]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/sock.c
[NET]: Move sk_setup_caps() out of line.
[mirror_ubuntu-bionic-kernel.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Version: $Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11 *
12 * Authors: Ross Biro
13 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Alan Cox, <A.Cox@swansea.ac.uk>
16 *
17 * Fixes:
18 * Alan Cox : Numerous verify_area() problems
19 * Alan Cox : Connecting on a connecting socket
20 * now returns an error for tcp.
21 * Alan Cox : sock->protocol is set correctly.
22 * and is not sometimes left as 0.
23 * Alan Cox : connect handles icmp errors on a
24 * connect properly. Unfortunately there
25 * is a restart syscall nasty there. I
26 * can't match BSD without hacking the C
27 * library. Ideas urgently sought!
28 * Alan Cox : Disallow bind() to addresses that are
29 * not ours - especially broadcast ones!!
30 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
31 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
32 * instead they leave that for the DESTROY timer.
33 * Alan Cox : Clean up error flag in accept
34 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
35 * was buggy. Put a remove_sock() in the handler
36 * for memory when we hit 0. Also altered the timer
37 * code. The ACK stuff can wait and needs major
38 * TCP layer surgery.
39 * Alan Cox : Fixed TCP ack bug, removed remove sock
40 * and fixed timer/inet_bh race.
41 * Alan Cox : Added zapped flag for TCP
42 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
43 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
45 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
46 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47 * Rick Sladkey : Relaxed UDP rules for matching packets.
48 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
49 * Pauline Middelink : identd support
50 * Alan Cox : Fixed connect() taking signals I think.
51 * Alan Cox : SO_LINGER supported
52 * Alan Cox : Error reporting fixes
53 * Anonymous : inet_create tidied up (sk->reuse setting)
54 * Alan Cox : inet sockets don't set sk->type!
55 * Alan Cox : Split socket option code
56 * Alan Cox : Callbacks
57 * Alan Cox : Nagle flag for Charles & Johannes stuff
58 * Alex : Removed restriction on inet fioctl
59 * Alan Cox : Splitting INET from NET core
60 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
61 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
62 * Alan Cox : Split IP from generic code
63 * Alan Cox : New kfree_skbmem()
64 * Alan Cox : Make SO_DEBUG superuser only.
65 * Alan Cox : Allow anyone to clear SO_DEBUG
66 * (compatibility fix)
67 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
68 * Alan Cox : Allocator for a socket is settable.
69 * Alan Cox : SO_ERROR includes soft errors.
70 * Alan Cox : Allow NULL arguments on some SO_ opts
71 * Alan Cox : Generic socket allocation to make hooks
72 * easier (suggested by Craig Metz).
73 * Michael Pall : SO_ERROR returns positive errno again
74 * Steve Whitehouse: Added default destructor to free
75 * protocol private data.
76 * Steve Whitehouse: Added various other default routines
77 * common to several socket families.
78 * Chris Evans : Call suser() check last on F_SETOWN
79 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
81 * Andi Kleen : Fix write_space callback
82 * Chris Evans : Security fixes - signedness again
83 * Arnaldo C. Melo : cleanups, use skb_queue_purge
84 *
85 * To Fix:
86 *
87 *
88 * This program is free software; you can redistribute it and/or
89 * modify it under the terms of the GNU General Public License
90 * as published by the Free Software Foundation; either version
91 * 2 of the License, or (at your option) any later version.
92 */
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115
116 #include <asm/uaccess.h>
117 #include <asm/system.h>
118
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/request_sock.h>
123 #include <net/sock.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
126
127 #include <linux/filter.h>
128
129 #ifdef CONFIG_INET
130 #include <net/tcp.h>
131 #endif
132
133 /*
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
136 */
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
139
140 #ifdef CONFIG_DEBUG_LOCK_ALLOC
141 /*
142 * Make lock validator output more readable. (we pre-construct these
143 * strings build-time, so that runtime initialization of socket
144 * locks is fast):
145 */
146 static const char *af_family_key_strings[AF_MAX+1] = {
147 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
148 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
149 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
150 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
151 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
152 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
153 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
154 "sk_lock-21" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
155 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
156 "sk_lock-27" , "sk_lock-28" , "sk_lock-29" ,
157 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-AF_MAX"
158 };
159 static const char *af_family_slock_key_strings[AF_MAX+1] = {
160 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
161 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
162 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
163 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
164 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
165 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
166 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
167 "slock-21" , "slock-AF_SNA" , "slock-AF_IRDA" ,
168 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
169 "slock-27" , "slock-28" , "slock-29" ,
170 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_MAX"
171 };
172 #endif
173
174 /*
175 * sk_callback_lock locking rules are per-address-family,
176 * so split the lock classes by using a per-AF key:
177 */
178 static struct lock_class_key af_callback_keys[AF_MAX];
179
180 /* Take into consideration the size of the struct sk_buff overhead in the
181 * determination of these values, since that is non-constant across
182 * platforms. This makes socket queueing behavior and performance
183 * not depend upon such differences.
184 */
185 #define _SK_MEM_PACKETS 256
186 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
187 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
188 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
189
190 /* Run time adjustable parameters. */
191 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
192 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
193 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
194 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
195
196 /* Maximal space eaten by iovec or ancilliary data plus some space */
197 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
198
199 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
200 {
201 struct timeval tv;
202
203 if (optlen < sizeof(tv))
204 return -EINVAL;
205 if (copy_from_user(&tv, optval, sizeof(tv)))
206 return -EFAULT;
207
208 *timeo_p = MAX_SCHEDULE_TIMEOUT;
209 if (tv.tv_sec == 0 && tv.tv_usec == 0)
210 return 0;
211 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
212 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
213 return 0;
214 }
215
216 static void sock_warn_obsolete_bsdism(const char *name)
217 {
218 static int warned;
219 static char warncomm[TASK_COMM_LEN];
220 if (strcmp(warncomm, current->comm) && warned < 5) {
221 strcpy(warncomm, current->comm);
222 printk(KERN_WARNING "process `%s' is using obsolete "
223 "%s SO_BSDCOMPAT\n", warncomm, name);
224 warned++;
225 }
226 }
227
228 static void sock_disable_timestamp(struct sock *sk)
229 {
230 if (sock_flag(sk, SOCK_TIMESTAMP)) {
231 sock_reset_flag(sk, SOCK_TIMESTAMP);
232 net_disable_timestamp();
233 }
234 }
235
236
237 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
238 {
239 int err = 0;
240 int skb_len;
241
242 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
243 number of warnings when compiling with -W --ANK
244 */
245 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
246 (unsigned)sk->sk_rcvbuf) {
247 err = -ENOMEM;
248 goto out;
249 }
250
251 err = sk_filter(sk, skb);
252 if (err)
253 goto out;
254
255 skb->dev = NULL;
256 skb_set_owner_r(skb, sk);
257
258 /* Cache the SKB length before we tack it onto the receive
259 * queue. Once it is added it no longer belongs to us and
260 * may be freed by other threads of control pulling packets
261 * from the queue.
262 */
263 skb_len = skb->len;
264
265 skb_queue_tail(&sk->sk_receive_queue, skb);
266
267 if (!sock_flag(sk, SOCK_DEAD))
268 sk->sk_data_ready(sk, skb_len);
269 out:
270 return err;
271 }
272 EXPORT_SYMBOL(sock_queue_rcv_skb);
273
274 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
275 {
276 int rc = NET_RX_SUCCESS;
277
278 if (sk_filter(sk, skb))
279 goto discard_and_relse;
280
281 skb->dev = NULL;
282
283 if (nested)
284 bh_lock_sock_nested(sk);
285 else
286 bh_lock_sock(sk);
287 if (!sock_owned_by_user(sk)) {
288 /*
289 * trylock + unlock semantics:
290 */
291 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
292
293 rc = sk->sk_backlog_rcv(sk, skb);
294
295 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
296 } else
297 sk_add_backlog(sk, skb);
298 bh_unlock_sock(sk);
299 out:
300 sock_put(sk);
301 return rc;
302 discard_and_relse:
303 kfree_skb(skb);
304 goto out;
305 }
306 EXPORT_SYMBOL(sk_receive_skb);
307
308 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
309 {
310 struct dst_entry *dst = sk->sk_dst_cache;
311
312 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
313 sk->sk_dst_cache = NULL;
314 dst_release(dst);
315 return NULL;
316 }
317
318 return dst;
319 }
320 EXPORT_SYMBOL(__sk_dst_check);
321
322 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
323 {
324 struct dst_entry *dst = sk_dst_get(sk);
325
326 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
327 sk_dst_reset(sk);
328 dst_release(dst);
329 return NULL;
330 }
331
332 return dst;
333 }
334 EXPORT_SYMBOL(sk_dst_check);
335
336 /*
337 * This is meant for all protocols to use and covers goings on
338 * at the socket level. Everything here is generic.
339 */
340
341 int sock_setsockopt(struct socket *sock, int level, int optname,
342 char __user *optval, int optlen)
343 {
344 struct sock *sk=sock->sk;
345 struct sk_filter *filter;
346 int val;
347 int valbool;
348 struct linger ling;
349 int ret = 0;
350
351 /*
352 * Options without arguments
353 */
354
355 #ifdef SO_DONTLINGER /* Compatibility item... */
356 if (optname == SO_DONTLINGER) {
357 lock_sock(sk);
358 sock_reset_flag(sk, SOCK_LINGER);
359 release_sock(sk);
360 return 0;
361 }
362 #endif
363
364 if (optlen < sizeof(int))
365 return -EINVAL;
366
367 if (get_user(val, (int __user *)optval))
368 return -EFAULT;
369
370 valbool = val?1:0;
371
372 lock_sock(sk);
373
374 switch(optname) {
375 case SO_DEBUG:
376 if (val && !capable(CAP_NET_ADMIN)) {
377 ret = -EACCES;
378 }
379 else if (valbool)
380 sock_set_flag(sk, SOCK_DBG);
381 else
382 sock_reset_flag(sk, SOCK_DBG);
383 break;
384 case SO_REUSEADDR:
385 sk->sk_reuse = valbool;
386 break;
387 case SO_TYPE:
388 case SO_ERROR:
389 ret = -ENOPROTOOPT;
390 break;
391 case SO_DONTROUTE:
392 if (valbool)
393 sock_set_flag(sk, SOCK_LOCALROUTE);
394 else
395 sock_reset_flag(sk, SOCK_LOCALROUTE);
396 break;
397 case SO_BROADCAST:
398 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
399 break;
400 case SO_SNDBUF:
401 /* Don't error on this BSD doesn't and if you think
402 about it this is right. Otherwise apps have to
403 play 'guess the biggest size' games. RCVBUF/SNDBUF
404 are treated in BSD as hints */
405
406 if (val > sysctl_wmem_max)
407 val = sysctl_wmem_max;
408 set_sndbuf:
409 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
410 if ((val * 2) < SOCK_MIN_SNDBUF)
411 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
412 else
413 sk->sk_sndbuf = val * 2;
414
415 /*
416 * Wake up sending tasks if we
417 * upped the value.
418 */
419 sk->sk_write_space(sk);
420 break;
421
422 case SO_SNDBUFFORCE:
423 if (!capable(CAP_NET_ADMIN)) {
424 ret = -EPERM;
425 break;
426 }
427 goto set_sndbuf;
428
429 case SO_RCVBUF:
430 /* Don't error on this BSD doesn't and if you think
431 about it this is right. Otherwise apps have to
432 play 'guess the biggest size' games. RCVBUF/SNDBUF
433 are treated in BSD as hints */
434
435 if (val > sysctl_rmem_max)
436 val = sysctl_rmem_max;
437 set_rcvbuf:
438 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
439 /*
440 * We double it on the way in to account for
441 * "struct sk_buff" etc. overhead. Applications
442 * assume that the SO_RCVBUF setting they make will
443 * allow that much actual data to be received on that
444 * socket.
445 *
446 * Applications are unaware that "struct sk_buff" and
447 * other overheads allocate from the receive buffer
448 * during socket buffer allocation.
449 *
450 * And after considering the possible alternatives,
451 * returning the value we actually used in getsockopt
452 * is the most desirable behavior.
453 */
454 if ((val * 2) < SOCK_MIN_RCVBUF)
455 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
456 else
457 sk->sk_rcvbuf = val * 2;
458 break;
459
460 case SO_RCVBUFFORCE:
461 if (!capable(CAP_NET_ADMIN)) {
462 ret = -EPERM;
463 break;
464 }
465 goto set_rcvbuf;
466
467 case SO_KEEPALIVE:
468 #ifdef CONFIG_INET
469 if (sk->sk_protocol == IPPROTO_TCP)
470 tcp_set_keepalive(sk, valbool);
471 #endif
472 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
473 break;
474
475 case SO_OOBINLINE:
476 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
477 break;
478
479 case SO_NO_CHECK:
480 sk->sk_no_check = valbool;
481 break;
482
483 case SO_PRIORITY:
484 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
485 sk->sk_priority = val;
486 else
487 ret = -EPERM;
488 break;
489
490 case SO_LINGER:
491 if (optlen < sizeof(ling)) {
492 ret = -EINVAL; /* 1003.1g */
493 break;
494 }
495 if (copy_from_user(&ling,optval,sizeof(ling))) {
496 ret = -EFAULT;
497 break;
498 }
499 if (!ling.l_onoff)
500 sock_reset_flag(sk, SOCK_LINGER);
501 else {
502 #if (BITS_PER_LONG == 32)
503 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
504 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
505 else
506 #endif
507 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
508 sock_set_flag(sk, SOCK_LINGER);
509 }
510 break;
511
512 case SO_BSDCOMPAT:
513 sock_warn_obsolete_bsdism("setsockopt");
514 break;
515
516 case SO_PASSCRED:
517 if (valbool)
518 set_bit(SOCK_PASSCRED, &sock->flags);
519 else
520 clear_bit(SOCK_PASSCRED, &sock->flags);
521 break;
522
523 case SO_TIMESTAMP:
524 case SO_TIMESTAMPNS:
525 if (valbool) {
526 if (optname == SO_TIMESTAMP)
527 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
528 else
529 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
530 sock_set_flag(sk, SOCK_RCVTSTAMP);
531 sock_enable_timestamp(sk);
532 } else {
533 sock_reset_flag(sk, SOCK_RCVTSTAMP);
534 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
535 }
536 break;
537
538 case SO_RCVLOWAT:
539 if (val < 0)
540 val = INT_MAX;
541 sk->sk_rcvlowat = val ? : 1;
542 break;
543
544 case SO_RCVTIMEO:
545 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
546 break;
547
548 case SO_SNDTIMEO:
549 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
550 break;
551
552 #ifdef CONFIG_NETDEVICES
553 case SO_BINDTODEVICE:
554 {
555 char devname[IFNAMSIZ];
556
557 /* Sorry... */
558 if (!capable(CAP_NET_RAW)) {
559 ret = -EPERM;
560 break;
561 }
562
563 /* Bind this socket to a particular device like "eth0",
564 * as specified in the passed interface name. If the
565 * name is "" or the option length is zero the socket
566 * is not bound.
567 */
568
569 if (!valbool) {
570 sk->sk_bound_dev_if = 0;
571 } else {
572 if (optlen > IFNAMSIZ - 1)
573 optlen = IFNAMSIZ - 1;
574 memset(devname, 0, sizeof(devname));
575 if (copy_from_user(devname, optval, optlen)) {
576 ret = -EFAULT;
577 break;
578 }
579
580 /* Remove any cached route for this socket. */
581 sk_dst_reset(sk);
582
583 if (devname[0] == '\0') {
584 sk->sk_bound_dev_if = 0;
585 } else {
586 struct net_device *dev = dev_get_by_name(devname);
587 if (!dev) {
588 ret = -ENODEV;
589 break;
590 }
591 sk->sk_bound_dev_if = dev->ifindex;
592 dev_put(dev);
593 }
594 }
595 break;
596 }
597 #endif
598
599
600 case SO_ATTACH_FILTER:
601 ret = -EINVAL;
602 if (optlen == sizeof(struct sock_fprog)) {
603 struct sock_fprog fprog;
604
605 ret = -EFAULT;
606 if (copy_from_user(&fprog, optval, sizeof(fprog)))
607 break;
608
609 ret = sk_attach_filter(&fprog, sk);
610 }
611 break;
612
613 case SO_DETACH_FILTER:
614 rcu_read_lock_bh();
615 filter = rcu_dereference(sk->sk_filter);
616 if (filter) {
617 rcu_assign_pointer(sk->sk_filter, NULL);
618 sk_filter_release(sk, filter);
619 rcu_read_unlock_bh();
620 break;
621 }
622 rcu_read_unlock_bh();
623 ret = -ENONET;
624 break;
625
626 case SO_PASSSEC:
627 if (valbool)
628 set_bit(SOCK_PASSSEC, &sock->flags);
629 else
630 clear_bit(SOCK_PASSSEC, &sock->flags);
631 break;
632
633 /* We implement the SO_SNDLOWAT etc to
634 not be settable (1003.1g 5.3) */
635 default:
636 ret = -ENOPROTOOPT;
637 break;
638 }
639 release_sock(sk);
640 return ret;
641 }
642
643
644 int sock_getsockopt(struct socket *sock, int level, int optname,
645 char __user *optval, int __user *optlen)
646 {
647 struct sock *sk = sock->sk;
648
649 union {
650 int val;
651 struct linger ling;
652 struct timeval tm;
653 } v;
654
655 unsigned int lv = sizeof(int);
656 int len;
657
658 if (get_user(len, optlen))
659 return -EFAULT;
660 if (len < 0)
661 return -EINVAL;
662
663 switch(optname) {
664 case SO_DEBUG:
665 v.val = sock_flag(sk, SOCK_DBG);
666 break;
667
668 case SO_DONTROUTE:
669 v.val = sock_flag(sk, SOCK_LOCALROUTE);
670 break;
671
672 case SO_BROADCAST:
673 v.val = !!sock_flag(sk, SOCK_BROADCAST);
674 break;
675
676 case SO_SNDBUF:
677 v.val = sk->sk_sndbuf;
678 break;
679
680 case SO_RCVBUF:
681 v.val = sk->sk_rcvbuf;
682 break;
683
684 case SO_REUSEADDR:
685 v.val = sk->sk_reuse;
686 break;
687
688 case SO_KEEPALIVE:
689 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
690 break;
691
692 case SO_TYPE:
693 v.val = sk->sk_type;
694 break;
695
696 case SO_ERROR:
697 v.val = -sock_error(sk);
698 if (v.val==0)
699 v.val = xchg(&sk->sk_err_soft, 0);
700 break;
701
702 case SO_OOBINLINE:
703 v.val = !!sock_flag(sk, SOCK_URGINLINE);
704 break;
705
706 case SO_NO_CHECK:
707 v.val = sk->sk_no_check;
708 break;
709
710 case SO_PRIORITY:
711 v.val = sk->sk_priority;
712 break;
713
714 case SO_LINGER:
715 lv = sizeof(v.ling);
716 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
717 v.ling.l_linger = sk->sk_lingertime / HZ;
718 break;
719
720 case SO_BSDCOMPAT:
721 sock_warn_obsolete_bsdism("getsockopt");
722 break;
723
724 case SO_TIMESTAMP:
725 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
726 !sock_flag(sk, SOCK_RCVTSTAMPNS);
727 break;
728
729 case SO_TIMESTAMPNS:
730 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
731 break;
732
733 case SO_RCVTIMEO:
734 lv=sizeof(struct timeval);
735 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
736 v.tm.tv_sec = 0;
737 v.tm.tv_usec = 0;
738 } else {
739 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
740 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
741 }
742 break;
743
744 case SO_SNDTIMEO:
745 lv=sizeof(struct timeval);
746 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
747 v.tm.tv_sec = 0;
748 v.tm.tv_usec = 0;
749 } else {
750 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
751 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
752 }
753 break;
754
755 case SO_RCVLOWAT:
756 v.val = sk->sk_rcvlowat;
757 break;
758
759 case SO_SNDLOWAT:
760 v.val=1;
761 break;
762
763 case SO_PASSCRED:
764 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
765 break;
766
767 case SO_PEERCRED:
768 if (len > sizeof(sk->sk_peercred))
769 len = sizeof(sk->sk_peercred);
770 if (copy_to_user(optval, &sk->sk_peercred, len))
771 return -EFAULT;
772 goto lenout;
773
774 case SO_PEERNAME:
775 {
776 char address[128];
777
778 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
779 return -ENOTCONN;
780 if (lv < len)
781 return -EINVAL;
782 if (copy_to_user(optval, address, len))
783 return -EFAULT;
784 goto lenout;
785 }
786
787 /* Dubious BSD thing... Probably nobody even uses it, but
788 * the UNIX standard wants it for whatever reason... -DaveM
789 */
790 case SO_ACCEPTCONN:
791 v.val = sk->sk_state == TCP_LISTEN;
792 break;
793
794 case SO_PASSSEC:
795 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
796 break;
797
798 case SO_PEERSEC:
799 return security_socket_getpeersec_stream(sock, optval, optlen, len);
800
801 default:
802 return -ENOPROTOOPT;
803 }
804
805 if (len > lv)
806 len = lv;
807 if (copy_to_user(optval, &v, len))
808 return -EFAULT;
809 lenout:
810 if (put_user(len, optlen))
811 return -EFAULT;
812 return 0;
813 }
814
815 /*
816 * Initialize an sk_lock.
817 *
818 * (We also register the sk_lock with the lock validator.)
819 */
820 static inline void sock_lock_init(struct sock *sk)
821 {
822 sock_lock_init_class_and_name(sk,
823 af_family_slock_key_strings[sk->sk_family],
824 af_family_slock_keys + sk->sk_family,
825 af_family_key_strings[sk->sk_family],
826 af_family_keys + sk->sk_family);
827 }
828
829 /**
830 * sk_alloc - All socket objects are allocated here
831 * @family: protocol family
832 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
833 * @prot: struct proto associated with this new sock instance
834 * @zero_it: if we should zero the newly allocated sock
835 */
836 struct sock *sk_alloc(int family, gfp_t priority,
837 struct proto *prot, int zero_it)
838 {
839 struct sock *sk = NULL;
840 struct kmem_cache *slab = prot->slab;
841
842 if (slab != NULL)
843 sk = kmem_cache_alloc(slab, priority);
844 else
845 sk = kmalloc(prot->obj_size, priority);
846
847 if (sk) {
848 if (zero_it) {
849 memset(sk, 0, prot->obj_size);
850 sk->sk_family = family;
851 /*
852 * See comment in struct sock definition to understand
853 * why we need sk_prot_creator -acme
854 */
855 sk->sk_prot = sk->sk_prot_creator = prot;
856 sock_lock_init(sk);
857 }
858
859 if (security_sk_alloc(sk, family, priority))
860 goto out_free;
861
862 if (!try_module_get(prot->owner))
863 goto out_free;
864 }
865 return sk;
866
867 out_free:
868 if (slab != NULL)
869 kmem_cache_free(slab, sk);
870 else
871 kfree(sk);
872 return NULL;
873 }
874
875 void sk_free(struct sock *sk)
876 {
877 struct sk_filter *filter;
878 struct module *owner = sk->sk_prot_creator->owner;
879
880 if (sk->sk_destruct)
881 sk->sk_destruct(sk);
882
883 filter = rcu_dereference(sk->sk_filter);
884 if (filter) {
885 sk_filter_release(sk, filter);
886 rcu_assign_pointer(sk->sk_filter, NULL);
887 }
888
889 sock_disable_timestamp(sk);
890
891 if (atomic_read(&sk->sk_omem_alloc))
892 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
893 __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
894
895 security_sk_free(sk);
896 if (sk->sk_prot_creator->slab != NULL)
897 kmem_cache_free(sk->sk_prot_creator->slab, sk);
898 else
899 kfree(sk);
900 module_put(owner);
901 }
902
903 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
904 {
905 struct sock *newsk = sk_alloc(sk->sk_family, priority, sk->sk_prot, 0);
906
907 if (newsk != NULL) {
908 struct sk_filter *filter;
909
910 sock_copy(newsk, sk);
911
912 /* SANITY */
913 sk_node_init(&newsk->sk_node);
914 sock_lock_init(newsk);
915 bh_lock_sock(newsk);
916 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
917
918 atomic_set(&newsk->sk_rmem_alloc, 0);
919 atomic_set(&newsk->sk_wmem_alloc, 0);
920 atomic_set(&newsk->sk_omem_alloc, 0);
921 skb_queue_head_init(&newsk->sk_receive_queue);
922 skb_queue_head_init(&newsk->sk_write_queue);
923 #ifdef CONFIG_NET_DMA
924 skb_queue_head_init(&newsk->sk_async_wait_queue);
925 #endif
926
927 rwlock_init(&newsk->sk_dst_lock);
928 rwlock_init(&newsk->sk_callback_lock);
929 lockdep_set_class(&newsk->sk_callback_lock,
930 af_callback_keys + newsk->sk_family);
931
932 newsk->sk_dst_cache = NULL;
933 newsk->sk_wmem_queued = 0;
934 newsk->sk_forward_alloc = 0;
935 newsk->sk_send_head = NULL;
936 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
937
938 sock_reset_flag(newsk, SOCK_DONE);
939 skb_queue_head_init(&newsk->sk_error_queue);
940
941 filter = newsk->sk_filter;
942 if (filter != NULL)
943 sk_filter_charge(newsk, filter);
944
945 if (unlikely(xfrm_sk_clone_policy(newsk))) {
946 /* It is still raw copy of parent, so invalidate
947 * destructor and make plain sk_free() */
948 newsk->sk_destruct = NULL;
949 sk_free(newsk);
950 newsk = NULL;
951 goto out;
952 }
953
954 newsk->sk_err = 0;
955 newsk->sk_priority = 0;
956 atomic_set(&newsk->sk_refcnt, 2);
957
958 /*
959 * Increment the counter in the same struct proto as the master
960 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
961 * is the same as sk->sk_prot->socks, as this field was copied
962 * with memcpy).
963 *
964 * This _changes_ the previous behaviour, where
965 * tcp_create_openreq_child always was incrementing the
966 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
967 * to be taken into account in all callers. -acme
968 */
969 sk_refcnt_debug_inc(newsk);
970 newsk->sk_socket = NULL;
971 newsk->sk_sleep = NULL;
972
973 if (newsk->sk_prot->sockets_allocated)
974 atomic_inc(newsk->sk_prot->sockets_allocated);
975 }
976 out:
977 return newsk;
978 }
979
980 EXPORT_SYMBOL_GPL(sk_clone);
981
982 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
983 {
984 __sk_dst_set(sk, dst);
985 sk->sk_route_caps = dst->dev->features;
986 if (sk->sk_route_caps & NETIF_F_GSO)
987 sk->sk_route_caps |= NETIF_F_GSO_MASK;
988 if (sk_can_gso(sk)) {
989 if (dst->header_len)
990 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
991 else
992 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
993 }
994 }
995 EXPORT_SYMBOL_GPL(sk_setup_caps);
996
997 void __init sk_init(void)
998 {
999 if (num_physpages <= 4096) {
1000 sysctl_wmem_max = 32767;
1001 sysctl_rmem_max = 32767;
1002 sysctl_wmem_default = 32767;
1003 sysctl_rmem_default = 32767;
1004 } else if (num_physpages >= 131072) {
1005 sysctl_wmem_max = 131071;
1006 sysctl_rmem_max = 131071;
1007 }
1008 }
1009
1010 /*
1011 * Simple resource managers for sockets.
1012 */
1013
1014
1015 /*
1016 * Write buffer destructor automatically called from kfree_skb.
1017 */
1018 void sock_wfree(struct sk_buff *skb)
1019 {
1020 struct sock *sk = skb->sk;
1021
1022 /* In case it might be waiting for more memory. */
1023 atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1024 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1025 sk->sk_write_space(sk);
1026 sock_put(sk);
1027 }
1028
1029 /*
1030 * Read buffer destructor automatically called from kfree_skb.
1031 */
1032 void sock_rfree(struct sk_buff *skb)
1033 {
1034 struct sock *sk = skb->sk;
1035
1036 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1037 }
1038
1039
1040 int sock_i_uid(struct sock *sk)
1041 {
1042 int uid;
1043
1044 read_lock(&sk->sk_callback_lock);
1045 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1046 read_unlock(&sk->sk_callback_lock);
1047 return uid;
1048 }
1049
1050 unsigned long sock_i_ino(struct sock *sk)
1051 {
1052 unsigned long ino;
1053
1054 read_lock(&sk->sk_callback_lock);
1055 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1056 read_unlock(&sk->sk_callback_lock);
1057 return ino;
1058 }
1059
1060 /*
1061 * Allocate a skb from the socket's send buffer.
1062 */
1063 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1064 gfp_t priority)
1065 {
1066 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1067 struct sk_buff * skb = alloc_skb(size, priority);
1068 if (skb) {
1069 skb_set_owner_w(skb, sk);
1070 return skb;
1071 }
1072 }
1073 return NULL;
1074 }
1075
1076 /*
1077 * Allocate a skb from the socket's receive buffer.
1078 */
1079 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1080 gfp_t priority)
1081 {
1082 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1083 struct sk_buff *skb = alloc_skb(size, priority);
1084 if (skb) {
1085 skb_set_owner_r(skb, sk);
1086 return skb;
1087 }
1088 }
1089 return NULL;
1090 }
1091
1092 /*
1093 * Allocate a memory block from the socket's option memory buffer.
1094 */
1095 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1096 {
1097 if ((unsigned)size <= sysctl_optmem_max &&
1098 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1099 void *mem;
1100 /* First do the add, to avoid the race if kmalloc
1101 * might sleep.
1102 */
1103 atomic_add(size, &sk->sk_omem_alloc);
1104 mem = kmalloc(size, priority);
1105 if (mem)
1106 return mem;
1107 atomic_sub(size, &sk->sk_omem_alloc);
1108 }
1109 return NULL;
1110 }
1111
1112 /*
1113 * Free an option memory block.
1114 */
1115 void sock_kfree_s(struct sock *sk, void *mem, int size)
1116 {
1117 kfree(mem);
1118 atomic_sub(size, &sk->sk_omem_alloc);
1119 }
1120
1121 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1122 I think, these locks should be removed for datagram sockets.
1123 */
1124 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1125 {
1126 DEFINE_WAIT(wait);
1127
1128 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1129 for (;;) {
1130 if (!timeo)
1131 break;
1132 if (signal_pending(current))
1133 break;
1134 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1135 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1136 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1137 break;
1138 if (sk->sk_shutdown & SEND_SHUTDOWN)
1139 break;
1140 if (sk->sk_err)
1141 break;
1142 timeo = schedule_timeout(timeo);
1143 }
1144 finish_wait(sk->sk_sleep, &wait);
1145 return timeo;
1146 }
1147
1148
1149 /*
1150 * Generic send/receive buffer handlers
1151 */
1152
1153 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1154 unsigned long header_len,
1155 unsigned long data_len,
1156 int noblock, int *errcode)
1157 {
1158 struct sk_buff *skb;
1159 gfp_t gfp_mask;
1160 long timeo;
1161 int err;
1162
1163 gfp_mask = sk->sk_allocation;
1164 if (gfp_mask & __GFP_WAIT)
1165 gfp_mask |= __GFP_REPEAT;
1166
1167 timeo = sock_sndtimeo(sk, noblock);
1168 while (1) {
1169 err = sock_error(sk);
1170 if (err != 0)
1171 goto failure;
1172
1173 err = -EPIPE;
1174 if (sk->sk_shutdown & SEND_SHUTDOWN)
1175 goto failure;
1176
1177 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1178 skb = alloc_skb(header_len, gfp_mask);
1179 if (skb) {
1180 int npages;
1181 int i;
1182
1183 /* No pages, we're done... */
1184 if (!data_len)
1185 break;
1186
1187 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1188 skb->truesize += data_len;
1189 skb_shinfo(skb)->nr_frags = npages;
1190 for (i = 0; i < npages; i++) {
1191 struct page *page;
1192 skb_frag_t *frag;
1193
1194 page = alloc_pages(sk->sk_allocation, 0);
1195 if (!page) {
1196 err = -ENOBUFS;
1197 skb_shinfo(skb)->nr_frags = i;
1198 kfree_skb(skb);
1199 goto failure;
1200 }
1201
1202 frag = &skb_shinfo(skb)->frags[i];
1203 frag->page = page;
1204 frag->page_offset = 0;
1205 frag->size = (data_len >= PAGE_SIZE ?
1206 PAGE_SIZE :
1207 data_len);
1208 data_len -= PAGE_SIZE;
1209 }
1210
1211 /* Full success... */
1212 break;
1213 }
1214 err = -ENOBUFS;
1215 goto failure;
1216 }
1217 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1218 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1219 err = -EAGAIN;
1220 if (!timeo)
1221 goto failure;
1222 if (signal_pending(current))
1223 goto interrupted;
1224 timeo = sock_wait_for_wmem(sk, timeo);
1225 }
1226
1227 skb_set_owner_w(skb, sk);
1228 return skb;
1229
1230 interrupted:
1231 err = sock_intr_errno(timeo);
1232 failure:
1233 *errcode = err;
1234 return NULL;
1235 }
1236
1237 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1238 int noblock, int *errcode)
1239 {
1240 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1241 }
1242
1243 static void __lock_sock(struct sock *sk)
1244 {
1245 DEFINE_WAIT(wait);
1246
1247 for (;;) {
1248 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1249 TASK_UNINTERRUPTIBLE);
1250 spin_unlock_bh(&sk->sk_lock.slock);
1251 schedule();
1252 spin_lock_bh(&sk->sk_lock.slock);
1253 if (!sock_owned_by_user(sk))
1254 break;
1255 }
1256 finish_wait(&sk->sk_lock.wq, &wait);
1257 }
1258
1259 static void __release_sock(struct sock *sk)
1260 {
1261 struct sk_buff *skb = sk->sk_backlog.head;
1262
1263 do {
1264 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1265 bh_unlock_sock(sk);
1266
1267 do {
1268 struct sk_buff *next = skb->next;
1269
1270 skb->next = NULL;
1271 sk->sk_backlog_rcv(sk, skb);
1272
1273 /*
1274 * We are in process context here with softirqs
1275 * disabled, use cond_resched_softirq() to preempt.
1276 * This is safe to do because we've taken the backlog
1277 * queue private:
1278 */
1279 cond_resched_softirq();
1280
1281 skb = next;
1282 } while (skb != NULL);
1283
1284 bh_lock_sock(sk);
1285 } while ((skb = sk->sk_backlog.head) != NULL);
1286 }
1287
1288 /**
1289 * sk_wait_data - wait for data to arrive at sk_receive_queue
1290 * @sk: sock to wait on
1291 * @timeo: for how long
1292 *
1293 * Now socket state including sk->sk_err is changed only under lock,
1294 * hence we may omit checks after joining wait queue.
1295 * We check receive queue before schedule() only as optimization;
1296 * it is very likely that release_sock() added new data.
1297 */
1298 int sk_wait_data(struct sock *sk, long *timeo)
1299 {
1300 int rc;
1301 DEFINE_WAIT(wait);
1302
1303 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1304 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1305 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1306 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1307 finish_wait(sk->sk_sleep, &wait);
1308 return rc;
1309 }
1310
1311 EXPORT_SYMBOL(sk_wait_data);
1312
1313 /*
1314 * Set of default routines for initialising struct proto_ops when
1315 * the protocol does not support a particular function. In certain
1316 * cases where it makes no sense for a protocol to have a "do nothing"
1317 * function, some default processing is provided.
1318 */
1319
1320 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1321 {
1322 return -EOPNOTSUPP;
1323 }
1324
1325 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1326 int len, int flags)
1327 {
1328 return -EOPNOTSUPP;
1329 }
1330
1331 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1332 {
1333 return -EOPNOTSUPP;
1334 }
1335
1336 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1337 {
1338 return -EOPNOTSUPP;
1339 }
1340
1341 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1342 int *len, int peer)
1343 {
1344 return -EOPNOTSUPP;
1345 }
1346
1347 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1348 {
1349 return 0;
1350 }
1351
1352 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1353 {
1354 return -EOPNOTSUPP;
1355 }
1356
1357 int sock_no_listen(struct socket *sock, int backlog)
1358 {
1359 return -EOPNOTSUPP;
1360 }
1361
1362 int sock_no_shutdown(struct socket *sock, int how)
1363 {
1364 return -EOPNOTSUPP;
1365 }
1366
1367 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1368 char __user *optval, int optlen)
1369 {
1370 return -EOPNOTSUPP;
1371 }
1372
1373 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1374 char __user *optval, int __user *optlen)
1375 {
1376 return -EOPNOTSUPP;
1377 }
1378
1379 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1380 size_t len)
1381 {
1382 return -EOPNOTSUPP;
1383 }
1384
1385 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1386 size_t len, int flags)
1387 {
1388 return -EOPNOTSUPP;
1389 }
1390
1391 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1392 {
1393 /* Mirror missing mmap method error code */
1394 return -ENODEV;
1395 }
1396
1397 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1398 {
1399 ssize_t res;
1400 struct msghdr msg = {.msg_flags = flags};
1401 struct kvec iov;
1402 char *kaddr = kmap(page);
1403 iov.iov_base = kaddr + offset;
1404 iov.iov_len = size;
1405 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1406 kunmap(page);
1407 return res;
1408 }
1409
1410 /*
1411 * Default Socket Callbacks
1412 */
1413
1414 static void sock_def_wakeup(struct sock *sk)
1415 {
1416 read_lock(&sk->sk_callback_lock);
1417 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1418 wake_up_interruptible_all(sk->sk_sleep);
1419 read_unlock(&sk->sk_callback_lock);
1420 }
1421
1422 static void sock_def_error_report(struct sock *sk)
1423 {
1424 read_lock(&sk->sk_callback_lock);
1425 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1426 wake_up_interruptible(sk->sk_sleep);
1427 sk_wake_async(sk,0,POLL_ERR);
1428 read_unlock(&sk->sk_callback_lock);
1429 }
1430
1431 static void sock_def_readable(struct sock *sk, int len)
1432 {
1433 read_lock(&sk->sk_callback_lock);
1434 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1435 wake_up_interruptible(sk->sk_sleep);
1436 sk_wake_async(sk,1,POLL_IN);
1437 read_unlock(&sk->sk_callback_lock);
1438 }
1439
1440 static void sock_def_write_space(struct sock *sk)
1441 {
1442 read_lock(&sk->sk_callback_lock);
1443
1444 /* Do not wake up a writer until he can make "significant"
1445 * progress. --DaveM
1446 */
1447 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1448 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1449 wake_up_interruptible(sk->sk_sleep);
1450
1451 /* Should agree with poll, otherwise some programs break */
1452 if (sock_writeable(sk))
1453 sk_wake_async(sk, 2, POLL_OUT);
1454 }
1455
1456 read_unlock(&sk->sk_callback_lock);
1457 }
1458
1459 static void sock_def_destruct(struct sock *sk)
1460 {
1461 kfree(sk->sk_protinfo);
1462 }
1463
1464 void sk_send_sigurg(struct sock *sk)
1465 {
1466 if (sk->sk_socket && sk->sk_socket->file)
1467 if (send_sigurg(&sk->sk_socket->file->f_owner))
1468 sk_wake_async(sk, 3, POLL_PRI);
1469 }
1470
1471 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1472 unsigned long expires)
1473 {
1474 if (!mod_timer(timer, expires))
1475 sock_hold(sk);
1476 }
1477
1478 EXPORT_SYMBOL(sk_reset_timer);
1479
1480 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1481 {
1482 if (timer_pending(timer) && del_timer(timer))
1483 __sock_put(sk);
1484 }
1485
1486 EXPORT_SYMBOL(sk_stop_timer);
1487
1488 void sock_init_data(struct socket *sock, struct sock *sk)
1489 {
1490 skb_queue_head_init(&sk->sk_receive_queue);
1491 skb_queue_head_init(&sk->sk_write_queue);
1492 skb_queue_head_init(&sk->sk_error_queue);
1493 #ifdef CONFIG_NET_DMA
1494 skb_queue_head_init(&sk->sk_async_wait_queue);
1495 #endif
1496
1497 sk->sk_send_head = NULL;
1498
1499 init_timer(&sk->sk_timer);
1500
1501 sk->sk_allocation = GFP_KERNEL;
1502 sk->sk_rcvbuf = sysctl_rmem_default;
1503 sk->sk_sndbuf = sysctl_wmem_default;
1504 sk->sk_state = TCP_CLOSE;
1505 sk->sk_socket = sock;
1506
1507 sock_set_flag(sk, SOCK_ZAPPED);
1508
1509 if (sock) {
1510 sk->sk_type = sock->type;
1511 sk->sk_sleep = &sock->wait;
1512 sock->sk = sk;
1513 } else
1514 sk->sk_sleep = NULL;
1515
1516 rwlock_init(&sk->sk_dst_lock);
1517 rwlock_init(&sk->sk_callback_lock);
1518 lockdep_set_class(&sk->sk_callback_lock,
1519 af_callback_keys + sk->sk_family);
1520
1521 sk->sk_state_change = sock_def_wakeup;
1522 sk->sk_data_ready = sock_def_readable;
1523 sk->sk_write_space = sock_def_write_space;
1524 sk->sk_error_report = sock_def_error_report;
1525 sk->sk_destruct = sock_def_destruct;
1526
1527 sk->sk_sndmsg_page = NULL;
1528 sk->sk_sndmsg_off = 0;
1529
1530 sk->sk_peercred.pid = 0;
1531 sk->sk_peercred.uid = -1;
1532 sk->sk_peercred.gid = -1;
1533 sk->sk_write_pending = 0;
1534 sk->sk_rcvlowat = 1;
1535 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1536 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1537
1538 sk->sk_stamp = ktime_set(-1L, -1L);
1539
1540 atomic_set(&sk->sk_refcnt, 1);
1541 }
1542
1543 void fastcall lock_sock_nested(struct sock *sk, int subclass)
1544 {
1545 might_sleep();
1546 spin_lock_bh(&sk->sk_lock.slock);
1547 if (sk->sk_lock.owner)
1548 __lock_sock(sk);
1549 sk->sk_lock.owner = (void *)1;
1550 spin_unlock(&sk->sk_lock.slock);
1551 /*
1552 * The sk_lock has mutex_lock() semantics here:
1553 */
1554 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1555 local_bh_enable();
1556 }
1557
1558 EXPORT_SYMBOL(lock_sock_nested);
1559
1560 void fastcall release_sock(struct sock *sk)
1561 {
1562 /*
1563 * The sk_lock has mutex_unlock() semantics:
1564 */
1565 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1566
1567 spin_lock_bh(&sk->sk_lock.slock);
1568 if (sk->sk_backlog.tail)
1569 __release_sock(sk);
1570 sk->sk_lock.owner = NULL;
1571 if (waitqueue_active(&sk->sk_lock.wq))
1572 wake_up(&sk->sk_lock.wq);
1573 spin_unlock_bh(&sk->sk_lock.slock);
1574 }
1575 EXPORT_SYMBOL(release_sock);
1576
1577 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1578 {
1579 struct timeval tv;
1580 if (!sock_flag(sk, SOCK_TIMESTAMP))
1581 sock_enable_timestamp(sk);
1582 tv = ktime_to_timeval(sk->sk_stamp);
1583 if (tv.tv_sec == -1)
1584 return -ENOENT;
1585 if (tv.tv_sec == 0) {
1586 sk->sk_stamp = ktime_get_real();
1587 tv = ktime_to_timeval(sk->sk_stamp);
1588 }
1589 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1590 }
1591 EXPORT_SYMBOL(sock_get_timestamp);
1592
1593 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1594 {
1595 struct timespec ts;
1596 if (!sock_flag(sk, SOCK_TIMESTAMP))
1597 sock_enable_timestamp(sk);
1598 ts = ktime_to_timespec(sk->sk_stamp);
1599 if (ts.tv_sec == -1)
1600 return -ENOENT;
1601 if (ts.tv_sec == 0) {
1602 sk->sk_stamp = ktime_get_real();
1603 ts = ktime_to_timespec(sk->sk_stamp);
1604 }
1605 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1606 }
1607 EXPORT_SYMBOL(sock_get_timestampns);
1608
1609 void sock_enable_timestamp(struct sock *sk)
1610 {
1611 if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1612 sock_set_flag(sk, SOCK_TIMESTAMP);
1613 net_enable_timestamp();
1614 }
1615 }
1616 EXPORT_SYMBOL(sock_enable_timestamp);
1617
1618 /*
1619 * Get a socket option on an socket.
1620 *
1621 * FIX: POSIX 1003.1g is very ambiguous here. It states that
1622 * asynchronous errors should be reported by getsockopt. We assume
1623 * this means if you specify SO_ERROR (otherwise whats the point of it).
1624 */
1625 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1626 char __user *optval, int __user *optlen)
1627 {
1628 struct sock *sk = sock->sk;
1629
1630 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1631 }
1632
1633 EXPORT_SYMBOL(sock_common_getsockopt);
1634
1635 #ifdef CONFIG_COMPAT
1636 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1637 char __user *optval, int __user *optlen)
1638 {
1639 struct sock *sk = sock->sk;
1640
1641 if (sk->sk_prot->compat_getsockopt != NULL)
1642 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1643 optval, optlen);
1644 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1645 }
1646 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1647 #endif
1648
1649 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1650 struct msghdr *msg, size_t size, int flags)
1651 {
1652 struct sock *sk = sock->sk;
1653 int addr_len = 0;
1654 int err;
1655
1656 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1657 flags & ~MSG_DONTWAIT, &addr_len);
1658 if (err >= 0)
1659 msg->msg_namelen = addr_len;
1660 return err;
1661 }
1662
1663 EXPORT_SYMBOL(sock_common_recvmsg);
1664
1665 /*
1666 * Set socket options on an inet socket.
1667 */
1668 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1669 char __user *optval, int optlen)
1670 {
1671 struct sock *sk = sock->sk;
1672
1673 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1674 }
1675
1676 EXPORT_SYMBOL(sock_common_setsockopt);
1677
1678 #ifdef CONFIG_COMPAT
1679 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1680 char __user *optval, int optlen)
1681 {
1682 struct sock *sk = sock->sk;
1683
1684 if (sk->sk_prot->compat_setsockopt != NULL)
1685 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1686 optval, optlen);
1687 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1688 }
1689 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1690 #endif
1691
1692 void sk_common_release(struct sock *sk)
1693 {
1694 if (sk->sk_prot->destroy)
1695 sk->sk_prot->destroy(sk);
1696
1697 /*
1698 * Observation: when sock_common_release is called, processes have
1699 * no access to socket. But net still has.
1700 * Step one, detach it from networking:
1701 *
1702 * A. Remove from hash tables.
1703 */
1704
1705 sk->sk_prot->unhash(sk);
1706
1707 /*
1708 * In this point socket cannot receive new packets, but it is possible
1709 * that some packets are in flight because some CPU runs receiver and
1710 * did hash table lookup before we unhashed socket. They will achieve
1711 * receive queue and will be purged by socket destructor.
1712 *
1713 * Also we still have packets pending on receive queue and probably,
1714 * our own packets waiting in device queues. sock_destroy will drain
1715 * receive queue, but transmitted packets will delay socket destruction
1716 * until the last reference will be released.
1717 */
1718
1719 sock_orphan(sk);
1720
1721 xfrm_sk_free_policy(sk);
1722
1723 sk_refcnt_debug_release(sk);
1724 sock_put(sk);
1725 }
1726
1727 EXPORT_SYMBOL(sk_common_release);
1728
1729 static DEFINE_RWLOCK(proto_list_lock);
1730 static LIST_HEAD(proto_list);
1731
1732 int proto_register(struct proto *prot, int alloc_slab)
1733 {
1734 char *request_sock_slab_name = NULL;
1735 char *timewait_sock_slab_name;
1736 int rc = -ENOBUFS;
1737
1738 if (alloc_slab) {
1739 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1740 SLAB_HWCACHE_ALIGN, NULL, NULL);
1741
1742 if (prot->slab == NULL) {
1743 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1744 prot->name);
1745 goto out;
1746 }
1747
1748 if (prot->rsk_prot != NULL) {
1749 static const char mask[] = "request_sock_%s";
1750
1751 request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1752 if (request_sock_slab_name == NULL)
1753 goto out_free_sock_slab;
1754
1755 sprintf(request_sock_slab_name, mask, prot->name);
1756 prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1757 prot->rsk_prot->obj_size, 0,
1758 SLAB_HWCACHE_ALIGN, NULL, NULL);
1759
1760 if (prot->rsk_prot->slab == NULL) {
1761 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1762 prot->name);
1763 goto out_free_request_sock_slab_name;
1764 }
1765 }
1766
1767 if (prot->twsk_prot != NULL) {
1768 static const char mask[] = "tw_sock_%s";
1769
1770 timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1771
1772 if (timewait_sock_slab_name == NULL)
1773 goto out_free_request_sock_slab;
1774
1775 sprintf(timewait_sock_slab_name, mask, prot->name);
1776 prot->twsk_prot->twsk_slab =
1777 kmem_cache_create(timewait_sock_slab_name,
1778 prot->twsk_prot->twsk_obj_size,
1779 0, SLAB_HWCACHE_ALIGN,
1780 NULL, NULL);
1781 if (prot->twsk_prot->twsk_slab == NULL)
1782 goto out_free_timewait_sock_slab_name;
1783 }
1784 }
1785
1786 write_lock(&proto_list_lock);
1787 list_add(&prot->node, &proto_list);
1788 write_unlock(&proto_list_lock);
1789 rc = 0;
1790 out:
1791 return rc;
1792 out_free_timewait_sock_slab_name:
1793 kfree(timewait_sock_slab_name);
1794 out_free_request_sock_slab:
1795 if (prot->rsk_prot && prot->rsk_prot->slab) {
1796 kmem_cache_destroy(prot->rsk_prot->slab);
1797 prot->rsk_prot->slab = NULL;
1798 }
1799 out_free_request_sock_slab_name:
1800 kfree(request_sock_slab_name);
1801 out_free_sock_slab:
1802 kmem_cache_destroy(prot->slab);
1803 prot->slab = NULL;
1804 goto out;
1805 }
1806
1807 EXPORT_SYMBOL(proto_register);
1808
1809 void proto_unregister(struct proto *prot)
1810 {
1811 write_lock(&proto_list_lock);
1812 list_del(&prot->node);
1813 write_unlock(&proto_list_lock);
1814
1815 if (prot->slab != NULL) {
1816 kmem_cache_destroy(prot->slab);
1817 prot->slab = NULL;
1818 }
1819
1820 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
1821 const char *name = kmem_cache_name(prot->rsk_prot->slab);
1822
1823 kmem_cache_destroy(prot->rsk_prot->slab);
1824 kfree(name);
1825 prot->rsk_prot->slab = NULL;
1826 }
1827
1828 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
1829 const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
1830
1831 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
1832 kfree(name);
1833 prot->twsk_prot->twsk_slab = NULL;
1834 }
1835 }
1836
1837 EXPORT_SYMBOL(proto_unregister);
1838
1839 #ifdef CONFIG_PROC_FS
1840 static inline struct proto *__proto_head(void)
1841 {
1842 return list_entry(proto_list.next, struct proto, node);
1843 }
1844
1845 static inline struct proto *proto_head(void)
1846 {
1847 return list_empty(&proto_list) ? NULL : __proto_head();
1848 }
1849
1850 static inline struct proto *proto_next(struct proto *proto)
1851 {
1852 return proto->node.next == &proto_list ? NULL :
1853 list_entry(proto->node.next, struct proto, node);
1854 }
1855
1856 static inline struct proto *proto_get_idx(loff_t pos)
1857 {
1858 struct proto *proto;
1859 loff_t i = 0;
1860
1861 list_for_each_entry(proto, &proto_list, node)
1862 if (i++ == pos)
1863 goto out;
1864
1865 proto = NULL;
1866 out:
1867 return proto;
1868 }
1869
1870 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
1871 {
1872 read_lock(&proto_list_lock);
1873 return *pos ? proto_get_idx(*pos - 1) : SEQ_START_TOKEN;
1874 }
1875
1876 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1877 {
1878 ++*pos;
1879 return v == SEQ_START_TOKEN ? proto_head() : proto_next(v);
1880 }
1881
1882 static void proto_seq_stop(struct seq_file *seq, void *v)
1883 {
1884 read_unlock(&proto_list_lock);
1885 }
1886
1887 static char proto_method_implemented(const void *method)
1888 {
1889 return method == NULL ? 'n' : 'y';
1890 }
1891
1892 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
1893 {
1894 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
1895 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
1896 proto->name,
1897 proto->obj_size,
1898 proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
1899 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
1900 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
1901 proto->max_header,
1902 proto->slab == NULL ? "no" : "yes",
1903 module_name(proto->owner),
1904 proto_method_implemented(proto->close),
1905 proto_method_implemented(proto->connect),
1906 proto_method_implemented(proto->disconnect),
1907 proto_method_implemented(proto->accept),
1908 proto_method_implemented(proto->ioctl),
1909 proto_method_implemented(proto->init),
1910 proto_method_implemented(proto->destroy),
1911 proto_method_implemented(proto->shutdown),
1912 proto_method_implemented(proto->setsockopt),
1913 proto_method_implemented(proto->getsockopt),
1914 proto_method_implemented(proto->sendmsg),
1915 proto_method_implemented(proto->recvmsg),
1916 proto_method_implemented(proto->sendpage),
1917 proto_method_implemented(proto->bind),
1918 proto_method_implemented(proto->backlog_rcv),
1919 proto_method_implemented(proto->hash),
1920 proto_method_implemented(proto->unhash),
1921 proto_method_implemented(proto->get_port),
1922 proto_method_implemented(proto->enter_memory_pressure));
1923 }
1924
1925 static int proto_seq_show(struct seq_file *seq, void *v)
1926 {
1927 if (v == SEQ_START_TOKEN)
1928 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
1929 "protocol",
1930 "size",
1931 "sockets",
1932 "memory",
1933 "press",
1934 "maxhdr",
1935 "slab",
1936 "module",
1937 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
1938 else
1939 proto_seq_printf(seq, v);
1940 return 0;
1941 }
1942
1943 static const struct seq_operations proto_seq_ops = {
1944 .start = proto_seq_start,
1945 .next = proto_seq_next,
1946 .stop = proto_seq_stop,
1947 .show = proto_seq_show,
1948 };
1949
1950 static int proto_seq_open(struct inode *inode, struct file *file)
1951 {
1952 return seq_open(file, &proto_seq_ops);
1953 }
1954
1955 static const struct file_operations proto_seq_fops = {
1956 .owner = THIS_MODULE,
1957 .open = proto_seq_open,
1958 .read = seq_read,
1959 .llseek = seq_lseek,
1960 .release = seq_release,
1961 };
1962
1963 static int __init proto_init(void)
1964 {
1965 /* register /proc/net/protocols */
1966 return proc_net_fops_create("protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
1967 }
1968
1969 subsys_initcall(proto_init);
1970
1971 #endif /* PROC_FS */
1972
1973 EXPORT_SYMBOL(sk_alloc);
1974 EXPORT_SYMBOL(sk_free);
1975 EXPORT_SYMBOL(sk_send_sigurg);
1976 EXPORT_SYMBOL(sock_alloc_send_skb);
1977 EXPORT_SYMBOL(sock_init_data);
1978 EXPORT_SYMBOL(sock_kfree_s);
1979 EXPORT_SYMBOL(sock_kmalloc);
1980 EXPORT_SYMBOL(sock_no_accept);
1981 EXPORT_SYMBOL(sock_no_bind);
1982 EXPORT_SYMBOL(sock_no_connect);
1983 EXPORT_SYMBOL(sock_no_getname);
1984 EXPORT_SYMBOL(sock_no_getsockopt);
1985 EXPORT_SYMBOL(sock_no_ioctl);
1986 EXPORT_SYMBOL(sock_no_listen);
1987 EXPORT_SYMBOL(sock_no_mmap);
1988 EXPORT_SYMBOL(sock_no_poll);
1989 EXPORT_SYMBOL(sock_no_recvmsg);
1990 EXPORT_SYMBOL(sock_no_sendmsg);
1991 EXPORT_SYMBOL(sock_no_sendpage);
1992 EXPORT_SYMBOL(sock_no_setsockopt);
1993 EXPORT_SYMBOL(sock_no_shutdown);
1994 EXPORT_SYMBOL(sock_no_socketpair);
1995 EXPORT_SYMBOL(sock_rfree);
1996 EXPORT_SYMBOL(sock_setsockopt);
1997 EXPORT_SYMBOL(sock_wfree);
1998 EXPORT_SYMBOL(sock_wmalloc);
1999 EXPORT_SYMBOL(sock_i_uid);
2000 EXPORT_SYMBOL(sock_i_ino);
2001 EXPORT_SYMBOL(sysctl_optmem_max);
2002 #ifdef CONFIG_SYSCTL
2003 EXPORT_SYMBOL(sysctl_rmem_max);
2004 EXPORT_SYMBOL(sysctl_wmem_max);
2005 #endif