(skb)->frags[i].size;
1216 }
1217
1218 /* If we need update frag list, we are in troubles.
1219 * Certainly, it possible to add an offset to skb data,
1220 * but taking into account that pulling is expected to
1221 * be very rare operation, it is worth to fight against
1222 * further bloating skb head and crucify ourselves here instead.
1223 * Pure masohism, indeed. 8)8)
1224 */
1225 if (eat) {
1226 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1227 struct sk_buff *clone = NULL;
1228 struct sk_buff *insp = NULL;
1229
1230 do {
1231 BUG_ON(!list);
1232
1233 if (list->len <= eat) {
1234 /* Eaten as whole. */
1235 eat -= list->len;
1236 list = list->next;
1237 insp = list;
1238 } else {
1239 /* Eaten partially. */
1240
1241 if (skb_shared(list)) {
1242 /* Sucks! We need to fork list. :-( */
1243 clone = skb_clone(list, GFP_ATOMIC);
1244 if (!clone)
1245 return NULL;
1246 insp = list->next;
1247 list = clone;
1248 } else {
1249 /* This may be pulled without
1250 * problems. */
1251 insp = list;
1252 }
1253 if (!pskb_pull(list, eat)) {
1254 kfree_skb(clone);
1255 return NULL;
1256 }
1257 break;
1258 }
1259 } while (eat);
1260
1261 /* Free pulled out fragments. */
1262 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1263 skb_shinfo(skb)->frag_list = list->next;
1264 kfree_skb(list);
1265 }
1266 /* And insert new clone at head. */
1267 if (clone) {
1268 clone->next = list;
1269 skb_shinfo(skb)->frag_list = clone;
1270 }
1271 }
1272 /* Success! Now we may commit changes to skb data. */
1273
1274 pull_pages:
1275 eat = delta;
1276 k = 0;
1277 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1278 if (skb_shinfo(skb)->frags[i].size <= eat) {
1279 put_page(skb_shinfo(skb)->frags[i].page);
1280 eat -= skb_shinfo(skb)->frags[i].size;
1281 } else {
1282 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1283 if (eat) {
1284 skb_shinfo(skb)->frags[k].page_offset += eat;
1285 skb_shinfo(skb)->frags[k].size -= eat;
1286 eat = 0;
1287 }
1288 k++;
1289 }
1290 }
1291 skb_shinfo(skb)->nr_frags = k;
1292
1293 skb->tail += delta;
1294 skb->data_len -= delta;
1295
1296 return skb_tail_pointer(skb);
1297 }
1298 EXPORT_SYMBOL(__pskb_pull_tail);
1299
1300 /* Copy some data bits from skb to kernel buffer. */
1301
1302 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1303 {
1304 int start = skb_headlen(skb);
1305 struct sk_buff *frag_iter;
1306 int i, copy;
1307
1308 if (offset > (int)skb->len - len)
1309 goto fault;
1310
1311 /* Copy header. */
1312 if ((copy = start - offset) > 0) {
1313 if (copy > len)
1314 copy = len;
1315 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1316 if ((len -= copy) == 0)
1317 return 0;
1318 offset += copy;
1319 to += copy;
1320 }
1321
1322 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1323 int end;
1324
1325 WARN_ON(start > offset + len);
1326
1327 end = start + skb_shinfo(skb)->frags[i].size;
1328 if ((copy = end - offset) > 0) {
1329 u8 *vaddr;
1330
1331 if (copy > len)
1332 copy = len;
1333
1334 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1335 memcpy(to,
1336 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1337 offset - start, copy);
1338 kunmap_skb_frag(vaddr);
1339
1340 if ((len -= copy) == 0)
1341 return 0;
1342 offset += copy;
1343 to += copy;
1344 }
1345 start = end;
1346 }
1347
1348 skb_walk_frags(skb, frag_iter) {
1349 int end;
1350
1351 WARN_ON(start > offset + len);
1352
1353 end = start + frag_iter->len;
1354 if ((copy = end - offset) > 0) {
1355 if (copy > len)
1356 copy = len;
1357 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1358 goto fault;
1359 if ((len -= copy) == 0)
1360 return 0;
1361 offset += copy;
1362 to += copy;
1363 }
1364 start = end;
1365 }
1366 if (!len)
1367 return 0;
1368
1369 fault:
1370 return -EFAULT;
1371 }
1372 EXPORT_SYMBOL(skb_copy_bits);
1373
1374 /*
1375 * Callback from splice_to_pipe(), if we need to release some pages
1376 * at the end of the spd in case we error'ed out in filling the pipe.
1377 */
1378 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1379 {
1380 put_page(spd->pages[i]);
1381 }
1382
1383 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1384 unsigned int *offset,
1385 struct sk_buff *skb, struct sock *sk)
1386 {
1387 struct page *p = sk->sk_sndmsg_page;
1388 unsigned int off;
1389
1390 if (!p) {
1391 new_page:
1392 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1393 if (!p)
1394 return NULL;
1395
1396 off = sk->sk_sndmsg_off = 0;
1397 /* hold one ref to this page until it's full */
1398 } else {
1399 unsigned int mlen;
1400
1401 off = sk->sk_sndmsg_off;
1402 mlen = PAGE_SIZE - off;
1403 if (mlen < 64 && mlen < *len) {
1404 put_page(p);
1405 goto new_page;
1406 }
1407
1408 *len = min_t(unsigned int, *len, mlen);
1409 }
1410
1411 memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1412 sk->sk_sndmsg_off += *len;
1413 *offset = off;
1414 get_page(p);
1415
1416 return p;
1417 }
1418
1419 /*
1420 * Fill page/offset/length into spd, if it can hold more pages.
1421 */
1422 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
1423 unsigned int *len, unsigned int offset,
1424 struct sk_buff *skb, int linear,
1425 struct sock *sk)
1426 {
1427 if (unlikely(spd->nr_pages == PIPE_BUFFERS))
1428 return 1;
1429
1430 if (linear) {
1431 page = linear_to_page(page, len, &offset, skb, sk);
1432 if (!page)
1433 return 1;
1434 } else
1435 get_page(page);
1436
1437 spd->pages[spd->nr_pages] = page;
1438 spd->partial[spd->nr_pages].len = *len;
1439 spd->partial[spd->nr_pages].offset = offset;
1440 spd->nr_pages++;
1441
1442 return 0;
1443 }
1444
1445 static inline void __segment_seek(struct page **page, unsigned int *poff,
1446 unsigned int *plen, unsigned int off)
1447 {
1448 unsigned long n;
1449
1450 *poff += off;
1451 n = *poff / PAGE_SIZE;
1452 if (n)
1453 *page = nth_page(*page, n);
1454
1455 *poff = *poff % PAGE_SIZE;
1456 *plen -= off;
1457 }
1458
1459 static inline int __splice_segment(struct page *page, unsigned int poff,
1460 unsigned int plen, unsigned int *off,
1461 unsigned int *len, struct sk_buff *skb,
1462 struct splice_pipe_desc *spd, int linear,
1463 struct sock *sk)
1464 {
1465 if (!*len)
1466 return 1;
1467
1468 /* skip this segment if already processed */
1469 if (*off >= plen) {
1470 *off -= plen;
1471 return 0;
1472 }
1473
1474 /* ignore any bits we already processed */
1475 if (*off) {
1476 __segment_seek(&page, &poff, &plen, *off);
1477 *off = 0;
1478 }
1479
1480 do {
1481 unsigned int flen = min(*len, plen);
1482
1483 /* the linear region may spread across several pages */
1484 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1485
1486 if (spd_fill_page(spd, page, &flen, poff, skb, linear, sk))
1487 return 1;
1488
1489 __segment_seek(&page, &poff, &plen, flen);
1490 *len -= flen;
1491
1492 } while (*len && plen);
1493
1494 return 0;
1495 }
1496
1497 /*
1498 * Map linear and fragment data from the skb to spd. It reports failure if the
1499 * pipe is full or if we already spliced the requested length.
1500 */
1501 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
1502 unsigned int *len, struct splice_pipe_desc *spd,
1503 struct sock *sk)
1504 {
1505 int seg;
1506
1507 /*
1508 * map the linear part
1509 */
1510 if (__splice_segment(virt_to_page(skb->data),
1511 (unsigned long) skb->data & (PAGE_SIZE - 1),
1512 skb_headlen(skb),
1513 offset, len, skb, spd, 1, sk))
1514 return 1;
1515
1516 /*
1517 * then map the fragments
1518 */
1519 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1520 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1521
1522 if (__splice_segment(f->page, f->page_offset, f->size,
1523 offset, len, skb, spd, 0, sk))
1524 return 1;
1525 }
1526
1527 return 0;
1528 }
1529
1530 /*
1531 * Map data from the skb to a pipe. Should handle both the linear part,
1532 * the fragments, and the frag list. It does NOT handle frag lists within
1533 * the frag list, if such a thing exists. We'd probably need to recurse to
1534 * handle that cleanly.
1535 */
1536 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1537 struct pipe_inode_info *pipe, unsigned int tlen,
1538 unsigned int flags)
1539 {
1540 struct partial_page partial[PIPE_BUFFERS];
1541 struct page *pages[PIPE_BUFFERS];
1542 struct splice_pipe_desc spd = {
1543 .pages = pages,
1544 .partial = partial,
1545 .flags = flags,
1546 .ops = &sock_pipe_buf_ops,
1547 .spd_release = sock_spd_release,
1548 };
1549 struct sk_buff *frag_iter;
1550 struct sock *sk = skb->sk;
1551
1552 /*
1553 * __skb_splice_bits() only fails if the output has no room left,
1554 * so no point in going over the frag_list for the error case.
1555 */
1556 if (__skb_splice_bits(skb, &offset, &tlen, &spd, sk))
1557 goto done;
1558 else if (!tlen)
1559 goto done;
1560
1561 /*
1562 * now see if we have a frag_list to map
1563 */
1564 skb_walk_frags(skb, frag_iter) {
1565 if (!tlen)
1566 break;
1567 if (__skb_splice_bits(frag_iter, &offset, &tlen, &spd, sk))
1568 break;
1569 }
1570
1571 done:
1572 if (spd.nr_pages) {
1573 int ret;
1574
1575 /*
1576 * Drop the socket lock, otherwise we have reverse
1577 * locking dependencies between sk_lock and i_mutex
1578 * here as compared to sendfile(). We enter here
1579 * with the socket lock held, and splice_to_pipe() will
1580 * grab the pipe inode lock. For sendfile() emulation,
1581 * we call into ->sendpage() with the i_mutex lock held
1582 * and networking will grab the socket lock.
1583 */
1584 release_sock(sk);
1585 ret = splice_to_pipe(pipe, &spd);
1586 lock_sock(sk);
1587 return ret;
1588 }
1589
1590 return 0;
1591 }
1592
1593 /**
1594 * skb_store_bits - store bits from kernel buffer to skb
1595 * @skb: destination buffer
1596 * @offset: offset in destination
1597 * @from: source buffer
1598 * @len: number of bytes to copy
1599 *
1600 * Copy the specified number of bytes from the source buffer to the
1601 * destination skb. This function handles all the messy bits of
1602 * traversing fragment lists and such.
1603 */
1604
1605 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1606 {
1607 int start = skb_headlen(skb);
1608 struct sk_buff *frag_iter;
1609 int i, copy;
1610
1611 if (offset > (int)skb->len - len)
1612 goto fault;
1613
1614 if ((copy = start - offset) > 0) {
1615 if (copy > len)
1616 copy = len;
1617 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1618 if ((len -= copy) == 0)
1619 return 0;
1620 offset += copy;
1621 from += copy;
1622 }
1623
1624 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1625 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1626 int end;
1627
1628 WARN_ON(start > offset + len);
1629
1630 end = start + frag->size;
1631 if ((copy = end - offset) > 0) {
1632 u8 *vaddr;
1633
1634 if (copy > len)
1635 copy = len;
1636
1637 vaddr = kmap_skb_frag(frag);
1638 memcpy(vaddr + frag->page_offset + offset - start,
1639 from, copy);
1640 kunmap_skb_frag(vaddr);
1641
1642 if ((len -= copy) == 0)
1643 return 0;
1644 offset += copy;
1645 from += copy;
1646 }
1647 start = end;
1648 }
1649
1650 skb_walk_frags(skb, frag_iter) {
1651 int end;
1652
1653 WARN_ON(start > offset + len);
1654
1655 end = start + frag_iter->len;
1656 if ((copy = end - offset) > 0) {
1657 if (copy > len)
1658 copy = len;
1659 if (skb_store_bits(frag_iter, offset - start,
1660 from, copy))
1661 goto fault;
1662 if ((len -= copy) == 0)
1663 return 0;
1664 offset += copy;
1665 from += copy;
1666 }
1667 start = end;
1668 }
1669 if (!len)
1670 return 0;
1671
1672 fault:
1673 return -EFAULT;
1674 }
1675 EXPORT_SYMBOL(skb_store_bits);
1676
1677 /* Checksum skb data. */
1678
1679 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1680 int len, __wsum csum)
1681 {
1682 int start = skb_headlen(skb);
1683 int i, copy = start - offset;
1684 struct sk_buff *frag_iter;
1685 int pos = 0;
1686
1687 /* Checksum header. */
1688 if (copy > 0) {
1689 if (copy > len)
1690 copy = len;
1691 csum = csum_partial(skb->data + offset, copy, csum);
1692 if ((len -= copy) == 0)
1693 return csum;
1694 offset += copy;
1695 pos = copy;
1696 }
1697
1698 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1699 int end;
1700
1701 WARN_ON(start > offset + len);
1702
1703 end = start + skb_shinfo(skb)->frags[i].size;
1704 if ((copy = end - offset) > 0) {
1705 __wsum csum2;
1706 u8 *vaddr;
1707 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1708
1709 if (copy > len)
1710 copy = len;
1711 vaddr = kmap_skb_frag(frag);
1712 csum2 = csum_partial(vaddr + frag->page_offset +
1713 offset - start, copy, 0);
1714 kunmap_skb_frag(vaddr);
1715 csum = csum_block_add(csum, csum2, pos);
1716 if (!(len -= copy))
1717 return csum;
1718 offset += copy;
1719 pos += copy;
1720 }
1721 start = end;
1722 }
1723
1724 skb_walk_frags(skb, frag_iter) {
1725 int end;
1726
1727 WARN_ON(start > offset + len);
1728
1729 end = start + frag_iter->len;
1730 if ((copy = end - offset) > 0) {
1731 __wsum csum2;
1732 if (copy > len)
1733 copy = len;
1734 csum2 = skb_checksum(frag_iter, offset - start,
1735 copy, 0);
1736 csum = csum_block_add(csum, csum2, pos);
1737 if ((len -= copy) == 0)
1738 return csum;
1739 offset += copy;
1740 pos += copy;
1741 }
1742 start = end;
1743 }
1744 BUG_ON(len);
1745
1746 return csum;
1747 }
1748 EXPORT_SYMBOL(skb_checksum);
1749
1750 /* Both of above in one bottle. */
1751
1752 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1753 u8 *to, int len, __wsum csum)
1754 {
1755 int start = skb_headlen(skb);
1756 int i, copy = start - offset;
1757 struct sk_buff *frag_iter;
1758 int pos = 0;
1759
1760 /* Copy header. */
1761 if (copy > 0) {
1762 if (copy > len)
1763 copy = len;
1764 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1765 copy, csum);
1766 if ((len -= copy) == 0)
1767 return csum;
1768 offset += copy;
1769 to += copy;
1770 pos = copy;
1771 }
1772
1773 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1774 int end;
1775
1776 WARN_ON(start > offset + len);
1777
1778 end = start + skb_shinfo(skb)->frags[i].size;
1779 if ((copy = end - offset) > 0) {
1780 __wsum csum2;
1781 u8 *vaddr;
1782 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1783
1784 if (copy > len)
1785 copy = len;
1786 vaddr = kmap_skb_frag(frag);
1787 csum2 = csum_partial_copy_nocheck(vaddr +
1788 frag->page_offset +
1789 offset - start, to,
1790 copy, 0);
1791 kunmap_skb_frag(vaddr);
1792 csum = csum_block_add(csum, csum2, pos);
1793 if (!(len -= copy))
1794 return csum;
1795 offset += copy;
1796 to += copy;
1797 pos += copy;
1798 }
1799 start = end;
1800 }
1801
1802 skb_walk_frags(skb, frag_iter) {
1803 __wsum csum2;
1804 int end;
1805
1806 WARN_ON(start > offset + len);
1807
1808 end = start + frag_iter->len;
1809 if ((copy = end - offset) > 0) {
1810 if (copy > len)
1811 copy = len;
1812 csum2 = skb_copy_and_csum_bits(frag_iter,
1813 offset - start,
1814 to, copy, 0);
1815 csum = csum_block_add(csum, csum2, pos);
1816 if ((len -= copy) == 0)
1817 return csum;
1818 offset += copy;
1819 to += copy;
1820 pos += copy;
1821 }
1822 start = end;
1823 }
1824 BUG_ON(len);
1825 return csum;
1826 }
1827 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1828
1829 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1830 {
1831 __wsum csum;
1832 long csstart;
1833
1834 if (skb->ip_summed == CHECKSUM_PARTIAL)
1835 csstart = skb->csum_start - skb_headroom(skb);
1836 else
1837 csstart = skb_headlen(skb);
1838
1839 BUG_ON(csstart > skb_headlen(skb));
1840
1841 skb_copy_from_linear_data(skb, to, csstart);
1842
1843 csum = 0;
1844 if (csstart != skb->len)
1845 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1846 skb->len - csstart, 0);
1847
1848 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1849 long csstuff = csstart + skb->csum_offset;
1850
1851 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1852 }
1853 }
1854 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1855
1856 /**
1857 * skb_dequeue - remove from the head of the queue
1858 * @list: list to dequeue from
1859 *
1860 * Remove the head of the list. The list lock is taken so the function
1861 * may be used safely with other locking list functions. The head item is
1862 * returned or %NULL if the list is empty.
1863 */
1864
1865 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1866 {
1867 unsigned long flags;
1868 struct sk_buff *result;
1869
1870 spin_lock_irqsave(&list->lock, flags);
1871 result = __skb_dequeue(list);
1872 spin_unlock_irqrestore(&list->lock, flags);
1873 return result;
1874 }
1875 EXPORT_SYMBOL(skb_dequeue);
1876
1877 /**
1878 * skb_dequeue_tail - remove from the tail of the queue
1879 * @list: list to dequeue from
1880 *
1881 * Remove the tail of the list. The list lock is taken so the function
1882 * may be used safely with other locking list functions. The tail item is
1883 * returned or %NULL if the list is empty.
1884 */
1885 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1886 {
1887 unsigned long flags;
1888 struct sk_buff *result;
1889
1890 spin_lock_irqsave(&list->lock, flags);
1891 result = __skb_dequeue_tail(list);
1892 spin_unlock_irqrestore(&list->lock, flags);
1893 return result;
1894 }
1895 EXPORT_SYMBOL(skb_dequeue_tail);
1896
1897 /**
1898 * skb_queue_purge - empty a list
1899 * @list: list to empty
1900 *
1901 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1902 * the list and one reference dropped. This function takes the list
1903 * lock and is atomic with respect to other list locking functions.
1904 */
1905 void skb_queue_purge(struct sk_buff_head *list)
1906 {
1907 struct sk_buff *skb;
1908 while ((skb = skb_dequeue(list)) != NULL)
1909 kfree_skb(skb);
1910 }
1911 EXPORT_SYMBOL(skb_queue_purge);
1912
1913 /**
1914 * skb_queue_head - queue a buffer at the list head
1915 * @list: list to use
1916 * @newsk: buffer to queue
1917 *
1918 * Queue a buffer at the start of the list. This function takes the
1919 * list lock and can be used safely with other locking &sk_buff functions
1920 * safely.
1921 *
1922 * A buffer cannot be placed on two lists at the same time.
1923 */
1924 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1925 {
1926 unsigned long flags;
1927
1928 spin_lock_irqsave(&list->lock, flags);
1929 __skb_queue_head(list, newsk);
1930 spin_unlock_irqrestore(&list->lock, flags);
1931 }
1932 EXPORT_SYMBOL(skb_queue_head);
1933
1934 /**
1935 * skb_queue_tail - queue a buffer at the list tail
1936 * @list: list to use
1937 * @newsk: buffer to queue
1938 *
1939 * Queue a buffer at the tail of the list. This function takes the
1940 * list lock and can be used safely with other locking &sk_buff functions
1941 * safely.
1942 *
1943 * A buffer cannot be placed on two lists at the same time.
1944 */
1945 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1946 {
1947 unsigned long flags;
1948
1949 spin_lock_irqsave(&list->lock, flags);
1950 __skb_queue_tail(list, newsk);
1951 spin_unlock_irqrestore(&list->lock, flags);
1952 }
1953 EXPORT_SYMBOL(skb_queue_tail);
1954
1955 /**
1956 * skb_unlink - remove a buffer from a list
1957 * @skb: buffer to remove
1958 * @list: list to use
1959 *
1960 * Remove a packet from a list. The list locks are taken and this
1961 * function is atomic with respect to other list locked calls
1962 *
1963 * You must know what list the SKB is on.
1964 */
1965 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1966 {
1967 unsigned long flags;
1968
1969 spin_lock_irqsave(&list->lock, flags);
1970 __skb_unlink(skb, list);
1971 spin_unlock_irqrestore(&list->lock, flags);
1972 }
1973 EXPORT_SYMBOL(skb_unlink);
1974
1975 /**
1976 * skb_append - append a buffer
1977 * @old: buffer to insert after
1978 * @newsk: buffer to insert
1979 * @list: list to use
1980 *
1981 * Place a packet after a given packet in a list. The list locks are taken
1982 * and this function is atomic with respect to other list locked calls.
1983 * A buffer cannot be placed on two lists at the same time.
1984 */
1985 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1986 {
1987 unsigned long flags;
1988
1989 spin_lock_irqsave(&list->lock, flags);
1990 __skb_queue_after(list, old, newsk);
1991 spin_unlock_irqrestore(&list->lock, flags);
1992 }
1993 EXPORT_SYMBOL(skb_append);
1994
1995 /**
1996 * skb_insert - insert a buffer
1997 * @old: buffer to insert before
1998 * @newsk: buffer to insert
1999 * @list: list to use
2000 *
2001 * Place a packet before a given packet in a list. The list locks are
2002 * taken and this function is atomic with respect to other list locked
2003 * calls.
2004 *
2005 * A buffer cannot be placed on two lists at the same time.
2006 */
2007 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2008 {
2009 unsigned long flags;
2010
2011 spin_lock_irqsave(&list->lock, flags);
2012 __skb_insert(newsk, old->prev, old, list);
2013 spin_unlock_irqrestore(&list->lock, flags);
2014 }
2015 EXPORT_SYMBOL(skb_insert);
2016
2017 static inline void skb_split_inside_header(struct sk_buff *skb,
2018 struct sk_buff* skb1,
2019 const u32 len, const int pos)
2020 {
2021 int i;
2022
2023 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2024 pos - len);
2025 /* And move data appendix as is. */
2026 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2027 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2028
2029 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2030 skb_shinfo(skb)->nr_frags = 0;
2031 skb1->data_len = skb->data_len;
2032 skb1->len += skb1->data_len;
2033 skb->data_len = 0;
2034 skb->len = len;
2035 skb_set_tail_pointer(skb, len);
2036 }
2037
2038 static inline void skb_split_no_header(struct sk_buff *skb,
2039 struct sk_buff* skb1,
2040 const u32 len, int pos)
2041 {
2042 int i, k = 0;
2043 const int nfrags = skb_shinfo(skb)->nr_frags;
2044
2045 skb_shinfo(skb)->nr_frags = 0;
2046 skb1->len = skb1->data_len = skb->len - len;
2047 skb->len = len;
2048 skb->data_len = len - pos;
2049
2050 for (i = 0; i < nfrags; i++) {
2051 int size = skb_shinfo(skb)->frags[i].size;
2052
2053 if (pos + size > len) {
2054 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2055
2056 if (pos < len) {
2057 /* Split frag.
2058 * We have two variants in this case:
2059 * 1. Move all the frag to the second
2060 * part, if it is possible. F.e.
2061 * this approach is mandatory for TUX,
2062 * where splitting is expensive.
2063 * 2. Split is accurately. We make this.
2064 */
2065 get_page(skb_shinfo(skb)->frags[i].page);
2066 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2067 skb_shinfo(skb1)->frags[0].size -= len - pos;
2068 skb_shinfo(skb)->frags[i].size = len - pos;
2069 skb_shinfo(skb)->nr_frags++;
2070 }
2071 k++;
2072 } else
2073 skb_shinfo(skb)->nr_frags++;
2074 pos += size;
2075 }
2076 skb_shinfo(skb1)->nr_frags = k;
2077 }
2078
2079 /**
2080 * skb_split - Split fragmented skb to two parts at length len.
2081 * @skb: the buffer to split
2082 * @skb1: the buffer to receive the second part
2083 * @len: new length for skb
2084 */
2085 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2086 {
2087 int pos = skb_headlen(skb);
2088
2089 if (len < pos) /* Split line is inside header. */
2090 skb_split_inside_header(skb, skb1, len, pos);
2091 else /* Second chunk has no header, nothing to copy. */
2092 skb_split_no_header(skb, skb1, len, pos);
2093 }
2094 EXPORT_SYMBOL(skb_split);
2095
2096 /* Shifting from/to a cloned skb is a no-go.
2097 *
2098 * Caller cannot keep skb_shinfo related pointers past calling here!
2099 */
2100 static int skb_prepare_for_shift(struct sk_buff *skb)
2101 {
2102 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2103 }
2104
2105 /**
2106 * skb_shift - Shifts paged data partially from skb to another
2107 * @tgt: buffer into which tail data gets added
2108 * @skb: buffer from which the paged data comes from
2109 * @shiftlen: shift up to this many bytes
2110 *
2111 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2112 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2113 * It's up to caller to free skb if everything was shifted.
2114 *
2115 * If @tgt runs out of frags, the whole operation is aborted.
2116 *
2117 * Skb cannot include anything else but paged data while tgt is allowed
2118 * to have non-paged data as well.
2119 *
2120 * TODO: full sized shift could be optimized but that would need
2121 * specialized skb free'er to handle frags without up-to-date nr_frags.
2122 */
2123 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2124 {
2125 int from, to, merge, todo;
2126 struct skb_frag_struct *fragfrom, *fragto;
2127
2128 BUG_ON(shiftlen > skb->len);
2129 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2130
2131 todo = shiftlen;
2132 from = 0;
2133 to = skb_shinfo(tgt)->nr_frags;
2134 fragfrom = &skb_shinfo(skb)->frags[from];
2135
2136 /* Actual merge is delayed until the point when we know we can
2137 * commit all, so that we don't have to undo partial changes
2138 */
2139 if (!to ||
2140 !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2141 merge = -1;
2142 } else {
2143 merge = to - 1;
2144
2145 todo -= fragfrom->size;
2146 if (todo < 0) {
2147 if (skb_prepare_for_shift(skb) ||
2148 skb_prepare_for_shift(tgt))
2149 return 0;
2150
2151 /* All previous frag pointers might be stale! */
2152 fragfrom = &skb_shinfo(skb)->frags[from];
2153 fragto = &skb_shinfo(tgt)->frags[merge];
2154
2155 fragto->size += shiftlen;
2156 fragfrom->size -= shiftlen;
2157 fragfrom->page_offset += shiftlen;
2158
2159 goto onlymerged;
2160 }
2161
2162 from++;
2163 }
2164
2165 /* Skip full, not-fitting skb to avoid expensive operations */
2166 if ((shiftlen == skb->len) &&
2167 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2168 return 0;
2169
2170 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2171 return 0;
2172
2173 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2174 if (to == MAX_SKB_FRAGS)
2175 return 0;
2176
2177 fragfrom = &skb_shinfo(skb)->frags[from];
2178 fragto = &skb_shinfo(tgt)->frags[to];
2179
2180 if (todo >= fragfrom->size) {
2181 *fragto = *fragfrom;
2182 todo -= fragfrom->size;
2183 from++;
2184 to++;
2185
2186 } else {
2187 get_page(fragfrom->page);
2188 fragto->page = fragfrom->page;
2189 fragto->page_offset = fragfrom->page_offset;
2190 fragto->size = todo;
2191
2192 fragfrom->page_offset += todo;
2193 fragfrom->size -= todo;
2194 todo = 0;
2195
2196 to++;
2197 break;
2198 }
2199 }
2200
2201 /* Ready to "commit" this state change to tgt */
2202 skb_shinfo(tgt)->nr_frags = to;
2203
2204 if (merge >= 0) {
2205 fragfrom = &skb_shinfo(skb)->frags[0];
2206 fragto = &skb_shinfo(tgt)->frags[merge];
2207
2208 fragto->size += fragfrom->size;
2209 put_page(fragfrom->page);
2210 }
2211
2212 /* Reposition in the original skb */
2213 to = 0;
2214 while (from < skb_shinfo(skb)->nr_frags)
2215 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2216 skb_shinfo(skb)->nr_frags = to;
2217
2218 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2219
2220 onlymerged:
2221 /* Most likely the tgt won't ever need its checksum anymore, skb on
2222 * the other hand might need it if it needs to be resent
2223 */
2224 tgt->ip_summed = CHECKSUM_PARTIAL;
2225 skb->ip_summed = CHECKSUM_PARTIAL;
2226
2227 /* Yak, is it really working this way? Some helper please? */
2228 skb->len -= shiftlen;
2229 skb->data_len -= shiftlen;
2230 skb->truesize -= shiftlen;
2231 tgt->len += shiftlen;
2232 tgt->data_len += shiftlen;
2233 tgt->truesize += shiftlen;
2234
2235 return shiftlen;
2236 }
2237
2238 /**
2239 * skb_prepare_seq_read - Prepare a sequential read of skb data
2240 * @skb: the buffer to read
2241 * @from: lower offset of data to be read
2242 * @to: upper offset of data to be read
2243 * @st: state variable
2244 *
2245 * Initializes the specified state variable. Must be called before
2246 * invoking skb_seq_read() for the first time.
2247 */
2248 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2249 unsigned int to, struct skb_seq_state *st)
2250 {
2251 st->lower_offset = from;
2252 st->upper_offset = to;
2253 st->root_skb = st->cur_skb = skb;
2254 st->frag_idx = st->stepped_offset = 0;
2255 st->frag_data = NULL;
2256 }
2257 EXPORT_SYMBOL(skb_prepare_seq_read);
2258
2259 /**
2260 * skb_seq_read - Sequentially read skb data
2261 * @consumed: number of bytes consumed by the caller so far
2262 * @data: destination pointer for data to be returned
2263 * @st: state variable
2264 *
2265 * Reads a block of skb data at &consumed relative to the
2266 * lower offset specified to skb_prepare_seq_read(). Assigns
2267 * the head of the data block to &data and returns the length
2268 * of the block or 0 if the end of the skb data or the upper
2269 * offset has been reached.
2270 *
2271 * The caller is not required to consume all of the data
2272 * returned, i.e. &consumed is typically set to the number
2273 * of bytes already consumed and the next call to
2274 * skb_seq_read() will return the remaining part of the block.
2275 *
2276 * Note 1: The size of each block of data returned can be arbitary,
2277 * this limitation is the cost for zerocopy seqeuental
2278 * reads of potentially non linear data.
2279 *
2280 * Note 2: Fragment lists within fragments are not implemented
2281 * at the moment, state->root_skb could be replaced with
2282 * a stack for this purpose.
2283 */
2284 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2285 struct skb_seq_state *st)
2286 {
2287 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2288 skb_frag_t *frag;
2289
2290 if (unlikely(abs_offset >= st->upper_offset))
2291 return 0;
2292
2293 next_skb:
2294 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2295
2296 if (abs_offset < block_limit && !st->frag_data) {
2297 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2298 return block_limit - abs_offset;
2299 }
2300
2301 if (st->frag_idx == 0 && !st->frag_data)
2302 st->stepped_offset += skb_headlen(st->cur_skb);
2303
2304 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2305 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2306 block_limit = frag->size + st->stepped_offset;
2307
2308 if (abs_offset < block_limit) {
2309 if (!st->frag_data)
2310 st->frag_data = kmap_skb_frag(frag);
2311
2312 *data = (u8 *) st->frag_data + frag->page_offset +
2313 (abs_offset - st->stepped_offset);
2314
2315 return block_limit - abs_offset;
2316 }
2317
2318 if (st->frag_data) {
2319 kunmap_skb_frag(st->frag_data);
2320 st->frag_data = NULL;
2321 }
2322
2323 st->frag_idx++;
2324 st->stepped_offset += frag->size;
2325 }
2326
2327 if (st->frag_data) {
2328 kunmap_skb_frag(st->frag_data);
2329 st->frag_data = NULL;
2330 }
2331
2332 if (st->root_skb == st->cur_skb && skb_has_frags(st->root_skb)) {
2333 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2334 st->frag_idx = 0;
2335 goto next_skb;
2336 } else if (st->cur_skb->next) {
2337 st->cur_skb = st->cur_skb->next;
2338 st->frag_idx = 0;
2339 goto next_skb;
2340 }
2341
2342 return 0;
2343 }
2344 EXPORT_SYMBOL(skb_seq_read);
2345
2346 /**
2347 * skb_abort_seq_read - Abort a sequential read of skb data
2348 * @st: state variable
2349 *
2350 * Must be called if skb_seq_read() was not called until it
2351 * returned 0.
2352 */
2353 void skb_abort_seq_read(struct skb_seq_state *st)
2354 {
2355 if (st->frag_data)
2356 kunmap_skb_frag(st->frag_data);
2357 }
2358 EXPORT_SYMBOL(skb_abort_seq_read);
2359
2360 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2361
2362 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2363 struct ts_config *conf,
2364 struct ts_state *state)
2365 {
2366 return skb_seq_read(offset, text, TS_SKB_CB(state));
2367 }
2368
2369 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2370 {
2371 skb_abort_seq_read(TS_SKB_CB(state));
2372 }
2373
2374 /**
2375 * skb_find_text - Find a text pattern in skb data
2376 * @skb: the buffer to look in
2377 * @from: search offset
2378 * @to: search limit
2379 * @config: textsearch configuration
2380 * @state: uninitialized textsearch state variable
2381 *
2382 * Finds a pattern in the skb data according to the specified
2383 * textsearch configuration. Use textsearch_next() to retrieve
2384 * subsequent occurrences of the pattern. Returns the offset
2385 * to the first occurrence or UINT_MAX if no match was found.
2386 */
2387 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2388 unsigned int to, struct ts_config *config,
2389 struct ts_state *state)
2390 {
2391 unsigned int ret;
2392
2393 config->get_next_block = skb_ts_get_next_block;
2394 config->finish = skb_ts_finish;
2395
2396 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2397
2398 ret = textsearch_find(config, state);
2399 return (ret <= to - from ? ret : UINT_MAX);
2400 }
2401 EXPORT_SYMBOL(skb_find_text);
2402
2403 /**
2404 * skb_append_datato_frags: - append the user data to a skb
2405 * @sk: sock structure
2406 * @skb: skb structure to be appened with user data.
2407 * @getfrag: call back function to be used for getting the user data
2408 * @from: pointer to user message iov
2409 * @length: length of the iov message
2410 *
2411 * Description: This procedure append the user data in the fragment part
2412 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2413 */
2414 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2415 int (*getfrag)(void *from, char *to, int offset,
2416 int len, int odd, struct sk_buff *skb),
2417 void *from, int length)
2418 {
2419 int frg_cnt = 0;
2420 skb_frag_t *frag = NULL;
2421 struct page *page = NULL;
2422 int copy, left;
2423 int offset = 0;
2424 int ret;
2425
2426 do {
2427 /* Return error if we don't have space for new frag */
2428 frg_cnt = skb_shinfo(skb)->nr_frags;
2429 if (frg_cnt >= MAX_SKB_FRAGS)
2430 return -EFAULT;
2431
2432 /* allocate a new page for next frag */
2433 page = alloc_pages(sk->sk_allocation, 0);
2434
2435 /* If alloc_page fails just return failure and caller will
2436 * free previous allocated pages by doing kfree_skb()
2437 */
2438 if (page == NULL)
2439 return -ENOMEM;
2440
2441 /* initialize the next frag */
2442 sk->sk_sndmsg_page = page;
2443 sk->sk_sndmsg_off = 0;
2444 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2445 skb->truesize += PAGE_SIZE;
2446 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2447
2448 /* get the new initialized frag */
2449 frg_cnt = skb_shinfo(skb)->nr_frags;
2450 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2451
2452 /* copy the user data to page */
2453 left = PAGE_SIZE - frag->page_offset;
2454 copy = (length > left)? left : length;
2455
2456 ret = getfrag(from, (page_address(frag->page) +
2457 frag->page_offset + frag->size),
2458 offset, copy, 0, skb);
2459 if (ret < 0)
2460 return -EFAULT;
2461
2462 /* copy was successful so update the size parameters */
2463 sk->sk_sndmsg_off += copy;
2464 frag->size += copy;
2465 skb->len += copy;
2466 skb->data_len += copy;
2467 offset += copy;
2468 length -= copy;
2469
2470 } while (length > 0);
2471
2472 return 0;
2473 }
2474 EXPORT_SYMBOL(skb_append_datato_frags);
2475
2476 /**
2477 * skb_pull_rcsum - pull skb and update receive checksum
2478 * @skb: buffer to update
2479 * @len: length of data pulled
2480 *
2481 * This function performs an skb_pull on the packet and updates
2482 * the CHECKSUM_COMPLETE checksum. It should be used on
2483 * receive path processing instead of skb_pull unless you know
2484 * that the checksum difference is zero (e.g., a valid IP header)
2485 * or you are setting ip_summed to CHECKSUM_NONE.
2486 */
2487 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2488 {
2489 BUG_ON(len > skb->len);
2490 skb->len -= len;
2491 BUG_ON(skb->len < skb->data_len);
2492 skb_postpull_rcsum(skb, skb->data, len);
2493 return skb->data += len;
2494 }
2495
2496 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2497
2498 /**
2499 * skb_segment - Perform protocol segmentation on skb.
2500 * @skb: buffer to segment
2501 * @features: features for the output path (see dev->features)
2502 *
2503 * This function performs segmentation on the given skb. It returns
2504 * a pointer to the first in a list of new skbs for the segments.
2505 * In case of error it returns ERR_PTR(err).
2506 */
2507 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2508 {
2509 struct sk_buff *segs = NULL;
2510 struct sk_buff *tail = NULL;
2511 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2512 unsigned int mss = skb_shinfo(skb)->gso_size;
2513 unsigned int doffset = skb->data - skb_mac_header(skb);
2514 unsigned int offset = doffset;
2515 unsigned int headroom;
2516 unsigned int len;
2517 int sg = features & NETIF_F_SG;
2518 int nfrags = skb_shinfo(skb)->nr_frags;
2519 int err = -ENOMEM;
2520 int i = 0;
2521 int pos;
2522
2523 __skb_push(skb, doffset);
2524 headroom = skb_headroom(skb);
2525 pos = skb_headlen(skb);
2526
2527 do {
2528 struct sk_buff *nskb;
2529 skb_frag_t *frag;
2530 int hsize;
2531 int size;
2532
2533 len = skb->len - offset;
2534 if (len > mss)
2535 len = mss;
2536
2537 hsize = skb_headlen(skb) - offset;
2538 if (hsize < 0)
2539 hsize = 0;
2540 if (hsize > len || !sg)
2541 hsize = len;
2542
2543 if (!hsize && i >= nfrags) {
2544 BUG_ON(fskb->len != len);
2545
2546 pos += len;
2547 nskb = skb_clone(fskb, GFP_ATOMIC);
2548 fskb = fskb->next;
2549
2550 if (unlikely(!nskb))
2551 goto err;
2552
2553 hsize = skb_end_pointer(nskb) - nskb->head;
2554 if (skb_cow_head(nskb, doffset + headroom)) {
2555 kfree_skb(nskb);
2556 goto err;
2557 }
2558
2559 nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2560 hsize;
2561 skb_release_head_state(nskb);
2562 __skb_push(nskb, doffset);
2563 } else {
2564 nskb = alloc_skb(hsize + doffset + headroom,
2565 GFP_ATOMIC);
2566
2567 if (unlikely(!nskb))
2568 goto err;
2569
2570 skb_reserve(nskb, headroom);
2571 __skb_put(nskb, doffset);
2572 }
2573
2574 if (segs)
2575 tail->next = nskb;
2576 else
2577 segs = nskb;
2578 tail = nskb;
2579
2580 __copy_skb_header(nskb, skb);
2581 nskb->mac_len = skb->mac_len;
2582
2583 skb_reset_mac_header(nskb);
2584 skb_set_network_header(nskb, skb->mac_len);
2585 nskb->transport_header = (nskb->network_header +
2586 skb_network_header_len(skb));
2587 skb_copy_from_linear_data(skb, nskb->data, doffset);
2588
2589 if (fskb != skb_shinfo(skb)->frag_list)
2590 continue;
2591
2592 if (!sg) {
2593 nskb->ip_summed = CHECKSUM_NONE;
2594 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2595 skb_put(nskb, len),
2596 len, 0);
2597 continue;
2598 }
2599
2600 frag = skb_shinfo(nskb)->frags;
2601
2602 skb_copy_from_linear_data_offset(skb, offset,
2603 skb_put(nskb, hsize), hsize);
2604
2605 while (pos < offset + len && i < nfrags) {
2606 *frag = skb_shinfo(skb)->frags[i];
2607 get_page(frag->page);
2608 size = frag->size;
2609
2610 if (pos < offset) {
2611 frag->page_offset += offset - pos;
2612 frag->size -= offset - pos;
2613 }
2614
2615 skb_shinfo(nskb)->nr_frags++;
2616
2617 if (pos + size <= offset + len) {
2618 i++;
2619 pos += size;
2620 } else {
2621 frag->size -= pos + size - (offset + len);
2622 goto skip_fraglist;
2623 }
2624
2625 frag++;
2626 }
2627
2628 if (pos < offset + len) {
2629 struct sk_buff *fskb2 = fskb;
2630
2631 BUG_ON(pos + fskb->len != offset + len);
2632
2633 pos += fskb->len;
2634 fskb = fskb->next;
2635
2636 if (fskb2->next) {
2637 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2638 if (!fskb2)
2639 goto err;
2640 } else
2641 skb_get(fskb2);
2642
2643 SKB_FRAG_ASSERT(nskb);
2644 skb_shinfo(nskb)->frag_list = fskb2;
2645 }
2646
2647 skip_fraglist:
2648 nskb->data_len = len - hsize;
2649 nskb->len += nskb->data_len;
2650 nskb->truesize += nskb->data_len;
2651 } while ((offset += len) < skb->len);
2652
2653 return segs;
2654
2655 err:
2656 while ((skb = segs)) {
2657 segs = skb->next;
2658 kfree_skb(skb);
2659 }
2660 return ERR_PTR(err);
2661 }
2662 EXPORT_SYMBOL_GPL(skb_segment);
2663
2664 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2665 {
2666 struct sk_buff *p = *head;
2667 struct sk_buff *nskb;
2668 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2669 struct skb_shared_info *pinfo = skb_shinfo(p);
2670 unsigned int headroom;
2671 unsigned int len = skb_gro_len(skb);
2672 unsigned int offset = skb_gro_offset(skb);
2673 unsigned int headlen = skb_headlen(skb);
2674
2675 if (p->len + len >= 65536)
2676 return -E2BIG;
2677
2678 if (pinfo->frag_list)
2679 goto merge;
2680 else if (headlen <= offset) {
2681 skb_frag_t *frag;
2682 skb_frag_t *frag2;
2683 int i = skbinfo->nr_frags;
2684 int nr_frags = pinfo->nr_frags + i;
2685
2686 offset -= headlen;
2687
2688 if (nr_frags > MAX_SKB_FRAGS)
2689 return -E2BIG;
2690
2691 pinfo->nr_frags = nr_frags;
2692 skbinfo->nr_frags = 0;
2693
2694 frag = pinfo->frags + nr_frags;
2695 frag2 = skbinfo->frags + i;
2696 do {
2697 *--frag = *--frag2;
2698 } while (--i);
2699
2700 frag->page_offset += offset;
2701 frag->size -= offset;
2702
2703 skb->truesize -= skb->data_len;
2704 skb->len -= skb->data_len;
2705 skb->data_len = 0;
2706
2707 NAPI_GRO_CB(skb)->free = 1;
2708 goto done;
2709 } else if (skb_gro_len(p) != pinfo->gso_size)
2710 return -E2BIG;
2711
2712 headroom = skb_headroom(p);
2713 nskb = netdev_alloc_skb(p->dev, headroom + skb_gro_offset(p));
2714 if (unlikely(!nskb))
2715 return -ENOMEM;
2716
2717 __copy_skb_header(nskb, p);
2718 nskb->mac_len = p->mac_len;
2719
2720 skb_reserve(nskb, headroom);
2721 __skb_put(nskb, skb_gro_offset(p));
2722
2723 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2724 skb_set_network_header(nskb, skb_network_offset(p));
2725 skb_set_transport_header(nskb, skb_transport_offset(p));
2726
2727 __skb_pull(p, skb_gro_offset(p));
2728 memcpy(skb_mac_header(nskb), skb_mac_header(p),
2729 p->data - skb_mac_header(p));
2730
2731 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2732 skb_shinfo(nskb)->frag_list = p;
2733 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2734 skb_header_release(p);
2735 nskb->prev = p;
2736
2737 nskb->data_len += p->len;
2738 nskb->truesize += p->len;
2739 nskb->len += p->len;
2740
2741 *head = nskb;
2742 nskb->next = p->next;
2743 p->next = NULL;
2744
2745 p = nskb;
2746
2747 merge:
2748 if (offset > headlen) {
2749 skbinfo->frags[0].page_offset += offset - headlen;
2750 skbinfo->frags[0].size -= offset - headlen;
2751 offset = headlen;
2752 }
2753
2754 __skb_pull(skb, offset);
2755
2756 p->prev->next = skb;
2757 p->prev = skb;
2758 skb_header_release(skb);
2759
2760 done:
2761 NAPI_GRO_CB(p)->count++;
2762 p->data_len += len;
2763 p->truesize += len;
2764 p->len += len;
2765
2766 NAPI_GRO_CB(skb)->same_flow = 1;
2767 return 0;
2768 }
2769 EXPORT_SYMBOL_GPL(skb_gro_receive);
2770
2771 void __init skb_init(void)
2772 {
2773 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2774 sizeof(struct sk_buff),
2775 0,
2776 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2777 NULL);
2778 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2779 (2*sizeof(struct sk_buff)) +
2780 sizeof(atomic_t),
2781 0,
2782 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2783 NULL);
2784 }
2785
2786 /**
2787 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2788 * @skb: Socket buffer containing the buffers to be mapped
2789 * @sg: The scatter-gather list to map into
2790 * @offset: The offset into the buffer's contents to start mapping
2791 * @len: Length of buffer space to be mapped
2792 *
2793 * Fill the specified scatter-gather list with mappings/pointers into a
2794 * region of the buffer space attached to a socket buffer.
2795 */
2796 static int
2797 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2798 {
2799 int start = skb_headlen(skb);
2800 int i, copy = start - offset;
2801 struct sk_buff *frag_iter;
2802 int elt = 0;
2803
2804 if (copy > 0) {
2805 if (copy > len)
2806 copy = len;
2807 sg_set_buf(sg, skb->data + offset, copy);
2808 elt++;
2809 if ((len -= copy) == 0)
2810 return elt;
2811 offset += copy;
2812 }
2813
2814 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2815 int end;
2816
2817 WARN_ON(start > offset + len);
2818
2819 end = start + skb_shinfo(skb)->frags[i].size;
2820 if ((copy = end - offset) > 0) {
2821 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2822
2823 if (copy > len)
2824 copy = len;
2825 sg_set_page(&sg[elt], frag->page, copy,
2826 frag->page_offset+offset-start);
2827 elt++;
2828 if (!(len -= copy))
2829 return elt;
2830 offset += copy;
2831 }
2832 start = end;
2833 }
2834
2835 skb_walk_frags(skb, frag_iter) {
2836 int end;
2837
2838 WARN_ON(start > offset + len);
2839
2840 end = start + frag_iter->len;
2841 if ((copy = end - offset) > 0) {
2842 if (copy > len)
2843 copy = len;
2844 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
2845 copy);
2846 if ((len -= copy) == 0)
2847 return elt;
2848 offset += copy;
2849 }
2850 start = end;
2851 }
2852 BUG_ON(len);
2853 return elt;
2854 }
2855
2856 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2857 {
2858 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2859
2860 sg_mark_end(&sg[nsg - 1]);
2861
2862 return nsg;
2863 }
2864 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2865
2866 /**
2867 * skb_cow_data - Check that a socket buffer's data buffers are writable
2868 * @skb: The socket buffer to check.
2869 * @tailbits: Amount of trailing space to be added
2870 * @trailer: Returned pointer to the skb where the @tailbits space begins
2871 *
2872 * Make sure that the data buffers attached to a socket buffer are
2873 * writable. If they are not, private copies are made of the data buffers
2874 * and the socket buffer is set to use these instead.
2875 *
2876 * If @tailbits is given, make sure that there is space to write @tailbits
2877 * bytes of data beyond current end of socket buffer. @trailer will be
2878 * set to point to the skb in which this space begins.
2879 *
2880 * The number of scatterlist elements required to completely map the
2881 * COW'd and extended socket buffer will be returned.
2882 */
2883 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2884 {
2885 int copyflag;
2886 int elt;
2887 struct sk_buff *skb1, **skb_p;
2888
2889 /* If skb is cloned or its head is paged, reallocate
2890 * head pulling out all the pages (pages are considered not writable
2891 * at the moment even if they are anonymous).
2892 */
2893 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2894 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2895 return -ENOMEM;
2896
2897 /* Easy case. Most of packets will go this way. */
2898 if (!skb_has_frags(skb)) {
2899 /* A little of trouble, not enough of space for trailer.
2900 * This should not happen, when stack is tuned to generate
2901 * good frames. OK, on miss we reallocate and reserve even more
2902 * space, 128 bytes is fair. */
2903
2904 if (skb_tailroom(skb) < tailbits &&
2905 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2906 return -ENOMEM;
2907
2908 /* Voila! */
2909 *trailer = skb;
2910 return 1;
2911 }
2912
2913 /* Misery. We are in troubles, going to mincer fragments... */
2914
2915 elt = 1;
2916 skb_p = &skb_shinfo(skb)->frag_list;
2917 copyflag = 0;
2918
2919 while ((skb1 = *skb_p) != NULL) {
2920 int ntail = 0;
2921
2922 /* The fragment is partially pulled by someone,
2923 * this can happen on input. Copy it and everything
2924 * after it. */
2925
2926 if (skb_shared(skb1))
2927 copyflag = 1;
2928
2929 /* If the skb is the last, worry about trailer. */
2930
2931 if (skb1->next == NULL && tailbits) {
2932 if (skb_shinfo(skb1)->nr_frags ||
2933 skb_has_frags(skb1) ||
2934 skb_tailroom(skb1) < tailbits)
2935 ntail = tailbits + 128;
2936 }
2937
2938 if (copyflag ||
2939 skb_cloned(skb1) ||
2940 ntail ||
2941 skb_shinfo(skb1)->nr_frags ||
2942 skb_has_frags(skb1)) {
2943 struct sk_buff *skb2;
2944
2945 /* Fuck, we are miserable poor guys... */
2946 if (ntail == 0)
2947 skb2 = skb_copy(skb1, GFP_ATOMIC);
2948 else
2949 skb2 = skb_copy_expand(skb1,
2950 skb_headroom(skb1),
2951 ntail,
2952 GFP_ATOMIC);
2953 if (unlikely(skb2 == NULL))
2954 return -ENOMEM;
2955
2956 if (skb1->sk)
2957 skb_set_owner_w(skb2, skb1->sk);
2958
2959 /* Looking around. Are we still alive?
2960 * OK, link new skb, drop old one */
2961
2962 skb2->next = skb1->next;
2963 *skb_p = skb2;
2964 kfree_skb(skb1);
2965 skb1 = skb2;
2966 }
2967 elt++;
2968 *trailer = skb1;
2969 skb_p = &skb1->next;
2970 }
2971
2972 return elt;
2973 }
2974 EXPORT_SYMBOL_GPL(skb_cow_data);
2975
2976 void skb_tstamp_tx(struct sk_buff *orig_skb,
2977 struct skb_shared_hwtstamps *hwtstamps)
2978 {
2979 struct sock *sk = orig_skb->sk;
2980 struct sock_exterr_skb *serr;
2981 struct sk_buff *skb;
2982 int err;
2983
2984 if (!sk)
2985 return;
2986
2987 skb = skb_clone(orig_skb, GFP_ATOMIC);
2988 if (!skb)
2989 return;
2990
2991 if (hwtstamps) {
2992 *skb_hwtstamps(skb) =
2993 *hwtstamps;
2994 } else {
2995 /*
2996 * no hardware time stamps available,
2997 * so keep the skb_shared_tx and only
2998 * store software time stamp
2999 */
3000 skb->tstamp = ktime_get_real();
3001 }
3002
3003 serr = SKB_EXT_ERR(skb);
3004 memset(serr, 0, sizeof(*serr));
3005 serr->ee.ee_errno = ENOMSG;
3006 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3007 err = sock_queue_err_skb(sk, skb);
3008 if (err)
3009 kfree_skb(skb);
3010 }
3011 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3012
3013
3014 /**
3015 * skb_partial_csum_set - set up and verify partial csum values for packet
3016 * @skb: the skb to set
3017 * @start: the number of bytes after skb->data to start checksumming.
3018 * @off: the offset from start to place the checksum.
3019 *
3020 * For untrusted partially-checksummed packets, we need to make sure the values
3021 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3022 *
3023 * This function checks and sets those values and skb->ip_summed: if this
3024 * returns false you should drop the packet.
3025 */
3026 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3027 {
3028 if (unlikely(start > skb_headlen(skb)) ||
3029 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3030 if (net_ratelimit())
3031 printk(KERN_WARNING
3032 "bad partial csum: csum=%u/%u len=%u\n",
3033 start, off, skb_headlen(skb));
3034 return false;
3035 }
3036 skb->ip_summed = CHECKSUM_PARTIAL;
3037 skb->csum_start = skb_headroom(skb) + start;
3038 skb->csum_offset = off;
3039 return true;
3040 }
3041 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3042
3043 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3044 {
3045 if (net_ratelimit())
3046 pr_warning("%s: received packets cannot be forwarded"
3047 " while LRO is enabled\n", skb->dev->name);
3048 }
3049 EXPORT_SYMBOL(__skb_warn_lro_forwarding);