]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/core/skbuff.c
Merge tag 'rproc-v4.10-fixes' of git://github.com/andersson/remoteproc
[mirror_ubuntu-zesty-kernel.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/sctp.h>
53 #include <linux/netdevice.h>
54 #ifdef CONFIG_NET_CLS_ACT
55 #include <net/pkt_sched.h>
56 #endif
57 #include <linux/string.h>
58 #include <linux/skbuff.h>
59 #include <linux/splice.h>
60 #include <linux/cache.h>
61 #include <linux/rtnetlink.h>
62 #include <linux/init.h>
63 #include <linux/scatterlist.h>
64 #include <linux/errqueue.h>
65 #include <linux/prefetch.h>
66 #include <linux/if_vlan.h>
67
68 #include <net/protocol.h>
69 #include <net/dst.h>
70 #include <net/sock.h>
71 #include <net/checksum.h>
72 #include <net/ip6_checksum.h>
73 #include <net/xfrm.h>
74
75 #include <linux/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
80
81 struct kmem_cache *skbuff_head_cache __read_mostly;
82 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
83 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
84 EXPORT_SYMBOL(sysctl_max_skb_frags);
85
86 /**
87 * skb_panic - private function for out-of-line support
88 * @skb: buffer
89 * @sz: size
90 * @addr: address
91 * @msg: skb_over_panic or skb_under_panic
92 *
93 * Out-of-line support for skb_put() and skb_push().
94 * Called via the wrapper skb_over_panic() or skb_under_panic().
95 * Keep out of line to prevent kernel bloat.
96 * __builtin_return_address is not used because it is not always reliable.
97 */
98 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
99 const char msg[])
100 {
101 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
102 msg, addr, skb->len, sz, skb->head, skb->data,
103 (unsigned long)skb->tail, (unsigned long)skb->end,
104 skb->dev ? skb->dev->name : "<NULL>");
105 BUG();
106 }
107
108 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
109 {
110 skb_panic(skb, sz, addr, __func__);
111 }
112
113 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
114 {
115 skb_panic(skb, sz, addr, __func__);
116 }
117
118 /*
119 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
120 * the caller if emergency pfmemalloc reserves are being used. If it is and
121 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
122 * may be used. Otherwise, the packet data may be discarded until enough
123 * memory is free
124 */
125 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
126 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
127
128 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
129 unsigned long ip, bool *pfmemalloc)
130 {
131 void *obj;
132 bool ret_pfmemalloc = false;
133
134 /*
135 * Try a regular allocation, when that fails and we're not entitled
136 * to the reserves, fail.
137 */
138 obj = kmalloc_node_track_caller(size,
139 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
140 node);
141 if (obj || !(gfp_pfmemalloc_allowed(flags)))
142 goto out;
143
144 /* Try again but now we are using pfmemalloc reserves */
145 ret_pfmemalloc = true;
146 obj = kmalloc_node_track_caller(size, flags, node);
147
148 out:
149 if (pfmemalloc)
150 *pfmemalloc = ret_pfmemalloc;
151
152 return obj;
153 }
154
155 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
156 * 'private' fields and also do memory statistics to find all the
157 * [BEEP] leaks.
158 *
159 */
160
161 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
162 {
163 struct sk_buff *skb;
164
165 /* Get the HEAD */
166 skb = kmem_cache_alloc_node(skbuff_head_cache,
167 gfp_mask & ~__GFP_DMA, node);
168 if (!skb)
169 goto out;
170
171 /*
172 * Only clear those fields we need to clear, not those that we will
173 * actually initialise below. Hence, don't put any more fields after
174 * the tail pointer in struct sk_buff!
175 */
176 memset(skb, 0, offsetof(struct sk_buff, tail));
177 skb->head = NULL;
178 skb->truesize = sizeof(struct sk_buff);
179 atomic_set(&skb->users, 1);
180
181 skb->mac_header = (typeof(skb->mac_header))~0U;
182 out:
183 return skb;
184 }
185
186 /**
187 * __alloc_skb - allocate a network buffer
188 * @size: size to allocate
189 * @gfp_mask: allocation mask
190 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
191 * instead of head cache and allocate a cloned (child) skb.
192 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
193 * allocations in case the data is required for writeback
194 * @node: numa node to allocate memory on
195 *
196 * Allocate a new &sk_buff. The returned buffer has no headroom and a
197 * tail room of at least size bytes. The object has a reference count
198 * of one. The return is the buffer. On a failure the return is %NULL.
199 *
200 * Buffers may only be allocated from interrupts using a @gfp_mask of
201 * %GFP_ATOMIC.
202 */
203 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
204 int flags, int node)
205 {
206 struct kmem_cache *cache;
207 struct skb_shared_info *shinfo;
208 struct sk_buff *skb;
209 u8 *data;
210 bool pfmemalloc;
211
212 cache = (flags & SKB_ALLOC_FCLONE)
213 ? skbuff_fclone_cache : skbuff_head_cache;
214
215 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
216 gfp_mask |= __GFP_MEMALLOC;
217
218 /* Get the HEAD */
219 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
220 if (!skb)
221 goto out;
222 prefetchw(skb);
223
224 /* We do our best to align skb_shared_info on a separate cache
225 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
226 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
227 * Both skb->head and skb_shared_info are cache line aligned.
228 */
229 size = SKB_DATA_ALIGN(size);
230 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
231 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
232 if (!data)
233 goto nodata;
234 /* kmalloc(size) might give us more room than requested.
235 * Put skb_shared_info exactly at the end of allocated zone,
236 * to allow max possible filling before reallocation.
237 */
238 size = SKB_WITH_OVERHEAD(ksize(data));
239 prefetchw(data + size);
240
241 /*
242 * Only clear those fields we need to clear, not those that we will
243 * actually initialise below. Hence, don't put any more fields after
244 * the tail pointer in struct sk_buff!
245 */
246 memset(skb, 0, offsetof(struct sk_buff, tail));
247 /* Account for allocated memory : skb + skb->head */
248 skb->truesize = SKB_TRUESIZE(size);
249 skb->pfmemalloc = pfmemalloc;
250 atomic_set(&skb->users, 1);
251 skb->head = data;
252 skb->data = data;
253 skb_reset_tail_pointer(skb);
254 skb->end = skb->tail + size;
255 skb->mac_header = (typeof(skb->mac_header))~0U;
256 skb->transport_header = (typeof(skb->transport_header))~0U;
257
258 /* make sure we initialize shinfo sequentially */
259 shinfo = skb_shinfo(skb);
260 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
261 atomic_set(&shinfo->dataref, 1);
262 kmemcheck_annotate_variable(shinfo->destructor_arg);
263
264 if (flags & SKB_ALLOC_FCLONE) {
265 struct sk_buff_fclones *fclones;
266
267 fclones = container_of(skb, struct sk_buff_fclones, skb1);
268
269 kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
270 skb->fclone = SKB_FCLONE_ORIG;
271 atomic_set(&fclones->fclone_ref, 1);
272
273 fclones->skb2.fclone = SKB_FCLONE_CLONE;
274 fclones->skb2.pfmemalloc = pfmemalloc;
275 }
276 out:
277 return skb;
278 nodata:
279 kmem_cache_free(cache, skb);
280 skb = NULL;
281 goto out;
282 }
283 EXPORT_SYMBOL(__alloc_skb);
284
285 /**
286 * __build_skb - build a network buffer
287 * @data: data buffer provided by caller
288 * @frag_size: size of data, or 0 if head was kmalloced
289 *
290 * Allocate a new &sk_buff. Caller provides space holding head and
291 * skb_shared_info. @data must have been allocated by kmalloc() only if
292 * @frag_size is 0, otherwise data should come from the page allocator
293 * or vmalloc()
294 * The return is the new skb buffer.
295 * On a failure the return is %NULL, and @data is not freed.
296 * Notes :
297 * Before IO, driver allocates only data buffer where NIC put incoming frame
298 * Driver should add room at head (NET_SKB_PAD) and
299 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
300 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
301 * before giving packet to stack.
302 * RX rings only contains data buffers, not full skbs.
303 */
304 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
305 {
306 struct skb_shared_info *shinfo;
307 struct sk_buff *skb;
308 unsigned int size = frag_size ? : ksize(data);
309
310 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
311 if (!skb)
312 return NULL;
313
314 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
315
316 memset(skb, 0, offsetof(struct sk_buff, tail));
317 skb->truesize = SKB_TRUESIZE(size);
318 atomic_set(&skb->users, 1);
319 skb->head = data;
320 skb->data = data;
321 skb_reset_tail_pointer(skb);
322 skb->end = skb->tail + size;
323 skb->mac_header = (typeof(skb->mac_header))~0U;
324 skb->transport_header = (typeof(skb->transport_header))~0U;
325
326 /* make sure we initialize shinfo sequentially */
327 shinfo = skb_shinfo(skb);
328 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
329 atomic_set(&shinfo->dataref, 1);
330 kmemcheck_annotate_variable(shinfo->destructor_arg);
331
332 return skb;
333 }
334
335 /* build_skb() is wrapper over __build_skb(), that specifically
336 * takes care of skb->head and skb->pfmemalloc
337 * This means that if @frag_size is not zero, then @data must be backed
338 * by a page fragment, not kmalloc() or vmalloc()
339 */
340 struct sk_buff *build_skb(void *data, unsigned int frag_size)
341 {
342 struct sk_buff *skb = __build_skb(data, frag_size);
343
344 if (skb && frag_size) {
345 skb->head_frag = 1;
346 if (page_is_pfmemalloc(virt_to_head_page(data)))
347 skb->pfmemalloc = 1;
348 }
349 return skb;
350 }
351 EXPORT_SYMBOL(build_skb);
352
353 #define NAPI_SKB_CACHE_SIZE 64
354
355 struct napi_alloc_cache {
356 struct page_frag_cache page;
357 unsigned int skb_count;
358 void *skb_cache[NAPI_SKB_CACHE_SIZE];
359 };
360
361 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
362 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
363
364 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
365 {
366 struct page_frag_cache *nc;
367 unsigned long flags;
368 void *data;
369
370 local_irq_save(flags);
371 nc = this_cpu_ptr(&netdev_alloc_cache);
372 data = page_frag_alloc(nc, fragsz, gfp_mask);
373 local_irq_restore(flags);
374 return data;
375 }
376
377 /**
378 * netdev_alloc_frag - allocate a page fragment
379 * @fragsz: fragment size
380 *
381 * Allocates a frag from a page for receive buffer.
382 * Uses GFP_ATOMIC allocations.
383 */
384 void *netdev_alloc_frag(unsigned int fragsz)
385 {
386 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
387 }
388 EXPORT_SYMBOL(netdev_alloc_frag);
389
390 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
391 {
392 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
393
394 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
395 }
396
397 void *napi_alloc_frag(unsigned int fragsz)
398 {
399 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
400 }
401 EXPORT_SYMBOL(napi_alloc_frag);
402
403 /**
404 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
405 * @dev: network device to receive on
406 * @len: length to allocate
407 * @gfp_mask: get_free_pages mask, passed to alloc_skb
408 *
409 * Allocate a new &sk_buff and assign it a usage count of one. The
410 * buffer has NET_SKB_PAD headroom built in. Users should allocate
411 * the headroom they think they need without accounting for the
412 * built in space. The built in space is used for optimisations.
413 *
414 * %NULL is returned if there is no free memory.
415 */
416 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
417 gfp_t gfp_mask)
418 {
419 struct page_frag_cache *nc;
420 unsigned long flags;
421 struct sk_buff *skb;
422 bool pfmemalloc;
423 void *data;
424
425 len += NET_SKB_PAD;
426
427 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
428 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
429 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
430 if (!skb)
431 goto skb_fail;
432 goto skb_success;
433 }
434
435 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
436 len = SKB_DATA_ALIGN(len);
437
438 if (sk_memalloc_socks())
439 gfp_mask |= __GFP_MEMALLOC;
440
441 local_irq_save(flags);
442
443 nc = this_cpu_ptr(&netdev_alloc_cache);
444 data = page_frag_alloc(nc, len, gfp_mask);
445 pfmemalloc = nc->pfmemalloc;
446
447 local_irq_restore(flags);
448
449 if (unlikely(!data))
450 return NULL;
451
452 skb = __build_skb(data, len);
453 if (unlikely(!skb)) {
454 skb_free_frag(data);
455 return NULL;
456 }
457
458 /* use OR instead of assignment to avoid clearing of bits in mask */
459 if (pfmemalloc)
460 skb->pfmemalloc = 1;
461 skb->head_frag = 1;
462
463 skb_success:
464 skb_reserve(skb, NET_SKB_PAD);
465 skb->dev = dev;
466
467 skb_fail:
468 return skb;
469 }
470 EXPORT_SYMBOL(__netdev_alloc_skb);
471
472 /**
473 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
474 * @napi: napi instance this buffer was allocated for
475 * @len: length to allocate
476 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
477 *
478 * Allocate a new sk_buff for use in NAPI receive. This buffer will
479 * attempt to allocate the head from a special reserved region used
480 * only for NAPI Rx allocation. By doing this we can save several
481 * CPU cycles by avoiding having to disable and re-enable IRQs.
482 *
483 * %NULL is returned if there is no free memory.
484 */
485 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
486 gfp_t gfp_mask)
487 {
488 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
489 struct sk_buff *skb;
490 void *data;
491
492 len += NET_SKB_PAD + NET_IP_ALIGN;
493
494 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
495 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
496 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
497 if (!skb)
498 goto skb_fail;
499 goto skb_success;
500 }
501
502 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
503 len = SKB_DATA_ALIGN(len);
504
505 if (sk_memalloc_socks())
506 gfp_mask |= __GFP_MEMALLOC;
507
508 data = page_frag_alloc(&nc->page, len, gfp_mask);
509 if (unlikely(!data))
510 return NULL;
511
512 skb = __build_skb(data, len);
513 if (unlikely(!skb)) {
514 skb_free_frag(data);
515 return NULL;
516 }
517
518 /* use OR instead of assignment to avoid clearing of bits in mask */
519 if (nc->page.pfmemalloc)
520 skb->pfmemalloc = 1;
521 skb->head_frag = 1;
522
523 skb_success:
524 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
525 skb->dev = napi->dev;
526
527 skb_fail:
528 return skb;
529 }
530 EXPORT_SYMBOL(__napi_alloc_skb);
531
532 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
533 int size, unsigned int truesize)
534 {
535 skb_fill_page_desc(skb, i, page, off, size);
536 skb->len += size;
537 skb->data_len += size;
538 skb->truesize += truesize;
539 }
540 EXPORT_SYMBOL(skb_add_rx_frag);
541
542 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
543 unsigned int truesize)
544 {
545 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
546
547 skb_frag_size_add(frag, size);
548 skb->len += size;
549 skb->data_len += size;
550 skb->truesize += truesize;
551 }
552 EXPORT_SYMBOL(skb_coalesce_rx_frag);
553
554 static void skb_drop_list(struct sk_buff **listp)
555 {
556 kfree_skb_list(*listp);
557 *listp = NULL;
558 }
559
560 static inline void skb_drop_fraglist(struct sk_buff *skb)
561 {
562 skb_drop_list(&skb_shinfo(skb)->frag_list);
563 }
564
565 static void skb_clone_fraglist(struct sk_buff *skb)
566 {
567 struct sk_buff *list;
568
569 skb_walk_frags(skb, list)
570 skb_get(list);
571 }
572
573 static void skb_free_head(struct sk_buff *skb)
574 {
575 unsigned char *head = skb->head;
576
577 if (skb->head_frag)
578 skb_free_frag(head);
579 else
580 kfree(head);
581 }
582
583 static void skb_release_data(struct sk_buff *skb)
584 {
585 struct skb_shared_info *shinfo = skb_shinfo(skb);
586 int i;
587
588 if (skb->cloned &&
589 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
590 &shinfo->dataref))
591 return;
592
593 for (i = 0; i < shinfo->nr_frags; i++)
594 __skb_frag_unref(&shinfo->frags[i]);
595
596 /*
597 * If skb buf is from userspace, we need to notify the caller
598 * the lower device DMA has done;
599 */
600 if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
601 struct ubuf_info *uarg;
602
603 uarg = shinfo->destructor_arg;
604 if (uarg->callback)
605 uarg->callback(uarg, true);
606 }
607
608 if (shinfo->frag_list)
609 kfree_skb_list(shinfo->frag_list);
610
611 skb_free_head(skb);
612 }
613
614 /*
615 * Free an skbuff by memory without cleaning the state.
616 */
617 static void kfree_skbmem(struct sk_buff *skb)
618 {
619 struct sk_buff_fclones *fclones;
620
621 switch (skb->fclone) {
622 case SKB_FCLONE_UNAVAILABLE:
623 kmem_cache_free(skbuff_head_cache, skb);
624 return;
625
626 case SKB_FCLONE_ORIG:
627 fclones = container_of(skb, struct sk_buff_fclones, skb1);
628
629 /* We usually free the clone (TX completion) before original skb
630 * This test would have no chance to be true for the clone,
631 * while here, branch prediction will be good.
632 */
633 if (atomic_read(&fclones->fclone_ref) == 1)
634 goto fastpath;
635 break;
636
637 default: /* SKB_FCLONE_CLONE */
638 fclones = container_of(skb, struct sk_buff_fclones, skb2);
639 break;
640 }
641 if (!atomic_dec_and_test(&fclones->fclone_ref))
642 return;
643 fastpath:
644 kmem_cache_free(skbuff_fclone_cache, fclones);
645 }
646
647 static void skb_release_head_state(struct sk_buff *skb)
648 {
649 skb_dst_drop(skb);
650 #ifdef CONFIG_XFRM
651 secpath_put(skb->sp);
652 #endif
653 if (skb->destructor) {
654 WARN_ON(in_irq());
655 skb->destructor(skb);
656 }
657 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
658 nf_conntrack_put(skb->nfct);
659 #endif
660 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
661 nf_bridge_put(skb->nf_bridge);
662 #endif
663 }
664
665 /* Free everything but the sk_buff shell. */
666 static void skb_release_all(struct sk_buff *skb)
667 {
668 skb_release_head_state(skb);
669 if (likely(skb->head))
670 skb_release_data(skb);
671 }
672
673 /**
674 * __kfree_skb - private function
675 * @skb: buffer
676 *
677 * Free an sk_buff. Release anything attached to the buffer.
678 * Clean the state. This is an internal helper function. Users should
679 * always call kfree_skb
680 */
681
682 void __kfree_skb(struct sk_buff *skb)
683 {
684 skb_release_all(skb);
685 kfree_skbmem(skb);
686 }
687 EXPORT_SYMBOL(__kfree_skb);
688
689 /**
690 * kfree_skb - free an sk_buff
691 * @skb: buffer to free
692 *
693 * Drop a reference to the buffer and free it if the usage count has
694 * hit zero.
695 */
696 void kfree_skb(struct sk_buff *skb)
697 {
698 if (unlikely(!skb))
699 return;
700 if (likely(atomic_read(&skb->users) == 1))
701 smp_rmb();
702 else if (likely(!atomic_dec_and_test(&skb->users)))
703 return;
704 trace_kfree_skb(skb, __builtin_return_address(0));
705 __kfree_skb(skb);
706 }
707 EXPORT_SYMBOL(kfree_skb);
708
709 void kfree_skb_list(struct sk_buff *segs)
710 {
711 while (segs) {
712 struct sk_buff *next = segs->next;
713
714 kfree_skb(segs);
715 segs = next;
716 }
717 }
718 EXPORT_SYMBOL(kfree_skb_list);
719
720 /**
721 * skb_tx_error - report an sk_buff xmit error
722 * @skb: buffer that triggered an error
723 *
724 * Report xmit error if a device callback is tracking this skb.
725 * skb must be freed afterwards.
726 */
727 void skb_tx_error(struct sk_buff *skb)
728 {
729 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
730 struct ubuf_info *uarg;
731
732 uarg = skb_shinfo(skb)->destructor_arg;
733 if (uarg->callback)
734 uarg->callback(uarg, false);
735 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
736 }
737 }
738 EXPORT_SYMBOL(skb_tx_error);
739
740 /**
741 * consume_skb - free an skbuff
742 * @skb: buffer to free
743 *
744 * Drop a ref to the buffer and free it if the usage count has hit zero
745 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
746 * is being dropped after a failure and notes that
747 */
748 void consume_skb(struct sk_buff *skb)
749 {
750 if (unlikely(!skb))
751 return;
752 if (likely(atomic_read(&skb->users) == 1))
753 smp_rmb();
754 else if (likely(!atomic_dec_and_test(&skb->users)))
755 return;
756 trace_consume_skb(skb);
757 __kfree_skb(skb);
758 }
759 EXPORT_SYMBOL(consume_skb);
760
761 void __kfree_skb_flush(void)
762 {
763 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
764
765 /* flush skb_cache if containing objects */
766 if (nc->skb_count) {
767 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
768 nc->skb_cache);
769 nc->skb_count = 0;
770 }
771 }
772
773 static inline void _kfree_skb_defer(struct sk_buff *skb)
774 {
775 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
776
777 /* drop skb->head and call any destructors for packet */
778 skb_release_all(skb);
779
780 /* record skb to CPU local list */
781 nc->skb_cache[nc->skb_count++] = skb;
782
783 #ifdef CONFIG_SLUB
784 /* SLUB writes into objects when freeing */
785 prefetchw(skb);
786 #endif
787
788 /* flush skb_cache if it is filled */
789 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
790 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
791 nc->skb_cache);
792 nc->skb_count = 0;
793 }
794 }
795 void __kfree_skb_defer(struct sk_buff *skb)
796 {
797 _kfree_skb_defer(skb);
798 }
799
800 void napi_consume_skb(struct sk_buff *skb, int budget)
801 {
802 if (unlikely(!skb))
803 return;
804
805 /* Zero budget indicate non-NAPI context called us, like netpoll */
806 if (unlikely(!budget)) {
807 dev_consume_skb_any(skb);
808 return;
809 }
810
811 if (likely(atomic_read(&skb->users) == 1))
812 smp_rmb();
813 else if (likely(!atomic_dec_and_test(&skb->users)))
814 return;
815 /* if reaching here SKB is ready to free */
816 trace_consume_skb(skb);
817
818 /* if SKB is a clone, don't handle this case */
819 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
820 __kfree_skb(skb);
821 return;
822 }
823
824 _kfree_skb_defer(skb);
825 }
826 EXPORT_SYMBOL(napi_consume_skb);
827
828 /* Make sure a field is enclosed inside headers_start/headers_end section */
829 #define CHECK_SKB_FIELD(field) \
830 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
831 offsetof(struct sk_buff, headers_start)); \
832 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
833 offsetof(struct sk_buff, headers_end)); \
834
835 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
836 {
837 new->tstamp = old->tstamp;
838 /* We do not copy old->sk */
839 new->dev = old->dev;
840 memcpy(new->cb, old->cb, sizeof(old->cb));
841 skb_dst_copy(new, old);
842 #ifdef CONFIG_XFRM
843 new->sp = secpath_get(old->sp);
844 #endif
845 __nf_copy(new, old, false);
846
847 /* Note : this field could be in headers_start/headers_end section
848 * It is not yet because we do not want to have a 16 bit hole
849 */
850 new->queue_mapping = old->queue_mapping;
851
852 memcpy(&new->headers_start, &old->headers_start,
853 offsetof(struct sk_buff, headers_end) -
854 offsetof(struct sk_buff, headers_start));
855 CHECK_SKB_FIELD(protocol);
856 CHECK_SKB_FIELD(csum);
857 CHECK_SKB_FIELD(hash);
858 CHECK_SKB_FIELD(priority);
859 CHECK_SKB_FIELD(skb_iif);
860 CHECK_SKB_FIELD(vlan_proto);
861 CHECK_SKB_FIELD(vlan_tci);
862 CHECK_SKB_FIELD(transport_header);
863 CHECK_SKB_FIELD(network_header);
864 CHECK_SKB_FIELD(mac_header);
865 CHECK_SKB_FIELD(inner_protocol);
866 CHECK_SKB_FIELD(inner_transport_header);
867 CHECK_SKB_FIELD(inner_network_header);
868 CHECK_SKB_FIELD(inner_mac_header);
869 CHECK_SKB_FIELD(mark);
870 #ifdef CONFIG_NETWORK_SECMARK
871 CHECK_SKB_FIELD(secmark);
872 #endif
873 #ifdef CONFIG_NET_RX_BUSY_POLL
874 CHECK_SKB_FIELD(napi_id);
875 #endif
876 #ifdef CONFIG_XPS
877 CHECK_SKB_FIELD(sender_cpu);
878 #endif
879 #ifdef CONFIG_NET_SCHED
880 CHECK_SKB_FIELD(tc_index);
881 #ifdef CONFIG_NET_CLS_ACT
882 CHECK_SKB_FIELD(tc_verd);
883 #endif
884 #endif
885
886 }
887
888 /*
889 * You should not add any new code to this function. Add it to
890 * __copy_skb_header above instead.
891 */
892 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
893 {
894 #define C(x) n->x = skb->x
895
896 n->next = n->prev = NULL;
897 n->sk = NULL;
898 __copy_skb_header(n, skb);
899
900 C(len);
901 C(data_len);
902 C(mac_len);
903 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
904 n->cloned = 1;
905 n->nohdr = 0;
906 n->destructor = NULL;
907 C(tail);
908 C(end);
909 C(head);
910 C(head_frag);
911 C(data);
912 C(truesize);
913 atomic_set(&n->users, 1);
914
915 atomic_inc(&(skb_shinfo(skb)->dataref));
916 skb->cloned = 1;
917
918 return n;
919 #undef C
920 }
921
922 /**
923 * skb_morph - morph one skb into another
924 * @dst: the skb to receive the contents
925 * @src: the skb to supply the contents
926 *
927 * This is identical to skb_clone except that the target skb is
928 * supplied by the user.
929 *
930 * The target skb is returned upon exit.
931 */
932 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
933 {
934 skb_release_all(dst);
935 return __skb_clone(dst, src);
936 }
937 EXPORT_SYMBOL_GPL(skb_morph);
938
939 /**
940 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
941 * @skb: the skb to modify
942 * @gfp_mask: allocation priority
943 *
944 * This must be called on SKBTX_DEV_ZEROCOPY skb.
945 * It will copy all frags into kernel and drop the reference
946 * to userspace pages.
947 *
948 * If this function is called from an interrupt gfp_mask() must be
949 * %GFP_ATOMIC.
950 *
951 * Returns 0 on success or a negative error code on failure
952 * to allocate kernel memory to copy to.
953 */
954 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
955 {
956 int i;
957 int num_frags = skb_shinfo(skb)->nr_frags;
958 struct page *page, *head = NULL;
959 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
960
961 for (i = 0; i < num_frags; i++) {
962 u8 *vaddr;
963 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
964
965 page = alloc_page(gfp_mask);
966 if (!page) {
967 while (head) {
968 struct page *next = (struct page *)page_private(head);
969 put_page(head);
970 head = next;
971 }
972 return -ENOMEM;
973 }
974 vaddr = kmap_atomic(skb_frag_page(f));
975 memcpy(page_address(page),
976 vaddr + f->page_offset, skb_frag_size(f));
977 kunmap_atomic(vaddr);
978 set_page_private(page, (unsigned long)head);
979 head = page;
980 }
981
982 /* skb frags release userspace buffers */
983 for (i = 0; i < num_frags; i++)
984 skb_frag_unref(skb, i);
985
986 uarg->callback(uarg, false);
987
988 /* skb frags point to kernel buffers */
989 for (i = num_frags - 1; i >= 0; i--) {
990 __skb_fill_page_desc(skb, i, head, 0,
991 skb_shinfo(skb)->frags[i].size);
992 head = (struct page *)page_private(head);
993 }
994
995 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
996 return 0;
997 }
998 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
999
1000 /**
1001 * skb_clone - duplicate an sk_buff
1002 * @skb: buffer to clone
1003 * @gfp_mask: allocation priority
1004 *
1005 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1006 * copies share the same packet data but not structure. The new
1007 * buffer has a reference count of 1. If the allocation fails the
1008 * function returns %NULL otherwise the new buffer is returned.
1009 *
1010 * If this function is called from an interrupt gfp_mask() must be
1011 * %GFP_ATOMIC.
1012 */
1013
1014 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1015 {
1016 struct sk_buff_fclones *fclones = container_of(skb,
1017 struct sk_buff_fclones,
1018 skb1);
1019 struct sk_buff *n;
1020
1021 if (skb_orphan_frags(skb, gfp_mask))
1022 return NULL;
1023
1024 if (skb->fclone == SKB_FCLONE_ORIG &&
1025 atomic_read(&fclones->fclone_ref) == 1) {
1026 n = &fclones->skb2;
1027 atomic_set(&fclones->fclone_ref, 2);
1028 } else {
1029 if (skb_pfmemalloc(skb))
1030 gfp_mask |= __GFP_MEMALLOC;
1031
1032 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1033 if (!n)
1034 return NULL;
1035
1036 kmemcheck_annotate_bitfield(n, flags1);
1037 n->fclone = SKB_FCLONE_UNAVAILABLE;
1038 }
1039
1040 return __skb_clone(n, skb);
1041 }
1042 EXPORT_SYMBOL(skb_clone);
1043
1044 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1045 {
1046 /* Only adjust this if it actually is csum_start rather than csum */
1047 if (skb->ip_summed == CHECKSUM_PARTIAL)
1048 skb->csum_start += off;
1049 /* {transport,network,mac}_header and tail are relative to skb->head */
1050 skb->transport_header += off;
1051 skb->network_header += off;
1052 if (skb_mac_header_was_set(skb))
1053 skb->mac_header += off;
1054 skb->inner_transport_header += off;
1055 skb->inner_network_header += off;
1056 skb->inner_mac_header += off;
1057 }
1058
1059 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1060 {
1061 __copy_skb_header(new, old);
1062
1063 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1064 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1065 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1066 }
1067
1068 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1069 {
1070 if (skb_pfmemalloc(skb))
1071 return SKB_ALLOC_RX;
1072 return 0;
1073 }
1074
1075 /**
1076 * skb_copy - create private copy of an sk_buff
1077 * @skb: buffer to copy
1078 * @gfp_mask: allocation priority
1079 *
1080 * Make a copy of both an &sk_buff and its data. This is used when the
1081 * caller wishes to modify the data and needs a private copy of the
1082 * data to alter. Returns %NULL on failure or the pointer to the buffer
1083 * on success. The returned buffer has a reference count of 1.
1084 *
1085 * As by-product this function converts non-linear &sk_buff to linear
1086 * one, so that &sk_buff becomes completely private and caller is allowed
1087 * to modify all the data of returned buffer. This means that this
1088 * function is not recommended for use in circumstances when only
1089 * header is going to be modified. Use pskb_copy() instead.
1090 */
1091
1092 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1093 {
1094 int headerlen = skb_headroom(skb);
1095 unsigned int size = skb_end_offset(skb) + skb->data_len;
1096 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1097 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1098
1099 if (!n)
1100 return NULL;
1101
1102 /* Set the data pointer */
1103 skb_reserve(n, headerlen);
1104 /* Set the tail pointer and length */
1105 skb_put(n, skb->len);
1106
1107 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1108 BUG();
1109
1110 copy_skb_header(n, skb);
1111 return n;
1112 }
1113 EXPORT_SYMBOL(skb_copy);
1114
1115 /**
1116 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1117 * @skb: buffer to copy
1118 * @headroom: headroom of new skb
1119 * @gfp_mask: allocation priority
1120 * @fclone: if true allocate the copy of the skb from the fclone
1121 * cache instead of the head cache; it is recommended to set this
1122 * to true for the cases where the copy will likely be cloned
1123 *
1124 * Make a copy of both an &sk_buff and part of its data, located
1125 * in header. Fragmented data remain shared. This is used when
1126 * the caller wishes to modify only header of &sk_buff and needs
1127 * private copy of the header to alter. Returns %NULL on failure
1128 * or the pointer to the buffer on success.
1129 * The returned buffer has a reference count of 1.
1130 */
1131
1132 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1133 gfp_t gfp_mask, bool fclone)
1134 {
1135 unsigned int size = skb_headlen(skb) + headroom;
1136 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1137 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1138
1139 if (!n)
1140 goto out;
1141
1142 /* Set the data pointer */
1143 skb_reserve(n, headroom);
1144 /* Set the tail pointer and length */
1145 skb_put(n, skb_headlen(skb));
1146 /* Copy the bytes */
1147 skb_copy_from_linear_data(skb, n->data, n->len);
1148
1149 n->truesize += skb->data_len;
1150 n->data_len = skb->data_len;
1151 n->len = skb->len;
1152
1153 if (skb_shinfo(skb)->nr_frags) {
1154 int i;
1155
1156 if (skb_orphan_frags(skb, gfp_mask)) {
1157 kfree_skb(n);
1158 n = NULL;
1159 goto out;
1160 }
1161 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1162 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1163 skb_frag_ref(skb, i);
1164 }
1165 skb_shinfo(n)->nr_frags = i;
1166 }
1167
1168 if (skb_has_frag_list(skb)) {
1169 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1170 skb_clone_fraglist(n);
1171 }
1172
1173 copy_skb_header(n, skb);
1174 out:
1175 return n;
1176 }
1177 EXPORT_SYMBOL(__pskb_copy_fclone);
1178
1179 /**
1180 * pskb_expand_head - reallocate header of &sk_buff
1181 * @skb: buffer to reallocate
1182 * @nhead: room to add at head
1183 * @ntail: room to add at tail
1184 * @gfp_mask: allocation priority
1185 *
1186 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1187 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1188 * reference count of 1. Returns zero in the case of success or error,
1189 * if expansion failed. In the last case, &sk_buff is not changed.
1190 *
1191 * All the pointers pointing into skb header may change and must be
1192 * reloaded after call to this function.
1193 */
1194
1195 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1196 gfp_t gfp_mask)
1197 {
1198 int i;
1199 u8 *data;
1200 int size = nhead + skb_end_offset(skb) + ntail;
1201 long off;
1202
1203 BUG_ON(nhead < 0);
1204
1205 if (skb_shared(skb))
1206 BUG();
1207
1208 size = SKB_DATA_ALIGN(size);
1209
1210 if (skb_pfmemalloc(skb))
1211 gfp_mask |= __GFP_MEMALLOC;
1212 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1213 gfp_mask, NUMA_NO_NODE, NULL);
1214 if (!data)
1215 goto nodata;
1216 size = SKB_WITH_OVERHEAD(ksize(data));
1217
1218 /* Copy only real data... and, alas, header. This should be
1219 * optimized for the cases when header is void.
1220 */
1221 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1222
1223 memcpy((struct skb_shared_info *)(data + size),
1224 skb_shinfo(skb),
1225 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1226
1227 /*
1228 * if shinfo is shared we must drop the old head gracefully, but if it
1229 * is not we can just drop the old head and let the existing refcount
1230 * be since all we did is relocate the values
1231 */
1232 if (skb_cloned(skb)) {
1233 /* copy this zero copy skb frags */
1234 if (skb_orphan_frags(skb, gfp_mask))
1235 goto nofrags;
1236 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1237 skb_frag_ref(skb, i);
1238
1239 if (skb_has_frag_list(skb))
1240 skb_clone_fraglist(skb);
1241
1242 skb_release_data(skb);
1243 } else {
1244 skb_free_head(skb);
1245 }
1246 off = (data + nhead) - skb->head;
1247
1248 skb->head = data;
1249 skb->head_frag = 0;
1250 skb->data += off;
1251 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1252 skb->end = size;
1253 off = nhead;
1254 #else
1255 skb->end = skb->head + size;
1256 #endif
1257 skb->tail += off;
1258 skb_headers_offset_update(skb, nhead);
1259 skb->cloned = 0;
1260 skb->hdr_len = 0;
1261 skb->nohdr = 0;
1262 atomic_set(&skb_shinfo(skb)->dataref, 1);
1263 return 0;
1264
1265 nofrags:
1266 kfree(data);
1267 nodata:
1268 return -ENOMEM;
1269 }
1270 EXPORT_SYMBOL(pskb_expand_head);
1271
1272 /* Make private copy of skb with writable head and some headroom */
1273
1274 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1275 {
1276 struct sk_buff *skb2;
1277 int delta = headroom - skb_headroom(skb);
1278
1279 if (delta <= 0)
1280 skb2 = pskb_copy(skb, GFP_ATOMIC);
1281 else {
1282 skb2 = skb_clone(skb, GFP_ATOMIC);
1283 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1284 GFP_ATOMIC)) {
1285 kfree_skb(skb2);
1286 skb2 = NULL;
1287 }
1288 }
1289 return skb2;
1290 }
1291 EXPORT_SYMBOL(skb_realloc_headroom);
1292
1293 /**
1294 * skb_copy_expand - copy and expand sk_buff
1295 * @skb: buffer to copy
1296 * @newheadroom: new free bytes at head
1297 * @newtailroom: new free bytes at tail
1298 * @gfp_mask: allocation priority
1299 *
1300 * Make a copy of both an &sk_buff and its data and while doing so
1301 * allocate additional space.
1302 *
1303 * This is used when the caller wishes to modify the data and needs a
1304 * private copy of the data to alter as well as more space for new fields.
1305 * Returns %NULL on failure or the pointer to the buffer
1306 * on success. The returned buffer has a reference count of 1.
1307 *
1308 * You must pass %GFP_ATOMIC as the allocation priority if this function
1309 * is called from an interrupt.
1310 */
1311 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1312 int newheadroom, int newtailroom,
1313 gfp_t gfp_mask)
1314 {
1315 /*
1316 * Allocate the copy buffer
1317 */
1318 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1319 gfp_mask, skb_alloc_rx_flag(skb),
1320 NUMA_NO_NODE);
1321 int oldheadroom = skb_headroom(skb);
1322 int head_copy_len, head_copy_off;
1323
1324 if (!n)
1325 return NULL;
1326
1327 skb_reserve(n, newheadroom);
1328
1329 /* Set the tail pointer and length */
1330 skb_put(n, skb->len);
1331
1332 head_copy_len = oldheadroom;
1333 head_copy_off = 0;
1334 if (newheadroom <= head_copy_len)
1335 head_copy_len = newheadroom;
1336 else
1337 head_copy_off = newheadroom - head_copy_len;
1338
1339 /* Copy the linear header and data. */
1340 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1341 skb->len + head_copy_len))
1342 BUG();
1343
1344 copy_skb_header(n, skb);
1345
1346 skb_headers_offset_update(n, newheadroom - oldheadroom);
1347
1348 return n;
1349 }
1350 EXPORT_SYMBOL(skb_copy_expand);
1351
1352 /**
1353 * skb_pad - zero pad the tail of an skb
1354 * @skb: buffer to pad
1355 * @pad: space to pad
1356 *
1357 * Ensure that a buffer is followed by a padding area that is zero
1358 * filled. Used by network drivers which may DMA or transfer data
1359 * beyond the buffer end onto the wire.
1360 *
1361 * May return error in out of memory cases. The skb is freed on error.
1362 */
1363
1364 int skb_pad(struct sk_buff *skb, int pad)
1365 {
1366 int err;
1367 int ntail;
1368
1369 /* If the skbuff is non linear tailroom is always zero.. */
1370 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1371 memset(skb->data+skb->len, 0, pad);
1372 return 0;
1373 }
1374
1375 ntail = skb->data_len + pad - (skb->end - skb->tail);
1376 if (likely(skb_cloned(skb) || ntail > 0)) {
1377 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1378 if (unlikely(err))
1379 goto free_skb;
1380 }
1381
1382 /* FIXME: The use of this function with non-linear skb's really needs
1383 * to be audited.
1384 */
1385 err = skb_linearize(skb);
1386 if (unlikely(err))
1387 goto free_skb;
1388
1389 memset(skb->data + skb->len, 0, pad);
1390 return 0;
1391
1392 free_skb:
1393 kfree_skb(skb);
1394 return err;
1395 }
1396 EXPORT_SYMBOL(skb_pad);
1397
1398 /**
1399 * pskb_put - add data to the tail of a potentially fragmented buffer
1400 * @skb: start of the buffer to use
1401 * @tail: tail fragment of the buffer to use
1402 * @len: amount of data to add
1403 *
1404 * This function extends the used data area of the potentially
1405 * fragmented buffer. @tail must be the last fragment of @skb -- or
1406 * @skb itself. If this would exceed the total buffer size the kernel
1407 * will panic. A pointer to the first byte of the extra data is
1408 * returned.
1409 */
1410
1411 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1412 {
1413 if (tail != skb) {
1414 skb->data_len += len;
1415 skb->len += len;
1416 }
1417 return skb_put(tail, len);
1418 }
1419 EXPORT_SYMBOL_GPL(pskb_put);
1420
1421 /**
1422 * skb_put - add data to a buffer
1423 * @skb: buffer to use
1424 * @len: amount of data to add
1425 *
1426 * This function extends the used data area of the buffer. If this would
1427 * exceed the total buffer size the kernel will panic. A pointer to the
1428 * first byte of the extra data is returned.
1429 */
1430 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1431 {
1432 unsigned char *tmp = skb_tail_pointer(skb);
1433 SKB_LINEAR_ASSERT(skb);
1434 skb->tail += len;
1435 skb->len += len;
1436 if (unlikely(skb->tail > skb->end))
1437 skb_over_panic(skb, len, __builtin_return_address(0));
1438 return tmp;
1439 }
1440 EXPORT_SYMBOL(skb_put);
1441
1442 /**
1443 * skb_push - add data to the start of a buffer
1444 * @skb: buffer to use
1445 * @len: amount of data to add
1446 *
1447 * This function extends the used data area of the buffer at the buffer
1448 * start. If this would exceed the total buffer headroom the kernel will
1449 * panic. A pointer to the first byte of the extra data is returned.
1450 */
1451 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1452 {
1453 skb->data -= len;
1454 skb->len += len;
1455 if (unlikely(skb->data<skb->head))
1456 skb_under_panic(skb, len, __builtin_return_address(0));
1457 return skb->data;
1458 }
1459 EXPORT_SYMBOL(skb_push);
1460
1461 /**
1462 * skb_pull - remove data from the start of a buffer
1463 * @skb: buffer to use
1464 * @len: amount of data to remove
1465 *
1466 * This function removes data from the start of a buffer, returning
1467 * the memory to the headroom. A pointer to the next data in the buffer
1468 * is returned. Once the data has been pulled future pushes will overwrite
1469 * the old data.
1470 */
1471 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1472 {
1473 return skb_pull_inline(skb, len);
1474 }
1475 EXPORT_SYMBOL(skb_pull);
1476
1477 /**
1478 * skb_trim - remove end from a buffer
1479 * @skb: buffer to alter
1480 * @len: new length
1481 *
1482 * Cut the length of a buffer down by removing data from the tail. If
1483 * the buffer is already under the length specified it is not modified.
1484 * The skb must be linear.
1485 */
1486 void skb_trim(struct sk_buff *skb, unsigned int len)
1487 {
1488 if (skb->len > len)
1489 __skb_trim(skb, len);
1490 }
1491 EXPORT_SYMBOL(skb_trim);
1492
1493 /* Trims skb to length len. It can change skb pointers.
1494 */
1495
1496 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1497 {
1498 struct sk_buff **fragp;
1499 struct sk_buff *frag;
1500 int offset = skb_headlen(skb);
1501 int nfrags = skb_shinfo(skb)->nr_frags;
1502 int i;
1503 int err;
1504
1505 if (skb_cloned(skb) &&
1506 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1507 return err;
1508
1509 i = 0;
1510 if (offset >= len)
1511 goto drop_pages;
1512
1513 for (; i < nfrags; i++) {
1514 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1515
1516 if (end < len) {
1517 offset = end;
1518 continue;
1519 }
1520
1521 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1522
1523 drop_pages:
1524 skb_shinfo(skb)->nr_frags = i;
1525
1526 for (; i < nfrags; i++)
1527 skb_frag_unref(skb, i);
1528
1529 if (skb_has_frag_list(skb))
1530 skb_drop_fraglist(skb);
1531 goto done;
1532 }
1533
1534 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1535 fragp = &frag->next) {
1536 int end = offset + frag->len;
1537
1538 if (skb_shared(frag)) {
1539 struct sk_buff *nfrag;
1540
1541 nfrag = skb_clone(frag, GFP_ATOMIC);
1542 if (unlikely(!nfrag))
1543 return -ENOMEM;
1544
1545 nfrag->next = frag->next;
1546 consume_skb(frag);
1547 frag = nfrag;
1548 *fragp = frag;
1549 }
1550
1551 if (end < len) {
1552 offset = end;
1553 continue;
1554 }
1555
1556 if (end > len &&
1557 unlikely((err = pskb_trim(frag, len - offset))))
1558 return err;
1559
1560 if (frag->next)
1561 skb_drop_list(&frag->next);
1562 break;
1563 }
1564
1565 done:
1566 if (len > skb_headlen(skb)) {
1567 skb->data_len -= skb->len - len;
1568 skb->len = len;
1569 } else {
1570 skb->len = len;
1571 skb->data_len = 0;
1572 skb_set_tail_pointer(skb, len);
1573 }
1574
1575 return 0;
1576 }
1577 EXPORT_SYMBOL(___pskb_trim);
1578
1579 /**
1580 * __pskb_pull_tail - advance tail of skb header
1581 * @skb: buffer to reallocate
1582 * @delta: number of bytes to advance tail
1583 *
1584 * The function makes a sense only on a fragmented &sk_buff,
1585 * it expands header moving its tail forward and copying necessary
1586 * data from fragmented part.
1587 *
1588 * &sk_buff MUST have reference count of 1.
1589 *
1590 * Returns %NULL (and &sk_buff does not change) if pull failed
1591 * or value of new tail of skb in the case of success.
1592 *
1593 * All the pointers pointing into skb header may change and must be
1594 * reloaded after call to this function.
1595 */
1596
1597 /* Moves tail of skb head forward, copying data from fragmented part,
1598 * when it is necessary.
1599 * 1. It may fail due to malloc failure.
1600 * 2. It may change skb pointers.
1601 *
1602 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1603 */
1604 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1605 {
1606 /* If skb has not enough free space at tail, get new one
1607 * plus 128 bytes for future expansions. If we have enough
1608 * room at tail, reallocate without expansion only if skb is cloned.
1609 */
1610 int i, k, eat = (skb->tail + delta) - skb->end;
1611
1612 if (eat > 0 || skb_cloned(skb)) {
1613 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1614 GFP_ATOMIC))
1615 return NULL;
1616 }
1617
1618 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1619 BUG();
1620
1621 /* Optimization: no fragments, no reasons to preestimate
1622 * size of pulled pages. Superb.
1623 */
1624 if (!skb_has_frag_list(skb))
1625 goto pull_pages;
1626
1627 /* Estimate size of pulled pages. */
1628 eat = delta;
1629 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1630 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1631
1632 if (size >= eat)
1633 goto pull_pages;
1634 eat -= size;
1635 }
1636
1637 /* If we need update frag list, we are in troubles.
1638 * Certainly, it possible to add an offset to skb data,
1639 * but taking into account that pulling is expected to
1640 * be very rare operation, it is worth to fight against
1641 * further bloating skb head and crucify ourselves here instead.
1642 * Pure masohism, indeed. 8)8)
1643 */
1644 if (eat) {
1645 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1646 struct sk_buff *clone = NULL;
1647 struct sk_buff *insp = NULL;
1648
1649 do {
1650 BUG_ON(!list);
1651
1652 if (list->len <= eat) {
1653 /* Eaten as whole. */
1654 eat -= list->len;
1655 list = list->next;
1656 insp = list;
1657 } else {
1658 /* Eaten partially. */
1659
1660 if (skb_shared(list)) {
1661 /* Sucks! We need to fork list. :-( */
1662 clone = skb_clone(list, GFP_ATOMIC);
1663 if (!clone)
1664 return NULL;
1665 insp = list->next;
1666 list = clone;
1667 } else {
1668 /* This may be pulled without
1669 * problems. */
1670 insp = list;
1671 }
1672 if (!pskb_pull(list, eat)) {
1673 kfree_skb(clone);
1674 return NULL;
1675 }
1676 break;
1677 }
1678 } while (eat);
1679
1680 /* Free pulled out fragments. */
1681 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1682 skb_shinfo(skb)->frag_list = list->next;
1683 kfree_skb(list);
1684 }
1685 /* And insert new clone at head. */
1686 if (clone) {
1687 clone->next = list;
1688 skb_shinfo(skb)->frag_list = clone;
1689 }
1690 }
1691 /* Success! Now we may commit changes to skb data. */
1692
1693 pull_pages:
1694 eat = delta;
1695 k = 0;
1696 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1697 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1698
1699 if (size <= eat) {
1700 skb_frag_unref(skb, i);
1701 eat -= size;
1702 } else {
1703 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1704 if (eat) {
1705 skb_shinfo(skb)->frags[k].page_offset += eat;
1706 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1707 eat = 0;
1708 }
1709 k++;
1710 }
1711 }
1712 skb_shinfo(skb)->nr_frags = k;
1713
1714 skb->tail += delta;
1715 skb->data_len -= delta;
1716
1717 return skb_tail_pointer(skb);
1718 }
1719 EXPORT_SYMBOL(__pskb_pull_tail);
1720
1721 /**
1722 * skb_copy_bits - copy bits from skb to kernel buffer
1723 * @skb: source skb
1724 * @offset: offset in source
1725 * @to: destination buffer
1726 * @len: number of bytes to copy
1727 *
1728 * Copy the specified number of bytes from the source skb to the
1729 * destination buffer.
1730 *
1731 * CAUTION ! :
1732 * If its prototype is ever changed,
1733 * check arch/{*}/net/{*}.S files,
1734 * since it is called from BPF assembly code.
1735 */
1736 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1737 {
1738 int start = skb_headlen(skb);
1739 struct sk_buff *frag_iter;
1740 int i, copy;
1741
1742 if (offset > (int)skb->len - len)
1743 goto fault;
1744
1745 /* Copy header. */
1746 if ((copy = start - offset) > 0) {
1747 if (copy > len)
1748 copy = len;
1749 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1750 if ((len -= copy) == 0)
1751 return 0;
1752 offset += copy;
1753 to += copy;
1754 }
1755
1756 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1757 int end;
1758 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1759
1760 WARN_ON(start > offset + len);
1761
1762 end = start + skb_frag_size(f);
1763 if ((copy = end - offset) > 0) {
1764 u8 *vaddr;
1765
1766 if (copy > len)
1767 copy = len;
1768
1769 vaddr = kmap_atomic(skb_frag_page(f));
1770 memcpy(to,
1771 vaddr + f->page_offset + offset - start,
1772 copy);
1773 kunmap_atomic(vaddr);
1774
1775 if ((len -= copy) == 0)
1776 return 0;
1777 offset += copy;
1778 to += copy;
1779 }
1780 start = end;
1781 }
1782
1783 skb_walk_frags(skb, frag_iter) {
1784 int end;
1785
1786 WARN_ON(start > offset + len);
1787
1788 end = start + frag_iter->len;
1789 if ((copy = end - offset) > 0) {
1790 if (copy > len)
1791 copy = len;
1792 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1793 goto fault;
1794 if ((len -= copy) == 0)
1795 return 0;
1796 offset += copy;
1797 to += copy;
1798 }
1799 start = end;
1800 }
1801
1802 if (!len)
1803 return 0;
1804
1805 fault:
1806 return -EFAULT;
1807 }
1808 EXPORT_SYMBOL(skb_copy_bits);
1809
1810 /*
1811 * Callback from splice_to_pipe(), if we need to release some pages
1812 * at the end of the spd in case we error'ed out in filling the pipe.
1813 */
1814 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1815 {
1816 put_page(spd->pages[i]);
1817 }
1818
1819 static struct page *linear_to_page(struct page *page, unsigned int *len,
1820 unsigned int *offset,
1821 struct sock *sk)
1822 {
1823 struct page_frag *pfrag = sk_page_frag(sk);
1824
1825 if (!sk_page_frag_refill(sk, pfrag))
1826 return NULL;
1827
1828 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1829
1830 memcpy(page_address(pfrag->page) + pfrag->offset,
1831 page_address(page) + *offset, *len);
1832 *offset = pfrag->offset;
1833 pfrag->offset += *len;
1834
1835 return pfrag->page;
1836 }
1837
1838 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1839 struct page *page,
1840 unsigned int offset)
1841 {
1842 return spd->nr_pages &&
1843 spd->pages[spd->nr_pages - 1] == page &&
1844 (spd->partial[spd->nr_pages - 1].offset +
1845 spd->partial[spd->nr_pages - 1].len == offset);
1846 }
1847
1848 /*
1849 * Fill page/offset/length into spd, if it can hold more pages.
1850 */
1851 static bool spd_fill_page(struct splice_pipe_desc *spd,
1852 struct pipe_inode_info *pipe, struct page *page,
1853 unsigned int *len, unsigned int offset,
1854 bool linear,
1855 struct sock *sk)
1856 {
1857 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1858 return true;
1859
1860 if (linear) {
1861 page = linear_to_page(page, len, &offset, sk);
1862 if (!page)
1863 return true;
1864 }
1865 if (spd_can_coalesce(spd, page, offset)) {
1866 spd->partial[spd->nr_pages - 1].len += *len;
1867 return false;
1868 }
1869 get_page(page);
1870 spd->pages[spd->nr_pages] = page;
1871 spd->partial[spd->nr_pages].len = *len;
1872 spd->partial[spd->nr_pages].offset = offset;
1873 spd->nr_pages++;
1874
1875 return false;
1876 }
1877
1878 static bool __splice_segment(struct page *page, unsigned int poff,
1879 unsigned int plen, unsigned int *off,
1880 unsigned int *len,
1881 struct splice_pipe_desc *spd, bool linear,
1882 struct sock *sk,
1883 struct pipe_inode_info *pipe)
1884 {
1885 if (!*len)
1886 return true;
1887
1888 /* skip this segment if already processed */
1889 if (*off >= plen) {
1890 *off -= plen;
1891 return false;
1892 }
1893
1894 /* ignore any bits we already processed */
1895 poff += *off;
1896 plen -= *off;
1897 *off = 0;
1898
1899 do {
1900 unsigned int flen = min(*len, plen);
1901
1902 if (spd_fill_page(spd, pipe, page, &flen, poff,
1903 linear, sk))
1904 return true;
1905 poff += flen;
1906 plen -= flen;
1907 *len -= flen;
1908 } while (*len && plen);
1909
1910 return false;
1911 }
1912
1913 /*
1914 * Map linear and fragment data from the skb to spd. It reports true if the
1915 * pipe is full or if we already spliced the requested length.
1916 */
1917 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1918 unsigned int *offset, unsigned int *len,
1919 struct splice_pipe_desc *spd, struct sock *sk)
1920 {
1921 int seg;
1922 struct sk_buff *iter;
1923
1924 /* map the linear part :
1925 * If skb->head_frag is set, this 'linear' part is backed by a
1926 * fragment, and if the head is not shared with any clones then
1927 * we can avoid a copy since we own the head portion of this page.
1928 */
1929 if (__splice_segment(virt_to_page(skb->data),
1930 (unsigned long) skb->data & (PAGE_SIZE - 1),
1931 skb_headlen(skb),
1932 offset, len, spd,
1933 skb_head_is_locked(skb),
1934 sk, pipe))
1935 return true;
1936
1937 /*
1938 * then map the fragments
1939 */
1940 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1941 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1942
1943 if (__splice_segment(skb_frag_page(f),
1944 f->page_offset, skb_frag_size(f),
1945 offset, len, spd, false, sk, pipe))
1946 return true;
1947 }
1948
1949 skb_walk_frags(skb, iter) {
1950 if (*offset >= iter->len) {
1951 *offset -= iter->len;
1952 continue;
1953 }
1954 /* __skb_splice_bits() only fails if the output has no room
1955 * left, so no point in going over the frag_list for the error
1956 * case.
1957 */
1958 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
1959 return true;
1960 }
1961
1962 return false;
1963 }
1964
1965 /*
1966 * Map data from the skb to a pipe. Should handle both the linear part,
1967 * the fragments, and the frag list.
1968 */
1969 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1970 struct pipe_inode_info *pipe, unsigned int tlen,
1971 unsigned int flags)
1972 {
1973 struct partial_page partial[MAX_SKB_FRAGS];
1974 struct page *pages[MAX_SKB_FRAGS];
1975 struct splice_pipe_desc spd = {
1976 .pages = pages,
1977 .partial = partial,
1978 .nr_pages_max = MAX_SKB_FRAGS,
1979 .flags = flags,
1980 .ops = &nosteal_pipe_buf_ops,
1981 .spd_release = sock_spd_release,
1982 };
1983 int ret = 0;
1984
1985 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
1986
1987 if (spd.nr_pages)
1988 ret = splice_to_pipe(pipe, &spd);
1989
1990 return ret;
1991 }
1992 EXPORT_SYMBOL_GPL(skb_splice_bits);
1993
1994 /**
1995 * skb_store_bits - store bits from kernel buffer to skb
1996 * @skb: destination buffer
1997 * @offset: offset in destination
1998 * @from: source buffer
1999 * @len: number of bytes to copy
2000 *
2001 * Copy the specified number of bytes from the source buffer to the
2002 * destination skb. This function handles all the messy bits of
2003 * traversing fragment lists and such.
2004 */
2005
2006 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2007 {
2008 int start = skb_headlen(skb);
2009 struct sk_buff *frag_iter;
2010 int i, copy;
2011
2012 if (offset > (int)skb->len - len)
2013 goto fault;
2014
2015 if ((copy = start - offset) > 0) {
2016 if (copy > len)
2017 copy = len;
2018 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2019 if ((len -= copy) == 0)
2020 return 0;
2021 offset += copy;
2022 from += copy;
2023 }
2024
2025 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2026 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2027 int end;
2028
2029 WARN_ON(start > offset + len);
2030
2031 end = start + skb_frag_size(frag);
2032 if ((copy = end - offset) > 0) {
2033 u8 *vaddr;
2034
2035 if (copy > len)
2036 copy = len;
2037
2038 vaddr = kmap_atomic(skb_frag_page(frag));
2039 memcpy(vaddr + frag->page_offset + offset - start,
2040 from, copy);
2041 kunmap_atomic(vaddr);
2042
2043 if ((len -= copy) == 0)
2044 return 0;
2045 offset += copy;
2046 from += copy;
2047 }
2048 start = end;
2049 }
2050
2051 skb_walk_frags(skb, frag_iter) {
2052 int end;
2053
2054 WARN_ON(start > offset + len);
2055
2056 end = start + frag_iter->len;
2057 if ((copy = end - offset) > 0) {
2058 if (copy > len)
2059 copy = len;
2060 if (skb_store_bits(frag_iter, offset - start,
2061 from, copy))
2062 goto fault;
2063 if ((len -= copy) == 0)
2064 return 0;
2065 offset += copy;
2066 from += copy;
2067 }
2068 start = end;
2069 }
2070 if (!len)
2071 return 0;
2072
2073 fault:
2074 return -EFAULT;
2075 }
2076 EXPORT_SYMBOL(skb_store_bits);
2077
2078 /* Checksum skb data. */
2079 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2080 __wsum csum, const struct skb_checksum_ops *ops)
2081 {
2082 int start = skb_headlen(skb);
2083 int i, copy = start - offset;
2084 struct sk_buff *frag_iter;
2085 int pos = 0;
2086
2087 /* Checksum header. */
2088 if (copy > 0) {
2089 if (copy > len)
2090 copy = len;
2091 csum = ops->update(skb->data + offset, copy, csum);
2092 if ((len -= copy) == 0)
2093 return csum;
2094 offset += copy;
2095 pos = copy;
2096 }
2097
2098 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2099 int end;
2100 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2101
2102 WARN_ON(start > offset + len);
2103
2104 end = start + skb_frag_size(frag);
2105 if ((copy = end - offset) > 0) {
2106 __wsum csum2;
2107 u8 *vaddr;
2108
2109 if (copy > len)
2110 copy = len;
2111 vaddr = kmap_atomic(skb_frag_page(frag));
2112 csum2 = ops->update(vaddr + frag->page_offset +
2113 offset - start, copy, 0);
2114 kunmap_atomic(vaddr);
2115 csum = ops->combine(csum, csum2, pos, copy);
2116 if (!(len -= copy))
2117 return csum;
2118 offset += copy;
2119 pos += copy;
2120 }
2121 start = end;
2122 }
2123
2124 skb_walk_frags(skb, frag_iter) {
2125 int end;
2126
2127 WARN_ON(start > offset + len);
2128
2129 end = start + frag_iter->len;
2130 if ((copy = end - offset) > 0) {
2131 __wsum csum2;
2132 if (copy > len)
2133 copy = len;
2134 csum2 = __skb_checksum(frag_iter, offset - start,
2135 copy, 0, ops);
2136 csum = ops->combine(csum, csum2, pos, copy);
2137 if ((len -= copy) == 0)
2138 return csum;
2139 offset += copy;
2140 pos += copy;
2141 }
2142 start = end;
2143 }
2144 BUG_ON(len);
2145
2146 return csum;
2147 }
2148 EXPORT_SYMBOL(__skb_checksum);
2149
2150 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2151 int len, __wsum csum)
2152 {
2153 const struct skb_checksum_ops ops = {
2154 .update = csum_partial_ext,
2155 .combine = csum_block_add_ext,
2156 };
2157
2158 return __skb_checksum(skb, offset, len, csum, &ops);
2159 }
2160 EXPORT_SYMBOL(skb_checksum);
2161
2162 /* Both of above in one bottle. */
2163
2164 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2165 u8 *to, int len, __wsum csum)
2166 {
2167 int start = skb_headlen(skb);
2168 int i, copy = start - offset;
2169 struct sk_buff *frag_iter;
2170 int pos = 0;
2171
2172 /* Copy header. */
2173 if (copy > 0) {
2174 if (copy > len)
2175 copy = len;
2176 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2177 copy, csum);
2178 if ((len -= copy) == 0)
2179 return csum;
2180 offset += copy;
2181 to += copy;
2182 pos = copy;
2183 }
2184
2185 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2186 int end;
2187
2188 WARN_ON(start > offset + len);
2189
2190 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2191 if ((copy = end - offset) > 0) {
2192 __wsum csum2;
2193 u8 *vaddr;
2194 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2195
2196 if (copy > len)
2197 copy = len;
2198 vaddr = kmap_atomic(skb_frag_page(frag));
2199 csum2 = csum_partial_copy_nocheck(vaddr +
2200 frag->page_offset +
2201 offset - start, to,
2202 copy, 0);
2203 kunmap_atomic(vaddr);
2204 csum = csum_block_add(csum, csum2, pos);
2205 if (!(len -= copy))
2206 return csum;
2207 offset += copy;
2208 to += copy;
2209 pos += copy;
2210 }
2211 start = end;
2212 }
2213
2214 skb_walk_frags(skb, frag_iter) {
2215 __wsum csum2;
2216 int end;
2217
2218 WARN_ON(start > offset + len);
2219
2220 end = start + frag_iter->len;
2221 if ((copy = end - offset) > 0) {
2222 if (copy > len)
2223 copy = len;
2224 csum2 = skb_copy_and_csum_bits(frag_iter,
2225 offset - start,
2226 to, copy, 0);
2227 csum = csum_block_add(csum, csum2, pos);
2228 if ((len -= copy) == 0)
2229 return csum;
2230 offset += copy;
2231 to += copy;
2232 pos += copy;
2233 }
2234 start = end;
2235 }
2236 BUG_ON(len);
2237 return csum;
2238 }
2239 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2240
2241 /**
2242 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2243 * @from: source buffer
2244 *
2245 * Calculates the amount of linear headroom needed in the 'to' skb passed
2246 * into skb_zerocopy().
2247 */
2248 unsigned int
2249 skb_zerocopy_headlen(const struct sk_buff *from)
2250 {
2251 unsigned int hlen = 0;
2252
2253 if (!from->head_frag ||
2254 skb_headlen(from) < L1_CACHE_BYTES ||
2255 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2256 hlen = skb_headlen(from);
2257
2258 if (skb_has_frag_list(from))
2259 hlen = from->len;
2260
2261 return hlen;
2262 }
2263 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2264
2265 /**
2266 * skb_zerocopy - Zero copy skb to skb
2267 * @to: destination buffer
2268 * @from: source buffer
2269 * @len: number of bytes to copy from source buffer
2270 * @hlen: size of linear headroom in destination buffer
2271 *
2272 * Copies up to `len` bytes from `from` to `to` by creating references
2273 * to the frags in the source buffer.
2274 *
2275 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2276 * headroom in the `to` buffer.
2277 *
2278 * Return value:
2279 * 0: everything is OK
2280 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2281 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2282 */
2283 int
2284 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2285 {
2286 int i, j = 0;
2287 int plen = 0; /* length of skb->head fragment */
2288 int ret;
2289 struct page *page;
2290 unsigned int offset;
2291
2292 BUG_ON(!from->head_frag && !hlen);
2293
2294 /* dont bother with small payloads */
2295 if (len <= skb_tailroom(to))
2296 return skb_copy_bits(from, 0, skb_put(to, len), len);
2297
2298 if (hlen) {
2299 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2300 if (unlikely(ret))
2301 return ret;
2302 len -= hlen;
2303 } else {
2304 plen = min_t(int, skb_headlen(from), len);
2305 if (plen) {
2306 page = virt_to_head_page(from->head);
2307 offset = from->data - (unsigned char *)page_address(page);
2308 __skb_fill_page_desc(to, 0, page, offset, plen);
2309 get_page(page);
2310 j = 1;
2311 len -= plen;
2312 }
2313 }
2314
2315 to->truesize += len + plen;
2316 to->len += len + plen;
2317 to->data_len += len + plen;
2318
2319 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2320 skb_tx_error(from);
2321 return -ENOMEM;
2322 }
2323
2324 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2325 if (!len)
2326 break;
2327 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2328 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2329 len -= skb_shinfo(to)->frags[j].size;
2330 skb_frag_ref(to, j);
2331 j++;
2332 }
2333 skb_shinfo(to)->nr_frags = j;
2334
2335 return 0;
2336 }
2337 EXPORT_SYMBOL_GPL(skb_zerocopy);
2338
2339 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2340 {
2341 __wsum csum;
2342 long csstart;
2343
2344 if (skb->ip_summed == CHECKSUM_PARTIAL)
2345 csstart = skb_checksum_start_offset(skb);
2346 else
2347 csstart = skb_headlen(skb);
2348
2349 BUG_ON(csstart > skb_headlen(skb));
2350
2351 skb_copy_from_linear_data(skb, to, csstart);
2352
2353 csum = 0;
2354 if (csstart != skb->len)
2355 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2356 skb->len - csstart, 0);
2357
2358 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2359 long csstuff = csstart + skb->csum_offset;
2360
2361 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2362 }
2363 }
2364 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2365
2366 /**
2367 * skb_dequeue - remove from the head of the queue
2368 * @list: list to dequeue from
2369 *
2370 * Remove the head of the list. The list lock is taken so the function
2371 * may be used safely with other locking list functions. The head item is
2372 * returned or %NULL if the list is empty.
2373 */
2374
2375 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2376 {
2377 unsigned long flags;
2378 struct sk_buff *result;
2379
2380 spin_lock_irqsave(&list->lock, flags);
2381 result = __skb_dequeue(list);
2382 spin_unlock_irqrestore(&list->lock, flags);
2383 return result;
2384 }
2385 EXPORT_SYMBOL(skb_dequeue);
2386
2387 /**
2388 * skb_dequeue_tail - remove from the tail of the queue
2389 * @list: list to dequeue from
2390 *
2391 * Remove the tail of the list. The list lock is taken so the function
2392 * may be used safely with other locking list functions. The tail item is
2393 * returned or %NULL if the list is empty.
2394 */
2395 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2396 {
2397 unsigned long flags;
2398 struct sk_buff *result;
2399
2400 spin_lock_irqsave(&list->lock, flags);
2401 result = __skb_dequeue_tail(list);
2402 spin_unlock_irqrestore(&list->lock, flags);
2403 return result;
2404 }
2405 EXPORT_SYMBOL(skb_dequeue_tail);
2406
2407 /**
2408 * skb_queue_purge - empty a list
2409 * @list: list to empty
2410 *
2411 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2412 * the list and one reference dropped. This function takes the list
2413 * lock and is atomic with respect to other list locking functions.
2414 */
2415 void skb_queue_purge(struct sk_buff_head *list)
2416 {
2417 struct sk_buff *skb;
2418 while ((skb = skb_dequeue(list)) != NULL)
2419 kfree_skb(skb);
2420 }
2421 EXPORT_SYMBOL(skb_queue_purge);
2422
2423 /**
2424 * skb_rbtree_purge - empty a skb rbtree
2425 * @root: root of the rbtree to empty
2426 *
2427 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2428 * the list and one reference dropped. This function does not take
2429 * any lock. Synchronization should be handled by the caller (e.g., TCP
2430 * out-of-order queue is protected by the socket lock).
2431 */
2432 void skb_rbtree_purge(struct rb_root *root)
2433 {
2434 struct sk_buff *skb, *next;
2435
2436 rbtree_postorder_for_each_entry_safe(skb, next, root, rbnode)
2437 kfree_skb(skb);
2438
2439 *root = RB_ROOT;
2440 }
2441
2442 /**
2443 * skb_queue_head - queue a buffer at the list head
2444 * @list: list to use
2445 * @newsk: buffer to queue
2446 *
2447 * Queue a buffer at the start of the list. This function takes the
2448 * list lock and can be used safely with other locking &sk_buff functions
2449 * safely.
2450 *
2451 * A buffer cannot be placed on two lists at the same time.
2452 */
2453 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2454 {
2455 unsigned long flags;
2456
2457 spin_lock_irqsave(&list->lock, flags);
2458 __skb_queue_head(list, newsk);
2459 spin_unlock_irqrestore(&list->lock, flags);
2460 }
2461 EXPORT_SYMBOL(skb_queue_head);
2462
2463 /**
2464 * skb_queue_tail - queue a buffer at the list tail
2465 * @list: list to use
2466 * @newsk: buffer to queue
2467 *
2468 * Queue a buffer at the tail of the list. This function takes the
2469 * list lock and can be used safely with other locking &sk_buff functions
2470 * safely.
2471 *
2472 * A buffer cannot be placed on two lists at the same time.
2473 */
2474 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2475 {
2476 unsigned long flags;
2477
2478 spin_lock_irqsave(&list->lock, flags);
2479 __skb_queue_tail(list, newsk);
2480 spin_unlock_irqrestore(&list->lock, flags);
2481 }
2482 EXPORT_SYMBOL(skb_queue_tail);
2483
2484 /**
2485 * skb_unlink - remove a buffer from a list
2486 * @skb: buffer to remove
2487 * @list: list to use
2488 *
2489 * Remove a packet from a list. The list locks are taken and this
2490 * function is atomic with respect to other list locked calls
2491 *
2492 * You must know what list the SKB is on.
2493 */
2494 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2495 {
2496 unsigned long flags;
2497
2498 spin_lock_irqsave(&list->lock, flags);
2499 __skb_unlink(skb, list);
2500 spin_unlock_irqrestore(&list->lock, flags);
2501 }
2502 EXPORT_SYMBOL(skb_unlink);
2503
2504 /**
2505 * skb_append - append a buffer
2506 * @old: buffer to insert after
2507 * @newsk: buffer to insert
2508 * @list: list to use
2509 *
2510 * Place a packet after a given packet in a list. The list locks are taken
2511 * and this function is atomic with respect to other list locked calls.
2512 * A buffer cannot be placed on two lists at the same time.
2513 */
2514 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2515 {
2516 unsigned long flags;
2517
2518 spin_lock_irqsave(&list->lock, flags);
2519 __skb_queue_after(list, old, newsk);
2520 spin_unlock_irqrestore(&list->lock, flags);
2521 }
2522 EXPORT_SYMBOL(skb_append);
2523
2524 /**
2525 * skb_insert - insert a buffer
2526 * @old: buffer to insert before
2527 * @newsk: buffer to insert
2528 * @list: list to use
2529 *
2530 * Place a packet before a given packet in a list. The list locks are
2531 * taken and this function is atomic with respect to other list locked
2532 * calls.
2533 *
2534 * A buffer cannot be placed on two lists at the same time.
2535 */
2536 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2537 {
2538 unsigned long flags;
2539
2540 spin_lock_irqsave(&list->lock, flags);
2541 __skb_insert(newsk, old->prev, old, list);
2542 spin_unlock_irqrestore(&list->lock, flags);
2543 }
2544 EXPORT_SYMBOL(skb_insert);
2545
2546 static inline void skb_split_inside_header(struct sk_buff *skb,
2547 struct sk_buff* skb1,
2548 const u32 len, const int pos)
2549 {
2550 int i;
2551
2552 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2553 pos - len);
2554 /* And move data appendix as is. */
2555 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2556 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2557
2558 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2559 skb_shinfo(skb)->nr_frags = 0;
2560 skb1->data_len = skb->data_len;
2561 skb1->len += skb1->data_len;
2562 skb->data_len = 0;
2563 skb->len = len;
2564 skb_set_tail_pointer(skb, len);
2565 }
2566
2567 static inline void skb_split_no_header(struct sk_buff *skb,
2568 struct sk_buff* skb1,
2569 const u32 len, int pos)
2570 {
2571 int i, k = 0;
2572 const int nfrags = skb_shinfo(skb)->nr_frags;
2573
2574 skb_shinfo(skb)->nr_frags = 0;
2575 skb1->len = skb1->data_len = skb->len - len;
2576 skb->len = len;
2577 skb->data_len = len - pos;
2578
2579 for (i = 0; i < nfrags; i++) {
2580 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2581
2582 if (pos + size > len) {
2583 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2584
2585 if (pos < len) {
2586 /* Split frag.
2587 * We have two variants in this case:
2588 * 1. Move all the frag to the second
2589 * part, if it is possible. F.e.
2590 * this approach is mandatory for TUX,
2591 * where splitting is expensive.
2592 * 2. Split is accurately. We make this.
2593 */
2594 skb_frag_ref(skb, i);
2595 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2596 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2597 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2598 skb_shinfo(skb)->nr_frags++;
2599 }
2600 k++;
2601 } else
2602 skb_shinfo(skb)->nr_frags++;
2603 pos += size;
2604 }
2605 skb_shinfo(skb1)->nr_frags = k;
2606 }
2607
2608 /**
2609 * skb_split - Split fragmented skb to two parts at length len.
2610 * @skb: the buffer to split
2611 * @skb1: the buffer to receive the second part
2612 * @len: new length for skb
2613 */
2614 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2615 {
2616 int pos = skb_headlen(skb);
2617
2618 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2619 if (len < pos) /* Split line is inside header. */
2620 skb_split_inside_header(skb, skb1, len, pos);
2621 else /* Second chunk has no header, nothing to copy. */
2622 skb_split_no_header(skb, skb1, len, pos);
2623 }
2624 EXPORT_SYMBOL(skb_split);
2625
2626 /* Shifting from/to a cloned skb is a no-go.
2627 *
2628 * Caller cannot keep skb_shinfo related pointers past calling here!
2629 */
2630 static int skb_prepare_for_shift(struct sk_buff *skb)
2631 {
2632 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2633 }
2634
2635 /**
2636 * skb_shift - Shifts paged data partially from skb to another
2637 * @tgt: buffer into which tail data gets added
2638 * @skb: buffer from which the paged data comes from
2639 * @shiftlen: shift up to this many bytes
2640 *
2641 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2642 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2643 * It's up to caller to free skb if everything was shifted.
2644 *
2645 * If @tgt runs out of frags, the whole operation is aborted.
2646 *
2647 * Skb cannot include anything else but paged data while tgt is allowed
2648 * to have non-paged data as well.
2649 *
2650 * TODO: full sized shift could be optimized but that would need
2651 * specialized skb free'er to handle frags without up-to-date nr_frags.
2652 */
2653 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2654 {
2655 int from, to, merge, todo;
2656 struct skb_frag_struct *fragfrom, *fragto;
2657
2658 BUG_ON(shiftlen > skb->len);
2659
2660 if (skb_headlen(skb))
2661 return 0;
2662
2663 todo = shiftlen;
2664 from = 0;
2665 to = skb_shinfo(tgt)->nr_frags;
2666 fragfrom = &skb_shinfo(skb)->frags[from];
2667
2668 /* Actual merge is delayed until the point when we know we can
2669 * commit all, so that we don't have to undo partial changes
2670 */
2671 if (!to ||
2672 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2673 fragfrom->page_offset)) {
2674 merge = -1;
2675 } else {
2676 merge = to - 1;
2677
2678 todo -= skb_frag_size(fragfrom);
2679 if (todo < 0) {
2680 if (skb_prepare_for_shift(skb) ||
2681 skb_prepare_for_shift(tgt))
2682 return 0;
2683
2684 /* All previous frag pointers might be stale! */
2685 fragfrom = &skb_shinfo(skb)->frags[from];
2686 fragto = &skb_shinfo(tgt)->frags[merge];
2687
2688 skb_frag_size_add(fragto, shiftlen);
2689 skb_frag_size_sub(fragfrom, shiftlen);
2690 fragfrom->page_offset += shiftlen;
2691
2692 goto onlymerged;
2693 }
2694
2695 from++;
2696 }
2697
2698 /* Skip full, not-fitting skb to avoid expensive operations */
2699 if ((shiftlen == skb->len) &&
2700 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2701 return 0;
2702
2703 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2704 return 0;
2705
2706 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2707 if (to == MAX_SKB_FRAGS)
2708 return 0;
2709
2710 fragfrom = &skb_shinfo(skb)->frags[from];
2711 fragto = &skb_shinfo(tgt)->frags[to];
2712
2713 if (todo >= skb_frag_size(fragfrom)) {
2714 *fragto = *fragfrom;
2715 todo -= skb_frag_size(fragfrom);
2716 from++;
2717 to++;
2718
2719 } else {
2720 __skb_frag_ref(fragfrom);
2721 fragto->page = fragfrom->page;
2722 fragto->page_offset = fragfrom->page_offset;
2723 skb_frag_size_set(fragto, todo);
2724
2725 fragfrom->page_offset += todo;
2726 skb_frag_size_sub(fragfrom, todo);
2727 todo = 0;
2728
2729 to++;
2730 break;
2731 }
2732 }
2733
2734 /* Ready to "commit" this state change to tgt */
2735 skb_shinfo(tgt)->nr_frags = to;
2736
2737 if (merge >= 0) {
2738 fragfrom = &skb_shinfo(skb)->frags[0];
2739 fragto = &skb_shinfo(tgt)->frags[merge];
2740
2741 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2742 __skb_frag_unref(fragfrom);
2743 }
2744
2745 /* Reposition in the original skb */
2746 to = 0;
2747 while (from < skb_shinfo(skb)->nr_frags)
2748 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2749 skb_shinfo(skb)->nr_frags = to;
2750
2751 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2752
2753 onlymerged:
2754 /* Most likely the tgt won't ever need its checksum anymore, skb on
2755 * the other hand might need it if it needs to be resent
2756 */
2757 tgt->ip_summed = CHECKSUM_PARTIAL;
2758 skb->ip_summed = CHECKSUM_PARTIAL;
2759
2760 /* Yak, is it really working this way? Some helper please? */
2761 skb->len -= shiftlen;
2762 skb->data_len -= shiftlen;
2763 skb->truesize -= shiftlen;
2764 tgt->len += shiftlen;
2765 tgt->data_len += shiftlen;
2766 tgt->truesize += shiftlen;
2767
2768 return shiftlen;
2769 }
2770
2771 /**
2772 * skb_prepare_seq_read - Prepare a sequential read of skb data
2773 * @skb: the buffer to read
2774 * @from: lower offset of data to be read
2775 * @to: upper offset of data to be read
2776 * @st: state variable
2777 *
2778 * Initializes the specified state variable. Must be called before
2779 * invoking skb_seq_read() for the first time.
2780 */
2781 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2782 unsigned int to, struct skb_seq_state *st)
2783 {
2784 st->lower_offset = from;
2785 st->upper_offset = to;
2786 st->root_skb = st->cur_skb = skb;
2787 st->frag_idx = st->stepped_offset = 0;
2788 st->frag_data = NULL;
2789 }
2790 EXPORT_SYMBOL(skb_prepare_seq_read);
2791
2792 /**
2793 * skb_seq_read - Sequentially read skb data
2794 * @consumed: number of bytes consumed by the caller so far
2795 * @data: destination pointer for data to be returned
2796 * @st: state variable
2797 *
2798 * Reads a block of skb data at @consumed relative to the
2799 * lower offset specified to skb_prepare_seq_read(). Assigns
2800 * the head of the data block to @data and returns the length
2801 * of the block or 0 if the end of the skb data or the upper
2802 * offset has been reached.
2803 *
2804 * The caller is not required to consume all of the data
2805 * returned, i.e. @consumed is typically set to the number
2806 * of bytes already consumed and the next call to
2807 * skb_seq_read() will return the remaining part of the block.
2808 *
2809 * Note 1: The size of each block of data returned can be arbitrary,
2810 * this limitation is the cost for zerocopy sequential
2811 * reads of potentially non linear data.
2812 *
2813 * Note 2: Fragment lists within fragments are not implemented
2814 * at the moment, state->root_skb could be replaced with
2815 * a stack for this purpose.
2816 */
2817 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2818 struct skb_seq_state *st)
2819 {
2820 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2821 skb_frag_t *frag;
2822
2823 if (unlikely(abs_offset >= st->upper_offset)) {
2824 if (st->frag_data) {
2825 kunmap_atomic(st->frag_data);
2826 st->frag_data = NULL;
2827 }
2828 return 0;
2829 }
2830
2831 next_skb:
2832 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2833
2834 if (abs_offset < block_limit && !st->frag_data) {
2835 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2836 return block_limit - abs_offset;
2837 }
2838
2839 if (st->frag_idx == 0 && !st->frag_data)
2840 st->stepped_offset += skb_headlen(st->cur_skb);
2841
2842 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2843 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2844 block_limit = skb_frag_size(frag) + st->stepped_offset;
2845
2846 if (abs_offset < block_limit) {
2847 if (!st->frag_data)
2848 st->frag_data = kmap_atomic(skb_frag_page(frag));
2849
2850 *data = (u8 *) st->frag_data + frag->page_offset +
2851 (abs_offset - st->stepped_offset);
2852
2853 return block_limit - abs_offset;
2854 }
2855
2856 if (st->frag_data) {
2857 kunmap_atomic(st->frag_data);
2858 st->frag_data = NULL;
2859 }
2860
2861 st->frag_idx++;
2862 st->stepped_offset += skb_frag_size(frag);
2863 }
2864
2865 if (st->frag_data) {
2866 kunmap_atomic(st->frag_data);
2867 st->frag_data = NULL;
2868 }
2869
2870 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2871 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2872 st->frag_idx = 0;
2873 goto next_skb;
2874 } else if (st->cur_skb->next) {
2875 st->cur_skb = st->cur_skb->next;
2876 st->frag_idx = 0;
2877 goto next_skb;
2878 }
2879
2880 return 0;
2881 }
2882 EXPORT_SYMBOL(skb_seq_read);
2883
2884 /**
2885 * skb_abort_seq_read - Abort a sequential read of skb data
2886 * @st: state variable
2887 *
2888 * Must be called if skb_seq_read() was not called until it
2889 * returned 0.
2890 */
2891 void skb_abort_seq_read(struct skb_seq_state *st)
2892 {
2893 if (st->frag_data)
2894 kunmap_atomic(st->frag_data);
2895 }
2896 EXPORT_SYMBOL(skb_abort_seq_read);
2897
2898 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2899
2900 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2901 struct ts_config *conf,
2902 struct ts_state *state)
2903 {
2904 return skb_seq_read(offset, text, TS_SKB_CB(state));
2905 }
2906
2907 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2908 {
2909 skb_abort_seq_read(TS_SKB_CB(state));
2910 }
2911
2912 /**
2913 * skb_find_text - Find a text pattern in skb data
2914 * @skb: the buffer to look in
2915 * @from: search offset
2916 * @to: search limit
2917 * @config: textsearch configuration
2918 *
2919 * Finds a pattern in the skb data according to the specified
2920 * textsearch configuration. Use textsearch_next() to retrieve
2921 * subsequent occurrences of the pattern. Returns the offset
2922 * to the first occurrence or UINT_MAX if no match was found.
2923 */
2924 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2925 unsigned int to, struct ts_config *config)
2926 {
2927 struct ts_state state;
2928 unsigned int ret;
2929
2930 config->get_next_block = skb_ts_get_next_block;
2931 config->finish = skb_ts_finish;
2932
2933 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2934
2935 ret = textsearch_find(config, &state);
2936 return (ret <= to - from ? ret : UINT_MAX);
2937 }
2938 EXPORT_SYMBOL(skb_find_text);
2939
2940 /**
2941 * skb_append_datato_frags - append the user data to a skb
2942 * @sk: sock structure
2943 * @skb: skb structure to be appended with user data.
2944 * @getfrag: call back function to be used for getting the user data
2945 * @from: pointer to user message iov
2946 * @length: length of the iov message
2947 *
2948 * Description: This procedure append the user data in the fragment part
2949 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2950 */
2951 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2952 int (*getfrag)(void *from, char *to, int offset,
2953 int len, int odd, struct sk_buff *skb),
2954 void *from, int length)
2955 {
2956 int frg_cnt = skb_shinfo(skb)->nr_frags;
2957 int copy;
2958 int offset = 0;
2959 int ret;
2960 struct page_frag *pfrag = &current->task_frag;
2961
2962 do {
2963 /* Return error if we don't have space for new frag */
2964 if (frg_cnt >= MAX_SKB_FRAGS)
2965 return -EMSGSIZE;
2966
2967 if (!sk_page_frag_refill(sk, pfrag))
2968 return -ENOMEM;
2969
2970 /* copy the user data to page */
2971 copy = min_t(int, length, pfrag->size - pfrag->offset);
2972
2973 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2974 offset, copy, 0, skb);
2975 if (ret < 0)
2976 return -EFAULT;
2977
2978 /* copy was successful so update the size parameters */
2979 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2980 copy);
2981 frg_cnt++;
2982 pfrag->offset += copy;
2983 get_page(pfrag->page);
2984
2985 skb->truesize += copy;
2986 atomic_add(copy, &sk->sk_wmem_alloc);
2987 skb->len += copy;
2988 skb->data_len += copy;
2989 offset += copy;
2990 length -= copy;
2991
2992 } while (length > 0);
2993
2994 return 0;
2995 }
2996 EXPORT_SYMBOL(skb_append_datato_frags);
2997
2998 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
2999 int offset, size_t size)
3000 {
3001 int i = skb_shinfo(skb)->nr_frags;
3002
3003 if (skb_can_coalesce(skb, i, page, offset)) {
3004 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3005 } else if (i < MAX_SKB_FRAGS) {
3006 get_page(page);
3007 skb_fill_page_desc(skb, i, page, offset, size);
3008 } else {
3009 return -EMSGSIZE;
3010 }
3011
3012 return 0;
3013 }
3014 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3015
3016 /**
3017 * skb_pull_rcsum - pull skb and update receive checksum
3018 * @skb: buffer to update
3019 * @len: length of data pulled
3020 *
3021 * This function performs an skb_pull on the packet and updates
3022 * the CHECKSUM_COMPLETE checksum. It should be used on
3023 * receive path processing instead of skb_pull unless you know
3024 * that the checksum difference is zero (e.g., a valid IP header)
3025 * or you are setting ip_summed to CHECKSUM_NONE.
3026 */
3027 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3028 {
3029 unsigned char *data = skb->data;
3030
3031 BUG_ON(len > skb->len);
3032 __skb_pull(skb, len);
3033 skb_postpull_rcsum(skb, data, len);
3034 return skb->data;
3035 }
3036 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3037
3038 /**
3039 * skb_segment - Perform protocol segmentation on skb.
3040 * @head_skb: buffer to segment
3041 * @features: features for the output path (see dev->features)
3042 *
3043 * This function performs segmentation on the given skb. It returns
3044 * a pointer to the first in a list of new skbs for the segments.
3045 * In case of error it returns ERR_PTR(err).
3046 */
3047 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3048 netdev_features_t features)
3049 {
3050 struct sk_buff *segs = NULL;
3051 struct sk_buff *tail = NULL;
3052 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3053 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3054 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3055 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3056 struct sk_buff *frag_skb = head_skb;
3057 unsigned int offset = doffset;
3058 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3059 unsigned int partial_segs = 0;
3060 unsigned int headroom;
3061 unsigned int len = head_skb->len;
3062 __be16 proto;
3063 bool csum, sg;
3064 int nfrags = skb_shinfo(head_skb)->nr_frags;
3065 int err = -ENOMEM;
3066 int i = 0;
3067 int pos;
3068 int dummy;
3069
3070 __skb_push(head_skb, doffset);
3071 proto = skb_network_protocol(head_skb, &dummy);
3072 if (unlikely(!proto))
3073 return ERR_PTR(-EINVAL);
3074
3075 sg = !!(features & NETIF_F_SG);
3076 csum = !!can_checksum_protocol(features, proto);
3077
3078 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3079 if (!(features & NETIF_F_GSO_PARTIAL)) {
3080 struct sk_buff *iter;
3081
3082 if (!list_skb ||
3083 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3084 goto normal;
3085
3086 /* Split the buffer at the frag_list pointer.
3087 * This is based on the assumption that all
3088 * buffers in the chain excluding the last
3089 * containing the same amount of data.
3090 */
3091 skb_walk_frags(head_skb, iter) {
3092 if (skb_headlen(iter))
3093 goto normal;
3094
3095 len -= iter->len;
3096 }
3097 }
3098
3099 /* GSO partial only requires that we trim off any excess that
3100 * doesn't fit into an MSS sized block, so take care of that
3101 * now.
3102 */
3103 partial_segs = len / mss;
3104 if (partial_segs > 1)
3105 mss *= partial_segs;
3106 else
3107 partial_segs = 0;
3108 }
3109
3110 normal:
3111 headroom = skb_headroom(head_skb);
3112 pos = skb_headlen(head_skb);
3113
3114 do {
3115 struct sk_buff *nskb;
3116 skb_frag_t *nskb_frag;
3117 int hsize;
3118 int size;
3119
3120 if (unlikely(mss == GSO_BY_FRAGS)) {
3121 len = list_skb->len;
3122 } else {
3123 len = head_skb->len - offset;
3124 if (len > mss)
3125 len = mss;
3126 }
3127
3128 hsize = skb_headlen(head_skb) - offset;
3129 if (hsize < 0)
3130 hsize = 0;
3131 if (hsize > len || !sg)
3132 hsize = len;
3133
3134 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3135 (skb_headlen(list_skb) == len || sg)) {
3136 BUG_ON(skb_headlen(list_skb) > len);
3137
3138 i = 0;
3139 nfrags = skb_shinfo(list_skb)->nr_frags;
3140 frag = skb_shinfo(list_skb)->frags;
3141 frag_skb = list_skb;
3142 pos += skb_headlen(list_skb);
3143
3144 while (pos < offset + len) {
3145 BUG_ON(i >= nfrags);
3146
3147 size = skb_frag_size(frag);
3148 if (pos + size > offset + len)
3149 break;
3150
3151 i++;
3152 pos += size;
3153 frag++;
3154 }
3155
3156 nskb = skb_clone(list_skb, GFP_ATOMIC);
3157 list_skb = list_skb->next;
3158
3159 if (unlikely(!nskb))
3160 goto err;
3161
3162 if (unlikely(pskb_trim(nskb, len))) {
3163 kfree_skb(nskb);
3164 goto err;
3165 }
3166
3167 hsize = skb_end_offset(nskb);
3168 if (skb_cow_head(nskb, doffset + headroom)) {
3169 kfree_skb(nskb);
3170 goto err;
3171 }
3172
3173 nskb->truesize += skb_end_offset(nskb) - hsize;
3174 skb_release_head_state(nskb);
3175 __skb_push(nskb, doffset);
3176 } else {
3177 nskb = __alloc_skb(hsize + doffset + headroom,
3178 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3179 NUMA_NO_NODE);
3180
3181 if (unlikely(!nskb))
3182 goto err;
3183
3184 skb_reserve(nskb, headroom);
3185 __skb_put(nskb, doffset);
3186 }
3187
3188 if (segs)
3189 tail->next = nskb;
3190 else
3191 segs = nskb;
3192 tail = nskb;
3193
3194 __copy_skb_header(nskb, head_skb);
3195
3196 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3197 skb_reset_mac_len(nskb);
3198
3199 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3200 nskb->data - tnl_hlen,
3201 doffset + tnl_hlen);
3202
3203 if (nskb->len == len + doffset)
3204 goto perform_csum_check;
3205
3206 if (!sg) {
3207 if (!nskb->remcsum_offload)
3208 nskb->ip_summed = CHECKSUM_NONE;
3209 SKB_GSO_CB(nskb)->csum =
3210 skb_copy_and_csum_bits(head_skb, offset,
3211 skb_put(nskb, len),
3212 len, 0);
3213 SKB_GSO_CB(nskb)->csum_start =
3214 skb_headroom(nskb) + doffset;
3215 continue;
3216 }
3217
3218 nskb_frag = skb_shinfo(nskb)->frags;
3219
3220 skb_copy_from_linear_data_offset(head_skb, offset,
3221 skb_put(nskb, hsize), hsize);
3222
3223 skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3224 SKBTX_SHARED_FRAG;
3225
3226 while (pos < offset + len) {
3227 if (i >= nfrags) {
3228 BUG_ON(skb_headlen(list_skb));
3229
3230 i = 0;
3231 nfrags = skb_shinfo(list_skb)->nr_frags;
3232 frag = skb_shinfo(list_skb)->frags;
3233 frag_skb = list_skb;
3234
3235 BUG_ON(!nfrags);
3236
3237 list_skb = list_skb->next;
3238 }
3239
3240 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3241 MAX_SKB_FRAGS)) {
3242 net_warn_ratelimited(
3243 "skb_segment: too many frags: %u %u\n",
3244 pos, mss);
3245 goto err;
3246 }
3247
3248 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3249 goto err;
3250
3251 *nskb_frag = *frag;
3252 __skb_frag_ref(nskb_frag);
3253 size = skb_frag_size(nskb_frag);
3254
3255 if (pos < offset) {
3256 nskb_frag->page_offset += offset - pos;
3257 skb_frag_size_sub(nskb_frag, offset - pos);
3258 }
3259
3260 skb_shinfo(nskb)->nr_frags++;
3261
3262 if (pos + size <= offset + len) {
3263 i++;
3264 frag++;
3265 pos += size;
3266 } else {
3267 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3268 goto skip_fraglist;
3269 }
3270
3271 nskb_frag++;
3272 }
3273
3274 skip_fraglist:
3275 nskb->data_len = len - hsize;
3276 nskb->len += nskb->data_len;
3277 nskb->truesize += nskb->data_len;
3278
3279 perform_csum_check:
3280 if (!csum) {
3281 if (skb_has_shared_frag(nskb)) {
3282 err = __skb_linearize(nskb);
3283 if (err)
3284 goto err;
3285 }
3286 if (!nskb->remcsum_offload)
3287 nskb->ip_summed = CHECKSUM_NONE;
3288 SKB_GSO_CB(nskb)->csum =
3289 skb_checksum(nskb, doffset,
3290 nskb->len - doffset, 0);
3291 SKB_GSO_CB(nskb)->csum_start =
3292 skb_headroom(nskb) + doffset;
3293 }
3294 } while ((offset += len) < head_skb->len);
3295
3296 /* Some callers want to get the end of the list.
3297 * Put it in segs->prev to avoid walking the list.
3298 * (see validate_xmit_skb_list() for example)
3299 */
3300 segs->prev = tail;
3301
3302 if (partial_segs) {
3303 struct sk_buff *iter;
3304 int type = skb_shinfo(head_skb)->gso_type;
3305 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3306
3307 /* Update type to add partial and then remove dodgy if set */
3308 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3309 type &= ~SKB_GSO_DODGY;
3310
3311 /* Update GSO info and prepare to start updating headers on
3312 * our way back down the stack of protocols.
3313 */
3314 for (iter = segs; iter; iter = iter->next) {
3315 skb_shinfo(iter)->gso_size = gso_size;
3316 skb_shinfo(iter)->gso_segs = partial_segs;
3317 skb_shinfo(iter)->gso_type = type;
3318 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3319 }
3320
3321 if (tail->len - doffset <= gso_size)
3322 skb_shinfo(tail)->gso_size = 0;
3323 else if (tail != segs)
3324 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3325 }
3326
3327 /* Following permits correct backpressure, for protocols
3328 * using skb_set_owner_w().
3329 * Idea is to tranfert ownership from head_skb to last segment.
3330 */
3331 if (head_skb->destructor == sock_wfree) {
3332 swap(tail->truesize, head_skb->truesize);
3333 swap(tail->destructor, head_skb->destructor);
3334 swap(tail->sk, head_skb->sk);
3335 }
3336 return segs;
3337
3338 err:
3339 kfree_skb_list(segs);
3340 return ERR_PTR(err);
3341 }
3342 EXPORT_SYMBOL_GPL(skb_segment);
3343
3344 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3345 {
3346 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3347 unsigned int offset = skb_gro_offset(skb);
3348 unsigned int headlen = skb_headlen(skb);
3349 unsigned int len = skb_gro_len(skb);
3350 struct sk_buff *lp, *p = *head;
3351 unsigned int delta_truesize;
3352
3353 if (unlikely(p->len + len >= 65536))
3354 return -E2BIG;
3355
3356 lp = NAPI_GRO_CB(p)->last;
3357 pinfo = skb_shinfo(lp);
3358
3359 if (headlen <= offset) {
3360 skb_frag_t *frag;
3361 skb_frag_t *frag2;
3362 int i = skbinfo->nr_frags;
3363 int nr_frags = pinfo->nr_frags + i;
3364
3365 if (nr_frags > MAX_SKB_FRAGS)
3366 goto merge;
3367
3368 offset -= headlen;
3369 pinfo->nr_frags = nr_frags;
3370 skbinfo->nr_frags = 0;
3371
3372 frag = pinfo->frags + nr_frags;
3373 frag2 = skbinfo->frags + i;
3374 do {
3375 *--frag = *--frag2;
3376 } while (--i);
3377
3378 frag->page_offset += offset;
3379 skb_frag_size_sub(frag, offset);
3380
3381 /* all fragments truesize : remove (head size + sk_buff) */
3382 delta_truesize = skb->truesize -
3383 SKB_TRUESIZE(skb_end_offset(skb));
3384
3385 skb->truesize -= skb->data_len;
3386 skb->len -= skb->data_len;
3387 skb->data_len = 0;
3388
3389 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3390 goto done;
3391 } else if (skb->head_frag) {
3392 int nr_frags = pinfo->nr_frags;
3393 skb_frag_t *frag = pinfo->frags + nr_frags;
3394 struct page *page = virt_to_head_page(skb->head);
3395 unsigned int first_size = headlen - offset;
3396 unsigned int first_offset;
3397
3398 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3399 goto merge;
3400
3401 first_offset = skb->data -
3402 (unsigned char *)page_address(page) +
3403 offset;
3404
3405 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3406
3407 frag->page.p = page;
3408 frag->page_offset = first_offset;
3409 skb_frag_size_set(frag, first_size);
3410
3411 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3412 /* We dont need to clear skbinfo->nr_frags here */
3413
3414 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3415 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3416 goto done;
3417 }
3418
3419 merge:
3420 delta_truesize = skb->truesize;
3421 if (offset > headlen) {
3422 unsigned int eat = offset - headlen;
3423
3424 skbinfo->frags[0].page_offset += eat;
3425 skb_frag_size_sub(&skbinfo->frags[0], eat);
3426 skb->data_len -= eat;
3427 skb->len -= eat;
3428 offset = headlen;
3429 }
3430
3431 __skb_pull(skb, offset);
3432
3433 if (NAPI_GRO_CB(p)->last == p)
3434 skb_shinfo(p)->frag_list = skb;
3435 else
3436 NAPI_GRO_CB(p)->last->next = skb;
3437 NAPI_GRO_CB(p)->last = skb;
3438 __skb_header_release(skb);
3439 lp = p;
3440
3441 done:
3442 NAPI_GRO_CB(p)->count++;
3443 p->data_len += len;
3444 p->truesize += delta_truesize;
3445 p->len += len;
3446 if (lp != p) {
3447 lp->data_len += len;
3448 lp->truesize += delta_truesize;
3449 lp->len += len;
3450 }
3451 NAPI_GRO_CB(skb)->same_flow = 1;
3452 return 0;
3453 }
3454 EXPORT_SYMBOL_GPL(skb_gro_receive);
3455
3456 void __init skb_init(void)
3457 {
3458 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3459 sizeof(struct sk_buff),
3460 0,
3461 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3462 NULL);
3463 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3464 sizeof(struct sk_buff_fclones),
3465 0,
3466 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3467 NULL);
3468 }
3469
3470 /**
3471 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3472 * @skb: Socket buffer containing the buffers to be mapped
3473 * @sg: The scatter-gather list to map into
3474 * @offset: The offset into the buffer's contents to start mapping
3475 * @len: Length of buffer space to be mapped
3476 *
3477 * Fill the specified scatter-gather list with mappings/pointers into a
3478 * region of the buffer space attached to a socket buffer.
3479 */
3480 static int
3481 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3482 {
3483 int start = skb_headlen(skb);
3484 int i, copy = start - offset;
3485 struct sk_buff *frag_iter;
3486 int elt = 0;
3487
3488 if (copy > 0) {
3489 if (copy > len)
3490 copy = len;
3491 sg_set_buf(sg, skb->data + offset, copy);
3492 elt++;
3493 if ((len -= copy) == 0)
3494 return elt;
3495 offset += copy;
3496 }
3497
3498 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3499 int end;
3500
3501 WARN_ON(start > offset + len);
3502
3503 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3504 if ((copy = end - offset) > 0) {
3505 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3506
3507 if (copy > len)
3508 copy = len;
3509 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3510 frag->page_offset+offset-start);
3511 elt++;
3512 if (!(len -= copy))
3513 return elt;
3514 offset += copy;
3515 }
3516 start = end;
3517 }
3518
3519 skb_walk_frags(skb, frag_iter) {
3520 int end;
3521
3522 WARN_ON(start > offset + len);
3523
3524 end = start + frag_iter->len;
3525 if ((copy = end - offset) > 0) {
3526 if (copy > len)
3527 copy = len;
3528 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3529 copy);
3530 if ((len -= copy) == 0)
3531 return elt;
3532 offset += copy;
3533 }
3534 start = end;
3535 }
3536 BUG_ON(len);
3537 return elt;
3538 }
3539
3540 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3541 * sglist without mark the sg which contain last skb data as the end.
3542 * So the caller can mannipulate sg list as will when padding new data after
3543 * the first call without calling sg_unmark_end to expend sg list.
3544 *
3545 * Scenario to use skb_to_sgvec_nomark:
3546 * 1. sg_init_table
3547 * 2. skb_to_sgvec_nomark(payload1)
3548 * 3. skb_to_sgvec_nomark(payload2)
3549 *
3550 * This is equivalent to:
3551 * 1. sg_init_table
3552 * 2. skb_to_sgvec(payload1)
3553 * 3. sg_unmark_end
3554 * 4. skb_to_sgvec(payload2)
3555 *
3556 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3557 * is more preferable.
3558 */
3559 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3560 int offset, int len)
3561 {
3562 return __skb_to_sgvec(skb, sg, offset, len);
3563 }
3564 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3565
3566 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3567 {
3568 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3569
3570 sg_mark_end(&sg[nsg - 1]);
3571
3572 return nsg;
3573 }
3574 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3575
3576 /**
3577 * skb_cow_data - Check that a socket buffer's data buffers are writable
3578 * @skb: The socket buffer to check.
3579 * @tailbits: Amount of trailing space to be added
3580 * @trailer: Returned pointer to the skb where the @tailbits space begins
3581 *
3582 * Make sure that the data buffers attached to a socket buffer are
3583 * writable. If they are not, private copies are made of the data buffers
3584 * and the socket buffer is set to use these instead.
3585 *
3586 * If @tailbits is given, make sure that there is space to write @tailbits
3587 * bytes of data beyond current end of socket buffer. @trailer will be
3588 * set to point to the skb in which this space begins.
3589 *
3590 * The number of scatterlist elements required to completely map the
3591 * COW'd and extended socket buffer will be returned.
3592 */
3593 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3594 {
3595 int copyflag;
3596 int elt;
3597 struct sk_buff *skb1, **skb_p;
3598
3599 /* If skb is cloned or its head is paged, reallocate
3600 * head pulling out all the pages (pages are considered not writable
3601 * at the moment even if they are anonymous).
3602 */
3603 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3604 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3605 return -ENOMEM;
3606
3607 /* Easy case. Most of packets will go this way. */
3608 if (!skb_has_frag_list(skb)) {
3609 /* A little of trouble, not enough of space for trailer.
3610 * This should not happen, when stack is tuned to generate
3611 * good frames. OK, on miss we reallocate and reserve even more
3612 * space, 128 bytes is fair. */
3613
3614 if (skb_tailroom(skb) < tailbits &&
3615 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3616 return -ENOMEM;
3617
3618 /* Voila! */
3619 *trailer = skb;
3620 return 1;
3621 }
3622
3623 /* Misery. We are in troubles, going to mincer fragments... */
3624
3625 elt = 1;
3626 skb_p = &skb_shinfo(skb)->frag_list;
3627 copyflag = 0;
3628
3629 while ((skb1 = *skb_p) != NULL) {
3630 int ntail = 0;
3631
3632 /* The fragment is partially pulled by someone,
3633 * this can happen on input. Copy it and everything
3634 * after it. */
3635
3636 if (skb_shared(skb1))
3637 copyflag = 1;
3638
3639 /* If the skb is the last, worry about trailer. */
3640
3641 if (skb1->next == NULL && tailbits) {
3642 if (skb_shinfo(skb1)->nr_frags ||
3643 skb_has_frag_list(skb1) ||
3644 skb_tailroom(skb1) < tailbits)
3645 ntail = tailbits + 128;
3646 }
3647
3648 if (copyflag ||
3649 skb_cloned(skb1) ||
3650 ntail ||
3651 skb_shinfo(skb1)->nr_frags ||
3652 skb_has_frag_list(skb1)) {
3653 struct sk_buff *skb2;
3654
3655 /* Fuck, we are miserable poor guys... */
3656 if (ntail == 0)
3657 skb2 = skb_copy(skb1, GFP_ATOMIC);
3658 else
3659 skb2 = skb_copy_expand(skb1,
3660 skb_headroom(skb1),
3661 ntail,
3662 GFP_ATOMIC);
3663 if (unlikely(skb2 == NULL))
3664 return -ENOMEM;
3665
3666 if (skb1->sk)
3667 skb_set_owner_w(skb2, skb1->sk);
3668
3669 /* Looking around. Are we still alive?
3670 * OK, link new skb, drop old one */
3671
3672 skb2->next = skb1->next;
3673 *skb_p = skb2;
3674 kfree_skb(skb1);
3675 skb1 = skb2;
3676 }
3677 elt++;
3678 *trailer = skb1;
3679 skb_p = &skb1->next;
3680 }
3681
3682 return elt;
3683 }
3684 EXPORT_SYMBOL_GPL(skb_cow_data);
3685
3686 static void sock_rmem_free(struct sk_buff *skb)
3687 {
3688 struct sock *sk = skb->sk;
3689
3690 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3691 }
3692
3693 /*
3694 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3695 */
3696 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3697 {
3698 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3699 (unsigned int)sk->sk_rcvbuf)
3700 return -ENOMEM;
3701
3702 skb_orphan(skb);
3703 skb->sk = sk;
3704 skb->destructor = sock_rmem_free;
3705 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3706
3707 /* before exiting rcu section, make sure dst is refcounted */
3708 skb_dst_force(skb);
3709
3710 skb_queue_tail(&sk->sk_error_queue, skb);
3711 if (!sock_flag(sk, SOCK_DEAD))
3712 sk->sk_data_ready(sk);
3713 return 0;
3714 }
3715 EXPORT_SYMBOL(sock_queue_err_skb);
3716
3717 static bool is_icmp_err_skb(const struct sk_buff *skb)
3718 {
3719 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
3720 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
3721 }
3722
3723 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3724 {
3725 struct sk_buff_head *q = &sk->sk_error_queue;
3726 struct sk_buff *skb, *skb_next = NULL;
3727 bool icmp_next = false;
3728 unsigned long flags;
3729
3730 spin_lock_irqsave(&q->lock, flags);
3731 skb = __skb_dequeue(q);
3732 if (skb && (skb_next = skb_peek(q)))
3733 icmp_next = is_icmp_err_skb(skb_next);
3734 spin_unlock_irqrestore(&q->lock, flags);
3735
3736 if (is_icmp_err_skb(skb) && !icmp_next)
3737 sk->sk_err = 0;
3738
3739 if (skb_next)
3740 sk->sk_error_report(sk);
3741
3742 return skb;
3743 }
3744 EXPORT_SYMBOL(sock_dequeue_err_skb);
3745
3746 /**
3747 * skb_clone_sk - create clone of skb, and take reference to socket
3748 * @skb: the skb to clone
3749 *
3750 * This function creates a clone of a buffer that holds a reference on
3751 * sk_refcnt. Buffers created via this function are meant to be
3752 * returned using sock_queue_err_skb, or free via kfree_skb.
3753 *
3754 * When passing buffers allocated with this function to sock_queue_err_skb
3755 * it is necessary to wrap the call with sock_hold/sock_put in order to
3756 * prevent the socket from being released prior to being enqueued on
3757 * the sk_error_queue.
3758 */
3759 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3760 {
3761 struct sock *sk = skb->sk;
3762 struct sk_buff *clone;
3763
3764 if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3765 return NULL;
3766
3767 clone = skb_clone(skb, GFP_ATOMIC);
3768 if (!clone) {
3769 sock_put(sk);
3770 return NULL;
3771 }
3772
3773 clone->sk = sk;
3774 clone->destructor = sock_efree;
3775
3776 return clone;
3777 }
3778 EXPORT_SYMBOL(skb_clone_sk);
3779
3780 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3781 struct sock *sk,
3782 int tstype)
3783 {
3784 struct sock_exterr_skb *serr;
3785 int err;
3786
3787 serr = SKB_EXT_ERR(skb);
3788 memset(serr, 0, sizeof(*serr));
3789 serr->ee.ee_errno = ENOMSG;
3790 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3791 serr->ee.ee_info = tstype;
3792 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3793 serr->ee.ee_data = skb_shinfo(skb)->tskey;
3794 if (sk->sk_protocol == IPPROTO_TCP &&
3795 sk->sk_type == SOCK_STREAM)
3796 serr->ee.ee_data -= sk->sk_tskey;
3797 }
3798
3799 err = sock_queue_err_skb(sk, skb);
3800
3801 if (err)
3802 kfree_skb(skb);
3803 }
3804
3805 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3806 {
3807 bool ret;
3808
3809 if (likely(sysctl_tstamp_allow_data || tsonly))
3810 return true;
3811
3812 read_lock_bh(&sk->sk_callback_lock);
3813 ret = sk->sk_socket && sk->sk_socket->file &&
3814 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3815 read_unlock_bh(&sk->sk_callback_lock);
3816 return ret;
3817 }
3818
3819 void skb_complete_tx_timestamp(struct sk_buff *skb,
3820 struct skb_shared_hwtstamps *hwtstamps)
3821 {
3822 struct sock *sk = skb->sk;
3823
3824 if (!skb_may_tx_timestamp(sk, false))
3825 return;
3826
3827 /* take a reference to prevent skb_orphan() from freeing the socket */
3828 sock_hold(sk);
3829
3830 *skb_hwtstamps(skb) = *hwtstamps;
3831 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3832
3833 sock_put(sk);
3834 }
3835 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3836
3837 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3838 struct skb_shared_hwtstamps *hwtstamps,
3839 struct sock *sk, int tstype)
3840 {
3841 struct sk_buff *skb;
3842 bool tsonly;
3843
3844 if (!sk)
3845 return;
3846
3847 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3848 if (!skb_may_tx_timestamp(sk, tsonly))
3849 return;
3850
3851 if (tsonly) {
3852 #ifdef CONFIG_INET
3853 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
3854 sk->sk_protocol == IPPROTO_TCP &&
3855 sk->sk_type == SOCK_STREAM)
3856 skb = tcp_get_timestamping_opt_stats(sk);
3857 else
3858 #endif
3859 skb = alloc_skb(0, GFP_ATOMIC);
3860 } else {
3861 skb = skb_clone(orig_skb, GFP_ATOMIC);
3862 }
3863 if (!skb)
3864 return;
3865
3866 if (tsonly) {
3867 skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3868 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3869 }
3870
3871 if (hwtstamps)
3872 *skb_hwtstamps(skb) = *hwtstamps;
3873 else
3874 skb->tstamp = ktime_get_real();
3875
3876 __skb_complete_tx_timestamp(skb, sk, tstype);
3877 }
3878 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3879
3880 void skb_tstamp_tx(struct sk_buff *orig_skb,
3881 struct skb_shared_hwtstamps *hwtstamps)
3882 {
3883 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3884 SCM_TSTAMP_SND);
3885 }
3886 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3887
3888 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3889 {
3890 struct sock *sk = skb->sk;
3891 struct sock_exterr_skb *serr;
3892 int err;
3893
3894 skb->wifi_acked_valid = 1;
3895 skb->wifi_acked = acked;
3896
3897 serr = SKB_EXT_ERR(skb);
3898 memset(serr, 0, sizeof(*serr));
3899 serr->ee.ee_errno = ENOMSG;
3900 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3901
3902 /* take a reference to prevent skb_orphan() from freeing the socket */
3903 sock_hold(sk);
3904
3905 err = sock_queue_err_skb(sk, skb);
3906 if (err)
3907 kfree_skb(skb);
3908
3909 sock_put(sk);
3910 }
3911 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3912
3913 /**
3914 * skb_partial_csum_set - set up and verify partial csum values for packet
3915 * @skb: the skb to set
3916 * @start: the number of bytes after skb->data to start checksumming.
3917 * @off: the offset from start to place the checksum.
3918 *
3919 * For untrusted partially-checksummed packets, we need to make sure the values
3920 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3921 *
3922 * This function checks and sets those values and skb->ip_summed: if this
3923 * returns false you should drop the packet.
3924 */
3925 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3926 {
3927 if (unlikely(start > skb_headlen(skb)) ||
3928 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3929 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3930 start, off, skb_headlen(skb));
3931 return false;
3932 }
3933 skb->ip_summed = CHECKSUM_PARTIAL;
3934 skb->csum_start = skb_headroom(skb) + start;
3935 skb->csum_offset = off;
3936 skb_set_transport_header(skb, start);
3937 return true;
3938 }
3939 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3940
3941 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3942 unsigned int max)
3943 {
3944 if (skb_headlen(skb) >= len)
3945 return 0;
3946
3947 /* If we need to pullup then pullup to the max, so we
3948 * won't need to do it again.
3949 */
3950 if (max > skb->len)
3951 max = skb->len;
3952
3953 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3954 return -ENOMEM;
3955
3956 if (skb_headlen(skb) < len)
3957 return -EPROTO;
3958
3959 return 0;
3960 }
3961
3962 #define MAX_TCP_HDR_LEN (15 * 4)
3963
3964 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3965 typeof(IPPROTO_IP) proto,
3966 unsigned int off)
3967 {
3968 switch (proto) {
3969 int err;
3970
3971 case IPPROTO_TCP:
3972 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3973 off + MAX_TCP_HDR_LEN);
3974 if (!err && !skb_partial_csum_set(skb, off,
3975 offsetof(struct tcphdr,
3976 check)))
3977 err = -EPROTO;
3978 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3979
3980 case IPPROTO_UDP:
3981 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3982 off + sizeof(struct udphdr));
3983 if (!err && !skb_partial_csum_set(skb, off,
3984 offsetof(struct udphdr,
3985 check)))
3986 err = -EPROTO;
3987 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3988 }
3989
3990 return ERR_PTR(-EPROTO);
3991 }
3992
3993 /* This value should be large enough to cover a tagged ethernet header plus
3994 * maximally sized IP and TCP or UDP headers.
3995 */
3996 #define MAX_IP_HDR_LEN 128
3997
3998 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3999 {
4000 unsigned int off;
4001 bool fragment;
4002 __sum16 *csum;
4003 int err;
4004
4005 fragment = false;
4006
4007 err = skb_maybe_pull_tail(skb,
4008 sizeof(struct iphdr),
4009 MAX_IP_HDR_LEN);
4010 if (err < 0)
4011 goto out;
4012
4013 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4014 fragment = true;
4015
4016 off = ip_hdrlen(skb);
4017
4018 err = -EPROTO;
4019
4020 if (fragment)
4021 goto out;
4022
4023 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4024 if (IS_ERR(csum))
4025 return PTR_ERR(csum);
4026
4027 if (recalculate)
4028 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4029 ip_hdr(skb)->daddr,
4030 skb->len - off,
4031 ip_hdr(skb)->protocol, 0);
4032 err = 0;
4033
4034 out:
4035 return err;
4036 }
4037
4038 /* This value should be large enough to cover a tagged ethernet header plus
4039 * an IPv6 header, all options, and a maximal TCP or UDP header.
4040 */
4041 #define MAX_IPV6_HDR_LEN 256
4042
4043 #define OPT_HDR(type, skb, off) \
4044 (type *)(skb_network_header(skb) + (off))
4045
4046 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4047 {
4048 int err;
4049 u8 nexthdr;
4050 unsigned int off;
4051 unsigned int len;
4052 bool fragment;
4053 bool done;
4054 __sum16 *csum;
4055
4056 fragment = false;
4057 done = false;
4058
4059 off = sizeof(struct ipv6hdr);
4060
4061 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4062 if (err < 0)
4063 goto out;
4064
4065 nexthdr = ipv6_hdr(skb)->nexthdr;
4066
4067 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4068 while (off <= len && !done) {
4069 switch (nexthdr) {
4070 case IPPROTO_DSTOPTS:
4071 case IPPROTO_HOPOPTS:
4072 case IPPROTO_ROUTING: {
4073 struct ipv6_opt_hdr *hp;
4074
4075 err = skb_maybe_pull_tail(skb,
4076 off +
4077 sizeof(struct ipv6_opt_hdr),
4078 MAX_IPV6_HDR_LEN);
4079 if (err < 0)
4080 goto out;
4081
4082 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4083 nexthdr = hp->nexthdr;
4084 off += ipv6_optlen(hp);
4085 break;
4086 }
4087 case IPPROTO_AH: {
4088 struct ip_auth_hdr *hp;
4089
4090 err = skb_maybe_pull_tail(skb,
4091 off +
4092 sizeof(struct ip_auth_hdr),
4093 MAX_IPV6_HDR_LEN);
4094 if (err < 0)
4095 goto out;
4096
4097 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4098 nexthdr = hp->nexthdr;
4099 off += ipv6_authlen(hp);
4100 break;
4101 }
4102 case IPPROTO_FRAGMENT: {
4103 struct frag_hdr *hp;
4104
4105 err = skb_maybe_pull_tail(skb,
4106 off +
4107 sizeof(struct frag_hdr),
4108 MAX_IPV6_HDR_LEN);
4109 if (err < 0)
4110 goto out;
4111
4112 hp = OPT_HDR(struct frag_hdr, skb, off);
4113
4114 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4115 fragment = true;
4116
4117 nexthdr = hp->nexthdr;
4118 off += sizeof(struct frag_hdr);
4119 break;
4120 }
4121 default:
4122 done = true;
4123 break;
4124 }
4125 }
4126
4127 err = -EPROTO;
4128
4129 if (!done || fragment)
4130 goto out;
4131
4132 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4133 if (IS_ERR(csum))
4134 return PTR_ERR(csum);
4135
4136 if (recalculate)
4137 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4138 &ipv6_hdr(skb)->daddr,
4139 skb->len - off, nexthdr, 0);
4140 err = 0;
4141
4142 out:
4143 return err;
4144 }
4145
4146 /**
4147 * skb_checksum_setup - set up partial checksum offset
4148 * @skb: the skb to set up
4149 * @recalculate: if true the pseudo-header checksum will be recalculated
4150 */
4151 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4152 {
4153 int err;
4154
4155 switch (skb->protocol) {
4156 case htons(ETH_P_IP):
4157 err = skb_checksum_setup_ipv4(skb, recalculate);
4158 break;
4159
4160 case htons(ETH_P_IPV6):
4161 err = skb_checksum_setup_ipv6(skb, recalculate);
4162 break;
4163
4164 default:
4165 err = -EPROTO;
4166 break;
4167 }
4168
4169 return err;
4170 }
4171 EXPORT_SYMBOL(skb_checksum_setup);
4172
4173 /**
4174 * skb_checksum_maybe_trim - maybe trims the given skb
4175 * @skb: the skb to check
4176 * @transport_len: the data length beyond the network header
4177 *
4178 * Checks whether the given skb has data beyond the given transport length.
4179 * If so, returns a cloned skb trimmed to this transport length.
4180 * Otherwise returns the provided skb. Returns NULL in error cases
4181 * (e.g. transport_len exceeds skb length or out-of-memory).
4182 *
4183 * Caller needs to set the skb transport header and free any returned skb if it
4184 * differs from the provided skb.
4185 */
4186 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4187 unsigned int transport_len)
4188 {
4189 struct sk_buff *skb_chk;
4190 unsigned int len = skb_transport_offset(skb) + transport_len;
4191 int ret;
4192
4193 if (skb->len < len)
4194 return NULL;
4195 else if (skb->len == len)
4196 return skb;
4197
4198 skb_chk = skb_clone(skb, GFP_ATOMIC);
4199 if (!skb_chk)
4200 return NULL;
4201
4202 ret = pskb_trim_rcsum(skb_chk, len);
4203 if (ret) {
4204 kfree_skb(skb_chk);
4205 return NULL;
4206 }
4207
4208 return skb_chk;
4209 }
4210
4211 /**
4212 * skb_checksum_trimmed - validate checksum of an skb
4213 * @skb: the skb to check
4214 * @transport_len: the data length beyond the network header
4215 * @skb_chkf: checksum function to use
4216 *
4217 * Applies the given checksum function skb_chkf to the provided skb.
4218 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4219 *
4220 * If the skb has data beyond the given transport length, then a
4221 * trimmed & cloned skb is checked and returned.
4222 *
4223 * Caller needs to set the skb transport header and free any returned skb if it
4224 * differs from the provided skb.
4225 */
4226 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4227 unsigned int transport_len,
4228 __sum16(*skb_chkf)(struct sk_buff *skb))
4229 {
4230 struct sk_buff *skb_chk;
4231 unsigned int offset = skb_transport_offset(skb);
4232 __sum16 ret;
4233
4234 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4235 if (!skb_chk)
4236 goto err;
4237
4238 if (!pskb_may_pull(skb_chk, offset))
4239 goto err;
4240
4241 skb_pull_rcsum(skb_chk, offset);
4242 ret = skb_chkf(skb_chk);
4243 skb_push_rcsum(skb_chk, offset);
4244
4245 if (ret)
4246 goto err;
4247
4248 return skb_chk;
4249
4250 err:
4251 if (skb_chk && skb_chk != skb)
4252 kfree_skb(skb_chk);
4253
4254 return NULL;
4255
4256 }
4257 EXPORT_SYMBOL(skb_checksum_trimmed);
4258
4259 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4260 {
4261 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4262 skb->dev->name);
4263 }
4264 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4265
4266 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4267 {
4268 if (head_stolen) {
4269 skb_release_head_state(skb);
4270 kmem_cache_free(skbuff_head_cache, skb);
4271 } else {
4272 __kfree_skb(skb);
4273 }
4274 }
4275 EXPORT_SYMBOL(kfree_skb_partial);
4276
4277 /**
4278 * skb_try_coalesce - try to merge skb to prior one
4279 * @to: prior buffer
4280 * @from: buffer to add
4281 * @fragstolen: pointer to boolean
4282 * @delta_truesize: how much more was allocated than was requested
4283 */
4284 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4285 bool *fragstolen, int *delta_truesize)
4286 {
4287 int i, delta, len = from->len;
4288
4289 *fragstolen = false;
4290
4291 if (skb_cloned(to))
4292 return false;
4293
4294 if (len <= skb_tailroom(to)) {
4295 if (len)
4296 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4297 *delta_truesize = 0;
4298 return true;
4299 }
4300
4301 if (skb_has_frag_list(to) || skb_has_frag_list(from))
4302 return false;
4303
4304 if (skb_headlen(from) != 0) {
4305 struct page *page;
4306 unsigned int offset;
4307
4308 if (skb_shinfo(to)->nr_frags +
4309 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4310 return false;
4311
4312 if (skb_head_is_locked(from))
4313 return false;
4314
4315 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4316
4317 page = virt_to_head_page(from->head);
4318 offset = from->data - (unsigned char *)page_address(page);
4319
4320 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4321 page, offset, skb_headlen(from));
4322 *fragstolen = true;
4323 } else {
4324 if (skb_shinfo(to)->nr_frags +
4325 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4326 return false;
4327
4328 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4329 }
4330
4331 WARN_ON_ONCE(delta < len);
4332
4333 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4334 skb_shinfo(from)->frags,
4335 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4336 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4337
4338 if (!skb_cloned(from))
4339 skb_shinfo(from)->nr_frags = 0;
4340
4341 /* if the skb is not cloned this does nothing
4342 * since we set nr_frags to 0.
4343 */
4344 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4345 skb_frag_ref(from, i);
4346
4347 to->truesize += delta;
4348 to->len += len;
4349 to->data_len += len;
4350
4351 *delta_truesize = delta;
4352 return true;
4353 }
4354 EXPORT_SYMBOL(skb_try_coalesce);
4355
4356 /**
4357 * skb_scrub_packet - scrub an skb
4358 *
4359 * @skb: buffer to clean
4360 * @xnet: packet is crossing netns
4361 *
4362 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4363 * into/from a tunnel. Some information have to be cleared during these
4364 * operations.
4365 * skb_scrub_packet can also be used to clean a skb before injecting it in
4366 * another namespace (@xnet == true). We have to clear all information in the
4367 * skb that could impact namespace isolation.
4368 */
4369 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4370 {
4371 skb->tstamp = 0;
4372 skb->pkt_type = PACKET_HOST;
4373 skb->skb_iif = 0;
4374 skb->ignore_df = 0;
4375 skb_dst_drop(skb);
4376 secpath_reset(skb);
4377 nf_reset(skb);
4378 nf_reset_trace(skb);
4379
4380 if (!xnet)
4381 return;
4382
4383 skb_orphan(skb);
4384 skb->mark = 0;
4385 }
4386 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4387
4388 /**
4389 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4390 *
4391 * @skb: GSO skb
4392 *
4393 * skb_gso_transport_seglen is used to determine the real size of the
4394 * individual segments, including Layer4 headers (TCP/UDP).
4395 *
4396 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4397 */
4398 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4399 {
4400 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4401 unsigned int thlen = 0;
4402
4403 if (skb->encapsulation) {
4404 thlen = skb_inner_transport_header(skb) -
4405 skb_transport_header(skb);
4406
4407 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4408 thlen += inner_tcp_hdrlen(skb);
4409 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4410 thlen = tcp_hdrlen(skb);
4411 } else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) {
4412 thlen = sizeof(struct sctphdr);
4413 }
4414 /* UFO sets gso_size to the size of the fragmentation
4415 * payload, i.e. the size of the L4 (UDP) header is already
4416 * accounted for.
4417 */
4418 return thlen + shinfo->gso_size;
4419 }
4420 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4421
4422 /**
4423 * skb_gso_validate_mtu - Return in case such skb fits a given MTU
4424 *
4425 * @skb: GSO skb
4426 * @mtu: MTU to validate against
4427 *
4428 * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
4429 * once split.
4430 */
4431 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu)
4432 {
4433 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4434 const struct sk_buff *iter;
4435 unsigned int hlen;
4436
4437 hlen = skb_gso_network_seglen(skb);
4438
4439 if (shinfo->gso_size != GSO_BY_FRAGS)
4440 return hlen <= mtu;
4441
4442 /* Undo this so we can re-use header sizes */
4443 hlen -= GSO_BY_FRAGS;
4444
4445 skb_walk_frags(skb, iter) {
4446 if (hlen + skb_headlen(iter) > mtu)
4447 return false;
4448 }
4449
4450 return true;
4451 }
4452 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu);
4453
4454 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4455 {
4456 if (skb_cow(skb, skb_headroom(skb)) < 0) {
4457 kfree_skb(skb);
4458 return NULL;
4459 }
4460
4461 memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4462 2 * ETH_ALEN);
4463 skb->mac_header += VLAN_HLEN;
4464 return skb;
4465 }
4466
4467 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4468 {
4469 struct vlan_hdr *vhdr;
4470 u16 vlan_tci;
4471
4472 if (unlikely(skb_vlan_tag_present(skb))) {
4473 /* vlan_tci is already set-up so leave this for another time */
4474 return skb;
4475 }
4476
4477 skb = skb_share_check(skb, GFP_ATOMIC);
4478 if (unlikely(!skb))
4479 goto err_free;
4480
4481 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4482 goto err_free;
4483
4484 vhdr = (struct vlan_hdr *)skb->data;
4485 vlan_tci = ntohs(vhdr->h_vlan_TCI);
4486 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4487
4488 skb_pull_rcsum(skb, VLAN_HLEN);
4489 vlan_set_encap_proto(skb, vhdr);
4490
4491 skb = skb_reorder_vlan_header(skb);
4492 if (unlikely(!skb))
4493 goto err_free;
4494
4495 skb_reset_network_header(skb);
4496 skb_reset_transport_header(skb);
4497 skb_reset_mac_len(skb);
4498
4499 return skb;
4500
4501 err_free:
4502 kfree_skb(skb);
4503 return NULL;
4504 }
4505 EXPORT_SYMBOL(skb_vlan_untag);
4506
4507 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4508 {
4509 if (!pskb_may_pull(skb, write_len))
4510 return -ENOMEM;
4511
4512 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4513 return 0;
4514
4515 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4516 }
4517 EXPORT_SYMBOL(skb_ensure_writable);
4518
4519 /* remove VLAN header from packet and update csum accordingly.
4520 * expects a non skb_vlan_tag_present skb with a vlan tag payload
4521 */
4522 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4523 {
4524 struct vlan_hdr *vhdr;
4525 int offset = skb->data - skb_mac_header(skb);
4526 int err;
4527
4528 if (WARN_ONCE(offset,
4529 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
4530 offset)) {
4531 return -EINVAL;
4532 }
4533
4534 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4535 if (unlikely(err))
4536 return err;
4537
4538 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4539
4540 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4541 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
4542
4543 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4544 __skb_pull(skb, VLAN_HLEN);
4545
4546 vlan_set_encap_proto(skb, vhdr);
4547 skb->mac_header += VLAN_HLEN;
4548
4549 if (skb_network_offset(skb) < ETH_HLEN)
4550 skb_set_network_header(skb, ETH_HLEN);
4551
4552 skb_reset_mac_len(skb);
4553
4554 return err;
4555 }
4556 EXPORT_SYMBOL(__skb_vlan_pop);
4557
4558 /* Pop a vlan tag either from hwaccel or from payload.
4559 * Expects skb->data at mac header.
4560 */
4561 int skb_vlan_pop(struct sk_buff *skb)
4562 {
4563 u16 vlan_tci;
4564 __be16 vlan_proto;
4565 int err;
4566
4567 if (likely(skb_vlan_tag_present(skb))) {
4568 skb->vlan_tci = 0;
4569 } else {
4570 if (unlikely(!eth_type_vlan(skb->protocol)))
4571 return 0;
4572
4573 err = __skb_vlan_pop(skb, &vlan_tci);
4574 if (err)
4575 return err;
4576 }
4577 /* move next vlan tag to hw accel tag */
4578 if (likely(!eth_type_vlan(skb->protocol)))
4579 return 0;
4580
4581 vlan_proto = skb->protocol;
4582 err = __skb_vlan_pop(skb, &vlan_tci);
4583 if (unlikely(err))
4584 return err;
4585
4586 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4587 return 0;
4588 }
4589 EXPORT_SYMBOL(skb_vlan_pop);
4590
4591 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
4592 * Expects skb->data at mac header.
4593 */
4594 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4595 {
4596 if (skb_vlan_tag_present(skb)) {
4597 int offset = skb->data - skb_mac_header(skb);
4598 int err;
4599
4600 if (WARN_ONCE(offset,
4601 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
4602 offset)) {
4603 return -EINVAL;
4604 }
4605
4606 err = __vlan_insert_tag(skb, skb->vlan_proto,
4607 skb_vlan_tag_get(skb));
4608 if (err)
4609 return err;
4610
4611 skb->protocol = skb->vlan_proto;
4612 skb->mac_len += VLAN_HLEN;
4613
4614 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4615 }
4616 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4617 return 0;
4618 }
4619 EXPORT_SYMBOL(skb_vlan_push);
4620
4621 /**
4622 * alloc_skb_with_frags - allocate skb with page frags
4623 *
4624 * @header_len: size of linear part
4625 * @data_len: needed length in frags
4626 * @max_page_order: max page order desired.
4627 * @errcode: pointer to error code if any
4628 * @gfp_mask: allocation mask
4629 *
4630 * This can be used to allocate a paged skb, given a maximal order for frags.
4631 */
4632 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4633 unsigned long data_len,
4634 int max_page_order,
4635 int *errcode,
4636 gfp_t gfp_mask)
4637 {
4638 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4639 unsigned long chunk;
4640 struct sk_buff *skb;
4641 struct page *page;
4642 gfp_t gfp_head;
4643 int i;
4644
4645 *errcode = -EMSGSIZE;
4646 /* Note this test could be relaxed, if we succeed to allocate
4647 * high order pages...
4648 */
4649 if (npages > MAX_SKB_FRAGS)
4650 return NULL;
4651
4652 gfp_head = gfp_mask;
4653 if (gfp_head & __GFP_DIRECT_RECLAIM)
4654 gfp_head |= __GFP_REPEAT;
4655
4656 *errcode = -ENOBUFS;
4657 skb = alloc_skb(header_len, gfp_head);
4658 if (!skb)
4659 return NULL;
4660
4661 skb->truesize += npages << PAGE_SHIFT;
4662
4663 for (i = 0; npages > 0; i++) {
4664 int order = max_page_order;
4665
4666 while (order) {
4667 if (npages >= 1 << order) {
4668 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4669 __GFP_COMP |
4670 __GFP_NOWARN |
4671 __GFP_NORETRY,
4672 order);
4673 if (page)
4674 goto fill_page;
4675 /* Do not retry other high order allocations */
4676 order = 1;
4677 max_page_order = 0;
4678 }
4679 order--;
4680 }
4681 page = alloc_page(gfp_mask);
4682 if (!page)
4683 goto failure;
4684 fill_page:
4685 chunk = min_t(unsigned long, data_len,
4686 PAGE_SIZE << order);
4687 skb_fill_page_desc(skb, i, page, 0, chunk);
4688 data_len -= chunk;
4689 npages -= 1 << order;
4690 }
4691 return skb;
4692
4693 failure:
4694 kfree_skb(skb);
4695 return NULL;
4696 }
4697 EXPORT_SYMBOL(alloc_skb_with_frags);
4698
4699 /* carve out the first off bytes from skb when off < headlen */
4700 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
4701 const int headlen, gfp_t gfp_mask)
4702 {
4703 int i;
4704 int size = skb_end_offset(skb);
4705 int new_hlen = headlen - off;
4706 u8 *data;
4707
4708 size = SKB_DATA_ALIGN(size);
4709
4710 if (skb_pfmemalloc(skb))
4711 gfp_mask |= __GFP_MEMALLOC;
4712 data = kmalloc_reserve(size +
4713 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4714 gfp_mask, NUMA_NO_NODE, NULL);
4715 if (!data)
4716 return -ENOMEM;
4717
4718 size = SKB_WITH_OVERHEAD(ksize(data));
4719
4720 /* Copy real data, and all frags */
4721 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
4722 skb->len -= off;
4723
4724 memcpy((struct skb_shared_info *)(data + size),
4725 skb_shinfo(skb),
4726 offsetof(struct skb_shared_info,
4727 frags[skb_shinfo(skb)->nr_frags]));
4728 if (skb_cloned(skb)) {
4729 /* drop the old head gracefully */
4730 if (skb_orphan_frags(skb, gfp_mask)) {
4731 kfree(data);
4732 return -ENOMEM;
4733 }
4734 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4735 skb_frag_ref(skb, i);
4736 if (skb_has_frag_list(skb))
4737 skb_clone_fraglist(skb);
4738 skb_release_data(skb);
4739 } else {
4740 /* we can reuse existing recount- all we did was
4741 * relocate values
4742 */
4743 skb_free_head(skb);
4744 }
4745
4746 skb->head = data;
4747 skb->data = data;
4748 skb->head_frag = 0;
4749 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4750 skb->end = size;
4751 #else
4752 skb->end = skb->head + size;
4753 #endif
4754 skb_set_tail_pointer(skb, skb_headlen(skb));
4755 skb_headers_offset_update(skb, 0);
4756 skb->cloned = 0;
4757 skb->hdr_len = 0;
4758 skb->nohdr = 0;
4759 atomic_set(&skb_shinfo(skb)->dataref, 1);
4760
4761 return 0;
4762 }
4763
4764 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
4765
4766 /* carve out the first eat bytes from skb's frag_list. May recurse into
4767 * pskb_carve()
4768 */
4769 static int pskb_carve_frag_list(struct sk_buff *skb,
4770 struct skb_shared_info *shinfo, int eat,
4771 gfp_t gfp_mask)
4772 {
4773 struct sk_buff *list = shinfo->frag_list;
4774 struct sk_buff *clone = NULL;
4775 struct sk_buff *insp = NULL;
4776
4777 do {
4778 if (!list) {
4779 pr_err("Not enough bytes to eat. Want %d\n", eat);
4780 return -EFAULT;
4781 }
4782 if (list->len <= eat) {
4783 /* Eaten as whole. */
4784 eat -= list->len;
4785 list = list->next;
4786 insp = list;
4787 } else {
4788 /* Eaten partially. */
4789 if (skb_shared(list)) {
4790 clone = skb_clone(list, gfp_mask);
4791 if (!clone)
4792 return -ENOMEM;
4793 insp = list->next;
4794 list = clone;
4795 } else {
4796 /* This may be pulled without problems. */
4797 insp = list;
4798 }
4799 if (pskb_carve(list, eat, gfp_mask) < 0) {
4800 kfree_skb(clone);
4801 return -ENOMEM;
4802 }
4803 break;
4804 }
4805 } while (eat);
4806
4807 /* Free pulled out fragments. */
4808 while ((list = shinfo->frag_list) != insp) {
4809 shinfo->frag_list = list->next;
4810 kfree_skb(list);
4811 }
4812 /* And insert new clone at head. */
4813 if (clone) {
4814 clone->next = list;
4815 shinfo->frag_list = clone;
4816 }
4817 return 0;
4818 }
4819
4820 /* carve off first len bytes from skb. Split line (off) is in the
4821 * non-linear part of skb
4822 */
4823 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
4824 int pos, gfp_t gfp_mask)
4825 {
4826 int i, k = 0;
4827 int size = skb_end_offset(skb);
4828 u8 *data;
4829 const int nfrags = skb_shinfo(skb)->nr_frags;
4830 struct skb_shared_info *shinfo;
4831
4832 size = SKB_DATA_ALIGN(size);
4833
4834 if (skb_pfmemalloc(skb))
4835 gfp_mask |= __GFP_MEMALLOC;
4836 data = kmalloc_reserve(size +
4837 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4838 gfp_mask, NUMA_NO_NODE, NULL);
4839 if (!data)
4840 return -ENOMEM;
4841
4842 size = SKB_WITH_OVERHEAD(ksize(data));
4843
4844 memcpy((struct skb_shared_info *)(data + size),
4845 skb_shinfo(skb), offsetof(struct skb_shared_info,
4846 frags[skb_shinfo(skb)->nr_frags]));
4847 if (skb_orphan_frags(skb, gfp_mask)) {
4848 kfree(data);
4849 return -ENOMEM;
4850 }
4851 shinfo = (struct skb_shared_info *)(data + size);
4852 for (i = 0; i < nfrags; i++) {
4853 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4854
4855 if (pos + fsize > off) {
4856 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
4857
4858 if (pos < off) {
4859 /* Split frag.
4860 * We have two variants in this case:
4861 * 1. Move all the frag to the second
4862 * part, if it is possible. F.e.
4863 * this approach is mandatory for TUX,
4864 * where splitting is expensive.
4865 * 2. Split is accurately. We make this.
4866 */
4867 shinfo->frags[0].page_offset += off - pos;
4868 skb_frag_size_sub(&shinfo->frags[0], off - pos);
4869 }
4870 skb_frag_ref(skb, i);
4871 k++;
4872 }
4873 pos += fsize;
4874 }
4875 shinfo->nr_frags = k;
4876 if (skb_has_frag_list(skb))
4877 skb_clone_fraglist(skb);
4878
4879 if (k == 0) {
4880 /* split line is in frag list */
4881 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
4882 }
4883 skb_release_data(skb);
4884
4885 skb->head = data;
4886 skb->head_frag = 0;
4887 skb->data = data;
4888 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4889 skb->end = size;
4890 #else
4891 skb->end = skb->head + size;
4892 #endif
4893 skb_reset_tail_pointer(skb);
4894 skb_headers_offset_update(skb, 0);
4895 skb->cloned = 0;
4896 skb->hdr_len = 0;
4897 skb->nohdr = 0;
4898 skb->len -= off;
4899 skb->data_len = skb->len;
4900 atomic_set(&skb_shinfo(skb)->dataref, 1);
4901 return 0;
4902 }
4903
4904 /* remove len bytes from the beginning of the skb */
4905 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
4906 {
4907 int headlen = skb_headlen(skb);
4908
4909 if (len < headlen)
4910 return pskb_carve_inside_header(skb, len, headlen, gfp);
4911 else
4912 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
4913 }
4914
4915 /* Extract to_copy bytes starting at off from skb, and return this in
4916 * a new skb
4917 */
4918 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
4919 int to_copy, gfp_t gfp)
4920 {
4921 struct sk_buff *clone = skb_clone(skb, gfp);
4922
4923 if (!clone)
4924 return NULL;
4925
4926 if (pskb_carve(clone, off, gfp) < 0 ||
4927 pskb_trim(clone, to_copy)) {
4928 kfree_skb(clone);
4929 return NULL;
4930 }
4931 return clone;
4932 }
4933 EXPORT_SYMBOL(pskb_extract);
4934
4935 /**
4936 * skb_condense - try to get rid of fragments/frag_list if possible
4937 * @skb: buffer
4938 *
4939 * Can be used to save memory before skb is added to a busy queue.
4940 * If packet has bytes in frags and enough tail room in skb->head,
4941 * pull all of them, so that we can free the frags right now and adjust
4942 * truesize.
4943 * Notes:
4944 * We do not reallocate skb->head thus can not fail.
4945 * Caller must re-evaluate skb->truesize if needed.
4946 */
4947 void skb_condense(struct sk_buff *skb)
4948 {
4949 if (skb->data_len) {
4950 if (skb->data_len > skb->end - skb->tail ||
4951 skb_cloned(skb))
4952 return;
4953
4954 /* Nice, we can free page frag(s) right now */
4955 __pskb_pull_tail(skb, skb->data_len);
4956 }
4957 /* At this point, skb->truesize might be over estimated,
4958 * because skb had a fragment, and fragments do not tell
4959 * their truesize.
4960 * When we pulled its content into skb->head, fragment
4961 * was freed, but __pskb_pull_tail() could not possibly
4962 * adjust skb->truesize, not knowing the frag truesize.
4963 */
4964 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4965 }