]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/skbuff.c
skbuff: orphan frags before zerocopy clone
[mirror_ubuntu-bionic-kernel.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/tcp.h>
50 #include <linux/udp.h>
51 #include <linux/sctp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73
74 #include <linux/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79
80 struct kmem_cache *skbuff_head_cache __read_mostly;
81 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83 EXPORT_SYMBOL(sysctl_max_skb_frags);
84
85 /**
86 * skb_panic - private function for out-of-line support
87 * @skb: buffer
88 * @sz: size
89 * @addr: address
90 * @msg: skb_over_panic or skb_under_panic
91 *
92 * Out-of-line support for skb_put() and skb_push().
93 * Called via the wrapper skb_over_panic() or skb_under_panic().
94 * Keep out of line to prevent kernel bloat.
95 * __builtin_return_address is not used because it is not always reliable.
96 */
97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 const char msg[])
99 {
100 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 msg, addr, skb->len, sz, skb->head, skb->data,
102 (unsigned long)skb->tail, (unsigned long)skb->end,
103 skb->dev ? skb->dev->name : "<NULL>");
104 BUG();
105 }
106
107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108 {
109 skb_panic(skb, sz, addr, __func__);
110 }
111
112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 skb_panic(skb, sz, addr, __func__);
115 }
116
117 /*
118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119 * the caller if emergency pfmemalloc reserves are being used. If it is and
120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121 * may be used. Otherwise, the packet data may be discarded until enough
122 * memory is free
123 */
124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
126
127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 unsigned long ip, bool *pfmemalloc)
129 {
130 void *obj;
131 bool ret_pfmemalloc = false;
132
133 /*
134 * Try a regular allocation, when that fails and we're not entitled
135 * to the reserves, fail.
136 */
137 obj = kmalloc_node_track_caller(size,
138 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 node);
140 if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 goto out;
142
143 /* Try again but now we are using pfmemalloc reserves */
144 ret_pfmemalloc = true;
145 obj = kmalloc_node_track_caller(size, flags, node);
146
147 out:
148 if (pfmemalloc)
149 *pfmemalloc = ret_pfmemalloc;
150
151 return obj;
152 }
153
154 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
155 * 'private' fields and also do memory statistics to find all the
156 * [BEEP] leaks.
157 *
158 */
159
160 /**
161 * __alloc_skb - allocate a network buffer
162 * @size: size to allocate
163 * @gfp_mask: allocation mask
164 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
165 * instead of head cache and allocate a cloned (child) skb.
166 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
167 * allocations in case the data is required for writeback
168 * @node: numa node to allocate memory on
169 *
170 * Allocate a new &sk_buff. The returned buffer has no headroom and a
171 * tail room of at least size bytes. The object has a reference count
172 * of one. The return is the buffer. On a failure the return is %NULL.
173 *
174 * Buffers may only be allocated from interrupts using a @gfp_mask of
175 * %GFP_ATOMIC.
176 */
177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
178 int flags, int node)
179 {
180 struct kmem_cache *cache;
181 struct skb_shared_info *shinfo;
182 struct sk_buff *skb;
183 u8 *data;
184 bool pfmemalloc;
185
186 cache = (flags & SKB_ALLOC_FCLONE)
187 ? skbuff_fclone_cache : skbuff_head_cache;
188
189 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
190 gfp_mask |= __GFP_MEMALLOC;
191
192 /* Get the HEAD */
193 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
194 if (!skb)
195 goto out;
196 prefetchw(skb);
197
198 /* We do our best to align skb_shared_info on a separate cache
199 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
200 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
201 * Both skb->head and skb_shared_info are cache line aligned.
202 */
203 size = SKB_DATA_ALIGN(size);
204 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
205 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
206 if (!data)
207 goto nodata;
208 /* kmalloc(size) might give us more room than requested.
209 * Put skb_shared_info exactly at the end of allocated zone,
210 * to allow max possible filling before reallocation.
211 */
212 size = SKB_WITH_OVERHEAD(ksize(data));
213 prefetchw(data + size);
214
215 /*
216 * Only clear those fields we need to clear, not those that we will
217 * actually initialise below. Hence, don't put any more fields after
218 * the tail pointer in struct sk_buff!
219 */
220 memset(skb, 0, offsetof(struct sk_buff, tail));
221 /* Account for allocated memory : skb + skb->head */
222 skb->truesize = SKB_TRUESIZE(size);
223 skb->pfmemalloc = pfmemalloc;
224 refcount_set(&skb->users, 1);
225 skb->head = data;
226 skb->data = data;
227 skb_reset_tail_pointer(skb);
228 skb->end = skb->tail + size;
229 skb->mac_header = (typeof(skb->mac_header))~0U;
230 skb->transport_header = (typeof(skb->transport_header))~0U;
231
232 /* make sure we initialize shinfo sequentially */
233 shinfo = skb_shinfo(skb);
234 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
235 atomic_set(&shinfo->dataref, 1);
236
237 if (flags & SKB_ALLOC_FCLONE) {
238 struct sk_buff_fclones *fclones;
239
240 fclones = container_of(skb, struct sk_buff_fclones, skb1);
241
242 skb->fclone = SKB_FCLONE_ORIG;
243 refcount_set(&fclones->fclone_ref, 1);
244
245 fclones->skb2.fclone = SKB_FCLONE_CLONE;
246 }
247 out:
248 return skb;
249 nodata:
250 kmem_cache_free(cache, skb);
251 skb = NULL;
252 goto out;
253 }
254 EXPORT_SYMBOL(__alloc_skb);
255
256 /**
257 * __build_skb - build a network buffer
258 * @data: data buffer provided by caller
259 * @frag_size: size of data, or 0 if head was kmalloced
260 *
261 * Allocate a new &sk_buff. Caller provides space holding head and
262 * skb_shared_info. @data must have been allocated by kmalloc() only if
263 * @frag_size is 0, otherwise data should come from the page allocator
264 * or vmalloc()
265 * The return is the new skb buffer.
266 * On a failure the return is %NULL, and @data is not freed.
267 * Notes :
268 * Before IO, driver allocates only data buffer where NIC put incoming frame
269 * Driver should add room at head (NET_SKB_PAD) and
270 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
271 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
272 * before giving packet to stack.
273 * RX rings only contains data buffers, not full skbs.
274 */
275 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
276 {
277 struct skb_shared_info *shinfo;
278 struct sk_buff *skb;
279 unsigned int size = frag_size ? : ksize(data);
280
281 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
282 if (!skb)
283 return NULL;
284
285 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
286
287 memset(skb, 0, offsetof(struct sk_buff, tail));
288 skb->truesize = SKB_TRUESIZE(size);
289 refcount_set(&skb->users, 1);
290 skb->head = data;
291 skb->data = data;
292 skb_reset_tail_pointer(skb);
293 skb->end = skb->tail + size;
294 skb->mac_header = (typeof(skb->mac_header))~0U;
295 skb->transport_header = (typeof(skb->transport_header))~0U;
296
297 /* make sure we initialize shinfo sequentially */
298 shinfo = skb_shinfo(skb);
299 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
300 atomic_set(&shinfo->dataref, 1);
301
302 return skb;
303 }
304
305 /* build_skb() is wrapper over __build_skb(), that specifically
306 * takes care of skb->head and skb->pfmemalloc
307 * This means that if @frag_size is not zero, then @data must be backed
308 * by a page fragment, not kmalloc() or vmalloc()
309 */
310 struct sk_buff *build_skb(void *data, unsigned int frag_size)
311 {
312 struct sk_buff *skb = __build_skb(data, frag_size);
313
314 if (skb && frag_size) {
315 skb->head_frag = 1;
316 if (page_is_pfmemalloc(virt_to_head_page(data)))
317 skb->pfmemalloc = 1;
318 }
319 return skb;
320 }
321 EXPORT_SYMBOL(build_skb);
322
323 #define NAPI_SKB_CACHE_SIZE 64
324
325 struct napi_alloc_cache {
326 struct page_frag_cache page;
327 unsigned int skb_count;
328 void *skb_cache[NAPI_SKB_CACHE_SIZE];
329 };
330
331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
333
334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
335 {
336 struct page_frag_cache *nc;
337 unsigned long flags;
338 void *data;
339
340 local_irq_save(flags);
341 nc = this_cpu_ptr(&netdev_alloc_cache);
342 data = page_frag_alloc(nc, fragsz, gfp_mask);
343 local_irq_restore(flags);
344 return data;
345 }
346
347 /**
348 * netdev_alloc_frag - allocate a page fragment
349 * @fragsz: fragment size
350 *
351 * Allocates a frag from a page for receive buffer.
352 * Uses GFP_ATOMIC allocations.
353 */
354 void *netdev_alloc_frag(unsigned int fragsz)
355 {
356 return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
357 }
358 EXPORT_SYMBOL(netdev_alloc_frag);
359
360 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
361 {
362 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
363
364 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
365 }
366
367 void *napi_alloc_frag(unsigned int fragsz)
368 {
369 return __napi_alloc_frag(fragsz, GFP_ATOMIC);
370 }
371 EXPORT_SYMBOL(napi_alloc_frag);
372
373 /**
374 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
375 * @dev: network device to receive on
376 * @len: length to allocate
377 * @gfp_mask: get_free_pages mask, passed to alloc_skb
378 *
379 * Allocate a new &sk_buff and assign it a usage count of one. The
380 * buffer has NET_SKB_PAD headroom built in. Users should allocate
381 * the headroom they think they need without accounting for the
382 * built in space. The built in space is used for optimisations.
383 *
384 * %NULL is returned if there is no free memory.
385 */
386 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
387 gfp_t gfp_mask)
388 {
389 struct page_frag_cache *nc;
390 unsigned long flags;
391 struct sk_buff *skb;
392 bool pfmemalloc;
393 void *data;
394
395 len += NET_SKB_PAD;
396
397 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
398 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
399 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
400 if (!skb)
401 goto skb_fail;
402 goto skb_success;
403 }
404
405 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
406 len = SKB_DATA_ALIGN(len);
407
408 if (sk_memalloc_socks())
409 gfp_mask |= __GFP_MEMALLOC;
410
411 local_irq_save(flags);
412
413 nc = this_cpu_ptr(&netdev_alloc_cache);
414 data = page_frag_alloc(nc, len, gfp_mask);
415 pfmemalloc = nc->pfmemalloc;
416
417 local_irq_restore(flags);
418
419 if (unlikely(!data))
420 return NULL;
421
422 skb = __build_skb(data, len);
423 if (unlikely(!skb)) {
424 skb_free_frag(data);
425 return NULL;
426 }
427
428 /* use OR instead of assignment to avoid clearing of bits in mask */
429 if (pfmemalloc)
430 skb->pfmemalloc = 1;
431 skb->head_frag = 1;
432
433 skb_success:
434 skb_reserve(skb, NET_SKB_PAD);
435 skb->dev = dev;
436
437 skb_fail:
438 return skb;
439 }
440 EXPORT_SYMBOL(__netdev_alloc_skb);
441
442 /**
443 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
444 * @napi: napi instance this buffer was allocated for
445 * @len: length to allocate
446 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
447 *
448 * Allocate a new sk_buff for use in NAPI receive. This buffer will
449 * attempt to allocate the head from a special reserved region used
450 * only for NAPI Rx allocation. By doing this we can save several
451 * CPU cycles by avoiding having to disable and re-enable IRQs.
452 *
453 * %NULL is returned if there is no free memory.
454 */
455 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
456 gfp_t gfp_mask)
457 {
458 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
459 struct sk_buff *skb;
460 void *data;
461
462 len += NET_SKB_PAD + NET_IP_ALIGN;
463
464 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
465 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
466 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
467 if (!skb)
468 goto skb_fail;
469 goto skb_success;
470 }
471
472 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
473 len = SKB_DATA_ALIGN(len);
474
475 if (sk_memalloc_socks())
476 gfp_mask |= __GFP_MEMALLOC;
477
478 data = page_frag_alloc(&nc->page, len, gfp_mask);
479 if (unlikely(!data))
480 return NULL;
481
482 skb = __build_skb(data, len);
483 if (unlikely(!skb)) {
484 skb_free_frag(data);
485 return NULL;
486 }
487
488 /* use OR instead of assignment to avoid clearing of bits in mask */
489 if (nc->page.pfmemalloc)
490 skb->pfmemalloc = 1;
491 skb->head_frag = 1;
492
493 skb_success:
494 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
495 skb->dev = napi->dev;
496
497 skb_fail:
498 return skb;
499 }
500 EXPORT_SYMBOL(__napi_alloc_skb);
501
502 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
503 int size, unsigned int truesize)
504 {
505 skb_fill_page_desc(skb, i, page, off, size);
506 skb->len += size;
507 skb->data_len += size;
508 skb->truesize += truesize;
509 }
510 EXPORT_SYMBOL(skb_add_rx_frag);
511
512 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
513 unsigned int truesize)
514 {
515 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
516
517 skb_frag_size_add(frag, size);
518 skb->len += size;
519 skb->data_len += size;
520 skb->truesize += truesize;
521 }
522 EXPORT_SYMBOL(skb_coalesce_rx_frag);
523
524 static void skb_drop_list(struct sk_buff **listp)
525 {
526 kfree_skb_list(*listp);
527 *listp = NULL;
528 }
529
530 static inline void skb_drop_fraglist(struct sk_buff *skb)
531 {
532 skb_drop_list(&skb_shinfo(skb)->frag_list);
533 }
534
535 static void skb_clone_fraglist(struct sk_buff *skb)
536 {
537 struct sk_buff *list;
538
539 skb_walk_frags(skb, list)
540 skb_get(list);
541 }
542
543 static void skb_free_head(struct sk_buff *skb)
544 {
545 unsigned char *head = skb->head;
546
547 if (skb->head_frag)
548 skb_free_frag(head);
549 else
550 kfree(head);
551 }
552
553 static void skb_release_data(struct sk_buff *skb)
554 {
555 struct skb_shared_info *shinfo = skb_shinfo(skb);
556 int i;
557
558 if (skb->cloned &&
559 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
560 &shinfo->dataref))
561 return;
562
563 for (i = 0; i < shinfo->nr_frags; i++)
564 __skb_frag_unref(&shinfo->frags[i]);
565
566 if (shinfo->frag_list)
567 kfree_skb_list(shinfo->frag_list);
568
569 skb_zcopy_clear(skb, true);
570 skb_free_head(skb);
571 }
572
573 /*
574 * Free an skbuff by memory without cleaning the state.
575 */
576 static void kfree_skbmem(struct sk_buff *skb)
577 {
578 struct sk_buff_fclones *fclones;
579
580 switch (skb->fclone) {
581 case SKB_FCLONE_UNAVAILABLE:
582 kmem_cache_free(skbuff_head_cache, skb);
583 return;
584
585 case SKB_FCLONE_ORIG:
586 fclones = container_of(skb, struct sk_buff_fclones, skb1);
587
588 /* We usually free the clone (TX completion) before original skb
589 * This test would have no chance to be true for the clone,
590 * while here, branch prediction will be good.
591 */
592 if (refcount_read(&fclones->fclone_ref) == 1)
593 goto fastpath;
594 break;
595
596 default: /* SKB_FCLONE_CLONE */
597 fclones = container_of(skb, struct sk_buff_fclones, skb2);
598 break;
599 }
600 if (!refcount_dec_and_test(&fclones->fclone_ref))
601 return;
602 fastpath:
603 kmem_cache_free(skbuff_fclone_cache, fclones);
604 }
605
606 void skb_release_head_state(struct sk_buff *skb)
607 {
608 skb_dst_drop(skb);
609 secpath_reset(skb);
610 if (skb->destructor) {
611 WARN_ON(in_irq());
612 skb->destructor(skb);
613 }
614 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
615 nf_conntrack_put(skb_nfct(skb));
616 #endif
617 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
618 nf_bridge_put(skb->nf_bridge);
619 #endif
620 }
621
622 /* Free everything but the sk_buff shell. */
623 static void skb_release_all(struct sk_buff *skb)
624 {
625 skb_release_head_state(skb);
626 if (likely(skb->head))
627 skb_release_data(skb);
628 }
629
630 /**
631 * __kfree_skb - private function
632 * @skb: buffer
633 *
634 * Free an sk_buff. Release anything attached to the buffer.
635 * Clean the state. This is an internal helper function. Users should
636 * always call kfree_skb
637 */
638
639 void __kfree_skb(struct sk_buff *skb)
640 {
641 skb_release_all(skb);
642 kfree_skbmem(skb);
643 }
644 EXPORT_SYMBOL(__kfree_skb);
645
646 /**
647 * kfree_skb - free an sk_buff
648 * @skb: buffer to free
649 *
650 * Drop a reference to the buffer and free it if the usage count has
651 * hit zero.
652 */
653 void kfree_skb(struct sk_buff *skb)
654 {
655 if (!skb_unref(skb))
656 return;
657
658 trace_kfree_skb(skb, __builtin_return_address(0));
659 __kfree_skb(skb);
660 }
661 EXPORT_SYMBOL(kfree_skb);
662
663 void kfree_skb_list(struct sk_buff *segs)
664 {
665 while (segs) {
666 struct sk_buff *next = segs->next;
667
668 kfree_skb(segs);
669 segs = next;
670 }
671 }
672 EXPORT_SYMBOL(kfree_skb_list);
673
674 /**
675 * skb_tx_error - report an sk_buff xmit error
676 * @skb: buffer that triggered an error
677 *
678 * Report xmit error if a device callback is tracking this skb.
679 * skb must be freed afterwards.
680 */
681 void skb_tx_error(struct sk_buff *skb)
682 {
683 skb_zcopy_clear(skb, true);
684 }
685 EXPORT_SYMBOL(skb_tx_error);
686
687 /**
688 * consume_skb - free an skbuff
689 * @skb: buffer to free
690 *
691 * Drop a ref to the buffer and free it if the usage count has hit zero
692 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
693 * is being dropped after a failure and notes that
694 */
695 void consume_skb(struct sk_buff *skb)
696 {
697 if (!skb_unref(skb))
698 return;
699
700 trace_consume_skb(skb);
701 __kfree_skb(skb);
702 }
703 EXPORT_SYMBOL(consume_skb);
704
705 /**
706 * consume_stateless_skb - free an skbuff, assuming it is stateless
707 * @skb: buffer to free
708 *
709 * Alike consume_skb(), but this variant assumes that this is the last
710 * skb reference and all the head states have been already dropped
711 */
712 void __consume_stateless_skb(struct sk_buff *skb)
713 {
714 trace_consume_skb(skb);
715 skb_release_data(skb);
716 kfree_skbmem(skb);
717 }
718
719 void __kfree_skb_flush(void)
720 {
721 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
722
723 /* flush skb_cache if containing objects */
724 if (nc->skb_count) {
725 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
726 nc->skb_cache);
727 nc->skb_count = 0;
728 }
729 }
730
731 static inline void _kfree_skb_defer(struct sk_buff *skb)
732 {
733 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
734
735 /* drop skb->head and call any destructors for packet */
736 skb_release_all(skb);
737
738 /* record skb to CPU local list */
739 nc->skb_cache[nc->skb_count++] = skb;
740
741 #ifdef CONFIG_SLUB
742 /* SLUB writes into objects when freeing */
743 prefetchw(skb);
744 #endif
745
746 /* flush skb_cache if it is filled */
747 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
748 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
749 nc->skb_cache);
750 nc->skb_count = 0;
751 }
752 }
753 void __kfree_skb_defer(struct sk_buff *skb)
754 {
755 _kfree_skb_defer(skb);
756 }
757
758 void napi_consume_skb(struct sk_buff *skb, int budget)
759 {
760 if (unlikely(!skb))
761 return;
762
763 /* Zero budget indicate non-NAPI context called us, like netpoll */
764 if (unlikely(!budget)) {
765 dev_consume_skb_any(skb);
766 return;
767 }
768
769 if (!skb_unref(skb))
770 return;
771
772 /* if reaching here SKB is ready to free */
773 trace_consume_skb(skb);
774
775 /* if SKB is a clone, don't handle this case */
776 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
777 __kfree_skb(skb);
778 return;
779 }
780
781 _kfree_skb_defer(skb);
782 }
783 EXPORT_SYMBOL(napi_consume_skb);
784
785 /* Make sure a field is enclosed inside headers_start/headers_end section */
786 #define CHECK_SKB_FIELD(field) \
787 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
788 offsetof(struct sk_buff, headers_start)); \
789 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
790 offsetof(struct sk_buff, headers_end)); \
791
792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
793 {
794 new->tstamp = old->tstamp;
795 /* We do not copy old->sk */
796 new->dev = old->dev;
797 memcpy(new->cb, old->cb, sizeof(old->cb));
798 skb_dst_copy(new, old);
799 #ifdef CONFIG_XFRM
800 new->sp = secpath_get(old->sp);
801 #endif
802 __nf_copy(new, old, false);
803
804 /* Note : this field could be in headers_start/headers_end section
805 * It is not yet because we do not want to have a 16 bit hole
806 */
807 new->queue_mapping = old->queue_mapping;
808
809 memcpy(&new->headers_start, &old->headers_start,
810 offsetof(struct sk_buff, headers_end) -
811 offsetof(struct sk_buff, headers_start));
812 CHECK_SKB_FIELD(protocol);
813 CHECK_SKB_FIELD(csum);
814 CHECK_SKB_FIELD(hash);
815 CHECK_SKB_FIELD(priority);
816 CHECK_SKB_FIELD(skb_iif);
817 CHECK_SKB_FIELD(vlan_proto);
818 CHECK_SKB_FIELD(vlan_tci);
819 CHECK_SKB_FIELD(transport_header);
820 CHECK_SKB_FIELD(network_header);
821 CHECK_SKB_FIELD(mac_header);
822 CHECK_SKB_FIELD(inner_protocol);
823 CHECK_SKB_FIELD(inner_transport_header);
824 CHECK_SKB_FIELD(inner_network_header);
825 CHECK_SKB_FIELD(inner_mac_header);
826 CHECK_SKB_FIELD(mark);
827 #ifdef CONFIG_NETWORK_SECMARK
828 CHECK_SKB_FIELD(secmark);
829 #endif
830 #ifdef CONFIG_NET_RX_BUSY_POLL
831 CHECK_SKB_FIELD(napi_id);
832 #endif
833 #ifdef CONFIG_XPS
834 CHECK_SKB_FIELD(sender_cpu);
835 #endif
836 #ifdef CONFIG_NET_SCHED
837 CHECK_SKB_FIELD(tc_index);
838 #endif
839
840 }
841
842 /*
843 * You should not add any new code to this function. Add it to
844 * __copy_skb_header above instead.
845 */
846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
847 {
848 #define C(x) n->x = skb->x
849
850 n->next = n->prev = NULL;
851 n->sk = NULL;
852 __copy_skb_header(n, skb);
853
854 C(len);
855 C(data_len);
856 C(mac_len);
857 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
858 n->cloned = 1;
859 n->nohdr = 0;
860 n->destructor = NULL;
861 C(tail);
862 C(end);
863 C(head);
864 C(head_frag);
865 C(data);
866 C(truesize);
867 refcount_set(&n->users, 1);
868
869 atomic_inc(&(skb_shinfo(skb)->dataref));
870 skb->cloned = 1;
871
872 return n;
873 #undef C
874 }
875
876 /**
877 * skb_morph - morph one skb into another
878 * @dst: the skb to receive the contents
879 * @src: the skb to supply the contents
880 *
881 * This is identical to skb_clone except that the target skb is
882 * supplied by the user.
883 *
884 * The target skb is returned upon exit.
885 */
886 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
887 {
888 skb_release_all(dst);
889 return __skb_clone(dst, src);
890 }
891 EXPORT_SYMBOL_GPL(skb_morph);
892
893 static int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
894 {
895 unsigned long max_pg, num_pg, new_pg, old_pg;
896 struct user_struct *user;
897
898 if (capable(CAP_IPC_LOCK) || !size)
899 return 0;
900
901 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
902 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
903 user = mmp->user ? : current_user();
904
905 do {
906 old_pg = atomic_long_read(&user->locked_vm);
907 new_pg = old_pg + num_pg;
908 if (new_pg > max_pg)
909 return -ENOBUFS;
910 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
911 old_pg);
912
913 if (!mmp->user) {
914 mmp->user = get_uid(user);
915 mmp->num_pg = num_pg;
916 } else {
917 mmp->num_pg += num_pg;
918 }
919
920 return 0;
921 }
922
923 static void mm_unaccount_pinned_pages(struct mmpin *mmp)
924 {
925 if (mmp->user) {
926 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
927 free_uid(mmp->user);
928 }
929 }
930
931 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
932 {
933 struct ubuf_info *uarg;
934 struct sk_buff *skb;
935
936 WARN_ON_ONCE(!in_task());
937
938 if (!sock_flag(sk, SOCK_ZEROCOPY))
939 return NULL;
940
941 skb = sock_omalloc(sk, 0, GFP_KERNEL);
942 if (!skb)
943 return NULL;
944
945 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
946 uarg = (void *)skb->cb;
947 uarg->mmp.user = NULL;
948
949 if (mm_account_pinned_pages(&uarg->mmp, size)) {
950 kfree_skb(skb);
951 return NULL;
952 }
953
954 uarg->callback = sock_zerocopy_callback;
955 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
956 uarg->len = 1;
957 uarg->bytelen = size;
958 uarg->zerocopy = 1;
959 refcount_set(&uarg->refcnt, 1);
960 sock_hold(sk);
961
962 return uarg;
963 }
964 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
965
966 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
967 {
968 return container_of((void *)uarg, struct sk_buff, cb);
969 }
970
971 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
972 struct ubuf_info *uarg)
973 {
974 if (uarg) {
975 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
976 u32 bytelen, next;
977
978 /* realloc only when socket is locked (TCP, UDP cork),
979 * so uarg->len and sk_zckey access is serialized
980 */
981 if (!sock_owned_by_user(sk)) {
982 WARN_ON_ONCE(1);
983 return NULL;
984 }
985
986 bytelen = uarg->bytelen + size;
987 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
988 /* TCP can create new skb to attach new uarg */
989 if (sk->sk_type == SOCK_STREAM)
990 goto new_alloc;
991 return NULL;
992 }
993
994 next = (u32)atomic_read(&sk->sk_zckey);
995 if ((u32)(uarg->id + uarg->len) == next) {
996 if (mm_account_pinned_pages(&uarg->mmp, size))
997 return NULL;
998 uarg->len++;
999 uarg->bytelen = bytelen;
1000 atomic_set(&sk->sk_zckey, ++next);
1001 sock_zerocopy_get(uarg);
1002 return uarg;
1003 }
1004 }
1005
1006 new_alloc:
1007 return sock_zerocopy_alloc(sk, size);
1008 }
1009 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1010
1011 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1012 {
1013 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1014 u32 old_lo, old_hi;
1015 u64 sum_len;
1016
1017 old_lo = serr->ee.ee_info;
1018 old_hi = serr->ee.ee_data;
1019 sum_len = old_hi - old_lo + 1ULL + len;
1020
1021 if (sum_len >= (1ULL << 32))
1022 return false;
1023
1024 if (lo != old_hi + 1)
1025 return false;
1026
1027 serr->ee.ee_data += len;
1028 return true;
1029 }
1030
1031 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1032 {
1033 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1034 struct sock_exterr_skb *serr;
1035 struct sock *sk = skb->sk;
1036 struct sk_buff_head *q;
1037 unsigned long flags;
1038 u32 lo, hi;
1039 u16 len;
1040
1041 mm_unaccount_pinned_pages(&uarg->mmp);
1042
1043 /* if !len, there was only 1 call, and it was aborted
1044 * so do not queue a completion notification
1045 */
1046 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1047 goto release;
1048
1049 len = uarg->len;
1050 lo = uarg->id;
1051 hi = uarg->id + len - 1;
1052
1053 serr = SKB_EXT_ERR(skb);
1054 memset(serr, 0, sizeof(*serr));
1055 serr->ee.ee_errno = 0;
1056 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1057 serr->ee.ee_data = hi;
1058 serr->ee.ee_info = lo;
1059 if (!success)
1060 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1061
1062 q = &sk->sk_error_queue;
1063 spin_lock_irqsave(&q->lock, flags);
1064 tail = skb_peek_tail(q);
1065 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1066 !skb_zerocopy_notify_extend(tail, lo, len)) {
1067 __skb_queue_tail(q, skb);
1068 skb = NULL;
1069 }
1070 spin_unlock_irqrestore(&q->lock, flags);
1071
1072 sk->sk_error_report(sk);
1073
1074 release:
1075 consume_skb(skb);
1076 sock_put(sk);
1077 }
1078 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1079
1080 void sock_zerocopy_put(struct ubuf_info *uarg)
1081 {
1082 if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1083 if (uarg->callback)
1084 uarg->callback(uarg, uarg->zerocopy);
1085 else
1086 consume_skb(skb_from_uarg(uarg));
1087 }
1088 }
1089 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1090
1091 void sock_zerocopy_put_abort(struct ubuf_info *uarg)
1092 {
1093 if (uarg) {
1094 struct sock *sk = skb_from_uarg(uarg)->sk;
1095
1096 atomic_dec(&sk->sk_zckey);
1097 uarg->len--;
1098
1099 sock_zerocopy_put(uarg);
1100 }
1101 }
1102 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1103
1104 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1105 struct iov_iter *from, size_t length);
1106
1107 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1108 struct msghdr *msg, int len,
1109 struct ubuf_info *uarg)
1110 {
1111 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1112 struct iov_iter orig_iter = msg->msg_iter;
1113 int err, orig_len = skb->len;
1114
1115 /* An skb can only point to one uarg. This edge case happens when
1116 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1117 */
1118 if (orig_uarg && uarg != orig_uarg)
1119 return -EEXIST;
1120
1121 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1122 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1123 struct sock *save_sk = skb->sk;
1124
1125 /* Streams do not free skb on error. Reset to prev state. */
1126 msg->msg_iter = orig_iter;
1127 skb->sk = sk;
1128 ___pskb_trim(skb, orig_len);
1129 skb->sk = save_sk;
1130 return err;
1131 }
1132
1133 skb_zcopy_set(skb, uarg);
1134 return skb->len - orig_len;
1135 }
1136 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1137
1138 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1139 gfp_t gfp_mask)
1140 {
1141 if (skb_zcopy(orig)) {
1142 if (skb_zcopy(nskb)) {
1143 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1144 if (!gfp_mask) {
1145 WARN_ON_ONCE(1);
1146 return -ENOMEM;
1147 }
1148 if (skb_uarg(nskb) == skb_uarg(orig))
1149 return 0;
1150 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1151 return -EIO;
1152 }
1153 skb_zcopy_set(nskb, skb_uarg(orig));
1154 }
1155 return 0;
1156 }
1157
1158 /**
1159 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1160 * @skb: the skb to modify
1161 * @gfp_mask: allocation priority
1162 *
1163 * This must be called on SKBTX_DEV_ZEROCOPY skb.
1164 * It will copy all frags into kernel and drop the reference
1165 * to userspace pages.
1166 *
1167 * If this function is called from an interrupt gfp_mask() must be
1168 * %GFP_ATOMIC.
1169 *
1170 * Returns 0 on success or a negative error code on failure
1171 * to allocate kernel memory to copy to.
1172 */
1173 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1174 {
1175 int num_frags = skb_shinfo(skb)->nr_frags;
1176 struct page *page, *head = NULL;
1177 int i, new_frags;
1178 u32 d_off;
1179
1180 if (!num_frags)
1181 return 0;
1182
1183 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1184 return -EINVAL;
1185
1186 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1187 for (i = 0; i < new_frags; i++) {
1188 page = alloc_page(gfp_mask);
1189 if (!page) {
1190 while (head) {
1191 struct page *next = (struct page *)page_private(head);
1192 put_page(head);
1193 head = next;
1194 }
1195 return -ENOMEM;
1196 }
1197 set_page_private(page, (unsigned long)head);
1198 head = page;
1199 }
1200
1201 page = head;
1202 d_off = 0;
1203 for (i = 0; i < num_frags; i++) {
1204 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1205 u32 p_off, p_len, copied;
1206 struct page *p;
1207 u8 *vaddr;
1208
1209 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1210 p, p_off, p_len, copied) {
1211 u32 copy, done = 0;
1212 vaddr = kmap_atomic(p);
1213
1214 while (done < p_len) {
1215 if (d_off == PAGE_SIZE) {
1216 d_off = 0;
1217 page = (struct page *)page_private(page);
1218 }
1219 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1220 memcpy(page_address(page) + d_off,
1221 vaddr + p_off + done, copy);
1222 done += copy;
1223 d_off += copy;
1224 }
1225 kunmap_atomic(vaddr);
1226 }
1227 }
1228
1229 /* skb frags release userspace buffers */
1230 for (i = 0; i < num_frags; i++)
1231 skb_frag_unref(skb, i);
1232
1233 /* skb frags point to kernel buffers */
1234 for (i = 0; i < new_frags - 1; i++) {
1235 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1236 head = (struct page *)page_private(head);
1237 }
1238 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1239 skb_shinfo(skb)->nr_frags = new_frags;
1240
1241 skb_zcopy_clear(skb, false);
1242 return 0;
1243 }
1244 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1245
1246 /**
1247 * skb_clone - duplicate an sk_buff
1248 * @skb: buffer to clone
1249 * @gfp_mask: allocation priority
1250 *
1251 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1252 * copies share the same packet data but not structure. The new
1253 * buffer has a reference count of 1. If the allocation fails the
1254 * function returns %NULL otherwise the new buffer is returned.
1255 *
1256 * If this function is called from an interrupt gfp_mask() must be
1257 * %GFP_ATOMIC.
1258 */
1259
1260 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1261 {
1262 struct sk_buff_fclones *fclones = container_of(skb,
1263 struct sk_buff_fclones,
1264 skb1);
1265 struct sk_buff *n;
1266
1267 if (skb_orphan_frags(skb, gfp_mask))
1268 return NULL;
1269
1270 if (skb->fclone == SKB_FCLONE_ORIG &&
1271 refcount_read(&fclones->fclone_ref) == 1) {
1272 n = &fclones->skb2;
1273 refcount_set(&fclones->fclone_ref, 2);
1274 } else {
1275 if (skb_pfmemalloc(skb))
1276 gfp_mask |= __GFP_MEMALLOC;
1277
1278 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1279 if (!n)
1280 return NULL;
1281
1282 n->fclone = SKB_FCLONE_UNAVAILABLE;
1283 }
1284
1285 return __skb_clone(n, skb);
1286 }
1287 EXPORT_SYMBOL(skb_clone);
1288
1289 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1290 {
1291 /* Only adjust this if it actually is csum_start rather than csum */
1292 if (skb->ip_summed == CHECKSUM_PARTIAL)
1293 skb->csum_start += off;
1294 /* {transport,network,mac}_header and tail are relative to skb->head */
1295 skb->transport_header += off;
1296 skb->network_header += off;
1297 if (skb_mac_header_was_set(skb))
1298 skb->mac_header += off;
1299 skb->inner_transport_header += off;
1300 skb->inner_network_header += off;
1301 skb->inner_mac_header += off;
1302 }
1303
1304 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1305 {
1306 __copy_skb_header(new, old);
1307
1308 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1309 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1310 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1311 }
1312
1313 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1314 {
1315 if (skb_pfmemalloc(skb))
1316 return SKB_ALLOC_RX;
1317 return 0;
1318 }
1319
1320 /**
1321 * skb_copy - create private copy of an sk_buff
1322 * @skb: buffer to copy
1323 * @gfp_mask: allocation priority
1324 *
1325 * Make a copy of both an &sk_buff and its data. This is used when the
1326 * caller wishes to modify the data and needs a private copy of the
1327 * data to alter. Returns %NULL on failure or the pointer to the buffer
1328 * on success. The returned buffer has a reference count of 1.
1329 *
1330 * As by-product this function converts non-linear &sk_buff to linear
1331 * one, so that &sk_buff becomes completely private and caller is allowed
1332 * to modify all the data of returned buffer. This means that this
1333 * function is not recommended for use in circumstances when only
1334 * header is going to be modified. Use pskb_copy() instead.
1335 */
1336
1337 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1338 {
1339 int headerlen = skb_headroom(skb);
1340 unsigned int size = skb_end_offset(skb) + skb->data_len;
1341 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1342 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1343
1344 if (!n)
1345 return NULL;
1346
1347 /* Set the data pointer */
1348 skb_reserve(n, headerlen);
1349 /* Set the tail pointer and length */
1350 skb_put(n, skb->len);
1351
1352 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1353
1354 copy_skb_header(n, skb);
1355 return n;
1356 }
1357 EXPORT_SYMBOL(skb_copy);
1358
1359 /**
1360 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1361 * @skb: buffer to copy
1362 * @headroom: headroom of new skb
1363 * @gfp_mask: allocation priority
1364 * @fclone: if true allocate the copy of the skb from the fclone
1365 * cache instead of the head cache; it is recommended to set this
1366 * to true for the cases where the copy will likely be cloned
1367 *
1368 * Make a copy of both an &sk_buff and part of its data, located
1369 * in header. Fragmented data remain shared. This is used when
1370 * the caller wishes to modify only header of &sk_buff and needs
1371 * private copy of the header to alter. Returns %NULL on failure
1372 * or the pointer to the buffer on success.
1373 * The returned buffer has a reference count of 1.
1374 */
1375
1376 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1377 gfp_t gfp_mask, bool fclone)
1378 {
1379 unsigned int size = skb_headlen(skb) + headroom;
1380 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1381 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1382
1383 if (!n)
1384 goto out;
1385
1386 /* Set the data pointer */
1387 skb_reserve(n, headroom);
1388 /* Set the tail pointer and length */
1389 skb_put(n, skb_headlen(skb));
1390 /* Copy the bytes */
1391 skb_copy_from_linear_data(skb, n->data, n->len);
1392
1393 n->truesize += skb->data_len;
1394 n->data_len = skb->data_len;
1395 n->len = skb->len;
1396
1397 if (skb_shinfo(skb)->nr_frags) {
1398 int i;
1399
1400 if (skb_orphan_frags(skb, gfp_mask) ||
1401 skb_zerocopy_clone(n, skb, gfp_mask)) {
1402 kfree_skb(n);
1403 n = NULL;
1404 goto out;
1405 }
1406 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1407 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1408 skb_frag_ref(skb, i);
1409 }
1410 skb_shinfo(n)->nr_frags = i;
1411 }
1412
1413 if (skb_has_frag_list(skb)) {
1414 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1415 skb_clone_fraglist(n);
1416 }
1417
1418 copy_skb_header(n, skb);
1419 out:
1420 return n;
1421 }
1422 EXPORT_SYMBOL(__pskb_copy_fclone);
1423
1424 /**
1425 * pskb_expand_head - reallocate header of &sk_buff
1426 * @skb: buffer to reallocate
1427 * @nhead: room to add at head
1428 * @ntail: room to add at tail
1429 * @gfp_mask: allocation priority
1430 *
1431 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1432 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1433 * reference count of 1. Returns zero in the case of success or error,
1434 * if expansion failed. In the last case, &sk_buff is not changed.
1435 *
1436 * All the pointers pointing into skb header may change and must be
1437 * reloaded after call to this function.
1438 */
1439
1440 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1441 gfp_t gfp_mask)
1442 {
1443 int i, osize = skb_end_offset(skb);
1444 int size = osize + nhead + ntail;
1445 long off;
1446 u8 *data;
1447
1448 BUG_ON(nhead < 0);
1449
1450 BUG_ON(skb_shared(skb));
1451
1452 size = SKB_DATA_ALIGN(size);
1453
1454 if (skb_pfmemalloc(skb))
1455 gfp_mask |= __GFP_MEMALLOC;
1456 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1457 gfp_mask, NUMA_NO_NODE, NULL);
1458 if (!data)
1459 goto nodata;
1460 size = SKB_WITH_OVERHEAD(ksize(data));
1461
1462 /* Copy only real data... and, alas, header. This should be
1463 * optimized for the cases when header is void.
1464 */
1465 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1466
1467 memcpy((struct skb_shared_info *)(data + size),
1468 skb_shinfo(skb),
1469 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1470
1471 /*
1472 * if shinfo is shared we must drop the old head gracefully, but if it
1473 * is not we can just drop the old head and let the existing refcount
1474 * be since all we did is relocate the values
1475 */
1476 if (skb_cloned(skb)) {
1477 if (skb_orphan_frags(skb, gfp_mask))
1478 goto nofrags;
1479 if (skb_zcopy(skb))
1480 refcount_inc(&skb_uarg(skb)->refcnt);
1481 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1482 skb_frag_ref(skb, i);
1483
1484 if (skb_has_frag_list(skb))
1485 skb_clone_fraglist(skb);
1486
1487 skb_release_data(skb);
1488 } else {
1489 skb_free_head(skb);
1490 }
1491 off = (data + nhead) - skb->head;
1492
1493 skb->head = data;
1494 skb->head_frag = 0;
1495 skb->data += off;
1496 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1497 skb->end = size;
1498 off = nhead;
1499 #else
1500 skb->end = skb->head + size;
1501 #endif
1502 skb->tail += off;
1503 skb_headers_offset_update(skb, nhead);
1504 skb->cloned = 0;
1505 skb->hdr_len = 0;
1506 skb->nohdr = 0;
1507 atomic_set(&skb_shinfo(skb)->dataref, 1);
1508
1509 skb_metadata_clear(skb);
1510
1511 /* It is not generally safe to change skb->truesize.
1512 * For the moment, we really care of rx path, or
1513 * when skb is orphaned (not attached to a socket).
1514 */
1515 if (!skb->sk || skb->destructor == sock_edemux)
1516 skb->truesize += size - osize;
1517
1518 return 0;
1519
1520 nofrags:
1521 kfree(data);
1522 nodata:
1523 return -ENOMEM;
1524 }
1525 EXPORT_SYMBOL(pskb_expand_head);
1526
1527 /* Make private copy of skb with writable head and some headroom */
1528
1529 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1530 {
1531 struct sk_buff *skb2;
1532 int delta = headroom - skb_headroom(skb);
1533
1534 if (delta <= 0)
1535 skb2 = pskb_copy(skb, GFP_ATOMIC);
1536 else {
1537 skb2 = skb_clone(skb, GFP_ATOMIC);
1538 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1539 GFP_ATOMIC)) {
1540 kfree_skb(skb2);
1541 skb2 = NULL;
1542 }
1543 }
1544 return skb2;
1545 }
1546 EXPORT_SYMBOL(skb_realloc_headroom);
1547
1548 /**
1549 * skb_copy_expand - copy and expand sk_buff
1550 * @skb: buffer to copy
1551 * @newheadroom: new free bytes at head
1552 * @newtailroom: new free bytes at tail
1553 * @gfp_mask: allocation priority
1554 *
1555 * Make a copy of both an &sk_buff and its data and while doing so
1556 * allocate additional space.
1557 *
1558 * This is used when the caller wishes to modify the data and needs a
1559 * private copy of the data to alter as well as more space for new fields.
1560 * Returns %NULL on failure or the pointer to the buffer
1561 * on success. The returned buffer has a reference count of 1.
1562 *
1563 * You must pass %GFP_ATOMIC as the allocation priority if this function
1564 * is called from an interrupt.
1565 */
1566 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1567 int newheadroom, int newtailroom,
1568 gfp_t gfp_mask)
1569 {
1570 /*
1571 * Allocate the copy buffer
1572 */
1573 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1574 gfp_mask, skb_alloc_rx_flag(skb),
1575 NUMA_NO_NODE);
1576 int oldheadroom = skb_headroom(skb);
1577 int head_copy_len, head_copy_off;
1578
1579 if (!n)
1580 return NULL;
1581
1582 skb_reserve(n, newheadroom);
1583
1584 /* Set the tail pointer and length */
1585 skb_put(n, skb->len);
1586
1587 head_copy_len = oldheadroom;
1588 head_copy_off = 0;
1589 if (newheadroom <= head_copy_len)
1590 head_copy_len = newheadroom;
1591 else
1592 head_copy_off = newheadroom - head_copy_len;
1593
1594 /* Copy the linear header and data. */
1595 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1596 skb->len + head_copy_len));
1597
1598 copy_skb_header(n, skb);
1599
1600 skb_headers_offset_update(n, newheadroom - oldheadroom);
1601
1602 return n;
1603 }
1604 EXPORT_SYMBOL(skb_copy_expand);
1605
1606 /**
1607 * __skb_pad - zero pad the tail of an skb
1608 * @skb: buffer to pad
1609 * @pad: space to pad
1610 * @free_on_error: free buffer on error
1611 *
1612 * Ensure that a buffer is followed by a padding area that is zero
1613 * filled. Used by network drivers which may DMA or transfer data
1614 * beyond the buffer end onto the wire.
1615 *
1616 * May return error in out of memory cases. The skb is freed on error
1617 * if @free_on_error is true.
1618 */
1619
1620 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1621 {
1622 int err;
1623 int ntail;
1624
1625 /* If the skbuff is non linear tailroom is always zero.. */
1626 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1627 memset(skb->data+skb->len, 0, pad);
1628 return 0;
1629 }
1630
1631 ntail = skb->data_len + pad - (skb->end - skb->tail);
1632 if (likely(skb_cloned(skb) || ntail > 0)) {
1633 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1634 if (unlikely(err))
1635 goto free_skb;
1636 }
1637
1638 /* FIXME: The use of this function with non-linear skb's really needs
1639 * to be audited.
1640 */
1641 err = skb_linearize(skb);
1642 if (unlikely(err))
1643 goto free_skb;
1644
1645 memset(skb->data + skb->len, 0, pad);
1646 return 0;
1647
1648 free_skb:
1649 if (free_on_error)
1650 kfree_skb(skb);
1651 return err;
1652 }
1653 EXPORT_SYMBOL(__skb_pad);
1654
1655 /**
1656 * pskb_put - add data to the tail of a potentially fragmented buffer
1657 * @skb: start of the buffer to use
1658 * @tail: tail fragment of the buffer to use
1659 * @len: amount of data to add
1660 *
1661 * This function extends the used data area of the potentially
1662 * fragmented buffer. @tail must be the last fragment of @skb -- or
1663 * @skb itself. If this would exceed the total buffer size the kernel
1664 * will panic. A pointer to the first byte of the extra data is
1665 * returned.
1666 */
1667
1668 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1669 {
1670 if (tail != skb) {
1671 skb->data_len += len;
1672 skb->len += len;
1673 }
1674 return skb_put(tail, len);
1675 }
1676 EXPORT_SYMBOL_GPL(pskb_put);
1677
1678 /**
1679 * skb_put - add data to a buffer
1680 * @skb: buffer to use
1681 * @len: amount of data to add
1682 *
1683 * This function extends the used data area of the buffer. If this would
1684 * exceed the total buffer size the kernel will panic. A pointer to the
1685 * first byte of the extra data is returned.
1686 */
1687 void *skb_put(struct sk_buff *skb, unsigned int len)
1688 {
1689 void *tmp = skb_tail_pointer(skb);
1690 SKB_LINEAR_ASSERT(skb);
1691 skb->tail += len;
1692 skb->len += len;
1693 if (unlikely(skb->tail > skb->end))
1694 skb_over_panic(skb, len, __builtin_return_address(0));
1695 return tmp;
1696 }
1697 EXPORT_SYMBOL(skb_put);
1698
1699 /**
1700 * skb_push - add data to the start of a buffer
1701 * @skb: buffer to use
1702 * @len: amount of data to add
1703 *
1704 * This function extends the used data area of the buffer at the buffer
1705 * start. If this would exceed the total buffer headroom the kernel will
1706 * panic. A pointer to the first byte of the extra data is returned.
1707 */
1708 void *skb_push(struct sk_buff *skb, unsigned int len)
1709 {
1710 skb->data -= len;
1711 skb->len += len;
1712 if (unlikely(skb->data<skb->head))
1713 skb_under_panic(skb, len, __builtin_return_address(0));
1714 return skb->data;
1715 }
1716 EXPORT_SYMBOL(skb_push);
1717
1718 /**
1719 * skb_pull - remove data from the start of a buffer
1720 * @skb: buffer to use
1721 * @len: amount of data to remove
1722 *
1723 * This function removes data from the start of a buffer, returning
1724 * the memory to the headroom. A pointer to the next data in the buffer
1725 * is returned. Once the data has been pulled future pushes will overwrite
1726 * the old data.
1727 */
1728 void *skb_pull(struct sk_buff *skb, unsigned int len)
1729 {
1730 return skb_pull_inline(skb, len);
1731 }
1732 EXPORT_SYMBOL(skb_pull);
1733
1734 /**
1735 * skb_trim - remove end from a buffer
1736 * @skb: buffer to alter
1737 * @len: new length
1738 *
1739 * Cut the length of a buffer down by removing data from the tail. If
1740 * the buffer is already under the length specified it is not modified.
1741 * The skb must be linear.
1742 */
1743 void skb_trim(struct sk_buff *skb, unsigned int len)
1744 {
1745 if (skb->len > len)
1746 __skb_trim(skb, len);
1747 }
1748 EXPORT_SYMBOL(skb_trim);
1749
1750 /* Trims skb to length len. It can change skb pointers.
1751 */
1752
1753 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1754 {
1755 struct sk_buff **fragp;
1756 struct sk_buff *frag;
1757 int offset = skb_headlen(skb);
1758 int nfrags = skb_shinfo(skb)->nr_frags;
1759 int i;
1760 int err;
1761
1762 if (skb_cloned(skb) &&
1763 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1764 return err;
1765
1766 i = 0;
1767 if (offset >= len)
1768 goto drop_pages;
1769
1770 for (; i < nfrags; i++) {
1771 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1772
1773 if (end < len) {
1774 offset = end;
1775 continue;
1776 }
1777
1778 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1779
1780 drop_pages:
1781 skb_shinfo(skb)->nr_frags = i;
1782
1783 for (; i < nfrags; i++)
1784 skb_frag_unref(skb, i);
1785
1786 if (skb_has_frag_list(skb))
1787 skb_drop_fraglist(skb);
1788 goto done;
1789 }
1790
1791 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1792 fragp = &frag->next) {
1793 int end = offset + frag->len;
1794
1795 if (skb_shared(frag)) {
1796 struct sk_buff *nfrag;
1797
1798 nfrag = skb_clone(frag, GFP_ATOMIC);
1799 if (unlikely(!nfrag))
1800 return -ENOMEM;
1801
1802 nfrag->next = frag->next;
1803 consume_skb(frag);
1804 frag = nfrag;
1805 *fragp = frag;
1806 }
1807
1808 if (end < len) {
1809 offset = end;
1810 continue;
1811 }
1812
1813 if (end > len &&
1814 unlikely((err = pskb_trim(frag, len - offset))))
1815 return err;
1816
1817 if (frag->next)
1818 skb_drop_list(&frag->next);
1819 break;
1820 }
1821
1822 done:
1823 if (len > skb_headlen(skb)) {
1824 skb->data_len -= skb->len - len;
1825 skb->len = len;
1826 } else {
1827 skb->len = len;
1828 skb->data_len = 0;
1829 skb_set_tail_pointer(skb, len);
1830 }
1831
1832 if (!skb->sk || skb->destructor == sock_edemux)
1833 skb_condense(skb);
1834 return 0;
1835 }
1836 EXPORT_SYMBOL(___pskb_trim);
1837
1838 /**
1839 * __pskb_pull_tail - advance tail of skb header
1840 * @skb: buffer to reallocate
1841 * @delta: number of bytes to advance tail
1842 *
1843 * The function makes a sense only on a fragmented &sk_buff,
1844 * it expands header moving its tail forward and copying necessary
1845 * data from fragmented part.
1846 *
1847 * &sk_buff MUST have reference count of 1.
1848 *
1849 * Returns %NULL (and &sk_buff does not change) if pull failed
1850 * or value of new tail of skb in the case of success.
1851 *
1852 * All the pointers pointing into skb header may change and must be
1853 * reloaded after call to this function.
1854 */
1855
1856 /* Moves tail of skb head forward, copying data from fragmented part,
1857 * when it is necessary.
1858 * 1. It may fail due to malloc failure.
1859 * 2. It may change skb pointers.
1860 *
1861 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1862 */
1863 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1864 {
1865 /* If skb has not enough free space at tail, get new one
1866 * plus 128 bytes for future expansions. If we have enough
1867 * room at tail, reallocate without expansion only if skb is cloned.
1868 */
1869 int i, k, eat = (skb->tail + delta) - skb->end;
1870
1871 if (eat > 0 || skb_cloned(skb)) {
1872 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1873 GFP_ATOMIC))
1874 return NULL;
1875 }
1876
1877 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1878 skb_tail_pointer(skb), delta));
1879
1880 /* Optimization: no fragments, no reasons to preestimate
1881 * size of pulled pages. Superb.
1882 */
1883 if (!skb_has_frag_list(skb))
1884 goto pull_pages;
1885
1886 /* Estimate size of pulled pages. */
1887 eat = delta;
1888 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1889 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1890
1891 if (size >= eat)
1892 goto pull_pages;
1893 eat -= size;
1894 }
1895
1896 /* If we need update frag list, we are in troubles.
1897 * Certainly, it is possible to add an offset to skb data,
1898 * but taking into account that pulling is expected to
1899 * be very rare operation, it is worth to fight against
1900 * further bloating skb head and crucify ourselves here instead.
1901 * Pure masohism, indeed. 8)8)
1902 */
1903 if (eat) {
1904 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1905 struct sk_buff *clone = NULL;
1906 struct sk_buff *insp = NULL;
1907
1908 do {
1909 BUG_ON(!list);
1910
1911 if (list->len <= eat) {
1912 /* Eaten as whole. */
1913 eat -= list->len;
1914 list = list->next;
1915 insp = list;
1916 } else {
1917 /* Eaten partially. */
1918
1919 if (skb_shared(list)) {
1920 /* Sucks! We need to fork list. :-( */
1921 clone = skb_clone(list, GFP_ATOMIC);
1922 if (!clone)
1923 return NULL;
1924 insp = list->next;
1925 list = clone;
1926 } else {
1927 /* This may be pulled without
1928 * problems. */
1929 insp = list;
1930 }
1931 if (!pskb_pull(list, eat)) {
1932 kfree_skb(clone);
1933 return NULL;
1934 }
1935 break;
1936 }
1937 } while (eat);
1938
1939 /* Free pulled out fragments. */
1940 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1941 skb_shinfo(skb)->frag_list = list->next;
1942 kfree_skb(list);
1943 }
1944 /* And insert new clone at head. */
1945 if (clone) {
1946 clone->next = list;
1947 skb_shinfo(skb)->frag_list = clone;
1948 }
1949 }
1950 /* Success! Now we may commit changes to skb data. */
1951
1952 pull_pages:
1953 eat = delta;
1954 k = 0;
1955 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1956 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1957
1958 if (size <= eat) {
1959 skb_frag_unref(skb, i);
1960 eat -= size;
1961 } else {
1962 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1963 if (eat) {
1964 skb_shinfo(skb)->frags[k].page_offset += eat;
1965 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1966 if (!i)
1967 goto end;
1968 eat = 0;
1969 }
1970 k++;
1971 }
1972 }
1973 skb_shinfo(skb)->nr_frags = k;
1974
1975 end:
1976 skb->tail += delta;
1977 skb->data_len -= delta;
1978
1979 if (!skb->data_len)
1980 skb_zcopy_clear(skb, false);
1981
1982 return skb_tail_pointer(skb);
1983 }
1984 EXPORT_SYMBOL(__pskb_pull_tail);
1985
1986 /**
1987 * skb_copy_bits - copy bits from skb to kernel buffer
1988 * @skb: source skb
1989 * @offset: offset in source
1990 * @to: destination buffer
1991 * @len: number of bytes to copy
1992 *
1993 * Copy the specified number of bytes from the source skb to the
1994 * destination buffer.
1995 *
1996 * CAUTION ! :
1997 * If its prototype is ever changed,
1998 * check arch/{*}/net/{*}.S files,
1999 * since it is called from BPF assembly code.
2000 */
2001 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2002 {
2003 int start = skb_headlen(skb);
2004 struct sk_buff *frag_iter;
2005 int i, copy;
2006
2007 if (offset > (int)skb->len - len)
2008 goto fault;
2009
2010 /* Copy header. */
2011 if ((copy = start - offset) > 0) {
2012 if (copy > len)
2013 copy = len;
2014 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2015 if ((len -= copy) == 0)
2016 return 0;
2017 offset += copy;
2018 to += copy;
2019 }
2020
2021 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2022 int end;
2023 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2024
2025 WARN_ON(start > offset + len);
2026
2027 end = start + skb_frag_size(f);
2028 if ((copy = end - offset) > 0) {
2029 u32 p_off, p_len, copied;
2030 struct page *p;
2031 u8 *vaddr;
2032
2033 if (copy > len)
2034 copy = len;
2035
2036 skb_frag_foreach_page(f,
2037 f->page_offset + offset - start,
2038 copy, p, p_off, p_len, copied) {
2039 vaddr = kmap_atomic(p);
2040 memcpy(to + copied, vaddr + p_off, p_len);
2041 kunmap_atomic(vaddr);
2042 }
2043
2044 if ((len -= copy) == 0)
2045 return 0;
2046 offset += copy;
2047 to += copy;
2048 }
2049 start = end;
2050 }
2051
2052 skb_walk_frags(skb, frag_iter) {
2053 int end;
2054
2055 WARN_ON(start > offset + len);
2056
2057 end = start + frag_iter->len;
2058 if ((copy = end - offset) > 0) {
2059 if (copy > len)
2060 copy = len;
2061 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2062 goto fault;
2063 if ((len -= copy) == 0)
2064 return 0;
2065 offset += copy;
2066 to += copy;
2067 }
2068 start = end;
2069 }
2070
2071 if (!len)
2072 return 0;
2073
2074 fault:
2075 return -EFAULT;
2076 }
2077 EXPORT_SYMBOL(skb_copy_bits);
2078
2079 /*
2080 * Callback from splice_to_pipe(), if we need to release some pages
2081 * at the end of the spd in case we error'ed out in filling the pipe.
2082 */
2083 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2084 {
2085 put_page(spd->pages[i]);
2086 }
2087
2088 static struct page *linear_to_page(struct page *page, unsigned int *len,
2089 unsigned int *offset,
2090 struct sock *sk)
2091 {
2092 struct page_frag *pfrag = sk_page_frag(sk);
2093
2094 if (!sk_page_frag_refill(sk, pfrag))
2095 return NULL;
2096
2097 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2098
2099 memcpy(page_address(pfrag->page) + pfrag->offset,
2100 page_address(page) + *offset, *len);
2101 *offset = pfrag->offset;
2102 pfrag->offset += *len;
2103
2104 return pfrag->page;
2105 }
2106
2107 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2108 struct page *page,
2109 unsigned int offset)
2110 {
2111 return spd->nr_pages &&
2112 spd->pages[spd->nr_pages - 1] == page &&
2113 (spd->partial[spd->nr_pages - 1].offset +
2114 spd->partial[spd->nr_pages - 1].len == offset);
2115 }
2116
2117 /*
2118 * Fill page/offset/length into spd, if it can hold more pages.
2119 */
2120 static bool spd_fill_page(struct splice_pipe_desc *spd,
2121 struct pipe_inode_info *pipe, struct page *page,
2122 unsigned int *len, unsigned int offset,
2123 bool linear,
2124 struct sock *sk)
2125 {
2126 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2127 return true;
2128
2129 if (linear) {
2130 page = linear_to_page(page, len, &offset, sk);
2131 if (!page)
2132 return true;
2133 }
2134 if (spd_can_coalesce(spd, page, offset)) {
2135 spd->partial[spd->nr_pages - 1].len += *len;
2136 return false;
2137 }
2138 get_page(page);
2139 spd->pages[spd->nr_pages] = page;
2140 spd->partial[spd->nr_pages].len = *len;
2141 spd->partial[spd->nr_pages].offset = offset;
2142 spd->nr_pages++;
2143
2144 return false;
2145 }
2146
2147 static bool __splice_segment(struct page *page, unsigned int poff,
2148 unsigned int plen, unsigned int *off,
2149 unsigned int *len,
2150 struct splice_pipe_desc *spd, bool linear,
2151 struct sock *sk,
2152 struct pipe_inode_info *pipe)
2153 {
2154 if (!*len)
2155 return true;
2156
2157 /* skip this segment if already processed */
2158 if (*off >= plen) {
2159 *off -= plen;
2160 return false;
2161 }
2162
2163 /* ignore any bits we already processed */
2164 poff += *off;
2165 plen -= *off;
2166 *off = 0;
2167
2168 do {
2169 unsigned int flen = min(*len, plen);
2170
2171 if (spd_fill_page(spd, pipe, page, &flen, poff,
2172 linear, sk))
2173 return true;
2174 poff += flen;
2175 plen -= flen;
2176 *len -= flen;
2177 } while (*len && plen);
2178
2179 return false;
2180 }
2181
2182 /*
2183 * Map linear and fragment data from the skb to spd. It reports true if the
2184 * pipe is full or if we already spliced the requested length.
2185 */
2186 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2187 unsigned int *offset, unsigned int *len,
2188 struct splice_pipe_desc *spd, struct sock *sk)
2189 {
2190 int seg;
2191 struct sk_buff *iter;
2192
2193 /* map the linear part :
2194 * If skb->head_frag is set, this 'linear' part is backed by a
2195 * fragment, and if the head is not shared with any clones then
2196 * we can avoid a copy since we own the head portion of this page.
2197 */
2198 if (__splice_segment(virt_to_page(skb->data),
2199 (unsigned long) skb->data & (PAGE_SIZE - 1),
2200 skb_headlen(skb),
2201 offset, len, spd,
2202 skb_head_is_locked(skb),
2203 sk, pipe))
2204 return true;
2205
2206 /*
2207 * then map the fragments
2208 */
2209 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2210 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2211
2212 if (__splice_segment(skb_frag_page(f),
2213 f->page_offset, skb_frag_size(f),
2214 offset, len, spd, false, sk, pipe))
2215 return true;
2216 }
2217
2218 skb_walk_frags(skb, iter) {
2219 if (*offset >= iter->len) {
2220 *offset -= iter->len;
2221 continue;
2222 }
2223 /* __skb_splice_bits() only fails if the output has no room
2224 * left, so no point in going over the frag_list for the error
2225 * case.
2226 */
2227 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2228 return true;
2229 }
2230
2231 return false;
2232 }
2233
2234 /*
2235 * Map data from the skb to a pipe. Should handle both the linear part,
2236 * the fragments, and the frag list.
2237 */
2238 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2239 struct pipe_inode_info *pipe, unsigned int tlen,
2240 unsigned int flags)
2241 {
2242 struct partial_page partial[MAX_SKB_FRAGS];
2243 struct page *pages[MAX_SKB_FRAGS];
2244 struct splice_pipe_desc spd = {
2245 .pages = pages,
2246 .partial = partial,
2247 .nr_pages_max = MAX_SKB_FRAGS,
2248 .ops = &nosteal_pipe_buf_ops,
2249 .spd_release = sock_spd_release,
2250 };
2251 int ret = 0;
2252
2253 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2254
2255 if (spd.nr_pages)
2256 ret = splice_to_pipe(pipe, &spd);
2257
2258 return ret;
2259 }
2260 EXPORT_SYMBOL_GPL(skb_splice_bits);
2261
2262 /* Send skb data on a socket. Socket must be locked. */
2263 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2264 int len)
2265 {
2266 unsigned int orig_len = len;
2267 struct sk_buff *head = skb;
2268 unsigned short fragidx;
2269 int slen, ret;
2270
2271 do_frag_list:
2272
2273 /* Deal with head data */
2274 while (offset < skb_headlen(skb) && len) {
2275 struct kvec kv;
2276 struct msghdr msg;
2277
2278 slen = min_t(int, len, skb_headlen(skb) - offset);
2279 kv.iov_base = skb->data + offset;
2280 kv.iov_len = slen;
2281 memset(&msg, 0, sizeof(msg));
2282
2283 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2284 if (ret <= 0)
2285 goto error;
2286
2287 offset += ret;
2288 len -= ret;
2289 }
2290
2291 /* All the data was skb head? */
2292 if (!len)
2293 goto out;
2294
2295 /* Make offset relative to start of frags */
2296 offset -= skb_headlen(skb);
2297
2298 /* Find where we are in frag list */
2299 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2300 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2301
2302 if (offset < frag->size)
2303 break;
2304
2305 offset -= frag->size;
2306 }
2307
2308 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2309 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2310
2311 slen = min_t(size_t, len, frag->size - offset);
2312
2313 while (slen) {
2314 ret = kernel_sendpage_locked(sk, frag->page.p,
2315 frag->page_offset + offset,
2316 slen, MSG_DONTWAIT);
2317 if (ret <= 0)
2318 goto error;
2319
2320 len -= ret;
2321 offset += ret;
2322 slen -= ret;
2323 }
2324
2325 offset = 0;
2326 }
2327
2328 if (len) {
2329 /* Process any frag lists */
2330
2331 if (skb == head) {
2332 if (skb_has_frag_list(skb)) {
2333 skb = skb_shinfo(skb)->frag_list;
2334 goto do_frag_list;
2335 }
2336 } else if (skb->next) {
2337 skb = skb->next;
2338 goto do_frag_list;
2339 }
2340 }
2341
2342 out:
2343 return orig_len - len;
2344
2345 error:
2346 return orig_len == len ? ret : orig_len - len;
2347 }
2348 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2349
2350 /* Send skb data on a socket. */
2351 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2352 {
2353 int ret = 0;
2354
2355 lock_sock(sk);
2356 ret = skb_send_sock_locked(sk, skb, offset, len);
2357 release_sock(sk);
2358
2359 return ret;
2360 }
2361 EXPORT_SYMBOL_GPL(skb_send_sock);
2362
2363 /**
2364 * skb_store_bits - store bits from kernel buffer to skb
2365 * @skb: destination buffer
2366 * @offset: offset in destination
2367 * @from: source buffer
2368 * @len: number of bytes to copy
2369 *
2370 * Copy the specified number of bytes from the source buffer to the
2371 * destination skb. This function handles all the messy bits of
2372 * traversing fragment lists and such.
2373 */
2374
2375 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2376 {
2377 int start = skb_headlen(skb);
2378 struct sk_buff *frag_iter;
2379 int i, copy;
2380
2381 if (offset > (int)skb->len - len)
2382 goto fault;
2383
2384 if ((copy = start - offset) > 0) {
2385 if (copy > len)
2386 copy = len;
2387 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2388 if ((len -= copy) == 0)
2389 return 0;
2390 offset += copy;
2391 from += copy;
2392 }
2393
2394 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2395 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2396 int end;
2397
2398 WARN_ON(start > offset + len);
2399
2400 end = start + skb_frag_size(frag);
2401 if ((copy = end - offset) > 0) {
2402 u32 p_off, p_len, copied;
2403 struct page *p;
2404 u8 *vaddr;
2405
2406 if (copy > len)
2407 copy = len;
2408
2409 skb_frag_foreach_page(frag,
2410 frag->page_offset + offset - start,
2411 copy, p, p_off, p_len, copied) {
2412 vaddr = kmap_atomic(p);
2413 memcpy(vaddr + p_off, from + copied, p_len);
2414 kunmap_atomic(vaddr);
2415 }
2416
2417 if ((len -= copy) == 0)
2418 return 0;
2419 offset += copy;
2420 from += copy;
2421 }
2422 start = end;
2423 }
2424
2425 skb_walk_frags(skb, frag_iter) {
2426 int end;
2427
2428 WARN_ON(start > offset + len);
2429
2430 end = start + frag_iter->len;
2431 if ((copy = end - offset) > 0) {
2432 if (copy > len)
2433 copy = len;
2434 if (skb_store_bits(frag_iter, offset - start,
2435 from, copy))
2436 goto fault;
2437 if ((len -= copy) == 0)
2438 return 0;
2439 offset += copy;
2440 from += copy;
2441 }
2442 start = end;
2443 }
2444 if (!len)
2445 return 0;
2446
2447 fault:
2448 return -EFAULT;
2449 }
2450 EXPORT_SYMBOL(skb_store_bits);
2451
2452 /* Checksum skb data. */
2453 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2454 __wsum csum, const struct skb_checksum_ops *ops)
2455 {
2456 int start = skb_headlen(skb);
2457 int i, copy = start - offset;
2458 struct sk_buff *frag_iter;
2459 int pos = 0;
2460
2461 /* Checksum header. */
2462 if (copy > 0) {
2463 if (copy > len)
2464 copy = len;
2465 csum = ops->update(skb->data + offset, copy, csum);
2466 if ((len -= copy) == 0)
2467 return csum;
2468 offset += copy;
2469 pos = copy;
2470 }
2471
2472 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2473 int end;
2474 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2475
2476 WARN_ON(start > offset + len);
2477
2478 end = start + skb_frag_size(frag);
2479 if ((copy = end - offset) > 0) {
2480 u32 p_off, p_len, copied;
2481 struct page *p;
2482 __wsum csum2;
2483 u8 *vaddr;
2484
2485 if (copy > len)
2486 copy = len;
2487
2488 skb_frag_foreach_page(frag,
2489 frag->page_offset + offset - start,
2490 copy, p, p_off, p_len, copied) {
2491 vaddr = kmap_atomic(p);
2492 csum2 = ops->update(vaddr + p_off, p_len, 0);
2493 kunmap_atomic(vaddr);
2494 csum = ops->combine(csum, csum2, pos, p_len);
2495 pos += p_len;
2496 }
2497
2498 if (!(len -= copy))
2499 return csum;
2500 offset += copy;
2501 }
2502 start = end;
2503 }
2504
2505 skb_walk_frags(skb, frag_iter) {
2506 int end;
2507
2508 WARN_ON(start > offset + len);
2509
2510 end = start + frag_iter->len;
2511 if ((copy = end - offset) > 0) {
2512 __wsum csum2;
2513 if (copy > len)
2514 copy = len;
2515 csum2 = __skb_checksum(frag_iter, offset - start,
2516 copy, 0, ops);
2517 csum = ops->combine(csum, csum2, pos, copy);
2518 if ((len -= copy) == 0)
2519 return csum;
2520 offset += copy;
2521 pos += copy;
2522 }
2523 start = end;
2524 }
2525 BUG_ON(len);
2526
2527 return csum;
2528 }
2529 EXPORT_SYMBOL(__skb_checksum);
2530
2531 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2532 int len, __wsum csum)
2533 {
2534 const struct skb_checksum_ops ops = {
2535 .update = csum_partial_ext,
2536 .combine = csum_block_add_ext,
2537 };
2538
2539 return __skb_checksum(skb, offset, len, csum, &ops);
2540 }
2541 EXPORT_SYMBOL(skb_checksum);
2542
2543 /* Both of above in one bottle. */
2544
2545 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2546 u8 *to, int len, __wsum csum)
2547 {
2548 int start = skb_headlen(skb);
2549 int i, copy = start - offset;
2550 struct sk_buff *frag_iter;
2551 int pos = 0;
2552
2553 /* Copy header. */
2554 if (copy > 0) {
2555 if (copy > len)
2556 copy = len;
2557 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2558 copy, csum);
2559 if ((len -= copy) == 0)
2560 return csum;
2561 offset += copy;
2562 to += copy;
2563 pos = copy;
2564 }
2565
2566 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2567 int end;
2568
2569 WARN_ON(start > offset + len);
2570
2571 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2572 if ((copy = end - offset) > 0) {
2573 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2574 u32 p_off, p_len, copied;
2575 struct page *p;
2576 __wsum csum2;
2577 u8 *vaddr;
2578
2579 if (copy > len)
2580 copy = len;
2581
2582 skb_frag_foreach_page(frag,
2583 frag->page_offset + offset - start,
2584 copy, p, p_off, p_len, copied) {
2585 vaddr = kmap_atomic(p);
2586 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2587 to + copied,
2588 p_len, 0);
2589 kunmap_atomic(vaddr);
2590 csum = csum_block_add(csum, csum2, pos);
2591 pos += p_len;
2592 }
2593
2594 if (!(len -= copy))
2595 return csum;
2596 offset += copy;
2597 to += copy;
2598 }
2599 start = end;
2600 }
2601
2602 skb_walk_frags(skb, frag_iter) {
2603 __wsum csum2;
2604 int end;
2605
2606 WARN_ON(start > offset + len);
2607
2608 end = start + frag_iter->len;
2609 if ((copy = end - offset) > 0) {
2610 if (copy > len)
2611 copy = len;
2612 csum2 = skb_copy_and_csum_bits(frag_iter,
2613 offset - start,
2614 to, copy, 0);
2615 csum = csum_block_add(csum, csum2, pos);
2616 if ((len -= copy) == 0)
2617 return csum;
2618 offset += copy;
2619 to += copy;
2620 pos += copy;
2621 }
2622 start = end;
2623 }
2624 BUG_ON(len);
2625 return csum;
2626 }
2627 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2628
2629 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2630 {
2631 net_warn_ratelimited(
2632 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2633 __func__);
2634 return 0;
2635 }
2636
2637 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2638 int offset, int len)
2639 {
2640 net_warn_ratelimited(
2641 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2642 __func__);
2643 return 0;
2644 }
2645
2646 static const struct skb_checksum_ops default_crc32c_ops = {
2647 .update = warn_crc32c_csum_update,
2648 .combine = warn_crc32c_csum_combine,
2649 };
2650
2651 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2652 &default_crc32c_ops;
2653 EXPORT_SYMBOL(crc32c_csum_stub);
2654
2655 /**
2656 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2657 * @from: source buffer
2658 *
2659 * Calculates the amount of linear headroom needed in the 'to' skb passed
2660 * into skb_zerocopy().
2661 */
2662 unsigned int
2663 skb_zerocopy_headlen(const struct sk_buff *from)
2664 {
2665 unsigned int hlen = 0;
2666
2667 if (!from->head_frag ||
2668 skb_headlen(from) < L1_CACHE_BYTES ||
2669 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2670 hlen = skb_headlen(from);
2671
2672 if (skb_has_frag_list(from))
2673 hlen = from->len;
2674
2675 return hlen;
2676 }
2677 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2678
2679 /**
2680 * skb_zerocopy - Zero copy skb to skb
2681 * @to: destination buffer
2682 * @from: source buffer
2683 * @len: number of bytes to copy from source buffer
2684 * @hlen: size of linear headroom in destination buffer
2685 *
2686 * Copies up to `len` bytes from `from` to `to` by creating references
2687 * to the frags in the source buffer.
2688 *
2689 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2690 * headroom in the `to` buffer.
2691 *
2692 * Return value:
2693 * 0: everything is OK
2694 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2695 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2696 */
2697 int
2698 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2699 {
2700 int i, j = 0;
2701 int plen = 0; /* length of skb->head fragment */
2702 int ret;
2703 struct page *page;
2704 unsigned int offset;
2705
2706 BUG_ON(!from->head_frag && !hlen);
2707
2708 /* dont bother with small payloads */
2709 if (len <= skb_tailroom(to))
2710 return skb_copy_bits(from, 0, skb_put(to, len), len);
2711
2712 if (hlen) {
2713 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2714 if (unlikely(ret))
2715 return ret;
2716 len -= hlen;
2717 } else {
2718 plen = min_t(int, skb_headlen(from), len);
2719 if (plen) {
2720 page = virt_to_head_page(from->head);
2721 offset = from->data - (unsigned char *)page_address(page);
2722 __skb_fill_page_desc(to, 0, page, offset, plen);
2723 get_page(page);
2724 j = 1;
2725 len -= plen;
2726 }
2727 }
2728
2729 to->truesize += len + plen;
2730 to->len += len + plen;
2731 to->data_len += len + plen;
2732
2733 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2734 skb_tx_error(from);
2735 return -ENOMEM;
2736 }
2737 skb_zerocopy_clone(to, from, GFP_ATOMIC);
2738
2739 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2740 if (!len)
2741 break;
2742 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2743 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2744 len -= skb_shinfo(to)->frags[j].size;
2745 skb_frag_ref(to, j);
2746 j++;
2747 }
2748 skb_shinfo(to)->nr_frags = j;
2749
2750 return 0;
2751 }
2752 EXPORT_SYMBOL_GPL(skb_zerocopy);
2753
2754 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2755 {
2756 __wsum csum;
2757 long csstart;
2758
2759 if (skb->ip_summed == CHECKSUM_PARTIAL)
2760 csstart = skb_checksum_start_offset(skb);
2761 else
2762 csstart = skb_headlen(skb);
2763
2764 BUG_ON(csstart > skb_headlen(skb));
2765
2766 skb_copy_from_linear_data(skb, to, csstart);
2767
2768 csum = 0;
2769 if (csstart != skb->len)
2770 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2771 skb->len - csstart, 0);
2772
2773 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2774 long csstuff = csstart + skb->csum_offset;
2775
2776 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2777 }
2778 }
2779 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2780
2781 /**
2782 * skb_dequeue - remove from the head of the queue
2783 * @list: list to dequeue from
2784 *
2785 * Remove the head of the list. The list lock is taken so the function
2786 * may be used safely with other locking list functions. The head item is
2787 * returned or %NULL if the list is empty.
2788 */
2789
2790 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2791 {
2792 unsigned long flags;
2793 struct sk_buff *result;
2794
2795 spin_lock_irqsave(&list->lock, flags);
2796 result = __skb_dequeue(list);
2797 spin_unlock_irqrestore(&list->lock, flags);
2798 return result;
2799 }
2800 EXPORT_SYMBOL(skb_dequeue);
2801
2802 /**
2803 * skb_dequeue_tail - remove from the tail of the queue
2804 * @list: list to dequeue from
2805 *
2806 * Remove the tail of the list. The list lock is taken so the function
2807 * may be used safely with other locking list functions. The tail item is
2808 * returned or %NULL if the list is empty.
2809 */
2810 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2811 {
2812 unsigned long flags;
2813 struct sk_buff *result;
2814
2815 spin_lock_irqsave(&list->lock, flags);
2816 result = __skb_dequeue_tail(list);
2817 spin_unlock_irqrestore(&list->lock, flags);
2818 return result;
2819 }
2820 EXPORT_SYMBOL(skb_dequeue_tail);
2821
2822 /**
2823 * skb_queue_purge - empty a list
2824 * @list: list to empty
2825 *
2826 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2827 * the list and one reference dropped. This function takes the list
2828 * lock and is atomic with respect to other list locking functions.
2829 */
2830 void skb_queue_purge(struct sk_buff_head *list)
2831 {
2832 struct sk_buff *skb;
2833 while ((skb = skb_dequeue(list)) != NULL)
2834 kfree_skb(skb);
2835 }
2836 EXPORT_SYMBOL(skb_queue_purge);
2837
2838 /**
2839 * skb_rbtree_purge - empty a skb rbtree
2840 * @root: root of the rbtree to empty
2841 *
2842 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2843 * the list and one reference dropped. This function does not take
2844 * any lock. Synchronization should be handled by the caller (e.g., TCP
2845 * out-of-order queue is protected by the socket lock).
2846 */
2847 void skb_rbtree_purge(struct rb_root *root)
2848 {
2849 struct rb_node *p = rb_first(root);
2850
2851 while (p) {
2852 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2853
2854 p = rb_next(p);
2855 rb_erase(&skb->rbnode, root);
2856 kfree_skb(skb);
2857 }
2858 }
2859
2860 /**
2861 * skb_queue_head - queue a buffer at the list head
2862 * @list: list to use
2863 * @newsk: buffer to queue
2864 *
2865 * Queue a buffer at the start of the list. This function takes the
2866 * list lock and can be used safely with other locking &sk_buff functions
2867 * safely.
2868 *
2869 * A buffer cannot be placed on two lists at the same time.
2870 */
2871 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2872 {
2873 unsigned long flags;
2874
2875 spin_lock_irqsave(&list->lock, flags);
2876 __skb_queue_head(list, newsk);
2877 spin_unlock_irqrestore(&list->lock, flags);
2878 }
2879 EXPORT_SYMBOL(skb_queue_head);
2880
2881 /**
2882 * skb_queue_tail - queue a buffer at the list tail
2883 * @list: list to use
2884 * @newsk: buffer to queue
2885 *
2886 * Queue a buffer at the tail of the list. This function takes the
2887 * list lock and can be used safely with other locking &sk_buff functions
2888 * safely.
2889 *
2890 * A buffer cannot be placed on two lists at the same time.
2891 */
2892 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2893 {
2894 unsigned long flags;
2895
2896 spin_lock_irqsave(&list->lock, flags);
2897 __skb_queue_tail(list, newsk);
2898 spin_unlock_irqrestore(&list->lock, flags);
2899 }
2900 EXPORT_SYMBOL(skb_queue_tail);
2901
2902 /**
2903 * skb_unlink - remove a buffer from a list
2904 * @skb: buffer to remove
2905 * @list: list to use
2906 *
2907 * Remove a packet from a list. The list locks are taken and this
2908 * function is atomic with respect to other list locked calls
2909 *
2910 * You must know what list the SKB is on.
2911 */
2912 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2913 {
2914 unsigned long flags;
2915
2916 spin_lock_irqsave(&list->lock, flags);
2917 __skb_unlink(skb, list);
2918 spin_unlock_irqrestore(&list->lock, flags);
2919 }
2920 EXPORT_SYMBOL(skb_unlink);
2921
2922 /**
2923 * skb_append - append a buffer
2924 * @old: buffer to insert after
2925 * @newsk: buffer to insert
2926 * @list: list to use
2927 *
2928 * Place a packet after a given packet in a list. The list locks are taken
2929 * and this function is atomic with respect to other list locked calls.
2930 * A buffer cannot be placed on two lists at the same time.
2931 */
2932 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2933 {
2934 unsigned long flags;
2935
2936 spin_lock_irqsave(&list->lock, flags);
2937 __skb_queue_after(list, old, newsk);
2938 spin_unlock_irqrestore(&list->lock, flags);
2939 }
2940 EXPORT_SYMBOL(skb_append);
2941
2942 /**
2943 * skb_insert - insert a buffer
2944 * @old: buffer to insert before
2945 * @newsk: buffer to insert
2946 * @list: list to use
2947 *
2948 * Place a packet before a given packet in a list. The list locks are
2949 * taken and this function is atomic with respect to other list locked
2950 * calls.
2951 *
2952 * A buffer cannot be placed on two lists at the same time.
2953 */
2954 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2955 {
2956 unsigned long flags;
2957
2958 spin_lock_irqsave(&list->lock, flags);
2959 __skb_insert(newsk, old->prev, old, list);
2960 spin_unlock_irqrestore(&list->lock, flags);
2961 }
2962 EXPORT_SYMBOL(skb_insert);
2963
2964 static inline void skb_split_inside_header(struct sk_buff *skb,
2965 struct sk_buff* skb1,
2966 const u32 len, const int pos)
2967 {
2968 int i;
2969
2970 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2971 pos - len);
2972 /* And move data appendix as is. */
2973 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2974 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2975
2976 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2977 skb_shinfo(skb)->nr_frags = 0;
2978 skb1->data_len = skb->data_len;
2979 skb1->len += skb1->data_len;
2980 skb->data_len = 0;
2981 skb->len = len;
2982 skb_set_tail_pointer(skb, len);
2983 }
2984
2985 static inline void skb_split_no_header(struct sk_buff *skb,
2986 struct sk_buff* skb1,
2987 const u32 len, int pos)
2988 {
2989 int i, k = 0;
2990 const int nfrags = skb_shinfo(skb)->nr_frags;
2991
2992 skb_shinfo(skb)->nr_frags = 0;
2993 skb1->len = skb1->data_len = skb->len - len;
2994 skb->len = len;
2995 skb->data_len = len - pos;
2996
2997 for (i = 0; i < nfrags; i++) {
2998 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2999
3000 if (pos + size > len) {
3001 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3002
3003 if (pos < len) {
3004 /* Split frag.
3005 * We have two variants in this case:
3006 * 1. Move all the frag to the second
3007 * part, if it is possible. F.e.
3008 * this approach is mandatory for TUX,
3009 * where splitting is expensive.
3010 * 2. Split is accurately. We make this.
3011 */
3012 skb_frag_ref(skb, i);
3013 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3014 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3015 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3016 skb_shinfo(skb)->nr_frags++;
3017 }
3018 k++;
3019 } else
3020 skb_shinfo(skb)->nr_frags++;
3021 pos += size;
3022 }
3023 skb_shinfo(skb1)->nr_frags = k;
3024 }
3025
3026 /**
3027 * skb_split - Split fragmented skb to two parts at length len.
3028 * @skb: the buffer to split
3029 * @skb1: the buffer to receive the second part
3030 * @len: new length for skb
3031 */
3032 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3033 {
3034 int pos = skb_headlen(skb);
3035
3036 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3037 SKBTX_SHARED_FRAG;
3038 skb_zerocopy_clone(skb1, skb, 0);
3039 if (len < pos) /* Split line is inside header. */
3040 skb_split_inside_header(skb, skb1, len, pos);
3041 else /* Second chunk has no header, nothing to copy. */
3042 skb_split_no_header(skb, skb1, len, pos);
3043 }
3044 EXPORT_SYMBOL(skb_split);
3045
3046 /* Shifting from/to a cloned skb is a no-go.
3047 *
3048 * Caller cannot keep skb_shinfo related pointers past calling here!
3049 */
3050 static int skb_prepare_for_shift(struct sk_buff *skb)
3051 {
3052 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3053 }
3054
3055 /**
3056 * skb_shift - Shifts paged data partially from skb to another
3057 * @tgt: buffer into which tail data gets added
3058 * @skb: buffer from which the paged data comes from
3059 * @shiftlen: shift up to this many bytes
3060 *
3061 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3062 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3063 * It's up to caller to free skb if everything was shifted.
3064 *
3065 * If @tgt runs out of frags, the whole operation is aborted.
3066 *
3067 * Skb cannot include anything else but paged data while tgt is allowed
3068 * to have non-paged data as well.
3069 *
3070 * TODO: full sized shift could be optimized but that would need
3071 * specialized skb free'er to handle frags without up-to-date nr_frags.
3072 */
3073 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3074 {
3075 int from, to, merge, todo;
3076 struct skb_frag_struct *fragfrom, *fragto;
3077
3078 BUG_ON(shiftlen > skb->len);
3079
3080 if (skb_headlen(skb))
3081 return 0;
3082 if (skb_zcopy(tgt) || skb_zcopy(skb))
3083 return 0;
3084
3085 todo = shiftlen;
3086 from = 0;
3087 to = skb_shinfo(tgt)->nr_frags;
3088 fragfrom = &skb_shinfo(skb)->frags[from];
3089
3090 /* Actual merge is delayed until the point when we know we can
3091 * commit all, so that we don't have to undo partial changes
3092 */
3093 if (!to ||
3094 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3095 fragfrom->page_offset)) {
3096 merge = -1;
3097 } else {
3098 merge = to - 1;
3099
3100 todo -= skb_frag_size(fragfrom);
3101 if (todo < 0) {
3102 if (skb_prepare_for_shift(skb) ||
3103 skb_prepare_for_shift(tgt))
3104 return 0;
3105
3106 /* All previous frag pointers might be stale! */
3107 fragfrom = &skb_shinfo(skb)->frags[from];
3108 fragto = &skb_shinfo(tgt)->frags[merge];
3109
3110 skb_frag_size_add(fragto, shiftlen);
3111 skb_frag_size_sub(fragfrom, shiftlen);
3112 fragfrom->page_offset += shiftlen;
3113
3114 goto onlymerged;
3115 }
3116
3117 from++;
3118 }
3119
3120 /* Skip full, not-fitting skb to avoid expensive operations */
3121 if ((shiftlen == skb->len) &&
3122 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3123 return 0;
3124
3125 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3126 return 0;
3127
3128 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3129 if (to == MAX_SKB_FRAGS)
3130 return 0;
3131
3132 fragfrom = &skb_shinfo(skb)->frags[from];
3133 fragto = &skb_shinfo(tgt)->frags[to];
3134
3135 if (todo >= skb_frag_size(fragfrom)) {
3136 *fragto = *fragfrom;
3137 todo -= skb_frag_size(fragfrom);
3138 from++;
3139 to++;
3140
3141 } else {
3142 __skb_frag_ref(fragfrom);
3143 fragto->page = fragfrom->page;
3144 fragto->page_offset = fragfrom->page_offset;
3145 skb_frag_size_set(fragto, todo);
3146
3147 fragfrom->page_offset += todo;
3148 skb_frag_size_sub(fragfrom, todo);
3149 todo = 0;
3150
3151 to++;
3152 break;
3153 }
3154 }
3155
3156 /* Ready to "commit" this state change to tgt */
3157 skb_shinfo(tgt)->nr_frags = to;
3158
3159 if (merge >= 0) {
3160 fragfrom = &skb_shinfo(skb)->frags[0];
3161 fragto = &skb_shinfo(tgt)->frags[merge];
3162
3163 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3164 __skb_frag_unref(fragfrom);
3165 }
3166
3167 /* Reposition in the original skb */
3168 to = 0;
3169 while (from < skb_shinfo(skb)->nr_frags)
3170 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3171 skb_shinfo(skb)->nr_frags = to;
3172
3173 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3174
3175 onlymerged:
3176 /* Most likely the tgt won't ever need its checksum anymore, skb on
3177 * the other hand might need it if it needs to be resent
3178 */
3179 tgt->ip_summed = CHECKSUM_PARTIAL;
3180 skb->ip_summed = CHECKSUM_PARTIAL;
3181
3182 /* Yak, is it really working this way? Some helper please? */
3183 skb->len -= shiftlen;
3184 skb->data_len -= shiftlen;
3185 skb->truesize -= shiftlen;
3186 tgt->len += shiftlen;
3187 tgt->data_len += shiftlen;
3188 tgt->truesize += shiftlen;
3189
3190 return shiftlen;
3191 }
3192
3193 /**
3194 * skb_prepare_seq_read - Prepare a sequential read of skb data
3195 * @skb: the buffer to read
3196 * @from: lower offset of data to be read
3197 * @to: upper offset of data to be read
3198 * @st: state variable
3199 *
3200 * Initializes the specified state variable. Must be called before
3201 * invoking skb_seq_read() for the first time.
3202 */
3203 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3204 unsigned int to, struct skb_seq_state *st)
3205 {
3206 st->lower_offset = from;
3207 st->upper_offset = to;
3208 st->root_skb = st->cur_skb = skb;
3209 st->frag_idx = st->stepped_offset = 0;
3210 st->frag_data = NULL;
3211 }
3212 EXPORT_SYMBOL(skb_prepare_seq_read);
3213
3214 /**
3215 * skb_seq_read - Sequentially read skb data
3216 * @consumed: number of bytes consumed by the caller so far
3217 * @data: destination pointer for data to be returned
3218 * @st: state variable
3219 *
3220 * Reads a block of skb data at @consumed relative to the
3221 * lower offset specified to skb_prepare_seq_read(). Assigns
3222 * the head of the data block to @data and returns the length
3223 * of the block or 0 if the end of the skb data or the upper
3224 * offset has been reached.
3225 *
3226 * The caller is not required to consume all of the data
3227 * returned, i.e. @consumed is typically set to the number
3228 * of bytes already consumed and the next call to
3229 * skb_seq_read() will return the remaining part of the block.
3230 *
3231 * Note 1: The size of each block of data returned can be arbitrary,
3232 * this limitation is the cost for zerocopy sequential
3233 * reads of potentially non linear data.
3234 *
3235 * Note 2: Fragment lists within fragments are not implemented
3236 * at the moment, state->root_skb could be replaced with
3237 * a stack for this purpose.
3238 */
3239 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3240 struct skb_seq_state *st)
3241 {
3242 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3243 skb_frag_t *frag;
3244
3245 if (unlikely(abs_offset >= st->upper_offset)) {
3246 if (st->frag_data) {
3247 kunmap_atomic(st->frag_data);
3248 st->frag_data = NULL;
3249 }
3250 return 0;
3251 }
3252
3253 next_skb:
3254 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3255
3256 if (abs_offset < block_limit && !st->frag_data) {
3257 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3258 return block_limit - abs_offset;
3259 }
3260
3261 if (st->frag_idx == 0 && !st->frag_data)
3262 st->stepped_offset += skb_headlen(st->cur_skb);
3263
3264 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3265 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3266 block_limit = skb_frag_size(frag) + st->stepped_offset;
3267
3268 if (abs_offset < block_limit) {
3269 if (!st->frag_data)
3270 st->frag_data = kmap_atomic(skb_frag_page(frag));
3271
3272 *data = (u8 *) st->frag_data + frag->page_offset +
3273 (abs_offset - st->stepped_offset);
3274
3275 return block_limit - abs_offset;
3276 }
3277
3278 if (st->frag_data) {
3279 kunmap_atomic(st->frag_data);
3280 st->frag_data = NULL;
3281 }
3282
3283 st->frag_idx++;
3284 st->stepped_offset += skb_frag_size(frag);
3285 }
3286
3287 if (st->frag_data) {
3288 kunmap_atomic(st->frag_data);
3289 st->frag_data = NULL;
3290 }
3291
3292 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3293 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3294 st->frag_idx = 0;
3295 goto next_skb;
3296 } else if (st->cur_skb->next) {
3297 st->cur_skb = st->cur_skb->next;
3298 st->frag_idx = 0;
3299 goto next_skb;
3300 }
3301
3302 return 0;
3303 }
3304 EXPORT_SYMBOL(skb_seq_read);
3305
3306 /**
3307 * skb_abort_seq_read - Abort a sequential read of skb data
3308 * @st: state variable
3309 *
3310 * Must be called if skb_seq_read() was not called until it
3311 * returned 0.
3312 */
3313 void skb_abort_seq_read(struct skb_seq_state *st)
3314 {
3315 if (st->frag_data)
3316 kunmap_atomic(st->frag_data);
3317 }
3318 EXPORT_SYMBOL(skb_abort_seq_read);
3319
3320 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3321
3322 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3323 struct ts_config *conf,
3324 struct ts_state *state)
3325 {
3326 return skb_seq_read(offset, text, TS_SKB_CB(state));
3327 }
3328
3329 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3330 {
3331 skb_abort_seq_read(TS_SKB_CB(state));
3332 }
3333
3334 /**
3335 * skb_find_text - Find a text pattern in skb data
3336 * @skb: the buffer to look in
3337 * @from: search offset
3338 * @to: search limit
3339 * @config: textsearch configuration
3340 *
3341 * Finds a pattern in the skb data according to the specified
3342 * textsearch configuration. Use textsearch_next() to retrieve
3343 * subsequent occurrences of the pattern. Returns the offset
3344 * to the first occurrence or UINT_MAX if no match was found.
3345 */
3346 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3347 unsigned int to, struct ts_config *config)
3348 {
3349 struct ts_state state;
3350 unsigned int ret;
3351
3352 config->get_next_block = skb_ts_get_next_block;
3353 config->finish = skb_ts_finish;
3354
3355 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3356
3357 ret = textsearch_find(config, &state);
3358 return (ret <= to - from ? ret : UINT_MAX);
3359 }
3360 EXPORT_SYMBOL(skb_find_text);
3361
3362 /**
3363 * skb_append_datato_frags - append the user data to a skb
3364 * @sk: sock structure
3365 * @skb: skb structure to be appended with user data.
3366 * @getfrag: call back function to be used for getting the user data
3367 * @from: pointer to user message iov
3368 * @length: length of the iov message
3369 *
3370 * Description: This procedure append the user data in the fragment part
3371 * of the skb if any page alloc fails user this procedure returns -ENOMEM
3372 */
3373 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
3374 int (*getfrag)(void *from, char *to, int offset,
3375 int len, int odd, struct sk_buff *skb),
3376 void *from, int length)
3377 {
3378 int frg_cnt = skb_shinfo(skb)->nr_frags;
3379 int copy;
3380 int offset = 0;
3381 int ret;
3382 struct page_frag *pfrag = &current->task_frag;
3383
3384 do {
3385 /* Return error if we don't have space for new frag */
3386 if (frg_cnt >= MAX_SKB_FRAGS)
3387 return -EMSGSIZE;
3388
3389 if (!sk_page_frag_refill(sk, pfrag))
3390 return -ENOMEM;
3391
3392 /* copy the user data to page */
3393 copy = min_t(int, length, pfrag->size - pfrag->offset);
3394
3395 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3396 offset, copy, 0, skb);
3397 if (ret < 0)
3398 return -EFAULT;
3399
3400 /* copy was successful so update the size parameters */
3401 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3402 copy);
3403 frg_cnt++;
3404 pfrag->offset += copy;
3405 get_page(pfrag->page);
3406
3407 skb->truesize += copy;
3408 refcount_add(copy, &sk->sk_wmem_alloc);
3409 skb->len += copy;
3410 skb->data_len += copy;
3411 offset += copy;
3412 length -= copy;
3413
3414 } while (length > 0);
3415
3416 return 0;
3417 }
3418 EXPORT_SYMBOL(skb_append_datato_frags);
3419
3420 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3421 int offset, size_t size)
3422 {
3423 int i = skb_shinfo(skb)->nr_frags;
3424
3425 if (skb_can_coalesce(skb, i, page, offset)) {
3426 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3427 } else if (i < MAX_SKB_FRAGS) {
3428 get_page(page);
3429 skb_fill_page_desc(skb, i, page, offset, size);
3430 } else {
3431 return -EMSGSIZE;
3432 }
3433
3434 return 0;
3435 }
3436 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3437
3438 /**
3439 * skb_pull_rcsum - pull skb and update receive checksum
3440 * @skb: buffer to update
3441 * @len: length of data pulled
3442 *
3443 * This function performs an skb_pull on the packet and updates
3444 * the CHECKSUM_COMPLETE checksum. It should be used on
3445 * receive path processing instead of skb_pull unless you know
3446 * that the checksum difference is zero (e.g., a valid IP header)
3447 * or you are setting ip_summed to CHECKSUM_NONE.
3448 */
3449 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3450 {
3451 unsigned char *data = skb->data;
3452
3453 BUG_ON(len > skb->len);
3454 __skb_pull(skb, len);
3455 skb_postpull_rcsum(skb, data, len);
3456 return skb->data;
3457 }
3458 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3459
3460 /**
3461 * skb_segment - Perform protocol segmentation on skb.
3462 * @head_skb: buffer to segment
3463 * @features: features for the output path (see dev->features)
3464 *
3465 * This function performs segmentation on the given skb. It returns
3466 * a pointer to the first in a list of new skbs for the segments.
3467 * In case of error it returns ERR_PTR(err).
3468 */
3469 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3470 netdev_features_t features)
3471 {
3472 struct sk_buff *segs = NULL;
3473 struct sk_buff *tail = NULL;
3474 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3475 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3476 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3477 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3478 struct sk_buff *frag_skb = head_skb;
3479 unsigned int offset = doffset;
3480 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3481 unsigned int partial_segs = 0;
3482 unsigned int headroom;
3483 unsigned int len = head_skb->len;
3484 __be16 proto;
3485 bool csum, sg;
3486 int nfrags = skb_shinfo(head_skb)->nr_frags;
3487 int err = -ENOMEM;
3488 int i = 0;
3489 int pos;
3490 int dummy;
3491
3492 __skb_push(head_skb, doffset);
3493 proto = skb_network_protocol(head_skb, &dummy);
3494 if (unlikely(!proto))
3495 return ERR_PTR(-EINVAL);
3496
3497 sg = !!(features & NETIF_F_SG);
3498 csum = !!can_checksum_protocol(features, proto);
3499
3500 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3501 if (!(features & NETIF_F_GSO_PARTIAL)) {
3502 struct sk_buff *iter;
3503 unsigned int frag_len;
3504
3505 if (!list_skb ||
3506 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3507 goto normal;
3508
3509 /* If we get here then all the required
3510 * GSO features except frag_list are supported.
3511 * Try to split the SKB to multiple GSO SKBs
3512 * with no frag_list.
3513 * Currently we can do that only when the buffers don't
3514 * have a linear part and all the buffers except
3515 * the last are of the same length.
3516 */
3517 frag_len = list_skb->len;
3518 skb_walk_frags(head_skb, iter) {
3519 if (frag_len != iter->len && iter->next)
3520 goto normal;
3521 if (skb_headlen(iter) && !iter->head_frag)
3522 goto normal;
3523
3524 len -= iter->len;
3525 }
3526
3527 if (len != frag_len)
3528 goto normal;
3529 }
3530
3531 /* GSO partial only requires that we trim off any excess that
3532 * doesn't fit into an MSS sized block, so take care of that
3533 * now.
3534 */
3535 partial_segs = len / mss;
3536 if (partial_segs > 1)
3537 mss *= partial_segs;
3538 else
3539 partial_segs = 0;
3540 }
3541
3542 normal:
3543 headroom = skb_headroom(head_skb);
3544 pos = skb_headlen(head_skb);
3545
3546 do {
3547 struct sk_buff *nskb;
3548 skb_frag_t *nskb_frag;
3549 int hsize;
3550 int size;
3551
3552 if (unlikely(mss == GSO_BY_FRAGS)) {
3553 len = list_skb->len;
3554 } else {
3555 len = head_skb->len - offset;
3556 if (len > mss)
3557 len = mss;
3558 }
3559
3560 hsize = skb_headlen(head_skb) - offset;
3561 if (hsize < 0)
3562 hsize = 0;
3563 if (hsize > len || !sg)
3564 hsize = len;
3565
3566 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3567 (skb_headlen(list_skb) == len || sg)) {
3568 BUG_ON(skb_headlen(list_skb) > len);
3569
3570 i = 0;
3571 nfrags = skb_shinfo(list_skb)->nr_frags;
3572 frag = skb_shinfo(list_skb)->frags;
3573 frag_skb = list_skb;
3574 pos += skb_headlen(list_skb);
3575
3576 while (pos < offset + len) {
3577 BUG_ON(i >= nfrags);
3578
3579 size = skb_frag_size(frag);
3580 if (pos + size > offset + len)
3581 break;
3582
3583 i++;
3584 pos += size;
3585 frag++;
3586 }
3587
3588 nskb = skb_clone(list_skb, GFP_ATOMIC);
3589 list_skb = list_skb->next;
3590
3591 if (unlikely(!nskb))
3592 goto err;
3593
3594 if (unlikely(pskb_trim(nskb, len))) {
3595 kfree_skb(nskb);
3596 goto err;
3597 }
3598
3599 hsize = skb_end_offset(nskb);
3600 if (skb_cow_head(nskb, doffset + headroom)) {
3601 kfree_skb(nskb);
3602 goto err;
3603 }
3604
3605 nskb->truesize += skb_end_offset(nskb) - hsize;
3606 skb_release_head_state(nskb);
3607 __skb_push(nskb, doffset);
3608 } else {
3609 nskb = __alloc_skb(hsize + doffset + headroom,
3610 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3611 NUMA_NO_NODE);
3612
3613 if (unlikely(!nskb))
3614 goto err;
3615
3616 skb_reserve(nskb, headroom);
3617 __skb_put(nskb, doffset);
3618 }
3619
3620 if (segs)
3621 tail->next = nskb;
3622 else
3623 segs = nskb;
3624 tail = nskb;
3625
3626 __copy_skb_header(nskb, head_skb);
3627
3628 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3629 skb_reset_mac_len(nskb);
3630
3631 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3632 nskb->data - tnl_hlen,
3633 doffset + tnl_hlen);
3634
3635 if (nskb->len == len + doffset)
3636 goto perform_csum_check;
3637
3638 if (!sg) {
3639 if (!nskb->remcsum_offload)
3640 nskb->ip_summed = CHECKSUM_NONE;
3641 SKB_GSO_CB(nskb)->csum =
3642 skb_copy_and_csum_bits(head_skb, offset,
3643 skb_put(nskb, len),
3644 len, 0);
3645 SKB_GSO_CB(nskb)->csum_start =
3646 skb_headroom(nskb) + doffset;
3647 continue;
3648 }
3649
3650 nskb_frag = skb_shinfo(nskb)->frags;
3651
3652 skb_copy_from_linear_data_offset(head_skb, offset,
3653 skb_put(nskb, hsize), hsize);
3654
3655 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3656 SKBTX_SHARED_FRAG;
3657
3658 while (pos < offset + len) {
3659 if (i >= nfrags) {
3660 BUG_ON(skb_headlen(list_skb));
3661
3662 i = 0;
3663 nfrags = skb_shinfo(list_skb)->nr_frags;
3664 frag = skb_shinfo(list_skb)->frags;
3665 frag_skb = list_skb;
3666
3667 BUG_ON(!nfrags);
3668
3669 list_skb = list_skb->next;
3670 }
3671
3672 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3673 MAX_SKB_FRAGS)) {
3674 net_warn_ratelimited(
3675 "skb_segment: too many frags: %u %u\n",
3676 pos, mss);
3677 goto err;
3678 }
3679
3680 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3681 goto err;
3682 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3683 goto err;
3684
3685 *nskb_frag = *frag;
3686 __skb_frag_ref(nskb_frag);
3687 size = skb_frag_size(nskb_frag);
3688
3689 if (pos < offset) {
3690 nskb_frag->page_offset += offset - pos;
3691 skb_frag_size_sub(nskb_frag, offset - pos);
3692 }
3693
3694 skb_shinfo(nskb)->nr_frags++;
3695
3696 if (pos + size <= offset + len) {
3697 i++;
3698 frag++;
3699 pos += size;
3700 } else {
3701 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3702 goto skip_fraglist;
3703 }
3704
3705 nskb_frag++;
3706 }
3707
3708 skip_fraglist:
3709 nskb->data_len = len - hsize;
3710 nskb->len += nskb->data_len;
3711 nskb->truesize += nskb->data_len;
3712
3713 perform_csum_check:
3714 if (!csum) {
3715 if (skb_has_shared_frag(nskb)) {
3716 err = __skb_linearize(nskb);
3717 if (err)
3718 goto err;
3719 }
3720 if (!nskb->remcsum_offload)
3721 nskb->ip_summed = CHECKSUM_NONE;
3722 SKB_GSO_CB(nskb)->csum =
3723 skb_checksum(nskb, doffset,
3724 nskb->len - doffset, 0);
3725 SKB_GSO_CB(nskb)->csum_start =
3726 skb_headroom(nskb) + doffset;
3727 }
3728 } while ((offset += len) < head_skb->len);
3729
3730 /* Some callers want to get the end of the list.
3731 * Put it in segs->prev to avoid walking the list.
3732 * (see validate_xmit_skb_list() for example)
3733 */
3734 segs->prev = tail;
3735
3736 if (partial_segs) {
3737 struct sk_buff *iter;
3738 int type = skb_shinfo(head_skb)->gso_type;
3739 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3740
3741 /* Update type to add partial and then remove dodgy if set */
3742 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3743 type &= ~SKB_GSO_DODGY;
3744
3745 /* Update GSO info and prepare to start updating headers on
3746 * our way back down the stack of protocols.
3747 */
3748 for (iter = segs; iter; iter = iter->next) {
3749 skb_shinfo(iter)->gso_size = gso_size;
3750 skb_shinfo(iter)->gso_segs = partial_segs;
3751 skb_shinfo(iter)->gso_type = type;
3752 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3753 }
3754
3755 if (tail->len - doffset <= gso_size)
3756 skb_shinfo(tail)->gso_size = 0;
3757 else if (tail != segs)
3758 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3759 }
3760
3761 /* Following permits correct backpressure, for protocols
3762 * using skb_set_owner_w().
3763 * Idea is to tranfert ownership from head_skb to last segment.
3764 */
3765 if (head_skb->destructor == sock_wfree) {
3766 swap(tail->truesize, head_skb->truesize);
3767 swap(tail->destructor, head_skb->destructor);
3768 swap(tail->sk, head_skb->sk);
3769 }
3770 return segs;
3771
3772 err:
3773 kfree_skb_list(segs);
3774 return ERR_PTR(err);
3775 }
3776 EXPORT_SYMBOL_GPL(skb_segment);
3777
3778 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3779 {
3780 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3781 unsigned int offset = skb_gro_offset(skb);
3782 unsigned int headlen = skb_headlen(skb);
3783 unsigned int len = skb_gro_len(skb);
3784 struct sk_buff *lp, *p = *head;
3785 unsigned int delta_truesize;
3786
3787 if (unlikely(p->len + len >= 65536))
3788 return -E2BIG;
3789
3790 lp = NAPI_GRO_CB(p)->last;
3791 pinfo = skb_shinfo(lp);
3792
3793 if (headlen <= offset) {
3794 skb_frag_t *frag;
3795 skb_frag_t *frag2;
3796 int i = skbinfo->nr_frags;
3797 int nr_frags = pinfo->nr_frags + i;
3798
3799 if (nr_frags > MAX_SKB_FRAGS)
3800 goto merge;
3801
3802 offset -= headlen;
3803 pinfo->nr_frags = nr_frags;
3804 skbinfo->nr_frags = 0;
3805
3806 frag = pinfo->frags + nr_frags;
3807 frag2 = skbinfo->frags + i;
3808 do {
3809 *--frag = *--frag2;
3810 } while (--i);
3811
3812 frag->page_offset += offset;
3813 skb_frag_size_sub(frag, offset);
3814
3815 /* all fragments truesize : remove (head size + sk_buff) */
3816 delta_truesize = skb->truesize -
3817 SKB_TRUESIZE(skb_end_offset(skb));
3818
3819 skb->truesize -= skb->data_len;
3820 skb->len -= skb->data_len;
3821 skb->data_len = 0;
3822
3823 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3824 goto done;
3825 } else if (skb->head_frag) {
3826 int nr_frags = pinfo->nr_frags;
3827 skb_frag_t *frag = pinfo->frags + nr_frags;
3828 struct page *page = virt_to_head_page(skb->head);
3829 unsigned int first_size = headlen - offset;
3830 unsigned int first_offset;
3831
3832 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3833 goto merge;
3834
3835 first_offset = skb->data -
3836 (unsigned char *)page_address(page) +
3837 offset;
3838
3839 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3840
3841 frag->page.p = page;
3842 frag->page_offset = first_offset;
3843 skb_frag_size_set(frag, first_size);
3844
3845 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3846 /* We dont need to clear skbinfo->nr_frags here */
3847
3848 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3849 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3850 goto done;
3851 }
3852
3853 merge:
3854 delta_truesize = skb->truesize;
3855 if (offset > headlen) {
3856 unsigned int eat = offset - headlen;
3857
3858 skbinfo->frags[0].page_offset += eat;
3859 skb_frag_size_sub(&skbinfo->frags[0], eat);
3860 skb->data_len -= eat;
3861 skb->len -= eat;
3862 offset = headlen;
3863 }
3864
3865 __skb_pull(skb, offset);
3866
3867 if (NAPI_GRO_CB(p)->last == p)
3868 skb_shinfo(p)->frag_list = skb;
3869 else
3870 NAPI_GRO_CB(p)->last->next = skb;
3871 NAPI_GRO_CB(p)->last = skb;
3872 __skb_header_release(skb);
3873 lp = p;
3874
3875 done:
3876 NAPI_GRO_CB(p)->count++;
3877 p->data_len += len;
3878 p->truesize += delta_truesize;
3879 p->len += len;
3880 if (lp != p) {
3881 lp->data_len += len;
3882 lp->truesize += delta_truesize;
3883 lp->len += len;
3884 }
3885 NAPI_GRO_CB(skb)->same_flow = 1;
3886 return 0;
3887 }
3888 EXPORT_SYMBOL_GPL(skb_gro_receive);
3889
3890 void __init skb_init(void)
3891 {
3892 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3893 sizeof(struct sk_buff),
3894 0,
3895 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3896 NULL);
3897 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3898 sizeof(struct sk_buff_fclones),
3899 0,
3900 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3901 NULL);
3902 }
3903
3904 static int
3905 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3906 unsigned int recursion_level)
3907 {
3908 int start = skb_headlen(skb);
3909 int i, copy = start - offset;
3910 struct sk_buff *frag_iter;
3911 int elt = 0;
3912
3913 if (unlikely(recursion_level >= 24))
3914 return -EMSGSIZE;
3915
3916 if (copy > 0) {
3917 if (copy > len)
3918 copy = len;
3919 sg_set_buf(sg, skb->data + offset, copy);
3920 elt++;
3921 if ((len -= copy) == 0)
3922 return elt;
3923 offset += copy;
3924 }
3925
3926 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3927 int end;
3928
3929 WARN_ON(start > offset + len);
3930
3931 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3932 if ((copy = end - offset) > 0) {
3933 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3934 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3935 return -EMSGSIZE;
3936
3937 if (copy > len)
3938 copy = len;
3939 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3940 frag->page_offset+offset-start);
3941 elt++;
3942 if (!(len -= copy))
3943 return elt;
3944 offset += copy;
3945 }
3946 start = end;
3947 }
3948
3949 skb_walk_frags(skb, frag_iter) {
3950 int end, ret;
3951
3952 WARN_ON(start > offset + len);
3953
3954 end = start + frag_iter->len;
3955 if ((copy = end - offset) > 0) {
3956 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3957 return -EMSGSIZE;
3958
3959 if (copy > len)
3960 copy = len;
3961 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3962 copy, recursion_level + 1);
3963 if (unlikely(ret < 0))
3964 return ret;
3965 elt += ret;
3966 if ((len -= copy) == 0)
3967 return elt;
3968 offset += copy;
3969 }
3970 start = end;
3971 }
3972 BUG_ON(len);
3973 return elt;
3974 }
3975
3976 /**
3977 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3978 * @skb: Socket buffer containing the buffers to be mapped
3979 * @sg: The scatter-gather list to map into
3980 * @offset: The offset into the buffer's contents to start mapping
3981 * @len: Length of buffer space to be mapped
3982 *
3983 * Fill the specified scatter-gather list with mappings/pointers into a
3984 * region of the buffer space attached to a socket buffer. Returns either
3985 * the number of scatterlist items used, or -EMSGSIZE if the contents
3986 * could not fit.
3987 */
3988 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3989 {
3990 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
3991
3992 if (nsg <= 0)
3993 return nsg;
3994
3995 sg_mark_end(&sg[nsg - 1]);
3996
3997 return nsg;
3998 }
3999 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4000
4001 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4002 * sglist without mark the sg which contain last skb data as the end.
4003 * So the caller can mannipulate sg list as will when padding new data after
4004 * the first call without calling sg_unmark_end to expend sg list.
4005 *
4006 * Scenario to use skb_to_sgvec_nomark:
4007 * 1. sg_init_table
4008 * 2. skb_to_sgvec_nomark(payload1)
4009 * 3. skb_to_sgvec_nomark(payload2)
4010 *
4011 * This is equivalent to:
4012 * 1. sg_init_table
4013 * 2. skb_to_sgvec(payload1)
4014 * 3. sg_unmark_end
4015 * 4. skb_to_sgvec(payload2)
4016 *
4017 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4018 * is more preferable.
4019 */
4020 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4021 int offset, int len)
4022 {
4023 return __skb_to_sgvec(skb, sg, offset, len, 0);
4024 }
4025 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4026
4027
4028
4029 /**
4030 * skb_cow_data - Check that a socket buffer's data buffers are writable
4031 * @skb: The socket buffer to check.
4032 * @tailbits: Amount of trailing space to be added
4033 * @trailer: Returned pointer to the skb where the @tailbits space begins
4034 *
4035 * Make sure that the data buffers attached to a socket buffer are
4036 * writable. If they are not, private copies are made of the data buffers
4037 * and the socket buffer is set to use these instead.
4038 *
4039 * If @tailbits is given, make sure that there is space to write @tailbits
4040 * bytes of data beyond current end of socket buffer. @trailer will be
4041 * set to point to the skb in which this space begins.
4042 *
4043 * The number of scatterlist elements required to completely map the
4044 * COW'd and extended socket buffer will be returned.
4045 */
4046 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4047 {
4048 int copyflag;
4049 int elt;
4050 struct sk_buff *skb1, **skb_p;
4051
4052 /* If skb is cloned or its head is paged, reallocate
4053 * head pulling out all the pages (pages are considered not writable
4054 * at the moment even if they are anonymous).
4055 */
4056 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4057 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4058 return -ENOMEM;
4059
4060 /* Easy case. Most of packets will go this way. */
4061 if (!skb_has_frag_list(skb)) {
4062 /* A little of trouble, not enough of space for trailer.
4063 * This should not happen, when stack is tuned to generate
4064 * good frames. OK, on miss we reallocate and reserve even more
4065 * space, 128 bytes is fair. */
4066
4067 if (skb_tailroom(skb) < tailbits &&
4068 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4069 return -ENOMEM;
4070
4071 /* Voila! */
4072 *trailer = skb;
4073 return 1;
4074 }
4075
4076 /* Misery. We are in troubles, going to mincer fragments... */
4077
4078 elt = 1;
4079 skb_p = &skb_shinfo(skb)->frag_list;
4080 copyflag = 0;
4081
4082 while ((skb1 = *skb_p) != NULL) {
4083 int ntail = 0;
4084
4085 /* The fragment is partially pulled by someone,
4086 * this can happen on input. Copy it and everything
4087 * after it. */
4088
4089 if (skb_shared(skb1))
4090 copyflag = 1;
4091
4092 /* If the skb is the last, worry about trailer. */
4093
4094 if (skb1->next == NULL && tailbits) {
4095 if (skb_shinfo(skb1)->nr_frags ||
4096 skb_has_frag_list(skb1) ||
4097 skb_tailroom(skb1) < tailbits)
4098 ntail = tailbits + 128;
4099 }
4100
4101 if (copyflag ||
4102 skb_cloned(skb1) ||
4103 ntail ||
4104 skb_shinfo(skb1)->nr_frags ||
4105 skb_has_frag_list(skb1)) {
4106 struct sk_buff *skb2;
4107
4108 /* Fuck, we are miserable poor guys... */
4109 if (ntail == 0)
4110 skb2 = skb_copy(skb1, GFP_ATOMIC);
4111 else
4112 skb2 = skb_copy_expand(skb1,
4113 skb_headroom(skb1),
4114 ntail,
4115 GFP_ATOMIC);
4116 if (unlikely(skb2 == NULL))
4117 return -ENOMEM;
4118
4119 if (skb1->sk)
4120 skb_set_owner_w(skb2, skb1->sk);
4121
4122 /* Looking around. Are we still alive?
4123 * OK, link new skb, drop old one */
4124
4125 skb2->next = skb1->next;
4126 *skb_p = skb2;
4127 kfree_skb(skb1);
4128 skb1 = skb2;
4129 }
4130 elt++;
4131 *trailer = skb1;
4132 skb_p = &skb1->next;
4133 }
4134
4135 return elt;
4136 }
4137 EXPORT_SYMBOL_GPL(skb_cow_data);
4138
4139 static void sock_rmem_free(struct sk_buff *skb)
4140 {
4141 struct sock *sk = skb->sk;
4142
4143 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4144 }
4145
4146 static void skb_set_err_queue(struct sk_buff *skb)
4147 {
4148 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4149 * So, it is safe to (mis)use it to mark skbs on the error queue.
4150 */
4151 skb->pkt_type = PACKET_OUTGOING;
4152 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4153 }
4154
4155 /*
4156 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4157 */
4158 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4159 {
4160 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4161 (unsigned int)sk->sk_rcvbuf)
4162 return -ENOMEM;
4163
4164 skb_orphan(skb);
4165 skb->sk = sk;
4166 skb->destructor = sock_rmem_free;
4167 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4168 skb_set_err_queue(skb);
4169
4170 /* before exiting rcu section, make sure dst is refcounted */
4171 skb_dst_force(skb);
4172
4173 skb_queue_tail(&sk->sk_error_queue, skb);
4174 if (!sock_flag(sk, SOCK_DEAD))
4175 sk->sk_data_ready(sk);
4176 return 0;
4177 }
4178 EXPORT_SYMBOL(sock_queue_err_skb);
4179
4180 static bool is_icmp_err_skb(const struct sk_buff *skb)
4181 {
4182 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4183 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4184 }
4185
4186 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4187 {
4188 struct sk_buff_head *q = &sk->sk_error_queue;
4189 struct sk_buff *skb, *skb_next = NULL;
4190 bool icmp_next = false;
4191 unsigned long flags;
4192
4193 spin_lock_irqsave(&q->lock, flags);
4194 skb = __skb_dequeue(q);
4195 if (skb && (skb_next = skb_peek(q))) {
4196 icmp_next = is_icmp_err_skb(skb_next);
4197 if (icmp_next)
4198 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4199 }
4200 spin_unlock_irqrestore(&q->lock, flags);
4201
4202 if (is_icmp_err_skb(skb) && !icmp_next)
4203 sk->sk_err = 0;
4204
4205 if (skb_next)
4206 sk->sk_error_report(sk);
4207
4208 return skb;
4209 }
4210 EXPORT_SYMBOL(sock_dequeue_err_skb);
4211
4212 /**
4213 * skb_clone_sk - create clone of skb, and take reference to socket
4214 * @skb: the skb to clone
4215 *
4216 * This function creates a clone of a buffer that holds a reference on
4217 * sk_refcnt. Buffers created via this function are meant to be
4218 * returned using sock_queue_err_skb, or free via kfree_skb.
4219 *
4220 * When passing buffers allocated with this function to sock_queue_err_skb
4221 * it is necessary to wrap the call with sock_hold/sock_put in order to
4222 * prevent the socket from being released prior to being enqueued on
4223 * the sk_error_queue.
4224 */
4225 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4226 {
4227 struct sock *sk = skb->sk;
4228 struct sk_buff *clone;
4229
4230 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4231 return NULL;
4232
4233 clone = skb_clone(skb, GFP_ATOMIC);
4234 if (!clone) {
4235 sock_put(sk);
4236 return NULL;
4237 }
4238
4239 clone->sk = sk;
4240 clone->destructor = sock_efree;
4241
4242 return clone;
4243 }
4244 EXPORT_SYMBOL(skb_clone_sk);
4245
4246 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4247 struct sock *sk,
4248 int tstype,
4249 bool opt_stats)
4250 {
4251 struct sock_exterr_skb *serr;
4252 int err;
4253
4254 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4255
4256 serr = SKB_EXT_ERR(skb);
4257 memset(serr, 0, sizeof(*serr));
4258 serr->ee.ee_errno = ENOMSG;
4259 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4260 serr->ee.ee_info = tstype;
4261 serr->opt_stats = opt_stats;
4262 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4263 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4264 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4265 if (sk->sk_protocol == IPPROTO_TCP &&
4266 sk->sk_type == SOCK_STREAM)
4267 serr->ee.ee_data -= sk->sk_tskey;
4268 }
4269
4270 err = sock_queue_err_skb(sk, skb);
4271
4272 if (err)
4273 kfree_skb(skb);
4274 }
4275
4276 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4277 {
4278 bool ret;
4279
4280 if (likely(sysctl_tstamp_allow_data || tsonly))
4281 return true;
4282
4283 read_lock_bh(&sk->sk_callback_lock);
4284 ret = sk->sk_socket && sk->sk_socket->file &&
4285 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4286 read_unlock_bh(&sk->sk_callback_lock);
4287 return ret;
4288 }
4289
4290 void skb_complete_tx_timestamp(struct sk_buff *skb,
4291 struct skb_shared_hwtstamps *hwtstamps)
4292 {
4293 struct sock *sk = skb->sk;
4294
4295 if (!skb_may_tx_timestamp(sk, false))
4296 goto err;
4297
4298 /* Take a reference to prevent skb_orphan() from freeing the socket,
4299 * but only if the socket refcount is not zero.
4300 */
4301 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4302 *skb_hwtstamps(skb) = *hwtstamps;
4303 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4304 sock_put(sk);
4305 return;
4306 }
4307
4308 err:
4309 kfree_skb(skb);
4310 }
4311 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4312
4313 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4314 struct skb_shared_hwtstamps *hwtstamps,
4315 struct sock *sk, int tstype)
4316 {
4317 struct sk_buff *skb;
4318 bool tsonly, opt_stats = false;
4319
4320 if (!sk)
4321 return;
4322
4323 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4324 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4325 return;
4326
4327 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4328 if (!skb_may_tx_timestamp(sk, tsonly))
4329 return;
4330
4331 if (tsonly) {
4332 #ifdef CONFIG_INET
4333 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4334 sk->sk_protocol == IPPROTO_TCP &&
4335 sk->sk_type == SOCK_STREAM) {
4336 skb = tcp_get_timestamping_opt_stats(sk);
4337 opt_stats = true;
4338 } else
4339 #endif
4340 skb = alloc_skb(0, GFP_ATOMIC);
4341 } else {
4342 skb = skb_clone(orig_skb, GFP_ATOMIC);
4343 }
4344 if (!skb)
4345 return;
4346
4347 if (tsonly) {
4348 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4349 SKBTX_ANY_TSTAMP;
4350 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4351 }
4352
4353 if (hwtstamps)
4354 *skb_hwtstamps(skb) = *hwtstamps;
4355 else
4356 skb->tstamp = ktime_get_real();
4357
4358 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4359 }
4360 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4361
4362 void skb_tstamp_tx(struct sk_buff *orig_skb,
4363 struct skb_shared_hwtstamps *hwtstamps)
4364 {
4365 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4366 SCM_TSTAMP_SND);
4367 }
4368 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4369
4370 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4371 {
4372 struct sock *sk = skb->sk;
4373 struct sock_exterr_skb *serr;
4374 int err = 1;
4375
4376 skb->wifi_acked_valid = 1;
4377 skb->wifi_acked = acked;
4378
4379 serr = SKB_EXT_ERR(skb);
4380 memset(serr, 0, sizeof(*serr));
4381 serr->ee.ee_errno = ENOMSG;
4382 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4383
4384 /* Take a reference to prevent skb_orphan() from freeing the socket,
4385 * but only if the socket refcount is not zero.
4386 */
4387 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4388 err = sock_queue_err_skb(sk, skb);
4389 sock_put(sk);
4390 }
4391 if (err)
4392 kfree_skb(skb);
4393 }
4394 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4395
4396 /**
4397 * skb_partial_csum_set - set up and verify partial csum values for packet
4398 * @skb: the skb to set
4399 * @start: the number of bytes after skb->data to start checksumming.
4400 * @off: the offset from start to place the checksum.
4401 *
4402 * For untrusted partially-checksummed packets, we need to make sure the values
4403 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4404 *
4405 * This function checks and sets those values and skb->ip_summed: if this
4406 * returns false you should drop the packet.
4407 */
4408 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4409 {
4410 if (unlikely(start > skb_headlen(skb)) ||
4411 unlikely((int)start + off > skb_headlen(skb) - 2)) {
4412 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
4413 start, off, skb_headlen(skb));
4414 return false;
4415 }
4416 skb->ip_summed = CHECKSUM_PARTIAL;
4417 skb->csum_start = skb_headroom(skb) + start;
4418 skb->csum_offset = off;
4419 skb_set_transport_header(skb, start);
4420 return true;
4421 }
4422 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4423
4424 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4425 unsigned int max)
4426 {
4427 if (skb_headlen(skb) >= len)
4428 return 0;
4429
4430 /* If we need to pullup then pullup to the max, so we
4431 * won't need to do it again.
4432 */
4433 if (max > skb->len)
4434 max = skb->len;
4435
4436 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4437 return -ENOMEM;
4438
4439 if (skb_headlen(skb) < len)
4440 return -EPROTO;
4441
4442 return 0;
4443 }
4444
4445 #define MAX_TCP_HDR_LEN (15 * 4)
4446
4447 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4448 typeof(IPPROTO_IP) proto,
4449 unsigned int off)
4450 {
4451 switch (proto) {
4452 int err;
4453
4454 case IPPROTO_TCP:
4455 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4456 off + MAX_TCP_HDR_LEN);
4457 if (!err && !skb_partial_csum_set(skb, off,
4458 offsetof(struct tcphdr,
4459 check)))
4460 err = -EPROTO;
4461 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4462
4463 case IPPROTO_UDP:
4464 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4465 off + sizeof(struct udphdr));
4466 if (!err && !skb_partial_csum_set(skb, off,
4467 offsetof(struct udphdr,
4468 check)))
4469 err = -EPROTO;
4470 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4471 }
4472
4473 return ERR_PTR(-EPROTO);
4474 }
4475
4476 /* This value should be large enough to cover a tagged ethernet header plus
4477 * maximally sized IP and TCP or UDP headers.
4478 */
4479 #define MAX_IP_HDR_LEN 128
4480
4481 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4482 {
4483 unsigned int off;
4484 bool fragment;
4485 __sum16 *csum;
4486 int err;
4487
4488 fragment = false;
4489
4490 err = skb_maybe_pull_tail(skb,
4491 sizeof(struct iphdr),
4492 MAX_IP_HDR_LEN);
4493 if (err < 0)
4494 goto out;
4495
4496 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4497 fragment = true;
4498
4499 off = ip_hdrlen(skb);
4500
4501 err = -EPROTO;
4502
4503 if (fragment)
4504 goto out;
4505
4506 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4507 if (IS_ERR(csum))
4508 return PTR_ERR(csum);
4509
4510 if (recalculate)
4511 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4512 ip_hdr(skb)->daddr,
4513 skb->len - off,
4514 ip_hdr(skb)->protocol, 0);
4515 err = 0;
4516
4517 out:
4518 return err;
4519 }
4520
4521 /* This value should be large enough to cover a tagged ethernet header plus
4522 * an IPv6 header, all options, and a maximal TCP or UDP header.
4523 */
4524 #define MAX_IPV6_HDR_LEN 256
4525
4526 #define OPT_HDR(type, skb, off) \
4527 (type *)(skb_network_header(skb) + (off))
4528
4529 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4530 {
4531 int err;
4532 u8 nexthdr;
4533 unsigned int off;
4534 unsigned int len;
4535 bool fragment;
4536 bool done;
4537 __sum16 *csum;
4538
4539 fragment = false;
4540 done = false;
4541
4542 off = sizeof(struct ipv6hdr);
4543
4544 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4545 if (err < 0)
4546 goto out;
4547
4548 nexthdr = ipv6_hdr(skb)->nexthdr;
4549
4550 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4551 while (off <= len && !done) {
4552 switch (nexthdr) {
4553 case IPPROTO_DSTOPTS:
4554 case IPPROTO_HOPOPTS:
4555 case IPPROTO_ROUTING: {
4556 struct ipv6_opt_hdr *hp;
4557
4558 err = skb_maybe_pull_tail(skb,
4559 off +
4560 sizeof(struct ipv6_opt_hdr),
4561 MAX_IPV6_HDR_LEN);
4562 if (err < 0)
4563 goto out;
4564
4565 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4566 nexthdr = hp->nexthdr;
4567 off += ipv6_optlen(hp);
4568 break;
4569 }
4570 case IPPROTO_AH: {
4571 struct ip_auth_hdr *hp;
4572
4573 err = skb_maybe_pull_tail(skb,
4574 off +
4575 sizeof(struct ip_auth_hdr),
4576 MAX_IPV6_HDR_LEN);
4577 if (err < 0)
4578 goto out;
4579
4580 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4581 nexthdr = hp->nexthdr;
4582 off += ipv6_authlen(hp);
4583 break;
4584 }
4585 case IPPROTO_FRAGMENT: {
4586 struct frag_hdr *hp;
4587
4588 err = skb_maybe_pull_tail(skb,
4589 off +
4590 sizeof(struct frag_hdr),
4591 MAX_IPV6_HDR_LEN);
4592 if (err < 0)
4593 goto out;
4594
4595 hp = OPT_HDR(struct frag_hdr, skb, off);
4596
4597 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4598 fragment = true;
4599
4600 nexthdr = hp->nexthdr;
4601 off += sizeof(struct frag_hdr);
4602 break;
4603 }
4604 default:
4605 done = true;
4606 break;
4607 }
4608 }
4609
4610 err = -EPROTO;
4611
4612 if (!done || fragment)
4613 goto out;
4614
4615 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4616 if (IS_ERR(csum))
4617 return PTR_ERR(csum);
4618
4619 if (recalculate)
4620 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4621 &ipv6_hdr(skb)->daddr,
4622 skb->len - off, nexthdr, 0);
4623 err = 0;
4624
4625 out:
4626 return err;
4627 }
4628
4629 /**
4630 * skb_checksum_setup - set up partial checksum offset
4631 * @skb: the skb to set up
4632 * @recalculate: if true the pseudo-header checksum will be recalculated
4633 */
4634 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4635 {
4636 int err;
4637
4638 switch (skb->protocol) {
4639 case htons(ETH_P_IP):
4640 err = skb_checksum_setup_ipv4(skb, recalculate);
4641 break;
4642
4643 case htons(ETH_P_IPV6):
4644 err = skb_checksum_setup_ipv6(skb, recalculate);
4645 break;
4646
4647 default:
4648 err = -EPROTO;
4649 break;
4650 }
4651
4652 return err;
4653 }
4654 EXPORT_SYMBOL(skb_checksum_setup);
4655
4656 /**
4657 * skb_checksum_maybe_trim - maybe trims the given skb
4658 * @skb: the skb to check
4659 * @transport_len: the data length beyond the network header
4660 *
4661 * Checks whether the given skb has data beyond the given transport length.
4662 * If so, returns a cloned skb trimmed to this transport length.
4663 * Otherwise returns the provided skb. Returns NULL in error cases
4664 * (e.g. transport_len exceeds skb length or out-of-memory).
4665 *
4666 * Caller needs to set the skb transport header and free any returned skb if it
4667 * differs from the provided skb.
4668 */
4669 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4670 unsigned int transport_len)
4671 {
4672 struct sk_buff *skb_chk;
4673 unsigned int len = skb_transport_offset(skb) + transport_len;
4674 int ret;
4675
4676 if (skb->len < len)
4677 return NULL;
4678 else if (skb->len == len)
4679 return skb;
4680
4681 skb_chk = skb_clone(skb, GFP_ATOMIC);
4682 if (!skb_chk)
4683 return NULL;
4684
4685 ret = pskb_trim_rcsum(skb_chk, len);
4686 if (ret) {
4687 kfree_skb(skb_chk);
4688 return NULL;
4689 }
4690
4691 return skb_chk;
4692 }
4693
4694 /**
4695 * skb_checksum_trimmed - validate checksum of an skb
4696 * @skb: the skb to check
4697 * @transport_len: the data length beyond the network header
4698 * @skb_chkf: checksum function to use
4699 *
4700 * Applies the given checksum function skb_chkf to the provided skb.
4701 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4702 *
4703 * If the skb has data beyond the given transport length, then a
4704 * trimmed & cloned skb is checked and returned.
4705 *
4706 * Caller needs to set the skb transport header and free any returned skb if it
4707 * differs from the provided skb.
4708 */
4709 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4710 unsigned int transport_len,
4711 __sum16(*skb_chkf)(struct sk_buff *skb))
4712 {
4713 struct sk_buff *skb_chk;
4714 unsigned int offset = skb_transport_offset(skb);
4715 __sum16 ret;
4716
4717 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4718 if (!skb_chk)
4719 goto err;
4720
4721 if (!pskb_may_pull(skb_chk, offset))
4722 goto err;
4723
4724 skb_pull_rcsum(skb_chk, offset);
4725 ret = skb_chkf(skb_chk);
4726 skb_push_rcsum(skb_chk, offset);
4727
4728 if (ret)
4729 goto err;
4730
4731 return skb_chk;
4732
4733 err:
4734 if (skb_chk && skb_chk != skb)
4735 kfree_skb(skb_chk);
4736
4737 return NULL;
4738
4739 }
4740 EXPORT_SYMBOL(skb_checksum_trimmed);
4741
4742 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4743 {
4744 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4745 skb->dev->name);
4746 }
4747 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4748
4749 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4750 {
4751 if (head_stolen) {
4752 skb_release_head_state(skb);
4753 kmem_cache_free(skbuff_head_cache, skb);
4754 } else {
4755 __kfree_skb(skb);
4756 }
4757 }
4758 EXPORT_SYMBOL(kfree_skb_partial);
4759
4760 /**
4761 * skb_try_coalesce - try to merge skb to prior one
4762 * @to: prior buffer
4763 * @from: buffer to add
4764 * @fragstolen: pointer to boolean
4765 * @delta_truesize: how much more was allocated than was requested
4766 */
4767 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4768 bool *fragstolen, int *delta_truesize)
4769 {
4770 struct skb_shared_info *to_shinfo, *from_shinfo;
4771 int i, delta, len = from->len;
4772
4773 *fragstolen = false;
4774
4775 if (skb_cloned(to))
4776 return false;
4777
4778 if (len <= skb_tailroom(to)) {
4779 if (len)
4780 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4781 *delta_truesize = 0;
4782 return true;
4783 }
4784
4785 to_shinfo = skb_shinfo(to);
4786 from_shinfo = skb_shinfo(from);
4787 if (to_shinfo->frag_list || from_shinfo->frag_list)
4788 return false;
4789 if (skb_zcopy(to) || skb_zcopy(from))
4790 return false;
4791
4792 if (skb_headlen(from) != 0) {
4793 struct page *page;
4794 unsigned int offset;
4795
4796 if (to_shinfo->nr_frags +
4797 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4798 return false;
4799
4800 if (skb_head_is_locked(from))
4801 return false;
4802
4803 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4804
4805 page = virt_to_head_page(from->head);
4806 offset = from->data - (unsigned char *)page_address(page);
4807
4808 skb_fill_page_desc(to, to_shinfo->nr_frags,
4809 page, offset, skb_headlen(from));
4810 *fragstolen = true;
4811 } else {
4812 if (to_shinfo->nr_frags +
4813 from_shinfo->nr_frags > MAX_SKB_FRAGS)
4814 return false;
4815
4816 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4817 }
4818
4819 WARN_ON_ONCE(delta < len);
4820
4821 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4822 from_shinfo->frags,
4823 from_shinfo->nr_frags * sizeof(skb_frag_t));
4824 to_shinfo->nr_frags += from_shinfo->nr_frags;
4825
4826 if (!skb_cloned(from))
4827 from_shinfo->nr_frags = 0;
4828
4829 /* if the skb is not cloned this does nothing
4830 * since we set nr_frags to 0.
4831 */
4832 for (i = 0; i < from_shinfo->nr_frags; i++)
4833 __skb_frag_ref(&from_shinfo->frags[i]);
4834
4835 to->truesize += delta;
4836 to->len += len;
4837 to->data_len += len;
4838
4839 *delta_truesize = delta;
4840 return true;
4841 }
4842 EXPORT_SYMBOL(skb_try_coalesce);
4843
4844 /**
4845 * skb_scrub_packet - scrub an skb
4846 *
4847 * @skb: buffer to clean
4848 * @xnet: packet is crossing netns
4849 *
4850 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4851 * into/from a tunnel. Some information have to be cleared during these
4852 * operations.
4853 * skb_scrub_packet can also be used to clean a skb before injecting it in
4854 * another namespace (@xnet == true). We have to clear all information in the
4855 * skb that could impact namespace isolation.
4856 */
4857 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4858 {
4859 skb->tstamp = 0;
4860 skb->pkt_type = PACKET_HOST;
4861 skb->skb_iif = 0;
4862 skb->ignore_df = 0;
4863 skb_dst_drop(skb);
4864 secpath_reset(skb);
4865 nf_reset(skb);
4866 nf_reset_trace(skb);
4867
4868 if (!xnet)
4869 return;
4870
4871 ipvs_reset(skb);
4872 skb_orphan(skb);
4873 skb->mark = 0;
4874 }
4875 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4876
4877 /**
4878 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4879 *
4880 * @skb: GSO skb
4881 *
4882 * skb_gso_transport_seglen is used to determine the real size of the
4883 * individual segments, including Layer4 headers (TCP/UDP).
4884 *
4885 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4886 */
4887 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4888 {
4889 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4890 unsigned int thlen = 0;
4891
4892 if (skb->encapsulation) {
4893 thlen = skb_inner_transport_header(skb) -
4894 skb_transport_header(skb);
4895
4896 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4897 thlen += inner_tcp_hdrlen(skb);
4898 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4899 thlen = tcp_hdrlen(skb);
4900 } else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) {
4901 thlen = sizeof(struct sctphdr);
4902 }
4903 /* UFO sets gso_size to the size of the fragmentation
4904 * payload, i.e. the size of the L4 (UDP) header is already
4905 * accounted for.
4906 */
4907 return thlen + shinfo->gso_size;
4908 }
4909 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4910
4911 /**
4912 * skb_gso_validate_mtu - Return in case such skb fits a given MTU
4913 *
4914 * @skb: GSO skb
4915 * @mtu: MTU to validate against
4916 *
4917 * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
4918 * once split.
4919 */
4920 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu)
4921 {
4922 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4923 const struct sk_buff *iter;
4924 unsigned int hlen;
4925
4926 hlen = skb_gso_network_seglen(skb);
4927
4928 if (shinfo->gso_size != GSO_BY_FRAGS)
4929 return hlen <= mtu;
4930
4931 /* Undo this so we can re-use header sizes */
4932 hlen -= GSO_BY_FRAGS;
4933
4934 skb_walk_frags(skb, iter) {
4935 if (hlen + skb_headlen(iter) > mtu)
4936 return false;
4937 }
4938
4939 return true;
4940 }
4941 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu);
4942
4943 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4944 {
4945 if (skb_cow(skb, skb_headroom(skb)) < 0) {
4946 kfree_skb(skb);
4947 return NULL;
4948 }
4949
4950 memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4951 2 * ETH_ALEN);
4952 skb->mac_header += VLAN_HLEN;
4953 return skb;
4954 }
4955
4956 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4957 {
4958 struct vlan_hdr *vhdr;
4959 u16 vlan_tci;
4960
4961 if (unlikely(skb_vlan_tag_present(skb))) {
4962 /* vlan_tci is already set-up so leave this for another time */
4963 return skb;
4964 }
4965
4966 skb = skb_share_check(skb, GFP_ATOMIC);
4967 if (unlikely(!skb))
4968 goto err_free;
4969
4970 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4971 goto err_free;
4972
4973 vhdr = (struct vlan_hdr *)skb->data;
4974 vlan_tci = ntohs(vhdr->h_vlan_TCI);
4975 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4976
4977 skb_pull_rcsum(skb, VLAN_HLEN);
4978 vlan_set_encap_proto(skb, vhdr);
4979
4980 skb = skb_reorder_vlan_header(skb);
4981 if (unlikely(!skb))
4982 goto err_free;
4983
4984 skb_reset_network_header(skb);
4985 skb_reset_transport_header(skb);
4986 skb_reset_mac_len(skb);
4987
4988 return skb;
4989
4990 err_free:
4991 kfree_skb(skb);
4992 return NULL;
4993 }
4994 EXPORT_SYMBOL(skb_vlan_untag);
4995
4996 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4997 {
4998 if (!pskb_may_pull(skb, write_len))
4999 return -ENOMEM;
5000
5001 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5002 return 0;
5003
5004 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5005 }
5006 EXPORT_SYMBOL(skb_ensure_writable);
5007
5008 /* remove VLAN header from packet and update csum accordingly.
5009 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5010 */
5011 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5012 {
5013 struct vlan_hdr *vhdr;
5014 int offset = skb->data - skb_mac_header(skb);
5015 int err;
5016
5017 if (WARN_ONCE(offset,
5018 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5019 offset)) {
5020 return -EINVAL;
5021 }
5022
5023 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5024 if (unlikely(err))
5025 return err;
5026
5027 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5028
5029 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5030 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5031
5032 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5033 __skb_pull(skb, VLAN_HLEN);
5034
5035 vlan_set_encap_proto(skb, vhdr);
5036 skb->mac_header += VLAN_HLEN;
5037
5038 if (skb_network_offset(skb) < ETH_HLEN)
5039 skb_set_network_header(skb, ETH_HLEN);
5040
5041 skb_reset_mac_len(skb);
5042
5043 return err;
5044 }
5045 EXPORT_SYMBOL(__skb_vlan_pop);
5046
5047 /* Pop a vlan tag either from hwaccel or from payload.
5048 * Expects skb->data at mac header.
5049 */
5050 int skb_vlan_pop(struct sk_buff *skb)
5051 {
5052 u16 vlan_tci;
5053 __be16 vlan_proto;
5054 int err;
5055
5056 if (likely(skb_vlan_tag_present(skb))) {
5057 skb->vlan_tci = 0;
5058 } else {
5059 if (unlikely(!eth_type_vlan(skb->protocol)))
5060 return 0;
5061
5062 err = __skb_vlan_pop(skb, &vlan_tci);
5063 if (err)
5064 return err;
5065 }
5066 /* move next vlan tag to hw accel tag */
5067 if (likely(!eth_type_vlan(skb->protocol)))
5068 return 0;
5069
5070 vlan_proto = skb->protocol;
5071 err = __skb_vlan_pop(skb, &vlan_tci);
5072 if (unlikely(err))
5073 return err;
5074
5075 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5076 return 0;
5077 }
5078 EXPORT_SYMBOL(skb_vlan_pop);
5079
5080 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5081 * Expects skb->data at mac header.
5082 */
5083 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5084 {
5085 if (skb_vlan_tag_present(skb)) {
5086 int offset = skb->data - skb_mac_header(skb);
5087 int err;
5088
5089 if (WARN_ONCE(offset,
5090 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5091 offset)) {
5092 return -EINVAL;
5093 }
5094
5095 err = __vlan_insert_tag(skb, skb->vlan_proto,
5096 skb_vlan_tag_get(skb));
5097 if (err)
5098 return err;
5099
5100 skb->protocol = skb->vlan_proto;
5101 skb->mac_len += VLAN_HLEN;
5102
5103 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5104 }
5105 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5106 return 0;
5107 }
5108 EXPORT_SYMBOL(skb_vlan_push);
5109
5110 /**
5111 * alloc_skb_with_frags - allocate skb with page frags
5112 *
5113 * @header_len: size of linear part
5114 * @data_len: needed length in frags
5115 * @max_page_order: max page order desired.
5116 * @errcode: pointer to error code if any
5117 * @gfp_mask: allocation mask
5118 *
5119 * This can be used to allocate a paged skb, given a maximal order for frags.
5120 */
5121 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5122 unsigned long data_len,
5123 int max_page_order,
5124 int *errcode,
5125 gfp_t gfp_mask)
5126 {
5127 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5128 unsigned long chunk;
5129 struct sk_buff *skb;
5130 struct page *page;
5131 gfp_t gfp_head;
5132 int i;
5133
5134 *errcode = -EMSGSIZE;
5135 /* Note this test could be relaxed, if we succeed to allocate
5136 * high order pages...
5137 */
5138 if (npages > MAX_SKB_FRAGS)
5139 return NULL;
5140
5141 gfp_head = gfp_mask;
5142 if (gfp_head & __GFP_DIRECT_RECLAIM)
5143 gfp_head |= __GFP_RETRY_MAYFAIL;
5144
5145 *errcode = -ENOBUFS;
5146 skb = alloc_skb(header_len, gfp_head);
5147 if (!skb)
5148 return NULL;
5149
5150 skb->truesize += npages << PAGE_SHIFT;
5151
5152 for (i = 0; npages > 0; i++) {
5153 int order = max_page_order;
5154
5155 while (order) {
5156 if (npages >= 1 << order) {
5157 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5158 __GFP_COMP |
5159 __GFP_NOWARN |
5160 __GFP_NORETRY,
5161 order);
5162 if (page)
5163 goto fill_page;
5164 /* Do not retry other high order allocations */
5165 order = 1;
5166 max_page_order = 0;
5167 }
5168 order--;
5169 }
5170 page = alloc_page(gfp_mask);
5171 if (!page)
5172 goto failure;
5173 fill_page:
5174 chunk = min_t(unsigned long, data_len,
5175 PAGE_SIZE << order);
5176 skb_fill_page_desc(skb, i, page, 0, chunk);
5177 data_len -= chunk;
5178 npages -= 1 << order;
5179 }
5180 return skb;
5181
5182 failure:
5183 kfree_skb(skb);
5184 return NULL;
5185 }
5186 EXPORT_SYMBOL(alloc_skb_with_frags);
5187
5188 /* carve out the first off bytes from skb when off < headlen */
5189 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5190 const int headlen, gfp_t gfp_mask)
5191 {
5192 int i;
5193 int size = skb_end_offset(skb);
5194 int new_hlen = headlen - off;
5195 u8 *data;
5196
5197 size = SKB_DATA_ALIGN(size);
5198
5199 if (skb_pfmemalloc(skb))
5200 gfp_mask |= __GFP_MEMALLOC;
5201 data = kmalloc_reserve(size +
5202 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5203 gfp_mask, NUMA_NO_NODE, NULL);
5204 if (!data)
5205 return -ENOMEM;
5206
5207 size = SKB_WITH_OVERHEAD(ksize(data));
5208
5209 /* Copy real data, and all frags */
5210 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5211 skb->len -= off;
5212
5213 memcpy((struct skb_shared_info *)(data + size),
5214 skb_shinfo(skb),
5215 offsetof(struct skb_shared_info,
5216 frags[skb_shinfo(skb)->nr_frags]));
5217 if (skb_cloned(skb)) {
5218 /* drop the old head gracefully */
5219 if (skb_orphan_frags(skb, gfp_mask)) {
5220 kfree(data);
5221 return -ENOMEM;
5222 }
5223 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5224 skb_frag_ref(skb, i);
5225 if (skb_has_frag_list(skb))
5226 skb_clone_fraglist(skb);
5227 skb_release_data(skb);
5228 } else {
5229 /* we can reuse existing recount- all we did was
5230 * relocate values
5231 */
5232 skb_free_head(skb);
5233 }
5234
5235 skb->head = data;
5236 skb->data = data;
5237 skb->head_frag = 0;
5238 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5239 skb->end = size;
5240 #else
5241 skb->end = skb->head + size;
5242 #endif
5243 skb_set_tail_pointer(skb, skb_headlen(skb));
5244 skb_headers_offset_update(skb, 0);
5245 skb->cloned = 0;
5246 skb->hdr_len = 0;
5247 skb->nohdr = 0;
5248 atomic_set(&skb_shinfo(skb)->dataref, 1);
5249
5250 return 0;
5251 }
5252
5253 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5254
5255 /* carve out the first eat bytes from skb's frag_list. May recurse into
5256 * pskb_carve()
5257 */
5258 static int pskb_carve_frag_list(struct sk_buff *skb,
5259 struct skb_shared_info *shinfo, int eat,
5260 gfp_t gfp_mask)
5261 {
5262 struct sk_buff *list = shinfo->frag_list;
5263 struct sk_buff *clone = NULL;
5264 struct sk_buff *insp = NULL;
5265
5266 do {
5267 if (!list) {
5268 pr_err("Not enough bytes to eat. Want %d\n", eat);
5269 return -EFAULT;
5270 }
5271 if (list->len <= eat) {
5272 /* Eaten as whole. */
5273 eat -= list->len;
5274 list = list->next;
5275 insp = list;
5276 } else {
5277 /* Eaten partially. */
5278 if (skb_shared(list)) {
5279 clone = skb_clone(list, gfp_mask);
5280 if (!clone)
5281 return -ENOMEM;
5282 insp = list->next;
5283 list = clone;
5284 } else {
5285 /* This may be pulled without problems. */
5286 insp = list;
5287 }
5288 if (pskb_carve(list, eat, gfp_mask) < 0) {
5289 kfree_skb(clone);
5290 return -ENOMEM;
5291 }
5292 break;
5293 }
5294 } while (eat);
5295
5296 /* Free pulled out fragments. */
5297 while ((list = shinfo->frag_list) != insp) {
5298 shinfo->frag_list = list->next;
5299 kfree_skb(list);
5300 }
5301 /* And insert new clone at head. */
5302 if (clone) {
5303 clone->next = list;
5304 shinfo->frag_list = clone;
5305 }
5306 return 0;
5307 }
5308
5309 /* carve off first len bytes from skb. Split line (off) is in the
5310 * non-linear part of skb
5311 */
5312 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5313 int pos, gfp_t gfp_mask)
5314 {
5315 int i, k = 0;
5316 int size = skb_end_offset(skb);
5317 u8 *data;
5318 const int nfrags = skb_shinfo(skb)->nr_frags;
5319 struct skb_shared_info *shinfo;
5320
5321 size = SKB_DATA_ALIGN(size);
5322
5323 if (skb_pfmemalloc(skb))
5324 gfp_mask |= __GFP_MEMALLOC;
5325 data = kmalloc_reserve(size +
5326 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5327 gfp_mask, NUMA_NO_NODE, NULL);
5328 if (!data)
5329 return -ENOMEM;
5330
5331 size = SKB_WITH_OVERHEAD(ksize(data));
5332
5333 memcpy((struct skb_shared_info *)(data + size),
5334 skb_shinfo(skb), offsetof(struct skb_shared_info,
5335 frags[skb_shinfo(skb)->nr_frags]));
5336 if (skb_orphan_frags(skb, gfp_mask)) {
5337 kfree(data);
5338 return -ENOMEM;
5339 }
5340 shinfo = (struct skb_shared_info *)(data + size);
5341 for (i = 0; i < nfrags; i++) {
5342 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5343
5344 if (pos + fsize > off) {
5345 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5346
5347 if (pos < off) {
5348 /* Split frag.
5349 * We have two variants in this case:
5350 * 1. Move all the frag to the second
5351 * part, if it is possible. F.e.
5352 * this approach is mandatory for TUX,
5353 * where splitting is expensive.
5354 * 2. Split is accurately. We make this.
5355 */
5356 shinfo->frags[0].page_offset += off - pos;
5357 skb_frag_size_sub(&shinfo->frags[0], off - pos);
5358 }
5359 skb_frag_ref(skb, i);
5360 k++;
5361 }
5362 pos += fsize;
5363 }
5364 shinfo->nr_frags = k;
5365 if (skb_has_frag_list(skb))
5366 skb_clone_fraglist(skb);
5367
5368 if (k == 0) {
5369 /* split line is in frag list */
5370 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5371 }
5372 skb_release_data(skb);
5373
5374 skb->head = data;
5375 skb->head_frag = 0;
5376 skb->data = data;
5377 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5378 skb->end = size;
5379 #else
5380 skb->end = skb->head + size;
5381 #endif
5382 skb_reset_tail_pointer(skb);
5383 skb_headers_offset_update(skb, 0);
5384 skb->cloned = 0;
5385 skb->hdr_len = 0;
5386 skb->nohdr = 0;
5387 skb->len -= off;
5388 skb->data_len = skb->len;
5389 atomic_set(&skb_shinfo(skb)->dataref, 1);
5390 return 0;
5391 }
5392
5393 /* remove len bytes from the beginning of the skb */
5394 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5395 {
5396 int headlen = skb_headlen(skb);
5397
5398 if (len < headlen)
5399 return pskb_carve_inside_header(skb, len, headlen, gfp);
5400 else
5401 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5402 }
5403
5404 /* Extract to_copy bytes starting at off from skb, and return this in
5405 * a new skb
5406 */
5407 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5408 int to_copy, gfp_t gfp)
5409 {
5410 struct sk_buff *clone = skb_clone(skb, gfp);
5411
5412 if (!clone)
5413 return NULL;
5414
5415 if (pskb_carve(clone, off, gfp) < 0 ||
5416 pskb_trim(clone, to_copy)) {
5417 kfree_skb(clone);
5418 return NULL;
5419 }
5420 return clone;
5421 }
5422 EXPORT_SYMBOL(pskb_extract);
5423
5424 /**
5425 * skb_condense - try to get rid of fragments/frag_list if possible
5426 * @skb: buffer
5427 *
5428 * Can be used to save memory before skb is added to a busy queue.
5429 * If packet has bytes in frags and enough tail room in skb->head,
5430 * pull all of them, so that we can free the frags right now and adjust
5431 * truesize.
5432 * Notes:
5433 * We do not reallocate skb->head thus can not fail.
5434 * Caller must re-evaluate skb->truesize if needed.
5435 */
5436 void skb_condense(struct sk_buff *skb)
5437 {
5438 if (skb->data_len) {
5439 if (skb->data_len > skb->end - skb->tail ||
5440 skb_cloned(skb))
5441 return;
5442
5443 /* Nice, we can free page frag(s) right now */
5444 __pskb_pull_tail(skb, skb->data_len);
5445 }
5446 /* At this point, skb->truesize might be over estimated,
5447 * because skb had a fragment, and fragments do not tell
5448 * their truesize.
5449 * When we pulled its content into skb->head, fragment
5450 * was freed, but __pskb_pull_tail() could not possibly
5451 * adjust skb->truesize, not knowing the frag truesize.
5452 */
5453 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5454 }