]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/skbuff.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-artful-kernel.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/sctp.h>
53 #include <linux/netdevice.h>
54 #ifdef CONFIG_NET_CLS_ACT
55 #include <net/pkt_sched.h>
56 #endif
57 #include <linux/string.h>
58 #include <linux/skbuff.h>
59 #include <linux/splice.h>
60 #include <linux/cache.h>
61 #include <linux/rtnetlink.h>
62 #include <linux/init.h>
63 #include <linux/scatterlist.h>
64 #include <linux/errqueue.h>
65 #include <linux/prefetch.h>
66 #include <linux/if_vlan.h>
67
68 #include <net/protocol.h>
69 #include <net/dst.h>
70 #include <net/sock.h>
71 #include <net/checksum.h>
72 #include <net/ip6_checksum.h>
73 #include <net/xfrm.h>
74
75 #include <linux/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
80
81 struct kmem_cache *skbuff_head_cache __read_mostly;
82 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
83 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
84 EXPORT_SYMBOL(sysctl_max_skb_frags);
85
86 /**
87 * skb_panic - private function for out-of-line support
88 * @skb: buffer
89 * @sz: size
90 * @addr: address
91 * @msg: skb_over_panic or skb_under_panic
92 *
93 * Out-of-line support for skb_put() and skb_push().
94 * Called via the wrapper skb_over_panic() or skb_under_panic().
95 * Keep out of line to prevent kernel bloat.
96 * __builtin_return_address is not used because it is not always reliable.
97 */
98 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
99 const char msg[])
100 {
101 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
102 msg, addr, skb->len, sz, skb->head, skb->data,
103 (unsigned long)skb->tail, (unsigned long)skb->end,
104 skb->dev ? skb->dev->name : "<NULL>");
105 BUG();
106 }
107
108 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
109 {
110 skb_panic(skb, sz, addr, __func__);
111 }
112
113 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
114 {
115 skb_panic(skb, sz, addr, __func__);
116 }
117
118 /*
119 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
120 * the caller if emergency pfmemalloc reserves are being used. If it is and
121 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
122 * may be used. Otherwise, the packet data may be discarded until enough
123 * memory is free
124 */
125 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
126 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
127
128 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
129 unsigned long ip, bool *pfmemalloc)
130 {
131 void *obj;
132 bool ret_pfmemalloc = false;
133
134 /*
135 * Try a regular allocation, when that fails and we're not entitled
136 * to the reserves, fail.
137 */
138 obj = kmalloc_node_track_caller(size,
139 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
140 node);
141 if (obj || !(gfp_pfmemalloc_allowed(flags)))
142 goto out;
143
144 /* Try again but now we are using pfmemalloc reserves */
145 ret_pfmemalloc = true;
146 obj = kmalloc_node_track_caller(size, flags, node);
147
148 out:
149 if (pfmemalloc)
150 *pfmemalloc = ret_pfmemalloc;
151
152 return obj;
153 }
154
155 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
156 * 'private' fields and also do memory statistics to find all the
157 * [BEEP] leaks.
158 *
159 */
160
161 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
162 {
163 struct sk_buff *skb;
164
165 /* Get the HEAD */
166 skb = kmem_cache_alloc_node(skbuff_head_cache,
167 gfp_mask & ~__GFP_DMA, node);
168 if (!skb)
169 goto out;
170
171 /*
172 * Only clear those fields we need to clear, not those that we will
173 * actually initialise below. Hence, don't put any more fields after
174 * the tail pointer in struct sk_buff!
175 */
176 memset(skb, 0, offsetof(struct sk_buff, tail));
177 skb->head = NULL;
178 skb->truesize = sizeof(struct sk_buff);
179 refcount_set(&skb->users, 1);
180
181 skb->mac_header = (typeof(skb->mac_header))~0U;
182 out:
183 return skb;
184 }
185
186 /**
187 * __alloc_skb - allocate a network buffer
188 * @size: size to allocate
189 * @gfp_mask: allocation mask
190 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
191 * instead of head cache and allocate a cloned (child) skb.
192 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
193 * allocations in case the data is required for writeback
194 * @node: numa node to allocate memory on
195 *
196 * Allocate a new &sk_buff. The returned buffer has no headroom and a
197 * tail room of at least size bytes. The object has a reference count
198 * of one. The return is the buffer. On a failure the return is %NULL.
199 *
200 * Buffers may only be allocated from interrupts using a @gfp_mask of
201 * %GFP_ATOMIC.
202 */
203 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
204 int flags, int node)
205 {
206 struct kmem_cache *cache;
207 struct skb_shared_info *shinfo;
208 struct sk_buff *skb;
209 u8 *data;
210 bool pfmemalloc;
211
212 cache = (flags & SKB_ALLOC_FCLONE)
213 ? skbuff_fclone_cache : skbuff_head_cache;
214
215 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
216 gfp_mask |= __GFP_MEMALLOC;
217
218 /* Get the HEAD */
219 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
220 if (!skb)
221 goto out;
222 prefetchw(skb);
223
224 /* We do our best to align skb_shared_info on a separate cache
225 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
226 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
227 * Both skb->head and skb_shared_info are cache line aligned.
228 */
229 size = SKB_DATA_ALIGN(size);
230 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
231 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
232 if (!data)
233 goto nodata;
234 /* kmalloc(size) might give us more room than requested.
235 * Put skb_shared_info exactly at the end of allocated zone,
236 * to allow max possible filling before reallocation.
237 */
238 size = SKB_WITH_OVERHEAD(ksize(data));
239 prefetchw(data + size);
240
241 /*
242 * Only clear those fields we need to clear, not those that we will
243 * actually initialise below. Hence, don't put any more fields after
244 * the tail pointer in struct sk_buff!
245 */
246 memset(skb, 0, offsetof(struct sk_buff, tail));
247 /* Account for allocated memory : skb + skb->head */
248 skb->truesize = SKB_TRUESIZE(size);
249 skb->pfmemalloc = pfmemalloc;
250 refcount_set(&skb->users, 1);
251 skb->head = data;
252 skb->data = data;
253 skb_reset_tail_pointer(skb);
254 skb->end = skb->tail + size;
255 skb->mac_header = (typeof(skb->mac_header))~0U;
256 skb->transport_header = (typeof(skb->transport_header))~0U;
257
258 /* make sure we initialize shinfo sequentially */
259 shinfo = skb_shinfo(skb);
260 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
261 atomic_set(&shinfo->dataref, 1);
262 kmemcheck_annotate_variable(shinfo->destructor_arg);
263
264 if (flags & SKB_ALLOC_FCLONE) {
265 struct sk_buff_fclones *fclones;
266
267 fclones = container_of(skb, struct sk_buff_fclones, skb1);
268
269 kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
270 skb->fclone = SKB_FCLONE_ORIG;
271 refcount_set(&fclones->fclone_ref, 1);
272
273 fclones->skb2.fclone = SKB_FCLONE_CLONE;
274 }
275 out:
276 return skb;
277 nodata:
278 kmem_cache_free(cache, skb);
279 skb = NULL;
280 goto out;
281 }
282 EXPORT_SYMBOL(__alloc_skb);
283
284 /**
285 * __build_skb - build a network buffer
286 * @data: data buffer provided by caller
287 * @frag_size: size of data, or 0 if head was kmalloced
288 *
289 * Allocate a new &sk_buff. Caller provides space holding head and
290 * skb_shared_info. @data must have been allocated by kmalloc() only if
291 * @frag_size is 0, otherwise data should come from the page allocator
292 * or vmalloc()
293 * The return is the new skb buffer.
294 * On a failure the return is %NULL, and @data is not freed.
295 * Notes :
296 * Before IO, driver allocates only data buffer where NIC put incoming frame
297 * Driver should add room at head (NET_SKB_PAD) and
298 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
299 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
300 * before giving packet to stack.
301 * RX rings only contains data buffers, not full skbs.
302 */
303 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
304 {
305 struct skb_shared_info *shinfo;
306 struct sk_buff *skb;
307 unsigned int size = frag_size ? : ksize(data);
308
309 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
310 if (!skb)
311 return NULL;
312
313 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
314
315 memset(skb, 0, offsetof(struct sk_buff, tail));
316 skb->truesize = SKB_TRUESIZE(size);
317 refcount_set(&skb->users, 1);
318 skb->head = data;
319 skb->data = data;
320 skb_reset_tail_pointer(skb);
321 skb->end = skb->tail + size;
322 skb->mac_header = (typeof(skb->mac_header))~0U;
323 skb->transport_header = (typeof(skb->transport_header))~0U;
324
325 /* make sure we initialize shinfo sequentially */
326 shinfo = skb_shinfo(skb);
327 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
328 atomic_set(&shinfo->dataref, 1);
329 kmemcheck_annotate_variable(shinfo->destructor_arg);
330
331 return skb;
332 }
333
334 /* build_skb() is wrapper over __build_skb(), that specifically
335 * takes care of skb->head and skb->pfmemalloc
336 * This means that if @frag_size is not zero, then @data must be backed
337 * by a page fragment, not kmalloc() or vmalloc()
338 */
339 struct sk_buff *build_skb(void *data, unsigned int frag_size)
340 {
341 struct sk_buff *skb = __build_skb(data, frag_size);
342
343 if (skb && frag_size) {
344 skb->head_frag = 1;
345 if (page_is_pfmemalloc(virt_to_head_page(data)))
346 skb->pfmemalloc = 1;
347 }
348 return skb;
349 }
350 EXPORT_SYMBOL(build_skb);
351
352 #define NAPI_SKB_CACHE_SIZE 64
353
354 struct napi_alloc_cache {
355 struct page_frag_cache page;
356 unsigned int skb_count;
357 void *skb_cache[NAPI_SKB_CACHE_SIZE];
358 };
359
360 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
361 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
362
363 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
364 {
365 struct page_frag_cache *nc;
366 unsigned long flags;
367 void *data;
368
369 local_irq_save(flags);
370 nc = this_cpu_ptr(&netdev_alloc_cache);
371 data = page_frag_alloc(nc, fragsz, gfp_mask);
372 local_irq_restore(flags);
373 return data;
374 }
375
376 /**
377 * netdev_alloc_frag - allocate a page fragment
378 * @fragsz: fragment size
379 *
380 * Allocates a frag from a page for receive buffer.
381 * Uses GFP_ATOMIC allocations.
382 */
383 void *netdev_alloc_frag(unsigned int fragsz)
384 {
385 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
386 }
387 EXPORT_SYMBOL(netdev_alloc_frag);
388
389 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
390 {
391 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
392
393 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
394 }
395
396 void *napi_alloc_frag(unsigned int fragsz)
397 {
398 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
399 }
400 EXPORT_SYMBOL(napi_alloc_frag);
401
402 /**
403 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
404 * @dev: network device to receive on
405 * @len: length to allocate
406 * @gfp_mask: get_free_pages mask, passed to alloc_skb
407 *
408 * Allocate a new &sk_buff and assign it a usage count of one. The
409 * buffer has NET_SKB_PAD headroom built in. Users should allocate
410 * the headroom they think they need without accounting for the
411 * built in space. The built in space is used for optimisations.
412 *
413 * %NULL is returned if there is no free memory.
414 */
415 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
416 gfp_t gfp_mask)
417 {
418 struct page_frag_cache *nc;
419 unsigned long flags;
420 struct sk_buff *skb;
421 bool pfmemalloc;
422 void *data;
423
424 len += NET_SKB_PAD;
425
426 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
427 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
428 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
429 if (!skb)
430 goto skb_fail;
431 goto skb_success;
432 }
433
434 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
435 len = SKB_DATA_ALIGN(len);
436
437 if (sk_memalloc_socks())
438 gfp_mask |= __GFP_MEMALLOC;
439
440 local_irq_save(flags);
441
442 nc = this_cpu_ptr(&netdev_alloc_cache);
443 data = page_frag_alloc(nc, len, gfp_mask);
444 pfmemalloc = nc->pfmemalloc;
445
446 local_irq_restore(flags);
447
448 if (unlikely(!data))
449 return NULL;
450
451 skb = __build_skb(data, len);
452 if (unlikely(!skb)) {
453 skb_free_frag(data);
454 return NULL;
455 }
456
457 /* use OR instead of assignment to avoid clearing of bits in mask */
458 if (pfmemalloc)
459 skb->pfmemalloc = 1;
460 skb->head_frag = 1;
461
462 skb_success:
463 skb_reserve(skb, NET_SKB_PAD);
464 skb->dev = dev;
465
466 skb_fail:
467 return skb;
468 }
469 EXPORT_SYMBOL(__netdev_alloc_skb);
470
471 /**
472 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
473 * @napi: napi instance this buffer was allocated for
474 * @len: length to allocate
475 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
476 *
477 * Allocate a new sk_buff for use in NAPI receive. This buffer will
478 * attempt to allocate the head from a special reserved region used
479 * only for NAPI Rx allocation. By doing this we can save several
480 * CPU cycles by avoiding having to disable and re-enable IRQs.
481 *
482 * %NULL is returned if there is no free memory.
483 */
484 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
485 gfp_t gfp_mask)
486 {
487 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
488 struct sk_buff *skb;
489 void *data;
490
491 len += NET_SKB_PAD + NET_IP_ALIGN;
492
493 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
494 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
495 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
496 if (!skb)
497 goto skb_fail;
498 goto skb_success;
499 }
500
501 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
502 len = SKB_DATA_ALIGN(len);
503
504 if (sk_memalloc_socks())
505 gfp_mask |= __GFP_MEMALLOC;
506
507 data = page_frag_alloc(&nc->page, len, gfp_mask);
508 if (unlikely(!data))
509 return NULL;
510
511 skb = __build_skb(data, len);
512 if (unlikely(!skb)) {
513 skb_free_frag(data);
514 return NULL;
515 }
516
517 /* use OR instead of assignment to avoid clearing of bits in mask */
518 if (nc->page.pfmemalloc)
519 skb->pfmemalloc = 1;
520 skb->head_frag = 1;
521
522 skb_success:
523 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
524 skb->dev = napi->dev;
525
526 skb_fail:
527 return skb;
528 }
529 EXPORT_SYMBOL(__napi_alloc_skb);
530
531 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
532 int size, unsigned int truesize)
533 {
534 skb_fill_page_desc(skb, i, page, off, size);
535 skb->len += size;
536 skb->data_len += size;
537 skb->truesize += truesize;
538 }
539 EXPORT_SYMBOL(skb_add_rx_frag);
540
541 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
542 unsigned int truesize)
543 {
544 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
545
546 skb_frag_size_add(frag, size);
547 skb->len += size;
548 skb->data_len += size;
549 skb->truesize += truesize;
550 }
551 EXPORT_SYMBOL(skb_coalesce_rx_frag);
552
553 static void skb_drop_list(struct sk_buff **listp)
554 {
555 kfree_skb_list(*listp);
556 *listp = NULL;
557 }
558
559 static inline void skb_drop_fraglist(struct sk_buff *skb)
560 {
561 skb_drop_list(&skb_shinfo(skb)->frag_list);
562 }
563
564 static void skb_clone_fraglist(struct sk_buff *skb)
565 {
566 struct sk_buff *list;
567
568 skb_walk_frags(skb, list)
569 skb_get(list);
570 }
571
572 static void skb_free_head(struct sk_buff *skb)
573 {
574 unsigned char *head = skb->head;
575
576 if (skb->head_frag)
577 skb_free_frag(head);
578 else
579 kfree(head);
580 }
581
582 static void skb_release_data(struct sk_buff *skb)
583 {
584 struct skb_shared_info *shinfo = skb_shinfo(skb);
585 int i;
586
587 if (skb->cloned &&
588 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
589 &shinfo->dataref))
590 return;
591
592 for (i = 0; i < shinfo->nr_frags; i++)
593 __skb_frag_unref(&shinfo->frags[i]);
594
595 /*
596 * If skb buf is from userspace, we need to notify the caller
597 * the lower device DMA has done;
598 */
599 if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
600 struct ubuf_info *uarg;
601
602 uarg = shinfo->destructor_arg;
603 if (uarg->callback)
604 uarg->callback(uarg, true);
605 }
606
607 if (shinfo->frag_list)
608 kfree_skb_list(shinfo->frag_list);
609
610 skb_free_head(skb);
611 }
612
613 /*
614 * Free an skbuff by memory without cleaning the state.
615 */
616 static void kfree_skbmem(struct sk_buff *skb)
617 {
618 struct sk_buff_fclones *fclones;
619
620 switch (skb->fclone) {
621 case SKB_FCLONE_UNAVAILABLE:
622 kmem_cache_free(skbuff_head_cache, skb);
623 return;
624
625 case SKB_FCLONE_ORIG:
626 fclones = container_of(skb, struct sk_buff_fclones, skb1);
627
628 /* We usually free the clone (TX completion) before original skb
629 * This test would have no chance to be true for the clone,
630 * while here, branch prediction will be good.
631 */
632 if (refcount_read(&fclones->fclone_ref) == 1)
633 goto fastpath;
634 break;
635
636 default: /* SKB_FCLONE_CLONE */
637 fclones = container_of(skb, struct sk_buff_fclones, skb2);
638 break;
639 }
640 if (!refcount_dec_and_test(&fclones->fclone_ref))
641 return;
642 fastpath:
643 kmem_cache_free(skbuff_fclone_cache, fclones);
644 }
645
646 void skb_release_head_state(struct sk_buff *skb)
647 {
648 skb_dst_drop(skb);
649 secpath_reset(skb);
650 if (skb->destructor) {
651 WARN_ON(in_irq());
652 skb->destructor(skb);
653 }
654 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
655 nf_conntrack_put(skb_nfct(skb));
656 #endif
657 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
658 nf_bridge_put(skb->nf_bridge);
659 #endif
660 }
661
662 /* Free everything but the sk_buff shell. */
663 static void skb_release_all(struct sk_buff *skb)
664 {
665 skb_release_head_state(skb);
666 if (likely(skb->head))
667 skb_release_data(skb);
668 }
669
670 /**
671 * __kfree_skb - private function
672 * @skb: buffer
673 *
674 * Free an sk_buff. Release anything attached to the buffer.
675 * Clean the state. This is an internal helper function. Users should
676 * always call kfree_skb
677 */
678
679 void __kfree_skb(struct sk_buff *skb)
680 {
681 skb_release_all(skb);
682 kfree_skbmem(skb);
683 }
684 EXPORT_SYMBOL(__kfree_skb);
685
686 /**
687 * kfree_skb - free an sk_buff
688 * @skb: buffer to free
689 *
690 * Drop a reference to the buffer and free it if the usage count has
691 * hit zero.
692 */
693 void kfree_skb(struct sk_buff *skb)
694 {
695 if (!skb_unref(skb))
696 return;
697
698 trace_kfree_skb(skb, __builtin_return_address(0));
699 __kfree_skb(skb);
700 }
701 EXPORT_SYMBOL(kfree_skb);
702
703 void kfree_skb_list(struct sk_buff *segs)
704 {
705 while (segs) {
706 struct sk_buff *next = segs->next;
707
708 kfree_skb(segs);
709 segs = next;
710 }
711 }
712 EXPORT_SYMBOL(kfree_skb_list);
713
714 /**
715 * skb_tx_error - report an sk_buff xmit error
716 * @skb: buffer that triggered an error
717 *
718 * Report xmit error if a device callback is tracking this skb.
719 * skb must be freed afterwards.
720 */
721 void skb_tx_error(struct sk_buff *skb)
722 {
723 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
724 struct ubuf_info *uarg;
725
726 uarg = skb_shinfo(skb)->destructor_arg;
727 if (uarg->callback)
728 uarg->callback(uarg, false);
729 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
730 }
731 }
732 EXPORT_SYMBOL(skb_tx_error);
733
734 /**
735 * consume_skb - free an skbuff
736 * @skb: buffer to free
737 *
738 * Drop a ref to the buffer and free it if the usage count has hit zero
739 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
740 * is being dropped after a failure and notes that
741 */
742 void consume_skb(struct sk_buff *skb)
743 {
744 if (!skb_unref(skb))
745 return;
746
747 trace_consume_skb(skb);
748 __kfree_skb(skb);
749 }
750 EXPORT_SYMBOL(consume_skb);
751
752 /**
753 * consume_stateless_skb - free an skbuff, assuming it is stateless
754 * @skb: buffer to free
755 *
756 * Works like consume_skb(), but this variant assumes that all the head
757 * states have been already dropped.
758 */
759 void consume_stateless_skb(struct sk_buff *skb)
760 {
761 if (!skb_unref(skb))
762 return;
763
764 trace_consume_skb(skb);
765 if (likely(skb->head))
766 skb_release_data(skb);
767 kfree_skbmem(skb);
768 }
769
770 void __kfree_skb_flush(void)
771 {
772 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
773
774 /* flush skb_cache if containing objects */
775 if (nc->skb_count) {
776 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
777 nc->skb_cache);
778 nc->skb_count = 0;
779 }
780 }
781
782 static inline void _kfree_skb_defer(struct sk_buff *skb)
783 {
784 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
785
786 /* drop skb->head and call any destructors for packet */
787 skb_release_all(skb);
788
789 /* record skb to CPU local list */
790 nc->skb_cache[nc->skb_count++] = skb;
791
792 #ifdef CONFIG_SLUB
793 /* SLUB writes into objects when freeing */
794 prefetchw(skb);
795 #endif
796
797 /* flush skb_cache if it is filled */
798 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
799 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
800 nc->skb_cache);
801 nc->skb_count = 0;
802 }
803 }
804 void __kfree_skb_defer(struct sk_buff *skb)
805 {
806 _kfree_skb_defer(skb);
807 }
808
809 void napi_consume_skb(struct sk_buff *skb, int budget)
810 {
811 if (unlikely(!skb))
812 return;
813
814 /* Zero budget indicate non-NAPI context called us, like netpoll */
815 if (unlikely(!budget)) {
816 dev_consume_skb_any(skb);
817 return;
818 }
819
820 if (!skb_unref(skb))
821 return;
822
823 /* if reaching here SKB is ready to free */
824 trace_consume_skb(skb);
825
826 /* if SKB is a clone, don't handle this case */
827 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
828 __kfree_skb(skb);
829 return;
830 }
831
832 _kfree_skb_defer(skb);
833 }
834 EXPORT_SYMBOL(napi_consume_skb);
835
836 /* Make sure a field is enclosed inside headers_start/headers_end section */
837 #define CHECK_SKB_FIELD(field) \
838 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
839 offsetof(struct sk_buff, headers_start)); \
840 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
841 offsetof(struct sk_buff, headers_end)); \
842
843 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
844 {
845 new->tstamp = old->tstamp;
846 /* We do not copy old->sk */
847 new->dev = old->dev;
848 memcpy(new->cb, old->cb, sizeof(old->cb));
849 skb_dst_copy(new, old);
850 #ifdef CONFIG_XFRM
851 new->sp = secpath_get(old->sp);
852 #endif
853 __nf_copy(new, old, false);
854
855 /* Note : this field could be in headers_start/headers_end section
856 * It is not yet because we do not want to have a 16 bit hole
857 */
858 new->queue_mapping = old->queue_mapping;
859
860 memcpy(&new->headers_start, &old->headers_start,
861 offsetof(struct sk_buff, headers_end) -
862 offsetof(struct sk_buff, headers_start));
863 CHECK_SKB_FIELD(protocol);
864 CHECK_SKB_FIELD(csum);
865 CHECK_SKB_FIELD(hash);
866 CHECK_SKB_FIELD(priority);
867 CHECK_SKB_FIELD(skb_iif);
868 CHECK_SKB_FIELD(vlan_proto);
869 CHECK_SKB_FIELD(vlan_tci);
870 CHECK_SKB_FIELD(transport_header);
871 CHECK_SKB_FIELD(network_header);
872 CHECK_SKB_FIELD(mac_header);
873 CHECK_SKB_FIELD(inner_protocol);
874 CHECK_SKB_FIELD(inner_transport_header);
875 CHECK_SKB_FIELD(inner_network_header);
876 CHECK_SKB_FIELD(inner_mac_header);
877 CHECK_SKB_FIELD(mark);
878 #ifdef CONFIG_NETWORK_SECMARK
879 CHECK_SKB_FIELD(secmark);
880 #endif
881 #ifdef CONFIG_NET_RX_BUSY_POLL
882 CHECK_SKB_FIELD(napi_id);
883 #endif
884 #ifdef CONFIG_XPS
885 CHECK_SKB_FIELD(sender_cpu);
886 #endif
887 #ifdef CONFIG_NET_SCHED
888 CHECK_SKB_FIELD(tc_index);
889 #endif
890
891 }
892
893 /*
894 * You should not add any new code to this function. Add it to
895 * __copy_skb_header above instead.
896 */
897 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
898 {
899 #define C(x) n->x = skb->x
900
901 n->next = n->prev = NULL;
902 n->sk = NULL;
903 __copy_skb_header(n, skb);
904
905 C(len);
906 C(data_len);
907 C(mac_len);
908 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
909 n->cloned = 1;
910 n->nohdr = 0;
911 n->destructor = NULL;
912 C(tail);
913 C(end);
914 C(head);
915 C(head_frag);
916 C(data);
917 C(truesize);
918 refcount_set(&n->users, 1);
919
920 atomic_inc(&(skb_shinfo(skb)->dataref));
921 skb->cloned = 1;
922
923 return n;
924 #undef C
925 }
926
927 /**
928 * skb_morph - morph one skb into another
929 * @dst: the skb to receive the contents
930 * @src: the skb to supply the contents
931 *
932 * This is identical to skb_clone except that the target skb is
933 * supplied by the user.
934 *
935 * The target skb is returned upon exit.
936 */
937 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
938 {
939 skb_release_all(dst);
940 return __skb_clone(dst, src);
941 }
942 EXPORT_SYMBOL_GPL(skb_morph);
943
944 /**
945 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
946 * @skb: the skb to modify
947 * @gfp_mask: allocation priority
948 *
949 * This must be called on SKBTX_DEV_ZEROCOPY skb.
950 * It will copy all frags into kernel and drop the reference
951 * to userspace pages.
952 *
953 * If this function is called from an interrupt gfp_mask() must be
954 * %GFP_ATOMIC.
955 *
956 * Returns 0 on success or a negative error code on failure
957 * to allocate kernel memory to copy to.
958 */
959 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
960 {
961 int i;
962 int num_frags = skb_shinfo(skb)->nr_frags;
963 struct page *page, *head = NULL;
964 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
965
966 for (i = 0; i < num_frags; i++) {
967 u8 *vaddr;
968 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
969
970 page = alloc_page(gfp_mask);
971 if (!page) {
972 while (head) {
973 struct page *next = (struct page *)page_private(head);
974 put_page(head);
975 head = next;
976 }
977 return -ENOMEM;
978 }
979 vaddr = kmap_atomic(skb_frag_page(f));
980 memcpy(page_address(page),
981 vaddr + f->page_offset, skb_frag_size(f));
982 kunmap_atomic(vaddr);
983 set_page_private(page, (unsigned long)head);
984 head = page;
985 }
986
987 /* skb frags release userspace buffers */
988 for (i = 0; i < num_frags; i++)
989 skb_frag_unref(skb, i);
990
991 uarg->callback(uarg, false);
992
993 /* skb frags point to kernel buffers */
994 for (i = num_frags - 1; i >= 0; i--) {
995 __skb_fill_page_desc(skb, i, head, 0,
996 skb_shinfo(skb)->frags[i].size);
997 head = (struct page *)page_private(head);
998 }
999
1000 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
1001 return 0;
1002 }
1003 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1004
1005 /**
1006 * skb_clone - duplicate an sk_buff
1007 * @skb: buffer to clone
1008 * @gfp_mask: allocation priority
1009 *
1010 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1011 * copies share the same packet data but not structure. The new
1012 * buffer has a reference count of 1. If the allocation fails the
1013 * function returns %NULL otherwise the new buffer is returned.
1014 *
1015 * If this function is called from an interrupt gfp_mask() must be
1016 * %GFP_ATOMIC.
1017 */
1018
1019 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1020 {
1021 struct sk_buff_fclones *fclones = container_of(skb,
1022 struct sk_buff_fclones,
1023 skb1);
1024 struct sk_buff *n;
1025
1026 if (skb_orphan_frags(skb, gfp_mask))
1027 return NULL;
1028
1029 if (skb->fclone == SKB_FCLONE_ORIG &&
1030 refcount_read(&fclones->fclone_ref) == 1) {
1031 n = &fclones->skb2;
1032 refcount_set(&fclones->fclone_ref, 2);
1033 } else {
1034 if (skb_pfmemalloc(skb))
1035 gfp_mask |= __GFP_MEMALLOC;
1036
1037 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1038 if (!n)
1039 return NULL;
1040
1041 kmemcheck_annotate_bitfield(n, flags1);
1042 n->fclone = SKB_FCLONE_UNAVAILABLE;
1043 }
1044
1045 return __skb_clone(n, skb);
1046 }
1047 EXPORT_SYMBOL(skb_clone);
1048
1049 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1050 {
1051 /* Only adjust this if it actually is csum_start rather than csum */
1052 if (skb->ip_summed == CHECKSUM_PARTIAL)
1053 skb->csum_start += off;
1054 /* {transport,network,mac}_header and tail are relative to skb->head */
1055 skb->transport_header += off;
1056 skb->network_header += off;
1057 if (skb_mac_header_was_set(skb))
1058 skb->mac_header += off;
1059 skb->inner_transport_header += off;
1060 skb->inner_network_header += off;
1061 skb->inner_mac_header += off;
1062 }
1063
1064 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1065 {
1066 __copy_skb_header(new, old);
1067
1068 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1069 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1070 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1071 }
1072
1073 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1074 {
1075 if (skb_pfmemalloc(skb))
1076 return SKB_ALLOC_RX;
1077 return 0;
1078 }
1079
1080 /**
1081 * skb_copy - create private copy of an sk_buff
1082 * @skb: buffer to copy
1083 * @gfp_mask: allocation priority
1084 *
1085 * Make a copy of both an &sk_buff and its data. This is used when the
1086 * caller wishes to modify the data and needs a private copy of the
1087 * data to alter. Returns %NULL on failure or the pointer to the buffer
1088 * on success. The returned buffer has a reference count of 1.
1089 *
1090 * As by-product this function converts non-linear &sk_buff to linear
1091 * one, so that &sk_buff becomes completely private and caller is allowed
1092 * to modify all the data of returned buffer. This means that this
1093 * function is not recommended for use in circumstances when only
1094 * header is going to be modified. Use pskb_copy() instead.
1095 */
1096
1097 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1098 {
1099 int headerlen = skb_headroom(skb);
1100 unsigned int size = skb_end_offset(skb) + skb->data_len;
1101 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1102 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1103
1104 if (!n)
1105 return NULL;
1106
1107 /* Set the data pointer */
1108 skb_reserve(n, headerlen);
1109 /* Set the tail pointer and length */
1110 skb_put(n, skb->len);
1111
1112 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1113 BUG();
1114
1115 copy_skb_header(n, skb);
1116 return n;
1117 }
1118 EXPORT_SYMBOL(skb_copy);
1119
1120 /**
1121 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1122 * @skb: buffer to copy
1123 * @headroom: headroom of new skb
1124 * @gfp_mask: allocation priority
1125 * @fclone: if true allocate the copy of the skb from the fclone
1126 * cache instead of the head cache; it is recommended to set this
1127 * to true for the cases where the copy will likely be cloned
1128 *
1129 * Make a copy of both an &sk_buff and part of its data, located
1130 * in header. Fragmented data remain shared. This is used when
1131 * the caller wishes to modify only header of &sk_buff and needs
1132 * private copy of the header to alter. Returns %NULL on failure
1133 * or the pointer to the buffer on success.
1134 * The returned buffer has a reference count of 1.
1135 */
1136
1137 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1138 gfp_t gfp_mask, bool fclone)
1139 {
1140 unsigned int size = skb_headlen(skb) + headroom;
1141 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1142 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1143
1144 if (!n)
1145 goto out;
1146
1147 /* Set the data pointer */
1148 skb_reserve(n, headroom);
1149 /* Set the tail pointer and length */
1150 skb_put(n, skb_headlen(skb));
1151 /* Copy the bytes */
1152 skb_copy_from_linear_data(skb, n->data, n->len);
1153
1154 n->truesize += skb->data_len;
1155 n->data_len = skb->data_len;
1156 n->len = skb->len;
1157
1158 if (skb_shinfo(skb)->nr_frags) {
1159 int i;
1160
1161 if (skb_orphan_frags(skb, gfp_mask)) {
1162 kfree_skb(n);
1163 n = NULL;
1164 goto out;
1165 }
1166 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1167 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1168 skb_frag_ref(skb, i);
1169 }
1170 skb_shinfo(n)->nr_frags = i;
1171 }
1172
1173 if (skb_has_frag_list(skb)) {
1174 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1175 skb_clone_fraglist(n);
1176 }
1177
1178 copy_skb_header(n, skb);
1179 out:
1180 return n;
1181 }
1182 EXPORT_SYMBOL(__pskb_copy_fclone);
1183
1184 /**
1185 * pskb_expand_head - reallocate header of &sk_buff
1186 * @skb: buffer to reallocate
1187 * @nhead: room to add at head
1188 * @ntail: room to add at tail
1189 * @gfp_mask: allocation priority
1190 *
1191 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1192 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1193 * reference count of 1. Returns zero in the case of success or error,
1194 * if expansion failed. In the last case, &sk_buff is not changed.
1195 *
1196 * All the pointers pointing into skb header may change and must be
1197 * reloaded after call to this function.
1198 */
1199
1200 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1201 gfp_t gfp_mask)
1202 {
1203 int i, osize = skb_end_offset(skb);
1204 int size = osize + nhead + ntail;
1205 long off;
1206 u8 *data;
1207
1208 BUG_ON(nhead < 0);
1209
1210 if (skb_shared(skb))
1211 BUG();
1212
1213 size = SKB_DATA_ALIGN(size);
1214
1215 if (skb_pfmemalloc(skb))
1216 gfp_mask |= __GFP_MEMALLOC;
1217 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1218 gfp_mask, NUMA_NO_NODE, NULL);
1219 if (!data)
1220 goto nodata;
1221 size = SKB_WITH_OVERHEAD(ksize(data));
1222
1223 /* Copy only real data... and, alas, header. This should be
1224 * optimized for the cases when header is void.
1225 */
1226 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1227
1228 memcpy((struct skb_shared_info *)(data + size),
1229 skb_shinfo(skb),
1230 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1231
1232 /*
1233 * if shinfo is shared we must drop the old head gracefully, but if it
1234 * is not we can just drop the old head and let the existing refcount
1235 * be since all we did is relocate the values
1236 */
1237 if (skb_cloned(skb)) {
1238 /* copy this zero copy skb frags */
1239 if (skb_orphan_frags(skb, gfp_mask))
1240 goto nofrags;
1241 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1242 skb_frag_ref(skb, i);
1243
1244 if (skb_has_frag_list(skb))
1245 skb_clone_fraglist(skb);
1246
1247 skb_release_data(skb);
1248 } else {
1249 skb_free_head(skb);
1250 }
1251 off = (data + nhead) - skb->head;
1252
1253 skb->head = data;
1254 skb->head_frag = 0;
1255 skb->data += off;
1256 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1257 skb->end = size;
1258 off = nhead;
1259 #else
1260 skb->end = skb->head + size;
1261 #endif
1262 skb->tail += off;
1263 skb_headers_offset_update(skb, nhead);
1264 skb->cloned = 0;
1265 skb->hdr_len = 0;
1266 skb->nohdr = 0;
1267 atomic_set(&skb_shinfo(skb)->dataref, 1);
1268
1269 /* It is not generally safe to change skb->truesize.
1270 * For the moment, we really care of rx path, or
1271 * when skb is orphaned (not attached to a socket).
1272 */
1273 if (!skb->sk || skb->destructor == sock_edemux)
1274 skb->truesize += size - osize;
1275
1276 return 0;
1277
1278 nofrags:
1279 kfree(data);
1280 nodata:
1281 return -ENOMEM;
1282 }
1283 EXPORT_SYMBOL(pskb_expand_head);
1284
1285 /* Make private copy of skb with writable head and some headroom */
1286
1287 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1288 {
1289 struct sk_buff *skb2;
1290 int delta = headroom - skb_headroom(skb);
1291
1292 if (delta <= 0)
1293 skb2 = pskb_copy(skb, GFP_ATOMIC);
1294 else {
1295 skb2 = skb_clone(skb, GFP_ATOMIC);
1296 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1297 GFP_ATOMIC)) {
1298 kfree_skb(skb2);
1299 skb2 = NULL;
1300 }
1301 }
1302 return skb2;
1303 }
1304 EXPORT_SYMBOL(skb_realloc_headroom);
1305
1306 /**
1307 * skb_copy_expand - copy and expand sk_buff
1308 * @skb: buffer to copy
1309 * @newheadroom: new free bytes at head
1310 * @newtailroom: new free bytes at tail
1311 * @gfp_mask: allocation priority
1312 *
1313 * Make a copy of both an &sk_buff and its data and while doing so
1314 * allocate additional space.
1315 *
1316 * This is used when the caller wishes to modify the data and needs a
1317 * private copy of the data to alter as well as more space for new fields.
1318 * Returns %NULL on failure or the pointer to the buffer
1319 * on success. The returned buffer has a reference count of 1.
1320 *
1321 * You must pass %GFP_ATOMIC as the allocation priority if this function
1322 * is called from an interrupt.
1323 */
1324 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1325 int newheadroom, int newtailroom,
1326 gfp_t gfp_mask)
1327 {
1328 /*
1329 * Allocate the copy buffer
1330 */
1331 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1332 gfp_mask, skb_alloc_rx_flag(skb),
1333 NUMA_NO_NODE);
1334 int oldheadroom = skb_headroom(skb);
1335 int head_copy_len, head_copy_off;
1336
1337 if (!n)
1338 return NULL;
1339
1340 skb_reserve(n, newheadroom);
1341
1342 /* Set the tail pointer and length */
1343 skb_put(n, skb->len);
1344
1345 head_copy_len = oldheadroom;
1346 head_copy_off = 0;
1347 if (newheadroom <= head_copy_len)
1348 head_copy_len = newheadroom;
1349 else
1350 head_copy_off = newheadroom - head_copy_len;
1351
1352 /* Copy the linear header and data. */
1353 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1354 skb->len + head_copy_len))
1355 BUG();
1356
1357 copy_skb_header(n, skb);
1358
1359 skb_headers_offset_update(n, newheadroom - oldheadroom);
1360
1361 return n;
1362 }
1363 EXPORT_SYMBOL(skb_copy_expand);
1364
1365 /**
1366 * skb_pad - zero pad the tail of an skb
1367 * @skb: buffer to pad
1368 * @pad: space to pad
1369 *
1370 * Ensure that a buffer is followed by a padding area that is zero
1371 * filled. Used by network drivers which may DMA or transfer data
1372 * beyond the buffer end onto the wire.
1373 *
1374 * May return error in out of memory cases. The skb is freed on error.
1375 */
1376
1377 int skb_pad(struct sk_buff *skb, int pad)
1378 {
1379 int err;
1380 int ntail;
1381
1382 /* If the skbuff is non linear tailroom is always zero.. */
1383 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1384 memset(skb->data+skb->len, 0, pad);
1385 return 0;
1386 }
1387
1388 ntail = skb->data_len + pad - (skb->end - skb->tail);
1389 if (likely(skb_cloned(skb) || ntail > 0)) {
1390 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1391 if (unlikely(err))
1392 goto free_skb;
1393 }
1394
1395 /* FIXME: The use of this function with non-linear skb's really needs
1396 * to be audited.
1397 */
1398 err = skb_linearize(skb);
1399 if (unlikely(err))
1400 goto free_skb;
1401
1402 memset(skb->data + skb->len, 0, pad);
1403 return 0;
1404
1405 free_skb:
1406 kfree_skb(skb);
1407 return err;
1408 }
1409 EXPORT_SYMBOL(skb_pad);
1410
1411 /**
1412 * pskb_put - add data to the tail of a potentially fragmented buffer
1413 * @skb: start of the buffer to use
1414 * @tail: tail fragment of the buffer to use
1415 * @len: amount of data to add
1416 *
1417 * This function extends the used data area of the potentially
1418 * fragmented buffer. @tail must be the last fragment of @skb -- or
1419 * @skb itself. If this would exceed the total buffer size the kernel
1420 * will panic. A pointer to the first byte of the extra data is
1421 * returned.
1422 */
1423
1424 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1425 {
1426 if (tail != skb) {
1427 skb->data_len += len;
1428 skb->len += len;
1429 }
1430 return skb_put(tail, len);
1431 }
1432 EXPORT_SYMBOL_GPL(pskb_put);
1433
1434 /**
1435 * skb_put - add data to a buffer
1436 * @skb: buffer to use
1437 * @len: amount of data to add
1438 *
1439 * This function extends the used data area of the buffer. If this would
1440 * exceed the total buffer size the kernel will panic. A pointer to the
1441 * first byte of the extra data is returned.
1442 */
1443 void *skb_put(struct sk_buff *skb, unsigned int len)
1444 {
1445 void *tmp = skb_tail_pointer(skb);
1446 SKB_LINEAR_ASSERT(skb);
1447 skb->tail += len;
1448 skb->len += len;
1449 if (unlikely(skb->tail > skb->end))
1450 skb_over_panic(skb, len, __builtin_return_address(0));
1451 return tmp;
1452 }
1453 EXPORT_SYMBOL(skb_put);
1454
1455 /**
1456 * skb_push - add data to the start of a buffer
1457 * @skb: buffer to use
1458 * @len: amount of data to add
1459 *
1460 * This function extends the used data area of the buffer at the buffer
1461 * start. If this would exceed the total buffer headroom the kernel will
1462 * panic. A pointer to the first byte of the extra data is returned.
1463 */
1464 void *skb_push(struct sk_buff *skb, unsigned int len)
1465 {
1466 skb->data -= len;
1467 skb->len += len;
1468 if (unlikely(skb->data<skb->head))
1469 skb_under_panic(skb, len, __builtin_return_address(0));
1470 return skb->data;
1471 }
1472 EXPORT_SYMBOL(skb_push);
1473
1474 /**
1475 * skb_pull - remove data from the start of a buffer
1476 * @skb: buffer to use
1477 * @len: amount of data to remove
1478 *
1479 * This function removes data from the start of a buffer, returning
1480 * the memory to the headroom. A pointer to the next data in the buffer
1481 * is returned. Once the data has been pulled future pushes will overwrite
1482 * the old data.
1483 */
1484 void *skb_pull(struct sk_buff *skb, unsigned int len)
1485 {
1486 return skb_pull_inline(skb, len);
1487 }
1488 EXPORT_SYMBOL(skb_pull);
1489
1490 /**
1491 * skb_trim - remove end from a buffer
1492 * @skb: buffer to alter
1493 * @len: new length
1494 *
1495 * Cut the length of a buffer down by removing data from the tail. If
1496 * the buffer is already under the length specified it is not modified.
1497 * The skb must be linear.
1498 */
1499 void skb_trim(struct sk_buff *skb, unsigned int len)
1500 {
1501 if (skb->len > len)
1502 __skb_trim(skb, len);
1503 }
1504 EXPORT_SYMBOL(skb_trim);
1505
1506 /* Trims skb to length len. It can change skb pointers.
1507 */
1508
1509 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1510 {
1511 struct sk_buff **fragp;
1512 struct sk_buff *frag;
1513 int offset = skb_headlen(skb);
1514 int nfrags = skb_shinfo(skb)->nr_frags;
1515 int i;
1516 int err;
1517
1518 if (skb_cloned(skb) &&
1519 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1520 return err;
1521
1522 i = 0;
1523 if (offset >= len)
1524 goto drop_pages;
1525
1526 for (; i < nfrags; i++) {
1527 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1528
1529 if (end < len) {
1530 offset = end;
1531 continue;
1532 }
1533
1534 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1535
1536 drop_pages:
1537 skb_shinfo(skb)->nr_frags = i;
1538
1539 for (; i < nfrags; i++)
1540 skb_frag_unref(skb, i);
1541
1542 if (skb_has_frag_list(skb))
1543 skb_drop_fraglist(skb);
1544 goto done;
1545 }
1546
1547 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1548 fragp = &frag->next) {
1549 int end = offset + frag->len;
1550
1551 if (skb_shared(frag)) {
1552 struct sk_buff *nfrag;
1553
1554 nfrag = skb_clone(frag, GFP_ATOMIC);
1555 if (unlikely(!nfrag))
1556 return -ENOMEM;
1557
1558 nfrag->next = frag->next;
1559 consume_skb(frag);
1560 frag = nfrag;
1561 *fragp = frag;
1562 }
1563
1564 if (end < len) {
1565 offset = end;
1566 continue;
1567 }
1568
1569 if (end > len &&
1570 unlikely((err = pskb_trim(frag, len - offset))))
1571 return err;
1572
1573 if (frag->next)
1574 skb_drop_list(&frag->next);
1575 break;
1576 }
1577
1578 done:
1579 if (len > skb_headlen(skb)) {
1580 skb->data_len -= skb->len - len;
1581 skb->len = len;
1582 } else {
1583 skb->len = len;
1584 skb->data_len = 0;
1585 skb_set_tail_pointer(skb, len);
1586 }
1587
1588 if (!skb->sk || skb->destructor == sock_edemux)
1589 skb_condense(skb);
1590 return 0;
1591 }
1592 EXPORT_SYMBOL(___pskb_trim);
1593
1594 /**
1595 * __pskb_pull_tail - advance tail of skb header
1596 * @skb: buffer to reallocate
1597 * @delta: number of bytes to advance tail
1598 *
1599 * The function makes a sense only on a fragmented &sk_buff,
1600 * it expands header moving its tail forward and copying necessary
1601 * data from fragmented part.
1602 *
1603 * &sk_buff MUST have reference count of 1.
1604 *
1605 * Returns %NULL (and &sk_buff does not change) if pull failed
1606 * or value of new tail of skb in the case of success.
1607 *
1608 * All the pointers pointing into skb header may change and must be
1609 * reloaded after call to this function.
1610 */
1611
1612 /* Moves tail of skb head forward, copying data from fragmented part,
1613 * when it is necessary.
1614 * 1. It may fail due to malloc failure.
1615 * 2. It may change skb pointers.
1616 *
1617 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1618 */
1619 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1620 {
1621 /* If skb has not enough free space at tail, get new one
1622 * plus 128 bytes for future expansions. If we have enough
1623 * room at tail, reallocate without expansion only if skb is cloned.
1624 */
1625 int i, k, eat = (skb->tail + delta) - skb->end;
1626
1627 if (eat > 0 || skb_cloned(skb)) {
1628 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1629 GFP_ATOMIC))
1630 return NULL;
1631 }
1632
1633 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1634 BUG();
1635
1636 /* Optimization: no fragments, no reasons to preestimate
1637 * size of pulled pages. Superb.
1638 */
1639 if (!skb_has_frag_list(skb))
1640 goto pull_pages;
1641
1642 /* Estimate size of pulled pages. */
1643 eat = delta;
1644 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1645 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1646
1647 if (size >= eat)
1648 goto pull_pages;
1649 eat -= size;
1650 }
1651
1652 /* If we need update frag list, we are in troubles.
1653 * Certainly, it possible to add an offset to skb data,
1654 * but taking into account that pulling is expected to
1655 * be very rare operation, it is worth to fight against
1656 * further bloating skb head and crucify ourselves here instead.
1657 * Pure masohism, indeed. 8)8)
1658 */
1659 if (eat) {
1660 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1661 struct sk_buff *clone = NULL;
1662 struct sk_buff *insp = NULL;
1663
1664 do {
1665 BUG_ON(!list);
1666
1667 if (list->len <= eat) {
1668 /* Eaten as whole. */
1669 eat -= list->len;
1670 list = list->next;
1671 insp = list;
1672 } else {
1673 /* Eaten partially. */
1674
1675 if (skb_shared(list)) {
1676 /* Sucks! We need to fork list. :-( */
1677 clone = skb_clone(list, GFP_ATOMIC);
1678 if (!clone)
1679 return NULL;
1680 insp = list->next;
1681 list = clone;
1682 } else {
1683 /* This may be pulled without
1684 * problems. */
1685 insp = list;
1686 }
1687 if (!pskb_pull(list, eat)) {
1688 kfree_skb(clone);
1689 return NULL;
1690 }
1691 break;
1692 }
1693 } while (eat);
1694
1695 /* Free pulled out fragments. */
1696 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1697 skb_shinfo(skb)->frag_list = list->next;
1698 kfree_skb(list);
1699 }
1700 /* And insert new clone at head. */
1701 if (clone) {
1702 clone->next = list;
1703 skb_shinfo(skb)->frag_list = clone;
1704 }
1705 }
1706 /* Success! Now we may commit changes to skb data. */
1707
1708 pull_pages:
1709 eat = delta;
1710 k = 0;
1711 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1712 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1713
1714 if (size <= eat) {
1715 skb_frag_unref(skb, i);
1716 eat -= size;
1717 } else {
1718 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1719 if (eat) {
1720 skb_shinfo(skb)->frags[k].page_offset += eat;
1721 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1722 eat = 0;
1723 }
1724 k++;
1725 }
1726 }
1727 skb_shinfo(skb)->nr_frags = k;
1728
1729 skb->tail += delta;
1730 skb->data_len -= delta;
1731
1732 return skb_tail_pointer(skb);
1733 }
1734 EXPORT_SYMBOL(__pskb_pull_tail);
1735
1736 /**
1737 * skb_copy_bits - copy bits from skb to kernel buffer
1738 * @skb: source skb
1739 * @offset: offset in source
1740 * @to: destination buffer
1741 * @len: number of bytes to copy
1742 *
1743 * Copy the specified number of bytes from the source skb to the
1744 * destination buffer.
1745 *
1746 * CAUTION ! :
1747 * If its prototype is ever changed,
1748 * check arch/{*}/net/{*}.S files,
1749 * since it is called from BPF assembly code.
1750 */
1751 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1752 {
1753 int start = skb_headlen(skb);
1754 struct sk_buff *frag_iter;
1755 int i, copy;
1756
1757 if (offset > (int)skb->len - len)
1758 goto fault;
1759
1760 /* Copy header. */
1761 if ((copy = start - offset) > 0) {
1762 if (copy > len)
1763 copy = len;
1764 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1765 if ((len -= copy) == 0)
1766 return 0;
1767 offset += copy;
1768 to += copy;
1769 }
1770
1771 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1772 int end;
1773 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1774
1775 WARN_ON(start > offset + len);
1776
1777 end = start + skb_frag_size(f);
1778 if ((copy = end - offset) > 0) {
1779 u8 *vaddr;
1780
1781 if (copy > len)
1782 copy = len;
1783
1784 vaddr = kmap_atomic(skb_frag_page(f));
1785 memcpy(to,
1786 vaddr + f->page_offset + offset - start,
1787 copy);
1788 kunmap_atomic(vaddr);
1789
1790 if ((len -= copy) == 0)
1791 return 0;
1792 offset += copy;
1793 to += copy;
1794 }
1795 start = end;
1796 }
1797
1798 skb_walk_frags(skb, frag_iter) {
1799 int end;
1800
1801 WARN_ON(start > offset + len);
1802
1803 end = start + frag_iter->len;
1804 if ((copy = end - offset) > 0) {
1805 if (copy > len)
1806 copy = len;
1807 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1808 goto fault;
1809 if ((len -= copy) == 0)
1810 return 0;
1811 offset += copy;
1812 to += copy;
1813 }
1814 start = end;
1815 }
1816
1817 if (!len)
1818 return 0;
1819
1820 fault:
1821 return -EFAULT;
1822 }
1823 EXPORT_SYMBOL(skb_copy_bits);
1824
1825 /*
1826 * Callback from splice_to_pipe(), if we need to release some pages
1827 * at the end of the spd in case we error'ed out in filling the pipe.
1828 */
1829 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1830 {
1831 put_page(spd->pages[i]);
1832 }
1833
1834 static struct page *linear_to_page(struct page *page, unsigned int *len,
1835 unsigned int *offset,
1836 struct sock *sk)
1837 {
1838 struct page_frag *pfrag = sk_page_frag(sk);
1839
1840 if (!sk_page_frag_refill(sk, pfrag))
1841 return NULL;
1842
1843 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1844
1845 memcpy(page_address(pfrag->page) + pfrag->offset,
1846 page_address(page) + *offset, *len);
1847 *offset = pfrag->offset;
1848 pfrag->offset += *len;
1849
1850 return pfrag->page;
1851 }
1852
1853 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1854 struct page *page,
1855 unsigned int offset)
1856 {
1857 return spd->nr_pages &&
1858 spd->pages[spd->nr_pages - 1] == page &&
1859 (spd->partial[spd->nr_pages - 1].offset +
1860 spd->partial[spd->nr_pages - 1].len == offset);
1861 }
1862
1863 /*
1864 * Fill page/offset/length into spd, if it can hold more pages.
1865 */
1866 static bool spd_fill_page(struct splice_pipe_desc *spd,
1867 struct pipe_inode_info *pipe, struct page *page,
1868 unsigned int *len, unsigned int offset,
1869 bool linear,
1870 struct sock *sk)
1871 {
1872 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1873 return true;
1874
1875 if (linear) {
1876 page = linear_to_page(page, len, &offset, sk);
1877 if (!page)
1878 return true;
1879 }
1880 if (spd_can_coalesce(spd, page, offset)) {
1881 spd->partial[spd->nr_pages - 1].len += *len;
1882 return false;
1883 }
1884 get_page(page);
1885 spd->pages[spd->nr_pages] = page;
1886 spd->partial[spd->nr_pages].len = *len;
1887 spd->partial[spd->nr_pages].offset = offset;
1888 spd->nr_pages++;
1889
1890 return false;
1891 }
1892
1893 static bool __splice_segment(struct page *page, unsigned int poff,
1894 unsigned int plen, unsigned int *off,
1895 unsigned int *len,
1896 struct splice_pipe_desc *spd, bool linear,
1897 struct sock *sk,
1898 struct pipe_inode_info *pipe)
1899 {
1900 if (!*len)
1901 return true;
1902
1903 /* skip this segment if already processed */
1904 if (*off >= plen) {
1905 *off -= plen;
1906 return false;
1907 }
1908
1909 /* ignore any bits we already processed */
1910 poff += *off;
1911 plen -= *off;
1912 *off = 0;
1913
1914 do {
1915 unsigned int flen = min(*len, plen);
1916
1917 if (spd_fill_page(spd, pipe, page, &flen, poff,
1918 linear, sk))
1919 return true;
1920 poff += flen;
1921 plen -= flen;
1922 *len -= flen;
1923 } while (*len && plen);
1924
1925 return false;
1926 }
1927
1928 /*
1929 * Map linear and fragment data from the skb to spd. It reports true if the
1930 * pipe is full or if we already spliced the requested length.
1931 */
1932 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1933 unsigned int *offset, unsigned int *len,
1934 struct splice_pipe_desc *spd, struct sock *sk)
1935 {
1936 int seg;
1937 struct sk_buff *iter;
1938
1939 /* map the linear part :
1940 * If skb->head_frag is set, this 'linear' part is backed by a
1941 * fragment, and if the head is not shared with any clones then
1942 * we can avoid a copy since we own the head portion of this page.
1943 */
1944 if (__splice_segment(virt_to_page(skb->data),
1945 (unsigned long) skb->data & (PAGE_SIZE - 1),
1946 skb_headlen(skb),
1947 offset, len, spd,
1948 skb_head_is_locked(skb),
1949 sk, pipe))
1950 return true;
1951
1952 /*
1953 * then map the fragments
1954 */
1955 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1956 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1957
1958 if (__splice_segment(skb_frag_page(f),
1959 f->page_offset, skb_frag_size(f),
1960 offset, len, spd, false, sk, pipe))
1961 return true;
1962 }
1963
1964 skb_walk_frags(skb, iter) {
1965 if (*offset >= iter->len) {
1966 *offset -= iter->len;
1967 continue;
1968 }
1969 /* __skb_splice_bits() only fails if the output has no room
1970 * left, so no point in going over the frag_list for the error
1971 * case.
1972 */
1973 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
1974 return true;
1975 }
1976
1977 return false;
1978 }
1979
1980 /*
1981 * Map data from the skb to a pipe. Should handle both the linear part,
1982 * the fragments, and the frag list.
1983 */
1984 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1985 struct pipe_inode_info *pipe, unsigned int tlen,
1986 unsigned int flags)
1987 {
1988 struct partial_page partial[MAX_SKB_FRAGS];
1989 struct page *pages[MAX_SKB_FRAGS];
1990 struct splice_pipe_desc spd = {
1991 .pages = pages,
1992 .partial = partial,
1993 .nr_pages_max = MAX_SKB_FRAGS,
1994 .ops = &nosteal_pipe_buf_ops,
1995 .spd_release = sock_spd_release,
1996 };
1997 int ret = 0;
1998
1999 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2000
2001 if (spd.nr_pages)
2002 ret = splice_to_pipe(pipe, &spd);
2003
2004 return ret;
2005 }
2006 EXPORT_SYMBOL_GPL(skb_splice_bits);
2007
2008 /**
2009 * skb_store_bits - store bits from kernel buffer to skb
2010 * @skb: destination buffer
2011 * @offset: offset in destination
2012 * @from: source buffer
2013 * @len: number of bytes to copy
2014 *
2015 * Copy the specified number of bytes from the source buffer to the
2016 * destination skb. This function handles all the messy bits of
2017 * traversing fragment lists and such.
2018 */
2019
2020 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2021 {
2022 int start = skb_headlen(skb);
2023 struct sk_buff *frag_iter;
2024 int i, copy;
2025
2026 if (offset > (int)skb->len - len)
2027 goto fault;
2028
2029 if ((copy = start - offset) > 0) {
2030 if (copy > len)
2031 copy = len;
2032 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2033 if ((len -= copy) == 0)
2034 return 0;
2035 offset += copy;
2036 from += copy;
2037 }
2038
2039 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2040 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2041 int end;
2042
2043 WARN_ON(start > offset + len);
2044
2045 end = start + skb_frag_size(frag);
2046 if ((copy = end - offset) > 0) {
2047 u8 *vaddr;
2048
2049 if (copy > len)
2050 copy = len;
2051
2052 vaddr = kmap_atomic(skb_frag_page(frag));
2053 memcpy(vaddr + frag->page_offset + offset - start,
2054 from, copy);
2055 kunmap_atomic(vaddr);
2056
2057 if ((len -= copy) == 0)
2058 return 0;
2059 offset += copy;
2060 from += copy;
2061 }
2062 start = end;
2063 }
2064
2065 skb_walk_frags(skb, frag_iter) {
2066 int end;
2067
2068 WARN_ON(start > offset + len);
2069
2070 end = start + frag_iter->len;
2071 if ((copy = end - offset) > 0) {
2072 if (copy > len)
2073 copy = len;
2074 if (skb_store_bits(frag_iter, offset - start,
2075 from, copy))
2076 goto fault;
2077 if ((len -= copy) == 0)
2078 return 0;
2079 offset += copy;
2080 from += copy;
2081 }
2082 start = end;
2083 }
2084 if (!len)
2085 return 0;
2086
2087 fault:
2088 return -EFAULT;
2089 }
2090 EXPORT_SYMBOL(skb_store_bits);
2091
2092 /* Checksum skb data. */
2093 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2094 __wsum csum, const struct skb_checksum_ops *ops)
2095 {
2096 int start = skb_headlen(skb);
2097 int i, copy = start - offset;
2098 struct sk_buff *frag_iter;
2099 int pos = 0;
2100
2101 /* Checksum header. */
2102 if (copy > 0) {
2103 if (copy > len)
2104 copy = len;
2105 csum = ops->update(skb->data + offset, copy, csum);
2106 if ((len -= copy) == 0)
2107 return csum;
2108 offset += copy;
2109 pos = copy;
2110 }
2111
2112 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2113 int end;
2114 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2115
2116 WARN_ON(start > offset + len);
2117
2118 end = start + skb_frag_size(frag);
2119 if ((copy = end - offset) > 0) {
2120 __wsum csum2;
2121 u8 *vaddr;
2122
2123 if (copy > len)
2124 copy = len;
2125 vaddr = kmap_atomic(skb_frag_page(frag));
2126 csum2 = ops->update(vaddr + frag->page_offset +
2127 offset - start, copy, 0);
2128 kunmap_atomic(vaddr);
2129 csum = ops->combine(csum, csum2, pos, copy);
2130 if (!(len -= copy))
2131 return csum;
2132 offset += copy;
2133 pos += copy;
2134 }
2135 start = end;
2136 }
2137
2138 skb_walk_frags(skb, frag_iter) {
2139 int end;
2140
2141 WARN_ON(start > offset + len);
2142
2143 end = start + frag_iter->len;
2144 if ((copy = end - offset) > 0) {
2145 __wsum csum2;
2146 if (copy > len)
2147 copy = len;
2148 csum2 = __skb_checksum(frag_iter, offset - start,
2149 copy, 0, ops);
2150 csum = ops->combine(csum, csum2, pos, copy);
2151 if ((len -= copy) == 0)
2152 return csum;
2153 offset += copy;
2154 pos += copy;
2155 }
2156 start = end;
2157 }
2158 BUG_ON(len);
2159
2160 return csum;
2161 }
2162 EXPORT_SYMBOL(__skb_checksum);
2163
2164 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2165 int len, __wsum csum)
2166 {
2167 const struct skb_checksum_ops ops = {
2168 .update = csum_partial_ext,
2169 .combine = csum_block_add_ext,
2170 };
2171
2172 return __skb_checksum(skb, offset, len, csum, &ops);
2173 }
2174 EXPORT_SYMBOL(skb_checksum);
2175
2176 /* Both of above in one bottle. */
2177
2178 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2179 u8 *to, int len, __wsum csum)
2180 {
2181 int start = skb_headlen(skb);
2182 int i, copy = start - offset;
2183 struct sk_buff *frag_iter;
2184 int pos = 0;
2185
2186 /* Copy header. */
2187 if (copy > 0) {
2188 if (copy > len)
2189 copy = len;
2190 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2191 copy, csum);
2192 if ((len -= copy) == 0)
2193 return csum;
2194 offset += copy;
2195 to += copy;
2196 pos = copy;
2197 }
2198
2199 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2200 int end;
2201
2202 WARN_ON(start > offset + len);
2203
2204 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2205 if ((copy = end - offset) > 0) {
2206 __wsum csum2;
2207 u8 *vaddr;
2208 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2209
2210 if (copy > len)
2211 copy = len;
2212 vaddr = kmap_atomic(skb_frag_page(frag));
2213 csum2 = csum_partial_copy_nocheck(vaddr +
2214 frag->page_offset +
2215 offset - start, to,
2216 copy, 0);
2217 kunmap_atomic(vaddr);
2218 csum = csum_block_add(csum, csum2, pos);
2219 if (!(len -= copy))
2220 return csum;
2221 offset += copy;
2222 to += copy;
2223 pos += copy;
2224 }
2225 start = end;
2226 }
2227
2228 skb_walk_frags(skb, frag_iter) {
2229 __wsum csum2;
2230 int end;
2231
2232 WARN_ON(start > offset + len);
2233
2234 end = start + frag_iter->len;
2235 if ((copy = end - offset) > 0) {
2236 if (copy > len)
2237 copy = len;
2238 csum2 = skb_copy_and_csum_bits(frag_iter,
2239 offset - start,
2240 to, copy, 0);
2241 csum = csum_block_add(csum, csum2, pos);
2242 if ((len -= copy) == 0)
2243 return csum;
2244 offset += copy;
2245 to += copy;
2246 pos += copy;
2247 }
2248 start = end;
2249 }
2250 BUG_ON(len);
2251 return csum;
2252 }
2253 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2254
2255 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2256 {
2257 net_warn_ratelimited(
2258 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2259 __func__);
2260 return 0;
2261 }
2262
2263 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2264 int offset, int len)
2265 {
2266 net_warn_ratelimited(
2267 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2268 __func__);
2269 return 0;
2270 }
2271
2272 static const struct skb_checksum_ops default_crc32c_ops = {
2273 .update = warn_crc32c_csum_update,
2274 .combine = warn_crc32c_csum_combine,
2275 };
2276
2277 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2278 &default_crc32c_ops;
2279 EXPORT_SYMBOL(crc32c_csum_stub);
2280
2281 /**
2282 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2283 * @from: source buffer
2284 *
2285 * Calculates the amount of linear headroom needed in the 'to' skb passed
2286 * into skb_zerocopy().
2287 */
2288 unsigned int
2289 skb_zerocopy_headlen(const struct sk_buff *from)
2290 {
2291 unsigned int hlen = 0;
2292
2293 if (!from->head_frag ||
2294 skb_headlen(from) < L1_CACHE_BYTES ||
2295 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2296 hlen = skb_headlen(from);
2297
2298 if (skb_has_frag_list(from))
2299 hlen = from->len;
2300
2301 return hlen;
2302 }
2303 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2304
2305 /**
2306 * skb_zerocopy - Zero copy skb to skb
2307 * @to: destination buffer
2308 * @from: source buffer
2309 * @len: number of bytes to copy from source buffer
2310 * @hlen: size of linear headroom in destination buffer
2311 *
2312 * Copies up to `len` bytes from `from` to `to` by creating references
2313 * to the frags in the source buffer.
2314 *
2315 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2316 * headroom in the `to` buffer.
2317 *
2318 * Return value:
2319 * 0: everything is OK
2320 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2321 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2322 */
2323 int
2324 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2325 {
2326 int i, j = 0;
2327 int plen = 0; /* length of skb->head fragment */
2328 int ret;
2329 struct page *page;
2330 unsigned int offset;
2331
2332 BUG_ON(!from->head_frag && !hlen);
2333
2334 /* dont bother with small payloads */
2335 if (len <= skb_tailroom(to))
2336 return skb_copy_bits(from, 0, skb_put(to, len), len);
2337
2338 if (hlen) {
2339 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2340 if (unlikely(ret))
2341 return ret;
2342 len -= hlen;
2343 } else {
2344 plen = min_t(int, skb_headlen(from), len);
2345 if (plen) {
2346 page = virt_to_head_page(from->head);
2347 offset = from->data - (unsigned char *)page_address(page);
2348 __skb_fill_page_desc(to, 0, page, offset, plen);
2349 get_page(page);
2350 j = 1;
2351 len -= plen;
2352 }
2353 }
2354
2355 to->truesize += len + plen;
2356 to->len += len + plen;
2357 to->data_len += len + plen;
2358
2359 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2360 skb_tx_error(from);
2361 return -ENOMEM;
2362 }
2363
2364 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2365 if (!len)
2366 break;
2367 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2368 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2369 len -= skb_shinfo(to)->frags[j].size;
2370 skb_frag_ref(to, j);
2371 j++;
2372 }
2373 skb_shinfo(to)->nr_frags = j;
2374
2375 return 0;
2376 }
2377 EXPORT_SYMBOL_GPL(skb_zerocopy);
2378
2379 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2380 {
2381 __wsum csum;
2382 long csstart;
2383
2384 if (skb->ip_summed == CHECKSUM_PARTIAL)
2385 csstart = skb_checksum_start_offset(skb);
2386 else
2387 csstart = skb_headlen(skb);
2388
2389 BUG_ON(csstart > skb_headlen(skb));
2390
2391 skb_copy_from_linear_data(skb, to, csstart);
2392
2393 csum = 0;
2394 if (csstart != skb->len)
2395 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2396 skb->len - csstart, 0);
2397
2398 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2399 long csstuff = csstart + skb->csum_offset;
2400
2401 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2402 }
2403 }
2404 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2405
2406 /**
2407 * skb_dequeue - remove from the head of the queue
2408 * @list: list to dequeue from
2409 *
2410 * Remove the head of the list. The list lock is taken so the function
2411 * may be used safely with other locking list functions. The head item is
2412 * returned or %NULL if the list is empty.
2413 */
2414
2415 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2416 {
2417 unsigned long flags;
2418 struct sk_buff *result;
2419
2420 spin_lock_irqsave(&list->lock, flags);
2421 result = __skb_dequeue(list);
2422 spin_unlock_irqrestore(&list->lock, flags);
2423 return result;
2424 }
2425 EXPORT_SYMBOL(skb_dequeue);
2426
2427 /**
2428 * skb_dequeue_tail - remove from the tail of the queue
2429 * @list: list to dequeue from
2430 *
2431 * Remove the tail of the list. The list lock is taken so the function
2432 * may be used safely with other locking list functions. The tail item is
2433 * returned or %NULL if the list is empty.
2434 */
2435 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2436 {
2437 unsigned long flags;
2438 struct sk_buff *result;
2439
2440 spin_lock_irqsave(&list->lock, flags);
2441 result = __skb_dequeue_tail(list);
2442 spin_unlock_irqrestore(&list->lock, flags);
2443 return result;
2444 }
2445 EXPORT_SYMBOL(skb_dequeue_tail);
2446
2447 /**
2448 * skb_queue_purge - empty a list
2449 * @list: list to empty
2450 *
2451 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2452 * the list and one reference dropped. This function takes the list
2453 * lock and is atomic with respect to other list locking functions.
2454 */
2455 void skb_queue_purge(struct sk_buff_head *list)
2456 {
2457 struct sk_buff *skb;
2458 while ((skb = skb_dequeue(list)) != NULL)
2459 kfree_skb(skb);
2460 }
2461 EXPORT_SYMBOL(skb_queue_purge);
2462
2463 /**
2464 * skb_rbtree_purge - empty a skb rbtree
2465 * @root: root of the rbtree to empty
2466 *
2467 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2468 * the list and one reference dropped. This function does not take
2469 * any lock. Synchronization should be handled by the caller (e.g., TCP
2470 * out-of-order queue is protected by the socket lock).
2471 */
2472 void skb_rbtree_purge(struct rb_root *root)
2473 {
2474 struct sk_buff *skb, *next;
2475
2476 rbtree_postorder_for_each_entry_safe(skb, next, root, rbnode)
2477 kfree_skb(skb);
2478
2479 *root = RB_ROOT;
2480 }
2481
2482 /**
2483 * skb_queue_head - queue a buffer at the list head
2484 * @list: list to use
2485 * @newsk: buffer to queue
2486 *
2487 * Queue a buffer at the start of the list. This function takes the
2488 * list lock and can be used safely with other locking &sk_buff functions
2489 * safely.
2490 *
2491 * A buffer cannot be placed on two lists at the same time.
2492 */
2493 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2494 {
2495 unsigned long flags;
2496
2497 spin_lock_irqsave(&list->lock, flags);
2498 __skb_queue_head(list, newsk);
2499 spin_unlock_irqrestore(&list->lock, flags);
2500 }
2501 EXPORT_SYMBOL(skb_queue_head);
2502
2503 /**
2504 * skb_queue_tail - queue a buffer at the list tail
2505 * @list: list to use
2506 * @newsk: buffer to queue
2507 *
2508 * Queue a buffer at the tail of the list. This function takes the
2509 * list lock and can be used safely with other locking &sk_buff functions
2510 * safely.
2511 *
2512 * A buffer cannot be placed on two lists at the same time.
2513 */
2514 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2515 {
2516 unsigned long flags;
2517
2518 spin_lock_irqsave(&list->lock, flags);
2519 __skb_queue_tail(list, newsk);
2520 spin_unlock_irqrestore(&list->lock, flags);
2521 }
2522 EXPORT_SYMBOL(skb_queue_tail);
2523
2524 /**
2525 * skb_unlink - remove a buffer from a list
2526 * @skb: buffer to remove
2527 * @list: list to use
2528 *
2529 * Remove a packet from a list. The list locks are taken and this
2530 * function is atomic with respect to other list locked calls
2531 *
2532 * You must know what list the SKB is on.
2533 */
2534 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2535 {
2536 unsigned long flags;
2537
2538 spin_lock_irqsave(&list->lock, flags);
2539 __skb_unlink(skb, list);
2540 spin_unlock_irqrestore(&list->lock, flags);
2541 }
2542 EXPORT_SYMBOL(skb_unlink);
2543
2544 /**
2545 * skb_append - append a buffer
2546 * @old: buffer to insert after
2547 * @newsk: buffer to insert
2548 * @list: list to use
2549 *
2550 * Place a packet after a given packet in a list. The list locks are taken
2551 * and this function is atomic with respect to other list locked calls.
2552 * A buffer cannot be placed on two lists at the same time.
2553 */
2554 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2555 {
2556 unsigned long flags;
2557
2558 spin_lock_irqsave(&list->lock, flags);
2559 __skb_queue_after(list, old, newsk);
2560 spin_unlock_irqrestore(&list->lock, flags);
2561 }
2562 EXPORT_SYMBOL(skb_append);
2563
2564 /**
2565 * skb_insert - insert a buffer
2566 * @old: buffer to insert before
2567 * @newsk: buffer to insert
2568 * @list: list to use
2569 *
2570 * Place a packet before a given packet in a list. The list locks are
2571 * taken and this function is atomic with respect to other list locked
2572 * calls.
2573 *
2574 * A buffer cannot be placed on two lists at the same time.
2575 */
2576 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2577 {
2578 unsigned long flags;
2579
2580 spin_lock_irqsave(&list->lock, flags);
2581 __skb_insert(newsk, old->prev, old, list);
2582 spin_unlock_irqrestore(&list->lock, flags);
2583 }
2584 EXPORT_SYMBOL(skb_insert);
2585
2586 static inline void skb_split_inside_header(struct sk_buff *skb,
2587 struct sk_buff* skb1,
2588 const u32 len, const int pos)
2589 {
2590 int i;
2591
2592 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2593 pos - len);
2594 /* And move data appendix as is. */
2595 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2596 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2597
2598 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2599 skb_shinfo(skb)->nr_frags = 0;
2600 skb1->data_len = skb->data_len;
2601 skb1->len += skb1->data_len;
2602 skb->data_len = 0;
2603 skb->len = len;
2604 skb_set_tail_pointer(skb, len);
2605 }
2606
2607 static inline void skb_split_no_header(struct sk_buff *skb,
2608 struct sk_buff* skb1,
2609 const u32 len, int pos)
2610 {
2611 int i, k = 0;
2612 const int nfrags = skb_shinfo(skb)->nr_frags;
2613
2614 skb_shinfo(skb)->nr_frags = 0;
2615 skb1->len = skb1->data_len = skb->len - len;
2616 skb->len = len;
2617 skb->data_len = len - pos;
2618
2619 for (i = 0; i < nfrags; i++) {
2620 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2621
2622 if (pos + size > len) {
2623 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2624
2625 if (pos < len) {
2626 /* Split frag.
2627 * We have two variants in this case:
2628 * 1. Move all the frag to the second
2629 * part, if it is possible. F.e.
2630 * this approach is mandatory for TUX,
2631 * where splitting is expensive.
2632 * 2. Split is accurately. We make this.
2633 */
2634 skb_frag_ref(skb, i);
2635 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2636 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2637 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2638 skb_shinfo(skb)->nr_frags++;
2639 }
2640 k++;
2641 } else
2642 skb_shinfo(skb)->nr_frags++;
2643 pos += size;
2644 }
2645 skb_shinfo(skb1)->nr_frags = k;
2646 }
2647
2648 /**
2649 * skb_split - Split fragmented skb to two parts at length len.
2650 * @skb: the buffer to split
2651 * @skb1: the buffer to receive the second part
2652 * @len: new length for skb
2653 */
2654 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2655 {
2656 int pos = skb_headlen(skb);
2657
2658 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
2659 SKBTX_SHARED_FRAG;
2660 if (len < pos) /* Split line is inside header. */
2661 skb_split_inside_header(skb, skb1, len, pos);
2662 else /* Second chunk has no header, nothing to copy. */
2663 skb_split_no_header(skb, skb1, len, pos);
2664 }
2665 EXPORT_SYMBOL(skb_split);
2666
2667 /* Shifting from/to a cloned skb is a no-go.
2668 *
2669 * Caller cannot keep skb_shinfo related pointers past calling here!
2670 */
2671 static int skb_prepare_for_shift(struct sk_buff *skb)
2672 {
2673 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2674 }
2675
2676 /**
2677 * skb_shift - Shifts paged data partially from skb to another
2678 * @tgt: buffer into which tail data gets added
2679 * @skb: buffer from which the paged data comes from
2680 * @shiftlen: shift up to this many bytes
2681 *
2682 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2683 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2684 * It's up to caller to free skb if everything was shifted.
2685 *
2686 * If @tgt runs out of frags, the whole operation is aborted.
2687 *
2688 * Skb cannot include anything else but paged data while tgt is allowed
2689 * to have non-paged data as well.
2690 *
2691 * TODO: full sized shift could be optimized but that would need
2692 * specialized skb free'er to handle frags without up-to-date nr_frags.
2693 */
2694 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2695 {
2696 int from, to, merge, todo;
2697 struct skb_frag_struct *fragfrom, *fragto;
2698
2699 BUG_ON(shiftlen > skb->len);
2700
2701 if (skb_headlen(skb))
2702 return 0;
2703
2704 todo = shiftlen;
2705 from = 0;
2706 to = skb_shinfo(tgt)->nr_frags;
2707 fragfrom = &skb_shinfo(skb)->frags[from];
2708
2709 /* Actual merge is delayed until the point when we know we can
2710 * commit all, so that we don't have to undo partial changes
2711 */
2712 if (!to ||
2713 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2714 fragfrom->page_offset)) {
2715 merge = -1;
2716 } else {
2717 merge = to - 1;
2718
2719 todo -= skb_frag_size(fragfrom);
2720 if (todo < 0) {
2721 if (skb_prepare_for_shift(skb) ||
2722 skb_prepare_for_shift(tgt))
2723 return 0;
2724
2725 /* All previous frag pointers might be stale! */
2726 fragfrom = &skb_shinfo(skb)->frags[from];
2727 fragto = &skb_shinfo(tgt)->frags[merge];
2728
2729 skb_frag_size_add(fragto, shiftlen);
2730 skb_frag_size_sub(fragfrom, shiftlen);
2731 fragfrom->page_offset += shiftlen;
2732
2733 goto onlymerged;
2734 }
2735
2736 from++;
2737 }
2738
2739 /* Skip full, not-fitting skb to avoid expensive operations */
2740 if ((shiftlen == skb->len) &&
2741 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2742 return 0;
2743
2744 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2745 return 0;
2746
2747 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2748 if (to == MAX_SKB_FRAGS)
2749 return 0;
2750
2751 fragfrom = &skb_shinfo(skb)->frags[from];
2752 fragto = &skb_shinfo(tgt)->frags[to];
2753
2754 if (todo >= skb_frag_size(fragfrom)) {
2755 *fragto = *fragfrom;
2756 todo -= skb_frag_size(fragfrom);
2757 from++;
2758 to++;
2759
2760 } else {
2761 __skb_frag_ref(fragfrom);
2762 fragto->page = fragfrom->page;
2763 fragto->page_offset = fragfrom->page_offset;
2764 skb_frag_size_set(fragto, todo);
2765
2766 fragfrom->page_offset += todo;
2767 skb_frag_size_sub(fragfrom, todo);
2768 todo = 0;
2769
2770 to++;
2771 break;
2772 }
2773 }
2774
2775 /* Ready to "commit" this state change to tgt */
2776 skb_shinfo(tgt)->nr_frags = to;
2777
2778 if (merge >= 0) {
2779 fragfrom = &skb_shinfo(skb)->frags[0];
2780 fragto = &skb_shinfo(tgt)->frags[merge];
2781
2782 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2783 __skb_frag_unref(fragfrom);
2784 }
2785
2786 /* Reposition in the original skb */
2787 to = 0;
2788 while (from < skb_shinfo(skb)->nr_frags)
2789 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2790 skb_shinfo(skb)->nr_frags = to;
2791
2792 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2793
2794 onlymerged:
2795 /* Most likely the tgt won't ever need its checksum anymore, skb on
2796 * the other hand might need it if it needs to be resent
2797 */
2798 tgt->ip_summed = CHECKSUM_PARTIAL;
2799 skb->ip_summed = CHECKSUM_PARTIAL;
2800
2801 /* Yak, is it really working this way? Some helper please? */
2802 skb->len -= shiftlen;
2803 skb->data_len -= shiftlen;
2804 skb->truesize -= shiftlen;
2805 tgt->len += shiftlen;
2806 tgt->data_len += shiftlen;
2807 tgt->truesize += shiftlen;
2808
2809 return shiftlen;
2810 }
2811
2812 /**
2813 * skb_prepare_seq_read - Prepare a sequential read of skb data
2814 * @skb: the buffer to read
2815 * @from: lower offset of data to be read
2816 * @to: upper offset of data to be read
2817 * @st: state variable
2818 *
2819 * Initializes the specified state variable. Must be called before
2820 * invoking skb_seq_read() for the first time.
2821 */
2822 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2823 unsigned int to, struct skb_seq_state *st)
2824 {
2825 st->lower_offset = from;
2826 st->upper_offset = to;
2827 st->root_skb = st->cur_skb = skb;
2828 st->frag_idx = st->stepped_offset = 0;
2829 st->frag_data = NULL;
2830 }
2831 EXPORT_SYMBOL(skb_prepare_seq_read);
2832
2833 /**
2834 * skb_seq_read - Sequentially read skb data
2835 * @consumed: number of bytes consumed by the caller so far
2836 * @data: destination pointer for data to be returned
2837 * @st: state variable
2838 *
2839 * Reads a block of skb data at @consumed relative to the
2840 * lower offset specified to skb_prepare_seq_read(). Assigns
2841 * the head of the data block to @data and returns the length
2842 * of the block or 0 if the end of the skb data or the upper
2843 * offset has been reached.
2844 *
2845 * The caller is not required to consume all of the data
2846 * returned, i.e. @consumed is typically set to the number
2847 * of bytes already consumed and the next call to
2848 * skb_seq_read() will return the remaining part of the block.
2849 *
2850 * Note 1: The size of each block of data returned can be arbitrary,
2851 * this limitation is the cost for zerocopy sequential
2852 * reads of potentially non linear data.
2853 *
2854 * Note 2: Fragment lists within fragments are not implemented
2855 * at the moment, state->root_skb could be replaced with
2856 * a stack for this purpose.
2857 */
2858 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2859 struct skb_seq_state *st)
2860 {
2861 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2862 skb_frag_t *frag;
2863
2864 if (unlikely(abs_offset >= st->upper_offset)) {
2865 if (st->frag_data) {
2866 kunmap_atomic(st->frag_data);
2867 st->frag_data = NULL;
2868 }
2869 return 0;
2870 }
2871
2872 next_skb:
2873 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2874
2875 if (abs_offset < block_limit && !st->frag_data) {
2876 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2877 return block_limit - abs_offset;
2878 }
2879
2880 if (st->frag_idx == 0 && !st->frag_data)
2881 st->stepped_offset += skb_headlen(st->cur_skb);
2882
2883 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2884 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2885 block_limit = skb_frag_size(frag) + st->stepped_offset;
2886
2887 if (abs_offset < block_limit) {
2888 if (!st->frag_data)
2889 st->frag_data = kmap_atomic(skb_frag_page(frag));
2890
2891 *data = (u8 *) st->frag_data + frag->page_offset +
2892 (abs_offset - st->stepped_offset);
2893
2894 return block_limit - abs_offset;
2895 }
2896
2897 if (st->frag_data) {
2898 kunmap_atomic(st->frag_data);
2899 st->frag_data = NULL;
2900 }
2901
2902 st->frag_idx++;
2903 st->stepped_offset += skb_frag_size(frag);
2904 }
2905
2906 if (st->frag_data) {
2907 kunmap_atomic(st->frag_data);
2908 st->frag_data = NULL;
2909 }
2910
2911 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2912 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2913 st->frag_idx = 0;
2914 goto next_skb;
2915 } else if (st->cur_skb->next) {
2916 st->cur_skb = st->cur_skb->next;
2917 st->frag_idx = 0;
2918 goto next_skb;
2919 }
2920
2921 return 0;
2922 }
2923 EXPORT_SYMBOL(skb_seq_read);
2924
2925 /**
2926 * skb_abort_seq_read - Abort a sequential read of skb data
2927 * @st: state variable
2928 *
2929 * Must be called if skb_seq_read() was not called until it
2930 * returned 0.
2931 */
2932 void skb_abort_seq_read(struct skb_seq_state *st)
2933 {
2934 if (st->frag_data)
2935 kunmap_atomic(st->frag_data);
2936 }
2937 EXPORT_SYMBOL(skb_abort_seq_read);
2938
2939 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2940
2941 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2942 struct ts_config *conf,
2943 struct ts_state *state)
2944 {
2945 return skb_seq_read(offset, text, TS_SKB_CB(state));
2946 }
2947
2948 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2949 {
2950 skb_abort_seq_read(TS_SKB_CB(state));
2951 }
2952
2953 /**
2954 * skb_find_text - Find a text pattern in skb data
2955 * @skb: the buffer to look in
2956 * @from: search offset
2957 * @to: search limit
2958 * @config: textsearch configuration
2959 *
2960 * Finds a pattern in the skb data according to the specified
2961 * textsearch configuration. Use textsearch_next() to retrieve
2962 * subsequent occurrences of the pattern. Returns the offset
2963 * to the first occurrence or UINT_MAX if no match was found.
2964 */
2965 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2966 unsigned int to, struct ts_config *config)
2967 {
2968 struct ts_state state;
2969 unsigned int ret;
2970
2971 config->get_next_block = skb_ts_get_next_block;
2972 config->finish = skb_ts_finish;
2973
2974 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2975
2976 ret = textsearch_find(config, &state);
2977 return (ret <= to - from ? ret : UINT_MAX);
2978 }
2979 EXPORT_SYMBOL(skb_find_text);
2980
2981 /**
2982 * skb_append_datato_frags - append the user data to a skb
2983 * @sk: sock structure
2984 * @skb: skb structure to be appended with user data.
2985 * @getfrag: call back function to be used for getting the user data
2986 * @from: pointer to user message iov
2987 * @length: length of the iov message
2988 *
2989 * Description: This procedure append the user data in the fragment part
2990 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2991 */
2992 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2993 int (*getfrag)(void *from, char *to, int offset,
2994 int len, int odd, struct sk_buff *skb),
2995 void *from, int length)
2996 {
2997 int frg_cnt = skb_shinfo(skb)->nr_frags;
2998 int copy;
2999 int offset = 0;
3000 int ret;
3001 struct page_frag *pfrag = &current->task_frag;
3002
3003 do {
3004 /* Return error if we don't have space for new frag */
3005 if (frg_cnt >= MAX_SKB_FRAGS)
3006 return -EMSGSIZE;
3007
3008 if (!sk_page_frag_refill(sk, pfrag))
3009 return -ENOMEM;
3010
3011 /* copy the user data to page */
3012 copy = min_t(int, length, pfrag->size - pfrag->offset);
3013
3014 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3015 offset, copy, 0, skb);
3016 if (ret < 0)
3017 return -EFAULT;
3018
3019 /* copy was successful so update the size parameters */
3020 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3021 copy);
3022 frg_cnt++;
3023 pfrag->offset += copy;
3024 get_page(pfrag->page);
3025
3026 skb->truesize += copy;
3027 refcount_add(copy, &sk->sk_wmem_alloc);
3028 skb->len += copy;
3029 skb->data_len += copy;
3030 offset += copy;
3031 length -= copy;
3032
3033 } while (length > 0);
3034
3035 return 0;
3036 }
3037 EXPORT_SYMBOL(skb_append_datato_frags);
3038
3039 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3040 int offset, size_t size)
3041 {
3042 int i = skb_shinfo(skb)->nr_frags;
3043
3044 if (skb_can_coalesce(skb, i, page, offset)) {
3045 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3046 } else if (i < MAX_SKB_FRAGS) {
3047 get_page(page);
3048 skb_fill_page_desc(skb, i, page, offset, size);
3049 } else {
3050 return -EMSGSIZE;
3051 }
3052
3053 return 0;
3054 }
3055 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3056
3057 /**
3058 * skb_pull_rcsum - pull skb and update receive checksum
3059 * @skb: buffer to update
3060 * @len: length of data pulled
3061 *
3062 * This function performs an skb_pull on the packet and updates
3063 * the CHECKSUM_COMPLETE checksum. It should be used on
3064 * receive path processing instead of skb_pull unless you know
3065 * that the checksum difference is zero (e.g., a valid IP header)
3066 * or you are setting ip_summed to CHECKSUM_NONE.
3067 */
3068 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3069 {
3070 unsigned char *data = skb->data;
3071
3072 BUG_ON(len > skb->len);
3073 __skb_pull(skb, len);
3074 skb_postpull_rcsum(skb, data, len);
3075 return skb->data;
3076 }
3077 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3078
3079 /**
3080 * skb_segment - Perform protocol segmentation on skb.
3081 * @head_skb: buffer to segment
3082 * @features: features for the output path (see dev->features)
3083 *
3084 * This function performs segmentation on the given skb. It returns
3085 * a pointer to the first in a list of new skbs for the segments.
3086 * In case of error it returns ERR_PTR(err).
3087 */
3088 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3089 netdev_features_t features)
3090 {
3091 struct sk_buff *segs = NULL;
3092 struct sk_buff *tail = NULL;
3093 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3094 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3095 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3096 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3097 struct sk_buff *frag_skb = head_skb;
3098 unsigned int offset = doffset;
3099 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3100 unsigned int partial_segs = 0;
3101 unsigned int headroom;
3102 unsigned int len = head_skb->len;
3103 __be16 proto;
3104 bool csum, sg;
3105 int nfrags = skb_shinfo(head_skb)->nr_frags;
3106 int err = -ENOMEM;
3107 int i = 0;
3108 int pos;
3109 int dummy;
3110
3111 __skb_push(head_skb, doffset);
3112 proto = skb_network_protocol(head_skb, &dummy);
3113 if (unlikely(!proto))
3114 return ERR_PTR(-EINVAL);
3115
3116 sg = !!(features & NETIF_F_SG);
3117 csum = !!can_checksum_protocol(features, proto);
3118
3119 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3120 if (!(features & NETIF_F_GSO_PARTIAL)) {
3121 struct sk_buff *iter;
3122 unsigned int frag_len;
3123
3124 if (!list_skb ||
3125 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3126 goto normal;
3127
3128 /* If we get here then all the required
3129 * GSO features except frag_list are supported.
3130 * Try to split the SKB to multiple GSO SKBs
3131 * with no frag_list.
3132 * Currently we can do that only when the buffers don't
3133 * have a linear part and all the buffers except
3134 * the last are of the same length.
3135 */
3136 frag_len = list_skb->len;
3137 skb_walk_frags(head_skb, iter) {
3138 if (frag_len != iter->len && iter->next)
3139 goto normal;
3140 if (skb_headlen(iter) && !iter->head_frag)
3141 goto normal;
3142
3143 len -= iter->len;
3144 }
3145
3146 if (len != frag_len)
3147 goto normal;
3148 }
3149
3150 /* GSO partial only requires that we trim off any excess that
3151 * doesn't fit into an MSS sized block, so take care of that
3152 * now.
3153 */
3154 partial_segs = len / mss;
3155 if (partial_segs > 1)
3156 mss *= partial_segs;
3157 else
3158 partial_segs = 0;
3159 }
3160
3161 normal:
3162 headroom = skb_headroom(head_skb);
3163 pos = skb_headlen(head_skb);
3164
3165 do {
3166 struct sk_buff *nskb;
3167 skb_frag_t *nskb_frag;
3168 int hsize;
3169 int size;
3170
3171 if (unlikely(mss == GSO_BY_FRAGS)) {
3172 len = list_skb->len;
3173 } else {
3174 len = head_skb->len - offset;
3175 if (len > mss)
3176 len = mss;
3177 }
3178
3179 hsize = skb_headlen(head_skb) - offset;
3180 if (hsize < 0)
3181 hsize = 0;
3182 if (hsize > len || !sg)
3183 hsize = len;
3184
3185 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3186 (skb_headlen(list_skb) == len || sg)) {
3187 BUG_ON(skb_headlen(list_skb) > len);
3188
3189 i = 0;
3190 nfrags = skb_shinfo(list_skb)->nr_frags;
3191 frag = skb_shinfo(list_skb)->frags;
3192 frag_skb = list_skb;
3193 pos += skb_headlen(list_skb);
3194
3195 while (pos < offset + len) {
3196 BUG_ON(i >= nfrags);
3197
3198 size = skb_frag_size(frag);
3199 if (pos + size > offset + len)
3200 break;
3201
3202 i++;
3203 pos += size;
3204 frag++;
3205 }
3206
3207 nskb = skb_clone(list_skb, GFP_ATOMIC);
3208 list_skb = list_skb->next;
3209
3210 if (unlikely(!nskb))
3211 goto err;
3212
3213 if (unlikely(pskb_trim(nskb, len))) {
3214 kfree_skb(nskb);
3215 goto err;
3216 }
3217
3218 hsize = skb_end_offset(nskb);
3219 if (skb_cow_head(nskb, doffset + headroom)) {
3220 kfree_skb(nskb);
3221 goto err;
3222 }
3223
3224 nskb->truesize += skb_end_offset(nskb) - hsize;
3225 skb_release_head_state(nskb);
3226 __skb_push(nskb, doffset);
3227 } else {
3228 nskb = __alloc_skb(hsize + doffset + headroom,
3229 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3230 NUMA_NO_NODE);
3231
3232 if (unlikely(!nskb))
3233 goto err;
3234
3235 skb_reserve(nskb, headroom);
3236 __skb_put(nskb, doffset);
3237 }
3238
3239 if (segs)
3240 tail->next = nskb;
3241 else
3242 segs = nskb;
3243 tail = nskb;
3244
3245 __copy_skb_header(nskb, head_skb);
3246
3247 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3248 skb_reset_mac_len(nskb);
3249
3250 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3251 nskb->data - tnl_hlen,
3252 doffset + tnl_hlen);
3253
3254 if (nskb->len == len + doffset)
3255 goto perform_csum_check;
3256
3257 if (!sg) {
3258 if (!nskb->remcsum_offload)
3259 nskb->ip_summed = CHECKSUM_NONE;
3260 SKB_GSO_CB(nskb)->csum =
3261 skb_copy_and_csum_bits(head_skb, offset,
3262 skb_put(nskb, len),
3263 len, 0);
3264 SKB_GSO_CB(nskb)->csum_start =
3265 skb_headroom(nskb) + doffset;
3266 continue;
3267 }
3268
3269 nskb_frag = skb_shinfo(nskb)->frags;
3270
3271 skb_copy_from_linear_data_offset(head_skb, offset,
3272 skb_put(nskb, hsize), hsize);
3273
3274 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3275 SKBTX_SHARED_FRAG;
3276
3277 while (pos < offset + len) {
3278 if (i >= nfrags) {
3279 BUG_ON(skb_headlen(list_skb));
3280
3281 i = 0;
3282 nfrags = skb_shinfo(list_skb)->nr_frags;
3283 frag = skb_shinfo(list_skb)->frags;
3284 frag_skb = list_skb;
3285
3286 BUG_ON(!nfrags);
3287
3288 list_skb = list_skb->next;
3289 }
3290
3291 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3292 MAX_SKB_FRAGS)) {
3293 net_warn_ratelimited(
3294 "skb_segment: too many frags: %u %u\n",
3295 pos, mss);
3296 goto err;
3297 }
3298
3299 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3300 goto err;
3301
3302 *nskb_frag = *frag;
3303 __skb_frag_ref(nskb_frag);
3304 size = skb_frag_size(nskb_frag);
3305
3306 if (pos < offset) {
3307 nskb_frag->page_offset += offset - pos;
3308 skb_frag_size_sub(nskb_frag, offset - pos);
3309 }
3310
3311 skb_shinfo(nskb)->nr_frags++;
3312
3313 if (pos + size <= offset + len) {
3314 i++;
3315 frag++;
3316 pos += size;
3317 } else {
3318 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3319 goto skip_fraglist;
3320 }
3321
3322 nskb_frag++;
3323 }
3324
3325 skip_fraglist:
3326 nskb->data_len = len - hsize;
3327 nskb->len += nskb->data_len;
3328 nskb->truesize += nskb->data_len;
3329
3330 perform_csum_check:
3331 if (!csum) {
3332 if (skb_has_shared_frag(nskb)) {
3333 err = __skb_linearize(nskb);
3334 if (err)
3335 goto err;
3336 }
3337 if (!nskb->remcsum_offload)
3338 nskb->ip_summed = CHECKSUM_NONE;
3339 SKB_GSO_CB(nskb)->csum =
3340 skb_checksum(nskb, doffset,
3341 nskb->len - doffset, 0);
3342 SKB_GSO_CB(nskb)->csum_start =
3343 skb_headroom(nskb) + doffset;
3344 }
3345 } while ((offset += len) < head_skb->len);
3346
3347 /* Some callers want to get the end of the list.
3348 * Put it in segs->prev to avoid walking the list.
3349 * (see validate_xmit_skb_list() for example)
3350 */
3351 segs->prev = tail;
3352
3353 if (partial_segs) {
3354 struct sk_buff *iter;
3355 int type = skb_shinfo(head_skb)->gso_type;
3356 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3357
3358 /* Update type to add partial and then remove dodgy if set */
3359 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3360 type &= ~SKB_GSO_DODGY;
3361
3362 /* Update GSO info and prepare to start updating headers on
3363 * our way back down the stack of protocols.
3364 */
3365 for (iter = segs; iter; iter = iter->next) {
3366 skb_shinfo(iter)->gso_size = gso_size;
3367 skb_shinfo(iter)->gso_segs = partial_segs;
3368 skb_shinfo(iter)->gso_type = type;
3369 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3370 }
3371
3372 if (tail->len - doffset <= gso_size)
3373 skb_shinfo(tail)->gso_size = 0;
3374 else if (tail != segs)
3375 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3376 }
3377
3378 /* Following permits correct backpressure, for protocols
3379 * using skb_set_owner_w().
3380 * Idea is to tranfert ownership from head_skb to last segment.
3381 */
3382 if (head_skb->destructor == sock_wfree) {
3383 swap(tail->truesize, head_skb->truesize);
3384 swap(tail->destructor, head_skb->destructor);
3385 swap(tail->sk, head_skb->sk);
3386 }
3387 return segs;
3388
3389 err:
3390 kfree_skb_list(segs);
3391 return ERR_PTR(err);
3392 }
3393 EXPORT_SYMBOL_GPL(skb_segment);
3394
3395 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3396 {
3397 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3398 unsigned int offset = skb_gro_offset(skb);
3399 unsigned int headlen = skb_headlen(skb);
3400 unsigned int len = skb_gro_len(skb);
3401 struct sk_buff *lp, *p = *head;
3402 unsigned int delta_truesize;
3403
3404 if (unlikely(p->len + len >= 65536))
3405 return -E2BIG;
3406
3407 lp = NAPI_GRO_CB(p)->last;
3408 pinfo = skb_shinfo(lp);
3409
3410 if (headlen <= offset) {
3411 skb_frag_t *frag;
3412 skb_frag_t *frag2;
3413 int i = skbinfo->nr_frags;
3414 int nr_frags = pinfo->nr_frags + i;
3415
3416 if (nr_frags > MAX_SKB_FRAGS)
3417 goto merge;
3418
3419 offset -= headlen;
3420 pinfo->nr_frags = nr_frags;
3421 skbinfo->nr_frags = 0;
3422
3423 frag = pinfo->frags + nr_frags;
3424 frag2 = skbinfo->frags + i;
3425 do {
3426 *--frag = *--frag2;
3427 } while (--i);
3428
3429 frag->page_offset += offset;
3430 skb_frag_size_sub(frag, offset);
3431
3432 /* all fragments truesize : remove (head size + sk_buff) */
3433 delta_truesize = skb->truesize -
3434 SKB_TRUESIZE(skb_end_offset(skb));
3435
3436 skb->truesize -= skb->data_len;
3437 skb->len -= skb->data_len;
3438 skb->data_len = 0;
3439
3440 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3441 goto done;
3442 } else if (skb->head_frag) {
3443 int nr_frags = pinfo->nr_frags;
3444 skb_frag_t *frag = pinfo->frags + nr_frags;
3445 struct page *page = virt_to_head_page(skb->head);
3446 unsigned int first_size = headlen - offset;
3447 unsigned int first_offset;
3448
3449 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3450 goto merge;
3451
3452 first_offset = skb->data -
3453 (unsigned char *)page_address(page) +
3454 offset;
3455
3456 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3457
3458 frag->page.p = page;
3459 frag->page_offset = first_offset;
3460 skb_frag_size_set(frag, first_size);
3461
3462 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3463 /* We dont need to clear skbinfo->nr_frags here */
3464
3465 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3466 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3467 goto done;
3468 }
3469
3470 merge:
3471 delta_truesize = skb->truesize;
3472 if (offset > headlen) {
3473 unsigned int eat = offset - headlen;
3474
3475 skbinfo->frags[0].page_offset += eat;
3476 skb_frag_size_sub(&skbinfo->frags[0], eat);
3477 skb->data_len -= eat;
3478 skb->len -= eat;
3479 offset = headlen;
3480 }
3481
3482 __skb_pull(skb, offset);
3483
3484 if (NAPI_GRO_CB(p)->last == p)
3485 skb_shinfo(p)->frag_list = skb;
3486 else
3487 NAPI_GRO_CB(p)->last->next = skb;
3488 NAPI_GRO_CB(p)->last = skb;
3489 __skb_header_release(skb);
3490 lp = p;
3491
3492 done:
3493 NAPI_GRO_CB(p)->count++;
3494 p->data_len += len;
3495 p->truesize += delta_truesize;
3496 p->len += len;
3497 if (lp != p) {
3498 lp->data_len += len;
3499 lp->truesize += delta_truesize;
3500 lp->len += len;
3501 }
3502 NAPI_GRO_CB(skb)->same_flow = 1;
3503 return 0;
3504 }
3505 EXPORT_SYMBOL_GPL(skb_gro_receive);
3506
3507 void __init skb_init(void)
3508 {
3509 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3510 sizeof(struct sk_buff),
3511 0,
3512 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3513 NULL);
3514 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3515 sizeof(struct sk_buff_fclones),
3516 0,
3517 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3518 NULL);
3519 }
3520
3521 static int
3522 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3523 unsigned int recursion_level)
3524 {
3525 int start = skb_headlen(skb);
3526 int i, copy = start - offset;
3527 struct sk_buff *frag_iter;
3528 int elt = 0;
3529
3530 if (unlikely(recursion_level >= 24))
3531 return -EMSGSIZE;
3532
3533 if (copy > 0) {
3534 if (copy > len)
3535 copy = len;
3536 sg_set_buf(sg, skb->data + offset, copy);
3537 elt++;
3538 if ((len -= copy) == 0)
3539 return elt;
3540 offset += copy;
3541 }
3542
3543 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3544 int end;
3545
3546 WARN_ON(start > offset + len);
3547
3548 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3549 if ((copy = end - offset) > 0) {
3550 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3551 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3552 return -EMSGSIZE;
3553
3554 if (copy > len)
3555 copy = len;
3556 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3557 frag->page_offset+offset-start);
3558 elt++;
3559 if (!(len -= copy))
3560 return elt;
3561 offset += copy;
3562 }
3563 start = end;
3564 }
3565
3566 skb_walk_frags(skb, frag_iter) {
3567 int end, ret;
3568
3569 WARN_ON(start > offset + len);
3570
3571 end = start + frag_iter->len;
3572 if ((copy = end - offset) > 0) {
3573 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3574 return -EMSGSIZE;
3575
3576 if (copy > len)
3577 copy = len;
3578 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3579 copy, recursion_level + 1);
3580 if (unlikely(ret < 0))
3581 return ret;
3582 elt += ret;
3583 if ((len -= copy) == 0)
3584 return elt;
3585 offset += copy;
3586 }
3587 start = end;
3588 }
3589 BUG_ON(len);
3590 return elt;
3591 }
3592
3593 /**
3594 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3595 * @skb: Socket buffer containing the buffers to be mapped
3596 * @sg: The scatter-gather list to map into
3597 * @offset: The offset into the buffer's contents to start mapping
3598 * @len: Length of buffer space to be mapped
3599 *
3600 * Fill the specified scatter-gather list with mappings/pointers into a
3601 * region of the buffer space attached to a socket buffer. Returns either
3602 * the number of scatterlist items used, or -EMSGSIZE if the contents
3603 * could not fit.
3604 */
3605 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3606 {
3607 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
3608
3609 if (nsg <= 0)
3610 return nsg;
3611
3612 sg_mark_end(&sg[nsg - 1]);
3613
3614 return nsg;
3615 }
3616 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3617
3618 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3619 * sglist without mark the sg which contain last skb data as the end.
3620 * So the caller can mannipulate sg list as will when padding new data after
3621 * the first call without calling sg_unmark_end to expend sg list.
3622 *
3623 * Scenario to use skb_to_sgvec_nomark:
3624 * 1. sg_init_table
3625 * 2. skb_to_sgvec_nomark(payload1)
3626 * 3. skb_to_sgvec_nomark(payload2)
3627 *
3628 * This is equivalent to:
3629 * 1. sg_init_table
3630 * 2. skb_to_sgvec(payload1)
3631 * 3. sg_unmark_end
3632 * 4. skb_to_sgvec(payload2)
3633 *
3634 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3635 * is more preferable.
3636 */
3637 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3638 int offset, int len)
3639 {
3640 return __skb_to_sgvec(skb, sg, offset, len, 0);
3641 }
3642 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3643
3644
3645
3646 /**
3647 * skb_cow_data - Check that a socket buffer's data buffers are writable
3648 * @skb: The socket buffer to check.
3649 * @tailbits: Amount of trailing space to be added
3650 * @trailer: Returned pointer to the skb where the @tailbits space begins
3651 *
3652 * Make sure that the data buffers attached to a socket buffer are
3653 * writable. If they are not, private copies are made of the data buffers
3654 * and the socket buffer is set to use these instead.
3655 *
3656 * If @tailbits is given, make sure that there is space to write @tailbits
3657 * bytes of data beyond current end of socket buffer. @trailer will be
3658 * set to point to the skb in which this space begins.
3659 *
3660 * The number of scatterlist elements required to completely map the
3661 * COW'd and extended socket buffer will be returned.
3662 */
3663 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3664 {
3665 int copyflag;
3666 int elt;
3667 struct sk_buff *skb1, **skb_p;
3668
3669 /* If skb is cloned or its head is paged, reallocate
3670 * head pulling out all the pages (pages are considered not writable
3671 * at the moment even if they are anonymous).
3672 */
3673 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3674 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3675 return -ENOMEM;
3676
3677 /* Easy case. Most of packets will go this way. */
3678 if (!skb_has_frag_list(skb)) {
3679 /* A little of trouble, not enough of space for trailer.
3680 * This should not happen, when stack is tuned to generate
3681 * good frames. OK, on miss we reallocate and reserve even more
3682 * space, 128 bytes is fair. */
3683
3684 if (skb_tailroom(skb) < tailbits &&
3685 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3686 return -ENOMEM;
3687
3688 /* Voila! */
3689 *trailer = skb;
3690 return 1;
3691 }
3692
3693 /* Misery. We are in troubles, going to mincer fragments... */
3694
3695 elt = 1;
3696 skb_p = &skb_shinfo(skb)->frag_list;
3697 copyflag = 0;
3698
3699 while ((skb1 = *skb_p) != NULL) {
3700 int ntail = 0;
3701
3702 /* The fragment is partially pulled by someone,
3703 * this can happen on input. Copy it and everything
3704 * after it. */
3705
3706 if (skb_shared(skb1))
3707 copyflag = 1;
3708
3709 /* If the skb is the last, worry about trailer. */
3710
3711 if (skb1->next == NULL && tailbits) {
3712 if (skb_shinfo(skb1)->nr_frags ||
3713 skb_has_frag_list(skb1) ||
3714 skb_tailroom(skb1) < tailbits)
3715 ntail = tailbits + 128;
3716 }
3717
3718 if (copyflag ||
3719 skb_cloned(skb1) ||
3720 ntail ||
3721 skb_shinfo(skb1)->nr_frags ||
3722 skb_has_frag_list(skb1)) {
3723 struct sk_buff *skb2;
3724
3725 /* Fuck, we are miserable poor guys... */
3726 if (ntail == 0)
3727 skb2 = skb_copy(skb1, GFP_ATOMIC);
3728 else
3729 skb2 = skb_copy_expand(skb1,
3730 skb_headroom(skb1),
3731 ntail,
3732 GFP_ATOMIC);
3733 if (unlikely(skb2 == NULL))
3734 return -ENOMEM;
3735
3736 if (skb1->sk)
3737 skb_set_owner_w(skb2, skb1->sk);
3738
3739 /* Looking around. Are we still alive?
3740 * OK, link new skb, drop old one */
3741
3742 skb2->next = skb1->next;
3743 *skb_p = skb2;
3744 kfree_skb(skb1);
3745 skb1 = skb2;
3746 }
3747 elt++;
3748 *trailer = skb1;
3749 skb_p = &skb1->next;
3750 }
3751
3752 return elt;
3753 }
3754 EXPORT_SYMBOL_GPL(skb_cow_data);
3755
3756 static void sock_rmem_free(struct sk_buff *skb)
3757 {
3758 struct sock *sk = skb->sk;
3759
3760 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3761 }
3762
3763 static void skb_set_err_queue(struct sk_buff *skb)
3764 {
3765 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
3766 * So, it is safe to (mis)use it to mark skbs on the error queue.
3767 */
3768 skb->pkt_type = PACKET_OUTGOING;
3769 BUILD_BUG_ON(PACKET_OUTGOING == 0);
3770 }
3771
3772 /*
3773 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3774 */
3775 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3776 {
3777 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3778 (unsigned int)sk->sk_rcvbuf)
3779 return -ENOMEM;
3780
3781 skb_orphan(skb);
3782 skb->sk = sk;
3783 skb->destructor = sock_rmem_free;
3784 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3785 skb_set_err_queue(skb);
3786
3787 /* before exiting rcu section, make sure dst is refcounted */
3788 skb_dst_force(skb);
3789
3790 skb_queue_tail(&sk->sk_error_queue, skb);
3791 if (!sock_flag(sk, SOCK_DEAD))
3792 sk->sk_data_ready(sk);
3793 return 0;
3794 }
3795 EXPORT_SYMBOL(sock_queue_err_skb);
3796
3797 static bool is_icmp_err_skb(const struct sk_buff *skb)
3798 {
3799 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
3800 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
3801 }
3802
3803 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3804 {
3805 struct sk_buff_head *q = &sk->sk_error_queue;
3806 struct sk_buff *skb, *skb_next = NULL;
3807 bool icmp_next = false;
3808 unsigned long flags;
3809
3810 spin_lock_irqsave(&q->lock, flags);
3811 skb = __skb_dequeue(q);
3812 if (skb && (skb_next = skb_peek(q))) {
3813 icmp_next = is_icmp_err_skb(skb_next);
3814 if (icmp_next)
3815 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
3816 }
3817 spin_unlock_irqrestore(&q->lock, flags);
3818
3819 if (is_icmp_err_skb(skb) && !icmp_next)
3820 sk->sk_err = 0;
3821
3822 if (skb_next)
3823 sk->sk_error_report(sk);
3824
3825 return skb;
3826 }
3827 EXPORT_SYMBOL(sock_dequeue_err_skb);
3828
3829 /**
3830 * skb_clone_sk - create clone of skb, and take reference to socket
3831 * @skb: the skb to clone
3832 *
3833 * This function creates a clone of a buffer that holds a reference on
3834 * sk_refcnt. Buffers created via this function are meant to be
3835 * returned using sock_queue_err_skb, or free via kfree_skb.
3836 *
3837 * When passing buffers allocated with this function to sock_queue_err_skb
3838 * it is necessary to wrap the call with sock_hold/sock_put in order to
3839 * prevent the socket from being released prior to being enqueued on
3840 * the sk_error_queue.
3841 */
3842 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3843 {
3844 struct sock *sk = skb->sk;
3845 struct sk_buff *clone;
3846
3847 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
3848 return NULL;
3849
3850 clone = skb_clone(skb, GFP_ATOMIC);
3851 if (!clone) {
3852 sock_put(sk);
3853 return NULL;
3854 }
3855
3856 clone->sk = sk;
3857 clone->destructor = sock_efree;
3858
3859 return clone;
3860 }
3861 EXPORT_SYMBOL(skb_clone_sk);
3862
3863 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3864 struct sock *sk,
3865 int tstype,
3866 bool opt_stats)
3867 {
3868 struct sock_exterr_skb *serr;
3869 int err;
3870
3871 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
3872
3873 serr = SKB_EXT_ERR(skb);
3874 memset(serr, 0, sizeof(*serr));
3875 serr->ee.ee_errno = ENOMSG;
3876 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3877 serr->ee.ee_info = tstype;
3878 serr->opt_stats = opt_stats;
3879 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
3880 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3881 serr->ee.ee_data = skb_shinfo(skb)->tskey;
3882 if (sk->sk_protocol == IPPROTO_TCP &&
3883 sk->sk_type == SOCK_STREAM)
3884 serr->ee.ee_data -= sk->sk_tskey;
3885 }
3886
3887 err = sock_queue_err_skb(sk, skb);
3888
3889 if (err)
3890 kfree_skb(skb);
3891 }
3892
3893 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3894 {
3895 bool ret;
3896
3897 if (likely(sysctl_tstamp_allow_data || tsonly))
3898 return true;
3899
3900 read_lock_bh(&sk->sk_callback_lock);
3901 ret = sk->sk_socket && sk->sk_socket->file &&
3902 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3903 read_unlock_bh(&sk->sk_callback_lock);
3904 return ret;
3905 }
3906
3907 void skb_complete_tx_timestamp(struct sk_buff *skb,
3908 struct skb_shared_hwtstamps *hwtstamps)
3909 {
3910 struct sock *sk = skb->sk;
3911
3912 if (!skb_may_tx_timestamp(sk, false))
3913 return;
3914
3915 /* Take a reference to prevent skb_orphan() from freeing the socket,
3916 * but only if the socket refcount is not zero.
3917 */
3918 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
3919 *skb_hwtstamps(skb) = *hwtstamps;
3920 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
3921 sock_put(sk);
3922 }
3923 }
3924 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3925
3926 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3927 struct skb_shared_hwtstamps *hwtstamps,
3928 struct sock *sk, int tstype)
3929 {
3930 struct sk_buff *skb;
3931 bool tsonly, opt_stats = false;
3932
3933 if (!sk)
3934 return;
3935
3936 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
3937 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
3938 return;
3939
3940 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3941 if (!skb_may_tx_timestamp(sk, tsonly))
3942 return;
3943
3944 if (tsonly) {
3945 #ifdef CONFIG_INET
3946 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
3947 sk->sk_protocol == IPPROTO_TCP &&
3948 sk->sk_type == SOCK_STREAM) {
3949 skb = tcp_get_timestamping_opt_stats(sk);
3950 opt_stats = true;
3951 } else
3952 #endif
3953 skb = alloc_skb(0, GFP_ATOMIC);
3954 } else {
3955 skb = skb_clone(orig_skb, GFP_ATOMIC);
3956 }
3957 if (!skb)
3958 return;
3959
3960 if (tsonly) {
3961 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
3962 SKBTX_ANY_TSTAMP;
3963 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3964 }
3965
3966 if (hwtstamps)
3967 *skb_hwtstamps(skb) = *hwtstamps;
3968 else
3969 skb->tstamp = ktime_get_real();
3970
3971 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
3972 }
3973 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3974
3975 void skb_tstamp_tx(struct sk_buff *orig_skb,
3976 struct skb_shared_hwtstamps *hwtstamps)
3977 {
3978 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3979 SCM_TSTAMP_SND);
3980 }
3981 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3982
3983 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3984 {
3985 struct sock *sk = skb->sk;
3986 struct sock_exterr_skb *serr;
3987 int err = 1;
3988
3989 skb->wifi_acked_valid = 1;
3990 skb->wifi_acked = acked;
3991
3992 serr = SKB_EXT_ERR(skb);
3993 memset(serr, 0, sizeof(*serr));
3994 serr->ee.ee_errno = ENOMSG;
3995 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3996
3997 /* Take a reference to prevent skb_orphan() from freeing the socket,
3998 * but only if the socket refcount is not zero.
3999 */
4000 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4001 err = sock_queue_err_skb(sk, skb);
4002 sock_put(sk);
4003 }
4004 if (err)
4005 kfree_skb(skb);
4006 }
4007 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4008
4009 /**
4010 * skb_partial_csum_set - set up and verify partial csum values for packet
4011 * @skb: the skb to set
4012 * @start: the number of bytes after skb->data to start checksumming.
4013 * @off: the offset from start to place the checksum.
4014 *
4015 * For untrusted partially-checksummed packets, we need to make sure the values
4016 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4017 *
4018 * This function checks and sets those values and skb->ip_summed: if this
4019 * returns false you should drop the packet.
4020 */
4021 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4022 {
4023 if (unlikely(start > skb_headlen(skb)) ||
4024 unlikely((int)start + off > skb_headlen(skb) - 2)) {
4025 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
4026 start, off, skb_headlen(skb));
4027 return false;
4028 }
4029 skb->ip_summed = CHECKSUM_PARTIAL;
4030 skb->csum_start = skb_headroom(skb) + start;
4031 skb->csum_offset = off;
4032 skb_set_transport_header(skb, start);
4033 return true;
4034 }
4035 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4036
4037 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4038 unsigned int max)
4039 {
4040 if (skb_headlen(skb) >= len)
4041 return 0;
4042
4043 /* If we need to pullup then pullup to the max, so we
4044 * won't need to do it again.
4045 */
4046 if (max > skb->len)
4047 max = skb->len;
4048
4049 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4050 return -ENOMEM;
4051
4052 if (skb_headlen(skb) < len)
4053 return -EPROTO;
4054
4055 return 0;
4056 }
4057
4058 #define MAX_TCP_HDR_LEN (15 * 4)
4059
4060 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4061 typeof(IPPROTO_IP) proto,
4062 unsigned int off)
4063 {
4064 switch (proto) {
4065 int err;
4066
4067 case IPPROTO_TCP:
4068 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4069 off + MAX_TCP_HDR_LEN);
4070 if (!err && !skb_partial_csum_set(skb, off,
4071 offsetof(struct tcphdr,
4072 check)))
4073 err = -EPROTO;
4074 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4075
4076 case IPPROTO_UDP:
4077 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4078 off + sizeof(struct udphdr));
4079 if (!err && !skb_partial_csum_set(skb, off,
4080 offsetof(struct udphdr,
4081 check)))
4082 err = -EPROTO;
4083 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4084 }
4085
4086 return ERR_PTR(-EPROTO);
4087 }
4088
4089 /* This value should be large enough to cover a tagged ethernet header plus
4090 * maximally sized IP and TCP or UDP headers.
4091 */
4092 #define MAX_IP_HDR_LEN 128
4093
4094 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4095 {
4096 unsigned int off;
4097 bool fragment;
4098 __sum16 *csum;
4099 int err;
4100
4101 fragment = false;
4102
4103 err = skb_maybe_pull_tail(skb,
4104 sizeof(struct iphdr),
4105 MAX_IP_HDR_LEN);
4106 if (err < 0)
4107 goto out;
4108
4109 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4110 fragment = true;
4111
4112 off = ip_hdrlen(skb);
4113
4114 err = -EPROTO;
4115
4116 if (fragment)
4117 goto out;
4118
4119 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4120 if (IS_ERR(csum))
4121 return PTR_ERR(csum);
4122
4123 if (recalculate)
4124 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4125 ip_hdr(skb)->daddr,
4126 skb->len - off,
4127 ip_hdr(skb)->protocol, 0);
4128 err = 0;
4129
4130 out:
4131 return err;
4132 }
4133
4134 /* This value should be large enough to cover a tagged ethernet header plus
4135 * an IPv6 header, all options, and a maximal TCP or UDP header.
4136 */
4137 #define MAX_IPV6_HDR_LEN 256
4138
4139 #define OPT_HDR(type, skb, off) \
4140 (type *)(skb_network_header(skb) + (off))
4141
4142 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4143 {
4144 int err;
4145 u8 nexthdr;
4146 unsigned int off;
4147 unsigned int len;
4148 bool fragment;
4149 bool done;
4150 __sum16 *csum;
4151
4152 fragment = false;
4153 done = false;
4154
4155 off = sizeof(struct ipv6hdr);
4156
4157 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4158 if (err < 0)
4159 goto out;
4160
4161 nexthdr = ipv6_hdr(skb)->nexthdr;
4162
4163 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4164 while (off <= len && !done) {
4165 switch (nexthdr) {
4166 case IPPROTO_DSTOPTS:
4167 case IPPROTO_HOPOPTS:
4168 case IPPROTO_ROUTING: {
4169 struct ipv6_opt_hdr *hp;
4170
4171 err = skb_maybe_pull_tail(skb,
4172 off +
4173 sizeof(struct ipv6_opt_hdr),
4174 MAX_IPV6_HDR_LEN);
4175 if (err < 0)
4176 goto out;
4177
4178 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4179 nexthdr = hp->nexthdr;
4180 off += ipv6_optlen(hp);
4181 break;
4182 }
4183 case IPPROTO_AH: {
4184 struct ip_auth_hdr *hp;
4185
4186 err = skb_maybe_pull_tail(skb,
4187 off +
4188 sizeof(struct ip_auth_hdr),
4189 MAX_IPV6_HDR_LEN);
4190 if (err < 0)
4191 goto out;
4192
4193 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4194 nexthdr = hp->nexthdr;
4195 off += ipv6_authlen(hp);
4196 break;
4197 }
4198 case IPPROTO_FRAGMENT: {
4199 struct frag_hdr *hp;
4200
4201 err = skb_maybe_pull_tail(skb,
4202 off +
4203 sizeof(struct frag_hdr),
4204 MAX_IPV6_HDR_LEN);
4205 if (err < 0)
4206 goto out;
4207
4208 hp = OPT_HDR(struct frag_hdr, skb, off);
4209
4210 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4211 fragment = true;
4212
4213 nexthdr = hp->nexthdr;
4214 off += sizeof(struct frag_hdr);
4215 break;
4216 }
4217 default:
4218 done = true;
4219 break;
4220 }
4221 }
4222
4223 err = -EPROTO;
4224
4225 if (!done || fragment)
4226 goto out;
4227
4228 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4229 if (IS_ERR(csum))
4230 return PTR_ERR(csum);
4231
4232 if (recalculate)
4233 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4234 &ipv6_hdr(skb)->daddr,
4235 skb->len - off, nexthdr, 0);
4236 err = 0;
4237
4238 out:
4239 return err;
4240 }
4241
4242 /**
4243 * skb_checksum_setup - set up partial checksum offset
4244 * @skb: the skb to set up
4245 * @recalculate: if true the pseudo-header checksum will be recalculated
4246 */
4247 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4248 {
4249 int err;
4250
4251 switch (skb->protocol) {
4252 case htons(ETH_P_IP):
4253 err = skb_checksum_setup_ipv4(skb, recalculate);
4254 break;
4255
4256 case htons(ETH_P_IPV6):
4257 err = skb_checksum_setup_ipv6(skb, recalculate);
4258 break;
4259
4260 default:
4261 err = -EPROTO;
4262 break;
4263 }
4264
4265 return err;
4266 }
4267 EXPORT_SYMBOL(skb_checksum_setup);
4268
4269 /**
4270 * skb_checksum_maybe_trim - maybe trims the given skb
4271 * @skb: the skb to check
4272 * @transport_len: the data length beyond the network header
4273 *
4274 * Checks whether the given skb has data beyond the given transport length.
4275 * If so, returns a cloned skb trimmed to this transport length.
4276 * Otherwise returns the provided skb. Returns NULL in error cases
4277 * (e.g. transport_len exceeds skb length or out-of-memory).
4278 *
4279 * Caller needs to set the skb transport header and free any returned skb if it
4280 * differs from the provided skb.
4281 */
4282 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4283 unsigned int transport_len)
4284 {
4285 struct sk_buff *skb_chk;
4286 unsigned int len = skb_transport_offset(skb) + transport_len;
4287 int ret;
4288
4289 if (skb->len < len)
4290 return NULL;
4291 else if (skb->len == len)
4292 return skb;
4293
4294 skb_chk = skb_clone(skb, GFP_ATOMIC);
4295 if (!skb_chk)
4296 return NULL;
4297
4298 ret = pskb_trim_rcsum(skb_chk, len);
4299 if (ret) {
4300 kfree_skb(skb_chk);
4301 return NULL;
4302 }
4303
4304 return skb_chk;
4305 }
4306
4307 /**
4308 * skb_checksum_trimmed - validate checksum of an skb
4309 * @skb: the skb to check
4310 * @transport_len: the data length beyond the network header
4311 * @skb_chkf: checksum function to use
4312 *
4313 * Applies the given checksum function skb_chkf to the provided skb.
4314 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4315 *
4316 * If the skb has data beyond the given transport length, then a
4317 * trimmed & cloned skb is checked and returned.
4318 *
4319 * Caller needs to set the skb transport header and free any returned skb if it
4320 * differs from the provided skb.
4321 */
4322 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4323 unsigned int transport_len,
4324 __sum16(*skb_chkf)(struct sk_buff *skb))
4325 {
4326 struct sk_buff *skb_chk;
4327 unsigned int offset = skb_transport_offset(skb);
4328 __sum16 ret;
4329
4330 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4331 if (!skb_chk)
4332 goto err;
4333
4334 if (!pskb_may_pull(skb_chk, offset))
4335 goto err;
4336
4337 skb_pull_rcsum(skb_chk, offset);
4338 ret = skb_chkf(skb_chk);
4339 skb_push_rcsum(skb_chk, offset);
4340
4341 if (ret)
4342 goto err;
4343
4344 return skb_chk;
4345
4346 err:
4347 if (skb_chk && skb_chk != skb)
4348 kfree_skb(skb_chk);
4349
4350 return NULL;
4351
4352 }
4353 EXPORT_SYMBOL(skb_checksum_trimmed);
4354
4355 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4356 {
4357 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4358 skb->dev->name);
4359 }
4360 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4361
4362 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4363 {
4364 if (head_stolen) {
4365 skb_release_head_state(skb);
4366 kmem_cache_free(skbuff_head_cache, skb);
4367 } else {
4368 __kfree_skb(skb);
4369 }
4370 }
4371 EXPORT_SYMBOL(kfree_skb_partial);
4372
4373 /**
4374 * skb_try_coalesce - try to merge skb to prior one
4375 * @to: prior buffer
4376 * @from: buffer to add
4377 * @fragstolen: pointer to boolean
4378 * @delta_truesize: how much more was allocated than was requested
4379 */
4380 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4381 bool *fragstolen, int *delta_truesize)
4382 {
4383 int i, delta, len = from->len;
4384
4385 *fragstolen = false;
4386
4387 if (skb_cloned(to))
4388 return false;
4389
4390 if (len <= skb_tailroom(to)) {
4391 if (len)
4392 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4393 *delta_truesize = 0;
4394 return true;
4395 }
4396
4397 if (skb_has_frag_list(to) || skb_has_frag_list(from))
4398 return false;
4399
4400 if (skb_headlen(from) != 0) {
4401 struct page *page;
4402 unsigned int offset;
4403
4404 if (skb_shinfo(to)->nr_frags +
4405 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4406 return false;
4407
4408 if (skb_head_is_locked(from))
4409 return false;
4410
4411 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4412
4413 page = virt_to_head_page(from->head);
4414 offset = from->data - (unsigned char *)page_address(page);
4415
4416 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4417 page, offset, skb_headlen(from));
4418 *fragstolen = true;
4419 } else {
4420 if (skb_shinfo(to)->nr_frags +
4421 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4422 return false;
4423
4424 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4425 }
4426
4427 WARN_ON_ONCE(delta < len);
4428
4429 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4430 skb_shinfo(from)->frags,
4431 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4432 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4433
4434 if (!skb_cloned(from))
4435 skb_shinfo(from)->nr_frags = 0;
4436
4437 /* if the skb is not cloned this does nothing
4438 * since we set nr_frags to 0.
4439 */
4440 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4441 skb_frag_ref(from, i);
4442
4443 to->truesize += delta;
4444 to->len += len;
4445 to->data_len += len;
4446
4447 *delta_truesize = delta;
4448 return true;
4449 }
4450 EXPORT_SYMBOL(skb_try_coalesce);
4451
4452 /**
4453 * skb_scrub_packet - scrub an skb
4454 *
4455 * @skb: buffer to clean
4456 * @xnet: packet is crossing netns
4457 *
4458 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4459 * into/from a tunnel. Some information have to be cleared during these
4460 * operations.
4461 * skb_scrub_packet can also be used to clean a skb before injecting it in
4462 * another namespace (@xnet == true). We have to clear all information in the
4463 * skb that could impact namespace isolation.
4464 */
4465 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4466 {
4467 skb->tstamp = 0;
4468 skb->pkt_type = PACKET_HOST;
4469 skb->skb_iif = 0;
4470 skb->ignore_df = 0;
4471 skb_dst_drop(skb);
4472 secpath_reset(skb);
4473 nf_reset(skb);
4474 nf_reset_trace(skb);
4475
4476 if (!xnet)
4477 return;
4478
4479 skb_orphan(skb);
4480 skb->mark = 0;
4481 }
4482 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4483
4484 /**
4485 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4486 *
4487 * @skb: GSO skb
4488 *
4489 * skb_gso_transport_seglen is used to determine the real size of the
4490 * individual segments, including Layer4 headers (TCP/UDP).
4491 *
4492 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4493 */
4494 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4495 {
4496 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4497 unsigned int thlen = 0;
4498
4499 if (skb->encapsulation) {
4500 thlen = skb_inner_transport_header(skb) -
4501 skb_transport_header(skb);
4502
4503 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4504 thlen += inner_tcp_hdrlen(skb);
4505 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4506 thlen = tcp_hdrlen(skb);
4507 } else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) {
4508 thlen = sizeof(struct sctphdr);
4509 }
4510 /* UFO sets gso_size to the size of the fragmentation
4511 * payload, i.e. the size of the L4 (UDP) header is already
4512 * accounted for.
4513 */
4514 return thlen + shinfo->gso_size;
4515 }
4516 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4517
4518 /**
4519 * skb_gso_validate_mtu - Return in case such skb fits a given MTU
4520 *
4521 * @skb: GSO skb
4522 * @mtu: MTU to validate against
4523 *
4524 * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
4525 * once split.
4526 */
4527 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu)
4528 {
4529 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4530 const struct sk_buff *iter;
4531 unsigned int hlen;
4532
4533 hlen = skb_gso_network_seglen(skb);
4534
4535 if (shinfo->gso_size != GSO_BY_FRAGS)
4536 return hlen <= mtu;
4537
4538 /* Undo this so we can re-use header sizes */
4539 hlen -= GSO_BY_FRAGS;
4540
4541 skb_walk_frags(skb, iter) {
4542 if (hlen + skb_headlen(iter) > mtu)
4543 return false;
4544 }
4545
4546 return true;
4547 }
4548 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu);
4549
4550 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4551 {
4552 if (skb_cow(skb, skb_headroom(skb)) < 0) {
4553 kfree_skb(skb);
4554 return NULL;
4555 }
4556
4557 memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4558 2 * ETH_ALEN);
4559 skb->mac_header += VLAN_HLEN;
4560 return skb;
4561 }
4562
4563 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4564 {
4565 struct vlan_hdr *vhdr;
4566 u16 vlan_tci;
4567
4568 if (unlikely(skb_vlan_tag_present(skb))) {
4569 /* vlan_tci is already set-up so leave this for another time */
4570 return skb;
4571 }
4572
4573 skb = skb_share_check(skb, GFP_ATOMIC);
4574 if (unlikely(!skb))
4575 goto err_free;
4576
4577 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4578 goto err_free;
4579
4580 vhdr = (struct vlan_hdr *)skb->data;
4581 vlan_tci = ntohs(vhdr->h_vlan_TCI);
4582 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4583
4584 skb_pull_rcsum(skb, VLAN_HLEN);
4585 vlan_set_encap_proto(skb, vhdr);
4586
4587 skb = skb_reorder_vlan_header(skb);
4588 if (unlikely(!skb))
4589 goto err_free;
4590
4591 skb_reset_network_header(skb);
4592 skb_reset_transport_header(skb);
4593 skb_reset_mac_len(skb);
4594
4595 return skb;
4596
4597 err_free:
4598 kfree_skb(skb);
4599 return NULL;
4600 }
4601 EXPORT_SYMBOL(skb_vlan_untag);
4602
4603 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4604 {
4605 if (!pskb_may_pull(skb, write_len))
4606 return -ENOMEM;
4607
4608 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4609 return 0;
4610
4611 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4612 }
4613 EXPORT_SYMBOL(skb_ensure_writable);
4614
4615 /* remove VLAN header from packet and update csum accordingly.
4616 * expects a non skb_vlan_tag_present skb with a vlan tag payload
4617 */
4618 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4619 {
4620 struct vlan_hdr *vhdr;
4621 int offset = skb->data - skb_mac_header(skb);
4622 int err;
4623
4624 if (WARN_ONCE(offset,
4625 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
4626 offset)) {
4627 return -EINVAL;
4628 }
4629
4630 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4631 if (unlikely(err))
4632 return err;
4633
4634 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4635
4636 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4637 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
4638
4639 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4640 __skb_pull(skb, VLAN_HLEN);
4641
4642 vlan_set_encap_proto(skb, vhdr);
4643 skb->mac_header += VLAN_HLEN;
4644
4645 if (skb_network_offset(skb) < ETH_HLEN)
4646 skb_set_network_header(skb, ETH_HLEN);
4647
4648 skb_reset_mac_len(skb);
4649
4650 return err;
4651 }
4652 EXPORT_SYMBOL(__skb_vlan_pop);
4653
4654 /* Pop a vlan tag either from hwaccel or from payload.
4655 * Expects skb->data at mac header.
4656 */
4657 int skb_vlan_pop(struct sk_buff *skb)
4658 {
4659 u16 vlan_tci;
4660 __be16 vlan_proto;
4661 int err;
4662
4663 if (likely(skb_vlan_tag_present(skb))) {
4664 skb->vlan_tci = 0;
4665 } else {
4666 if (unlikely(!eth_type_vlan(skb->protocol)))
4667 return 0;
4668
4669 err = __skb_vlan_pop(skb, &vlan_tci);
4670 if (err)
4671 return err;
4672 }
4673 /* move next vlan tag to hw accel tag */
4674 if (likely(!eth_type_vlan(skb->protocol)))
4675 return 0;
4676
4677 vlan_proto = skb->protocol;
4678 err = __skb_vlan_pop(skb, &vlan_tci);
4679 if (unlikely(err))
4680 return err;
4681
4682 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4683 return 0;
4684 }
4685 EXPORT_SYMBOL(skb_vlan_pop);
4686
4687 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
4688 * Expects skb->data at mac header.
4689 */
4690 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4691 {
4692 if (skb_vlan_tag_present(skb)) {
4693 int offset = skb->data - skb_mac_header(skb);
4694 int err;
4695
4696 if (WARN_ONCE(offset,
4697 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
4698 offset)) {
4699 return -EINVAL;
4700 }
4701
4702 err = __vlan_insert_tag(skb, skb->vlan_proto,
4703 skb_vlan_tag_get(skb));
4704 if (err)
4705 return err;
4706
4707 skb->protocol = skb->vlan_proto;
4708 skb->mac_len += VLAN_HLEN;
4709
4710 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4711 }
4712 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4713 return 0;
4714 }
4715 EXPORT_SYMBOL(skb_vlan_push);
4716
4717 /**
4718 * alloc_skb_with_frags - allocate skb with page frags
4719 *
4720 * @header_len: size of linear part
4721 * @data_len: needed length in frags
4722 * @max_page_order: max page order desired.
4723 * @errcode: pointer to error code if any
4724 * @gfp_mask: allocation mask
4725 *
4726 * This can be used to allocate a paged skb, given a maximal order for frags.
4727 */
4728 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4729 unsigned long data_len,
4730 int max_page_order,
4731 int *errcode,
4732 gfp_t gfp_mask)
4733 {
4734 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4735 unsigned long chunk;
4736 struct sk_buff *skb;
4737 struct page *page;
4738 gfp_t gfp_head;
4739 int i;
4740
4741 *errcode = -EMSGSIZE;
4742 /* Note this test could be relaxed, if we succeed to allocate
4743 * high order pages...
4744 */
4745 if (npages > MAX_SKB_FRAGS)
4746 return NULL;
4747
4748 gfp_head = gfp_mask;
4749 if (gfp_head & __GFP_DIRECT_RECLAIM)
4750 gfp_head |= __GFP_RETRY_MAYFAIL;
4751
4752 *errcode = -ENOBUFS;
4753 skb = alloc_skb(header_len, gfp_head);
4754 if (!skb)
4755 return NULL;
4756
4757 skb->truesize += npages << PAGE_SHIFT;
4758
4759 for (i = 0; npages > 0; i++) {
4760 int order = max_page_order;
4761
4762 while (order) {
4763 if (npages >= 1 << order) {
4764 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4765 __GFP_COMP |
4766 __GFP_NOWARN |
4767 __GFP_NORETRY,
4768 order);
4769 if (page)
4770 goto fill_page;
4771 /* Do not retry other high order allocations */
4772 order = 1;
4773 max_page_order = 0;
4774 }
4775 order--;
4776 }
4777 page = alloc_page(gfp_mask);
4778 if (!page)
4779 goto failure;
4780 fill_page:
4781 chunk = min_t(unsigned long, data_len,
4782 PAGE_SIZE << order);
4783 skb_fill_page_desc(skb, i, page, 0, chunk);
4784 data_len -= chunk;
4785 npages -= 1 << order;
4786 }
4787 return skb;
4788
4789 failure:
4790 kfree_skb(skb);
4791 return NULL;
4792 }
4793 EXPORT_SYMBOL(alloc_skb_with_frags);
4794
4795 /* carve out the first off bytes from skb when off < headlen */
4796 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
4797 const int headlen, gfp_t gfp_mask)
4798 {
4799 int i;
4800 int size = skb_end_offset(skb);
4801 int new_hlen = headlen - off;
4802 u8 *data;
4803
4804 size = SKB_DATA_ALIGN(size);
4805
4806 if (skb_pfmemalloc(skb))
4807 gfp_mask |= __GFP_MEMALLOC;
4808 data = kmalloc_reserve(size +
4809 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4810 gfp_mask, NUMA_NO_NODE, NULL);
4811 if (!data)
4812 return -ENOMEM;
4813
4814 size = SKB_WITH_OVERHEAD(ksize(data));
4815
4816 /* Copy real data, and all frags */
4817 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
4818 skb->len -= off;
4819
4820 memcpy((struct skb_shared_info *)(data + size),
4821 skb_shinfo(skb),
4822 offsetof(struct skb_shared_info,
4823 frags[skb_shinfo(skb)->nr_frags]));
4824 if (skb_cloned(skb)) {
4825 /* drop the old head gracefully */
4826 if (skb_orphan_frags(skb, gfp_mask)) {
4827 kfree(data);
4828 return -ENOMEM;
4829 }
4830 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4831 skb_frag_ref(skb, i);
4832 if (skb_has_frag_list(skb))
4833 skb_clone_fraglist(skb);
4834 skb_release_data(skb);
4835 } else {
4836 /* we can reuse existing recount- all we did was
4837 * relocate values
4838 */
4839 skb_free_head(skb);
4840 }
4841
4842 skb->head = data;
4843 skb->data = data;
4844 skb->head_frag = 0;
4845 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4846 skb->end = size;
4847 #else
4848 skb->end = skb->head + size;
4849 #endif
4850 skb_set_tail_pointer(skb, skb_headlen(skb));
4851 skb_headers_offset_update(skb, 0);
4852 skb->cloned = 0;
4853 skb->hdr_len = 0;
4854 skb->nohdr = 0;
4855 atomic_set(&skb_shinfo(skb)->dataref, 1);
4856
4857 return 0;
4858 }
4859
4860 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
4861
4862 /* carve out the first eat bytes from skb's frag_list. May recurse into
4863 * pskb_carve()
4864 */
4865 static int pskb_carve_frag_list(struct sk_buff *skb,
4866 struct skb_shared_info *shinfo, int eat,
4867 gfp_t gfp_mask)
4868 {
4869 struct sk_buff *list = shinfo->frag_list;
4870 struct sk_buff *clone = NULL;
4871 struct sk_buff *insp = NULL;
4872
4873 do {
4874 if (!list) {
4875 pr_err("Not enough bytes to eat. Want %d\n", eat);
4876 return -EFAULT;
4877 }
4878 if (list->len <= eat) {
4879 /* Eaten as whole. */
4880 eat -= list->len;
4881 list = list->next;
4882 insp = list;
4883 } else {
4884 /* Eaten partially. */
4885 if (skb_shared(list)) {
4886 clone = skb_clone(list, gfp_mask);
4887 if (!clone)
4888 return -ENOMEM;
4889 insp = list->next;
4890 list = clone;
4891 } else {
4892 /* This may be pulled without problems. */
4893 insp = list;
4894 }
4895 if (pskb_carve(list, eat, gfp_mask) < 0) {
4896 kfree_skb(clone);
4897 return -ENOMEM;
4898 }
4899 break;
4900 }
4901 } while (eat);
4902
4903 /* Free pulled out fragments. */
4904 while ((list = shinfo->frag_list) != insp) {
4905 shinfo->frag_list = list->next;
4906 kfree_skb(list);
4907 }
4908 /* And insert new clone at head. */
4909 if (clone) {
4910 clone->next = list;
4911 shinfo->frag_list = clone;
4912 }
4913 return 0;
4914 }
4915
4916 /* carve off first len bytes from skb. Split line (off) is in the
4917 * non-linear part of skb
4918 */
4919 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
4920 int pos, gfp_t gfp_mask)
4921 {
4922 int i, k = 0;
4923 int size = skb_end_offset(skb);
4924 u8 *data;
4925 const int nfrags = skb_shinfo(skb)->nr_frags;
4926 struct skb_shared_info *shinfo;
4927
4928 size = SKB_DATA_ALIGN(size);
4929
4930 if (skb_pfmemalloc(skb))
4931 gfp_mask |= __GFP_MEMALLOC;
4932 data = kmalloc_reserve(size +
4933 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4934 gfp_mask, NUMA_NO_NODE, NULL);
4935 if (!data)
4936 return -ENOMEM;
4937
4938 size = SKB_WITH_OVERHEAD(ksize(data));
4939
4940 memcpy((struct skb_shared_info *)(data + size),
4941 skb_shinfo(skb), offsetof(struct skb_shared_info,
4942 frags[skb_shinfo(skb)->nr_frags]));
4943 if (skb_orphan_frags(skb, gfp_mask)) {
4944 kfree(data);
4945 return -ENOMEM;
4946 }
4947 shinfo = (struct skb_shared_info *)(data + size);
4948 for (i = 0; i < nfrags; i++) {
4949 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4950
4951 if (pos + fsize > off) {
4952 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
4953
4954 if (pos < off) {
4955 /* Split frag.
4956 * We have two variants in this case:
4957 * 1. Move all the frag to the second
4958 * part, if it is possible. F.e.
4959 * this approach is mandatory for TUX,
4960 * where splitting is expensive.
4961 * 2. Split is accurately. We make this.
4962 */
4963 shinfo->frags[0].page_offset += off - pos;
4964 skb_frag_size_sub(&shinfo->frags[0], off - pos);
4965 }
4966 skb_frag_ref(skb, i);
4967 k++;
4968 }
4969 pos += fsize;
4970 }
4971 shinfo->nr_frags = k;
4972 if (skb_has_frag_list(skb))
4973 skb_clone_fraglist(skb);
4974
4975 if (k == 0) {
4976 /* split line is in frag list */
4977 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
4978 }
4979 skb_release_data(skb);
4980
4981 skb->head = data;
4982 skb->head_frag = 0;
4983 skb->data = data;
4984 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4985 skb->end = size;
4986 #else
4987 skb->end = skb->head + size;
4988 #endif
4989 skb_reset_tail_pointer(skb);
4990 skb_headers_offset_update(skb, 0);
4991 skb->cloned = 0;
4992 skb->hdr_len = 0;
4993 skb->nohdr = 0;
4994 skb->len -= off;
4995 skb->data_len = skb->len;
4996 atomic_set(&skb_shinfo(skb)->dataref, 1);
4997 return 0;
4998 }
4999
5000 /* remove len bytes from the beginning of the skb */
5001 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5002 {
5003 int headlen = skb_headlen(skb);
5004
5005 if (len < headlen)
5006 return pskb_carve_inside_header(skb, len, headlen, gfp);
5007 else
5008 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5009 }
5010
5011 /* Extract to_copy bytes starting at off from skb, and return this in
5012 * a new skb
5013 */
5014 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5015 int to_copy, gfp_t gfp)
5016 {
5017 struct sk_buff *clone = skb_clone(skb, gfp);
5018
5019 if (!clone)
5020 return NULL;
5021
5022 if (pskb_carve(clone, off, gfp) < 0 ||
5023 pskb_trim(clone, to_copy)) {
5024 kfree_skb(clone);
5025 return NULL;
5026 }
5027 return clone;
5028 }
5029 EXPORT_SYMBOL(pskb_extract);
5030
5031 /**
5032 * skb_condense - try to get rid of fragments/frag_list if possible
5033 * @skb: buffer
5034 *
5035 * Can be used to save memory before skb is added to a busy queue.
5036 * If packet has bytes in frags and enough tail room in skb->head,
5037 * pull all of them, so that we can free the frags right now and adjust
5038 * truesize.
5039 * Notes:
5040 * We do not reallocate skb->head thus can not fail.
5041 * Caller must re-evaluate skb->truesize if needed.
5042 */
5043 void skb_condense(struct sk_buff *skb)
5044 {
5045 if (skb->data_len) {
5046 if (skb->data_len > skb->end - skb->tail ||
5047 skb_cloned(skb))
5048 return;
5049
5050 /* Nice, we can free page frag(s) right now */
5051 __pskb_pull_tail(skb, skb->data_len);
5052 }
5053 /* At this point, skb->truesize might be over estimated,
5054 * because skb had a fragment, and fragments do not tell
5055 * their truesize.
5056 * When we pulled its content into skb->head, fragment
5057 * was freed, but __pskb_pull_tail() could not possibly
5058 * adjust skb->truesize, not knowing the frag truesize.
5059 */
5060 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5061 }