]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/sock.c
net: Commonize busy polling code to focus on napi_id instead of socket
[mirror_ubuntu-bionic-kernel.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120
121 #include <linux/uaccess.h>
122
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
135
136 #include <linux/filter.h>
137 #include <net/sock_reuseport.h>
138
139 #include <trace/events/sock.h>
140
141 #ifdef CONFIG_INET
142 #include <net/tcp.h>
143 #endif
144
145 #include <net/busy_poll.h>
146
147 static DEFINE_MUTEX(proto_list_mutex);
148 static LIST_HEAD(proto_list);
149
150 /**
151 * sk_ns_capable - General socket capability test
152 * @sk: Socket to use a capability on or through
153 * @user_ns: The user namespace of the capability to use
154 * @cap: The capability to use
155 *
156 * Test to see if the opener of the socket had when the socket was
157 * created and the current process has the capability @cap in the user
158 * namespace @user_ns.
159 */
160 bool sk_ns_capable(const struct sock *sk,
161 struct user_namespace *user_ns, int cap)
162 {
163 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
164 ns_capable(user_ns, cap);
165 }
166 EXPORT_SYMBOL(sk_ns_capable);
167
168 /**
169 * sk_capable - Socket global capability test
170 * @sk: Socket to use a capability on or through
171 * @cap: The global capability to use
172 *
173 * Test to see if the opener of the socket had when the socket was
174 * created and the current process has the capability @cap in all user
175 * namespaces.
176 */
177 bool sk_capable(const struct sock *sk, int cap)
178 {
179 return sk_ns_capable(sk, &init_user_ns, cap);
180 }
181 EXPORT_SYMBOL(sk_capable);
182
183 /**
184 * sk_net_capable - Network namespace socket capability test
185 * @sk: Socket to use a capability on or through
186 * @cap: The capability to use
187 *
188 * Test to see if the opener of the socket had when the socket was created
189 * and the current process has the capability @cap over the network namespace
190 * the socket is a member of.
191 */
192 bool sk_net_capable(const struct sock *sk, int cap)
193 {
194 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
195 }
196 EXPORT_SYMBOL(sk_net_capable);
197
198 /*
199 * Each address family might have different locking rules, so we have
200 * one slock key per address family and separate keys for internal and
201 * userspace sockets.
202 */
203 static struct lock_class_key af_family_keys[AF_MAX];
204 static struct lock_class_key af_family_kern_keys[AF_MAX];
205 static struct lock_class_key af_family_slock_keys[AF_MAX];
206 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
207
208 /*
209 * Make lock validator output more readable. (we pre-construct these
210 * strings build-time, so that runtime initialization of socket
211 * locks is fast):
212 */
213
214 #define _sock_locks(x) \
215 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
216 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
217 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
218 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
219 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
220 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
221 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
222 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
223 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
224 x "27" , x "28" , x "AF_CAN" , \
225 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
226 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
227 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
228 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
229 x "AF_QIPCRTR", x "AF_SMC" , x "AF_MAX"
230
231 static const char *const af_family_key_strings[AF_MAX+1] = {
232 _sock_locks("sk_lock-")
233 };
234 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
235 _sock_locks("slock-")
236 };
237 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
238 _sock_locks("clock-")
239 };
240
241 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
242 _sock_locks("k-sk_lock-")
243 };
244 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
245 _sock_locks("k-slock-")
246 };
247 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
248 _sock_locks("k-clock-")
249 };
250 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
251 "rlock-AF_UNSPEC", "rlock-AF_UNIX" , "rlock-AF_INET" ,
252 "rlock-AF_AX25" , "rlock-AF_IPX" , "rlock-AF_APPLETALK",
253 "rlock-AF_NETROM", "rlock-AF_BRIDGE" , "rlock-AF_ATMPVC" ,
254 "rlock-AF_X25" , "rlock-AF_INET6" , "rlock-AF_ROSE" ,
255 "rlock-AF_DECnet", "rlock-AF_NETBEUI" , "rlock-AF_SECURITY" ,
256 "rlock-AF_KEY" , "rlock-AF_NETLINK" , "rlock-AF_PACKET" ,
257 "rlock-AF_ASH" , "rlock-AF_ECONET" , "rlock-AF_ATMSVC" ,
258 "rlock-AF_RDS" , "rlock-AF_SNA" , "rlock-AF_IRDA" ,
259 "rlock-AF_PPPOX" , "rlock-AF_WANPIPE" , "rlock-AF_LLC" ,
260 "rlock-27" , "rlock-28" , "rlock-AF_CAN" ,
261 "rlock-AF_TIPC" , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV" ,
262 "rlock-AF_RXRPC" , "rlock-AF_ISDN" , "rlock-AF_PHONET" ,
263 "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG" ,
264 "rlock-AF_NFC" , "rlock-AF_VSOCK" , "rlock-AF_KCM" ,
265 "rlock-AF_QIPCRTR", "rlock-AF_SMC" , "rlock-AF_MAX"
266 };
267 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
268 "wlock-AF_UNSPEC", "wlock-AF_UNIX" , "wlock-AF_INET" ,
269 "wlock-AF_AX25" , "wlock-AF_IPX" , "wlock-AF_APPLETALK",
270 "wlock-AF_NETROM", "wlock-AF_BRIDGE" , "wlock-AF_ATMPVC" ,
271 "wlock-AF_X25" , "wlock-AF_INET6" , "wlock-AF_ROSE" ,
272 "wlock-AF_DECnet", "wlock-AF_NETBEUI" , "wlock-AF_SECURITY" ,
273 "wlock-AF_KEY" , "wlock-AF_NETLINK" , "wlock-AF_PACKET" ,
274 "wlock-AF_ASH" , "wlock-AF_ECONET" , "wlock-AF_ATMSVC" ,
275 "wlock-AF_RDS" , "wlock-AF_SNA" , "wlock-AF_IRDA" ,
276 "wlock-AF_PPPOX" , "wlock-AF_WANPIPE" , "wlock-AF_LLC" ,
277 "wlock-27" , "wlock-28" , "wlock-AF_CAN" ,
278 "wlock-AF_TIPC" , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV" ,
279 "wlock-AF_RXRPC" , "wlock-AF_ISDN" , "wlock-AF_PHONET" ,
280 "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG" ,
281 "wlock-AF_NFC" , "wlock-AF_VSOCK" , "wlock-AF_KCM" ,
282 "wlock-AF_QIPCRTR", "wlock-AF_SMC" , "wlock-AF_MAX"
283 };
284 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
285 "elock-AF_UNSPEC", "elock-AF_UNIX" , "elock-AF_INET" ,
286 "elock-AF_AX25" , "elock-AF_IPX" , "elock-AF_APPLETALK",
287 "elock-AF_NETROM", "elock-AF_BRIDGE" , "elock-AF_ATMPVC" ,
288 "elock-AF_X25" , "elock-AF_INET6" , "elock-AF_ROSE" ,
289 "elock-AF_DECnet", "elock-AF_NETBEUI" , "elock-AF_SECURITY" ,
290 "elock-AF_KEY" , "elock-AF_NETLINK" , "elock-AF_PACKET" ,
291 "elock-AF_ASH" , "elock-AF_ECONET" , "elock-AF_ATMSVC" ,
292 "elock-AF_RDS" , "elock-AF_SNA" , "elock-AF_IRDA" ,
293 "elock-AF_PPPOX" , "elock-AF_WANPIPE" , "elock-AF_LLC" ,
294 "elock-27" , "elock-28" , "elock-AF_CAN" ,
295 "elock-AF_TIPC" , "elock-AF_BLUETOOTH", "elock-AF_IUCV" ,
296 "elock-AF_RXRPC" , "elock-AF_ISDN" , "elock-AF_PHONET" ,
297 "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG" ,
298 "elock-AF_NFC" , "elock-AF_VSOCK" , "elock-AF_KCM" ,
299 "elock-AF_QIPCRTR", "elock-AF_SMC" , "elock-AF_MAX"
300 };
301
302 /*
303 * sk_callback_lock and sk queues locking rules are per-address-family,
304 * so split the lock classes by using a per-AF key:
305 */
306 static struct lock_class_key af_callback_keys[AF_MAX];
307 static struct lock_class_key af_rlock_keys[AF_MAX];
308 static struct lock_class_key af_wlock_keys[AF_MAX];
309 static struct lock_class_key af_elock_keys[AF_MAX];
310 static struct lock_class_key af_kern_callback_keys[AF_MAX];
311
312 /* Take into consideration the size of the struct sk_buff overhead in the
313 * determination of these values, since that is non-constant across
314 * platforms. This makes socket queueing behavior and performance
315 * not depend upon such differences.
316 */
317 #define _SK_MEM_PACKETS 256
318 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
319 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
320 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
321
322 /* Run time adjustable parameters. */
323 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
324 EXPORT_SYMBOL(sysctl_wmem_max);
325 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
326 EXPORT_SYMBOL(sysctl_rmem_max);
327 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
328 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
329
330 /* Maximal space eaten by iovec or ancillary data plus some space */
331 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
332 EXPORT_SYMBOL(sysctl_optmem_max);
333
334 int sysctl_tstamp_allow_data __read_mostly = 1;
335
336 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
337 EXPORT_SYMBOL_GPL(memalloc_socks);
338
339 /**
340 * sk_set_memalloc - sets %SOCK_MEMALLOC
341 * @sk: socket to set it on
342 *
343 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
344 * It's the responsibility of the admin to adjust min_free_kbytes
345 * to meet the requirements
346 */
347 void sk_set_memalloc(struct sock *sk)
348 {
349 sock_set_flag(sk, SOCK_MEMALLOC);
350 sk->sk_allocation |= __GFP_MEMALLOC;
351 static_key_slow_inc(&memalloc_socks);
352 }
353 EXPORT_SYMBOL_GPL(sk_set_memalloc);
354
355 void sk_clear_memalloc(struct sock *sk)
356 {
357 sock_reset_flag(sk, SOCK_MEMALLOC);
358 sk->sk_allocation &= ~__GFP_MEMALLOC;
359 static_key_slow_dec(&memalloc_socks);
360
361 /*
362 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
363 * progress of swapping. SOCK_MEMALLOC may be cleared while
364 * it has rmem allocations due to the last swapfile being deactivated
365 * but there is a risk that the socket is unusable due to exceeding
366 * the rmem limits. Reclaim the reserves and obey rmem limits again.
367 */
368 sk_mem_reclaim(sk);
369 }
370 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
371
372 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
373 {
374 int ret;
375 unsigned long pflags = current->flags;
376
377 /* these should have been dropped before queueing */
378 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
379
380 current->flags |= PF_MEMALLOC;
381 ret = sk->sk_backlog_rcv(sk, skb);
382 tsk_restore_flags(current, pflags, PF_MEMALLOC);
383
384 return ret;
385 }
386 EXPORT_SYMBOL(__sk_backlog_rcv);
387
388 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
389 {
390 struct timeval tv;
391
392 if (optlen < sizeof(tv))
393 return -EINVAL;
394 if (copy_from_user(&tv, optval, sizeof(tv)))
395 return -EFAULT;
396 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
397 return -EDOM;
398
399 if (tv.tv_sec < 0) {
400 static int warned __read_mostly;
401
402 *timeo_p = 0;
403 if (warned < 10 && net_ratelimit()) {
404 warned++;
405 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
406 __func__, current->comm, task_pid_nr(current));
407 }
408 return 0;
409 }
410 *timeo_p = MAX_SCHEDULE_TIMEOUT;
411 if (tv.tv_sec == 0 && tv.tv_usec == 0)
412 return 0;
413 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
414 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ);
415 return 0;
416 }
417
418 static void sock_warn_obsolete_bsdism(const char *name)
419 {
420 static int warned;
421 static char warncomm[TASK_COMM_LEN];
422 if (strcmp(warncomm, current->comm) && warned < 5) {
423 strcpy(warncomm, current->comm);
424 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
425 warncomm, name);
426 warned++;
427 }
428 }
429
430 static bool sock_needs_netstamp(const struct sock *sk)
431 {
432 switch (sk->sk_family) {
433 case AF_UNSPEC:
434 case AF_UNIX:
435 return false;
436 default:
437 return true;
438 }
439 }
440
441 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
442 {
443 if (sk->sk_flags & flags) {
444 sk->sk_flags &= ~flags;
445 if (sock_needs_netstamp(sk) &&
446 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
447 net_disable_timestamp();
448 }
449 }
450
451
452 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
453 {
454 unsigned long flags;
455 struct sk_buff_head *list = &sk->sk_receive_queue;
456
457 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
458 atomic_inc(&sk->sk_drops);
459 trace_sock_rcvqueue_full(sk, skb);
460 return -ENOMEM;
461 }
462
463 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
464 atomic_inc(&sk->sk_drops);
465 return -ENOBUFS;
466 }
467
468 skb->dev = NULL;
469 skb_set_owner_r(skb, sk);
470
471 /* we escape from rcu protected region, make sure we dont leak
472 * a norefcounted dst
473 */
474 skb_dst_force(skb);
475
476 spin_lock_irqsave(&list->lock, flags);
477 sock_skb_set_dropcount(sk, skb);
478 __skb_queue_tail(list, skb);
479 spin_unlock_irqrestore(&list->lock, flags);
480
481 if (!sock_flag(sk, SOCK_DEAD))
482 sk->sk_data_ready(sk);
483 return 0;
484 }
485 EXPORT_SYMBOL(__sock_queue_rcv_skb);
486
487 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
488 {
489 int err;
490
491 err = sk_filter(sk, skb);
492 if (err)
493 return err;
494
495 return __sock_queue_rcv_skb(sk, skb);
496 }
497 EXPORT_SYMBOL(sock_queue_rcv_skb);
498
499 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
500 const int nested, unsigned int trim_cap, bool refcounted)
501 {
502 int rc = NET_RX_SUCCESS;
503
504 if (sk_filter_trim_cap(sk, skb, trim_cap))
505 goto discard_and_relse;
506
507 skb->dev = NULL;
508
509 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
510 atomic_inc(&sk->sk_drops);
511 goto discard_and_relse;
512 }
513 if (nested)
514 bh_lock_sock_nested(sk);
515 else
516 bh_lock_sock(sk);
517 if (!sock_owned_by_user(sk)) {
518 /*
519 * trylock + unlock semantics:
520 */
521 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
522
523 rc = sk_backlog_rcv(sk, skb);
524
525 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
526 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
527 bh_unlock_sock(sk);
528 atomic_inc(&sk->sk_drops);
529 goto discard_and_relse;
530 }
531
532 bh_unlock_sock(sk);
533 out:
534 if (refcounted)
535 sock_put(sk);
536 return rc;
537 discard_and_relse:
538 kfree_skb(skb);
539 goto out;
540 }
541 EXPORT_SYMBOL(__sk_receive_skb);
542
543 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
544 {
545 struct dst_entry *dst = __sk_dst_get(sk);
546
547 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
548 sk_tx_queue_clear(sk);
549 sk->sk_dst_pending_confirm = 0;
550 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
551 dst_release(dst);
552 return NULL;
553 }
554
555 return dst;
556 }
557 EXPORT_SYMBOL(__sk_dst_check);
558
559 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
560 {
561 struct dst_entry *dst = sk_dst_get(sk);
562
563 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
564 sk_dst_reset(sk);
565 dst_release(dst);
566 return NULL;
567 }
568
569 return dst;
570 }
571 EXPORT_SYMBOL(sk_dst_check);
572
573 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
574 int optlen)
575 {
576 int ret = -ENOPROTOOPT;
577 #ifdef CONFIG_NETDEVICES
578 struct net *net = sock_net(sk);
579 char devname[IFNAMSIZ];
580 int index;
581
582 /* Sorry... */
583 ret = -EPERM;
584 if (!ns_capable(net->user_ns, CAP_NET_RAW))
585 goto out;
586
587 ret = -EINVAL;
588 if (optlen < 0)
589 goto out;
590
591 /* Bind this socket to a particular device like "eth0",
592 * as specified in the passed interface name. If the
593 * name is "" or the option length is zero the socket
594 * is not bound.
595 */
596 if (optlen > IFNAMSIZ - 1)
597 optlen = IFNAMSIZ - 1;
598 memset(devname, 0, sizeof(devname));
599
600 ret = -EFAULT;
601 if (copy_from_user(devname, optval, optlen))
602 goto out;
603
604 index = 0;
605 if (devname[0] != '\0') {
606 struct net_device *dev;
607
608 rcu_read_lock();
609 dev = dev_get_by_name_rcu(net, devname);
610 if (dev)
611 index = dev->ifindex;
612 rcu_read_unlock();
613 ret = -ENODEV;
614 if (!dev)
615 goto out;
616 }
617
618 lock_sock(sk);
619 sk->sk_bound_dev_if = index;
620 sk_dst_reset(sk);
621 release_sock(sk);
622
623 ret = 0;
624
625 out:
626 #endif
627
628 return ret;
629 }
630
631 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
632 int __user *optlen, int len)
633 {
634 int ret = -ENOPROTOOPT;
635 #ifdef CONFIG_NETDEVICES
636 struct net *net = sock_net(sk);
637 char devname[IFNAMSIZ];
638
639 if (sk->sk_bound_dev_if == 0) {
640 len = 0;
641 goto zero;
642 }
643
644 ret = -EINVAL;
645 if (len < IFNAMSIZ)
646 goto out;
647
648 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
649 if (ret)
650 goto out;
651
652 len = strlen(devname) + 1;
653
654 ret = -EFAULT;
655 if (copy_to_user(optval, devname, len))
656 goto out;
657
658 zero:
659 ret = -EFAULT;
660 if (put_user(len, optlen))
661 goto out;
662
663 ret = 0;
664
665 out:
666 #endif
667
668 return ret;
669 }
670
671 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
672 {
673 if (valbool)
674 sock_set_flag(sk, bit);
675 else
676 sock_reset_flag(sk, bit);
677 }
678
679 bool sk_mc_loop(struct sock *sk)
680 {
681 if (dev_recursion_level())
682 return false;
683 if (!sk)
684 return true;
685 switch (sk->sk_family) {
686 case AF_INET:
687 return inet_sk(sk)->mc_loop;
688 #if IS_ENABLED(CONFIG_IPV6)
689 case AF_INET6:
690 return inet6_sk(sk)->mc_loop;
691 #endif
692 }
693 WARN_ON(1);
694 return true;
695 }
696 EXPORT_SYMBOL(sk_mc_loop);
697
698 /*
699 * This is meant for all protocols to use and covers goings on
700 * at the socket level. Everything here is generic.
701 */
702
703 int sock_setsockopt(struct socket *sock, int level, int optname,
704 char __user *optval, unsigned int optlen)
705 {
706 struct sock *sk = sock->sk;
707 int val;
708 int valbool;
709 struct linger ling;
710 int ret = 0;
711
712 /*
713 * Options without arguments
714 */
715
716 if (optname == SO_BINDTODEVICE)
717 return sock_setbindtodevice(sk, optval, optlen);
718
719 if (optlen < sizeof(int))
720 return -EINVAL;
721
722 if (get_user(val, (int __user *)optval))
723 return -EFAULT;
724
725 valbool = val ? 1 : 0;
726
727 lock_sock(sk);
728
729 switch (optname) {
730 case SO_DEBUG:
731 if (val && !capable(CAP_NET_ADMIN))
732 ret = -EACCES;
733 else
734 sock_valbool_flag(sk, SOCK_DBG, valbool);
735 break;
736 case SO_REUSEADDR:
737 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
738 break;
739 case SO_REUSEPORT:
740 sk->sk_reuseport = valbool;
741 break;
742 case SO_TYPE:
743 case SO_PROTOCOL:
744 case SO_DOMAIN:
745 case SO_ERROR:
746 ret = -ENOPROTOOPT;
747 break;
748 case SO_DONTROUTE:
749 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
750 break;
751 case SO_BROADCAST:
752 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
753 break;
754 case SO_SNDBUF:
755 /* Don't error on this BSD doesn't and if you think
756 * about it this is right. Otherwise apps have to
757 * play 'guess the biggest size' games. RCVBUF/SNDBUF
758 * are treated in BSD as hints
759 */
760 val = min_t(u32, val, sysctl_wmem_max);
761 set_sndbuf:
762 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
763 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
764 /* Wake up sending tasks if we upped the value. */
765 sk->sk_write_space(sk);
766 break;
767
768 case SO_SNDBUFFORCE:
769 if (!capable(CAP_NET_ADMIN)) {
770 ret = -EPERM;
771 break;
772 }
773 goto set_sndbuf;
774
775 case SO_RCVBUF:
776 /* Don't error on this BSD doesn't and if you think
777 * about it this is right. Otherwise apps have to
778 * play 'guess the biggest size' games. RCVBUF/SNDBUF
779 * are treated in BSD as hints
780 */
781 val = min_t(u32, val, sysctl_rmem_max);
782 set_rcvbuf:
783 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
784 /*
785 * We double it on the way in to account for
786 * "struct sk_buff" etc. overhead. Applications
787 * assume that the SO_RCVBUF setting they make will
788 * allow that much actual data to be received on that
789 * socket.
790 *
791 * Applications are unaware that "struct sk_buff" and
792 * other overheads allocate from the receive buffer
793 * during socket buffer allocation.
794 *
795 * And after considering the possible alternatives,
796 * returning the value we actually used in getsockopt
797 * is the most desirable behavior.
798 */
799 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
800 break;
801
802 case SO_RCVBUFFORCE:
803 if (!capable(CAP_NET_ADMIN)) {
804 ret = -EPERM;
805 break;
806 }
807 goto set_rcvbuf;
808
809 case SO_KEEPALIVE:
810 if (sk->sk_prot->keepalive)
811 sk->sk_prot->keepalive(sk, valbool);
812 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
813 break;
814
815 case SO_OOBINLINE:
816 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
817 break;
818
819 case SO_NO_CHECK:
820 sk->sk_no_check_tx = valbool;
821 break;
822
823 case SO_PRIORITY:
824 if ((val >= 0 && val <= 6) ||
825 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
826 sk->sk_priority = val;
827 else
828 ret = -EPERM;
829 break;
830
831 case SO_LINGER:
832 if (optlen < sizeof(ling)) {
833 ret = -EINVAL; /* 1003.1g */
834 break;
835 }
836 if (copy_from_user(&ling, optval, sizeof(ling))) {
837 ret = -EFAULT;
838 break;
839 }
840 if (!ling.l_onoff)
841 sock_reset_flag(sk, SOCK_LINGER);
842 else {
843 #if (BITS_PER_LONG == 32)
844 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
845 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
846 else
847 #endif
848 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
849 sock_set_flag(sk, SOCK_LINGER);
850 }
851 break;
852
853 case SO_BSDCOMPAT:
854 sock_warn_obsolete_bsdism("setsockopt");
855 break;
856
857 case SO_PASSCRED:
858 if (valbool)
859 set_bit(SOCK_PASSCRED, &sock->flags);
860 else
861 clear_bit(SOCK_PASSCRED, &sock->flags);
862 break;
863
864 case SO_TIMESTAMP:
865 case SO_TIMESTAMPNS:
866 if (valbool) {
867 if (optname == SO_TIMESTAMP)
868 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
869 else
870 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
871 sock_set_flag(sk, SOCK_RCVTSTAMP);
872 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
873 } else {
874 sock_reset_flag(sk, SOCK_RCVTSTAMP);
875 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
876 }
877 break;
878
879 case SO_TIMESTAMPING:
880 if (val & ~SOF_TIMESTAMPING_MASK) {
881 ret = -EINVAL;
882 break;
883 }
884
885 if (val & SOF_TIMESTAMPING_OPT_ID &&
886 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
887 if (sk->sk_protocol == IPPROTO_TCP &&
888 sk->sk_type == SOCK_STREAM) {
889 if ((1 << sk->sk_state) &
890 (TCPF_CLOSE | TCPF_LISTEN)) {
891 ret = -EINVAL;
892 break;
893 }
894 sk->sk_tskey = tcp_sk(sk)->snd_una;
895 } else {
896 sk->sk_tskey = 0;
897 }
898 }
899
900 if (val & SOF_TIMESTAMPING_OPT_STATS &&
901 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
902 ret = -EINVAL;
903 break;
904 }
905
906 sk->sk_tsflags = val;
907 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
908 sock_enable_timestamp(sk,
909 SOCK_TIMESTAMPING_RX_SOFTWARE);
910 else
911 sock_disable_timestamp(sk,
912 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
913 break;
914
915 case SO_RCVLOWAT:
916 if (val < 0)
917 val = INT_MAX;
918 sk->sk_rcvlowat = val ? : 1;
919 break;
920
921 case SO_RCVTIMEO:
922 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
923 break;
924
925 case SO_SNDTIMEO:
926 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
927 break;
928
929 case SO_ATTACH_FILTER:
930 ret = -EINVAL;
931 if (optlen == sizeof(struct sock_fprog)) {
932 struct sock_fprog fprog;
933
934 ret = -EFAULT;
935 if (copy_from_user(&fprog, optval, sizeof(fprog)))
936 break;
937
938 ret = sk_attach_filter(&fprog, sk);
939 }
940 break;
941
942 case SO_ATTACH_BPF:
943 ret = -EINVAL;
944 if (optlen == sizeof(u32)) {
945 u32 ufd;
946
947 ret = -EFAULT;
948 if (copy_from_user(&ufd, optval, sizeof(ufd)))
949 break;
950
951 ret = sk_attach_bpf(ufd, sk);
952 }
953 break;
954
955 case SO_ATTACH_REUSEPORT_CBPF:
956 ret = -EINVAL;
957 if (optlen == sizeof(struct sock_fprog)) {
958 struct sock_fprog fprog;
959
960 ret = -EFAULT;
961 if (copy_from_user(&fprog, optval, sizeof(fprog)))
962 break;
963
964 ret = sk_reuseport_attach_filter(&fprog, sk);
965 }
966 break;
967
968 case SO_ATTACH_REUSEPORT_EBPF:
969 ret = -EINVAL;
970 if (optlen == sizeof(u32)) {
971 u32 ufd;
972
973 ret = -EFAULT;
974 if (copy_from_user(&ufd, optval, sizeof(ufd)))
975 break;
976
977 ret = sk_reuseport_attach_bpf(ufd, sk);
978 }
979 break;
980
981 case SO_DETACH_FILTER:
982 ret = sk_detach_filter(sk);
983 break;
984
985 case SO_LOCK_FILTER:
986 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
987 ret = -EPERM;
988 else
989 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
990 break;
991
992 case SO_PASSSEC:
993 if (valbool)
994 set_bit(SOCK_PASSSEC, &sock->flags);
995 else
996 clear_bit(SOCK_PASSSEC, &sock->flags);
997 break;
998 case SO_MARK:
999 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1000 ret = -EPERM;
1001 else
1002 sk->sk_mark = val;
1003 break;
1004
1005 case SO_RXQ_OVFL:
1006 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1007 break;
1008
1009 case SO_WIFI_STATUS:
1010 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1011 break;
1012
1013 case SO_PEEK_OFF:
1014 if (sock->ops->set_peek_off)
1015 ret = sock->ops->set_peek_off(sk, val);
1016 else
1017 ret = -EOPNOTSUPP;
1018 break;
1019
1020 case SO_NOFCS:
1021 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1022 break;
1023
1024 case SO_SELECT_ERR_QUEUE:
1025 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1026 break;
1027
1028 #ifdef CONFIG_NET_RX_BUSY_POLL
1029 case SO_BUSY_POLL:
1030 /* allow unprivileged users to decrease the value */
1031 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1032 ret = -EPERM;
1033 else {
1034 if (val < 0)
1035 ret = -EINVAL;
1036 else
1037 sk->sk_ll_usec = val;
1038 }
1039 break;
1040 #endif
1041
1042 case SO_MAX_PACING_RATE:
1043 sk->sk_max_pacing_rate = val;
1044 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1045 sk->sk_max_pacing_rate);
1046 break;
1047
1048 case SO_INCOMING_CPU:
1049 sk->sk_incoming_cpu = val;
1050 break;
1051
1052 case SO_CNX_ADVICE:
1053 if (val == 1)
1054 dst_negative_advice(sk);
1055 break;
1056 default:
1057 ret = -ENOPROTOOPT;
1058 break;
1059 }
1060 release_sock(sk);
1061 return ret;
1062 }
1063 EXPORT_SYMBOL(sock_setsockopt);
1064
1065
1066 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1067 struct ucred *ucred)
1068 {
1069 ucred->pid = pid_vnr(pid);
1070 ucred->uid = ucred->gid = -1;
1071 if (cred) {
1072 struct user_namespace *current_ns = current_user_ns();
1073
1074 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1075 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1076 }
1077 }
1078
1079 int sock_getsockopt(struct socket *sock, int level, int optname,
1080 char __user *optval, int __user *optlen)
1081 {
1082 struct sock *sk = sock->sk;
1083
1084 union {
1085 int val;
1086 struct linger ling;
1087 struct timeval tm;
1088 } v;
1089
1090 int lv = sizeof(int);
1091 int len;
1092
1093 if (get_user(len, optlen))
1094 return -EFAULT;
1095 if (len < 0)
1096 return -EINVAL;
1097
1098 memset(&v, 0, sizeof(v));
1099
1100 switch (optname) {
1101 case SO_DEBUG:
1102 v.val = sock_flag(sk, SOCK_DBG);
1103 break;
1104
1105 case SO_DONTROUTE:
1106 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1107 break;
1108
1109 case SO_BROADCAST:
1110 v.val = sock_flag(sk, SOCK_BROADCAST);
1111 break;
1112
1113 case SO_SNDBUF:
1114 v.val = sk->sk_sndbuf;
1115 break;
1116
1117 case SO_RCVBUF:
1118 v.val = sk->sk_rcvbuf;
1119 break;
1120
1121 case SO_REUSEADDR:
1122 v.val = sk->sk_reuse;
1123 break;
1124
1125 case SO_REUSEPORT:
1126 v.val = sk->sk_reuseport;
1127 break;
1128
1129 case SO_KEEPALIVE:
1130 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1131 break;
1132
1133 case SO_TYPE:
1134 v.val = sk->sk_type;
1135 break;
1136
1137 case SO_PROTOCOL:
1138 v.val = sk->sk_protocol;
1139 break;
1140
1141 case SO_DOMAIN:
1142 v.val = sk->sk_family;
1143 break;
1144
1145 case SO_ERROR:
1146 v.val = -sock_error(sk);
1147 if (v.val == 0)
1148 v.val = xchg(&sk->sk_err_soft, 0);
1149 break;
1150
1151 case SO_OOBINLINE:
1152 v.val = sock_flag(sk, SOCK_URGINLINE);
1153 break;
1154
1155 case SO_NO_CHECK:
1156 v.val = sk->sk_no_check_tx;
1157 break;
1158
1159 case SO_PRIORITY:
1160 v.val = sk->sk_priority;
1161 break;
1162
1163 case SO_LINGER:
1164 lv = sizeof(v.ling);
1165 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1166 v.ling.l_linger = sk->sk_lingertime / HZ;
1167 break;
1168
1169 case SO_BSDCOMPAT:
1170 sock_warn_obsolete_bsdism("getsockopt");
1171 break;
1172
1173 case SO_TIMESTAMP:
1174 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1175 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1176 break;
1177
1178 case SO_TIMESTAMPNS:
1179 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1180 break;
1181
1182 case SO_TIMESTAMPING:
1183 v.val = sk->sk_tsflags;
1184 break;
1185
1186 case SO_RCVTIMEO:
1187 lv = sizeof(struct timeval);
1188 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1189 v.tm.tv_sec = 0;
1190 v.tm.tv_usec = 0;
1191 } else {
1192 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1193 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ;
1194 }
1195 break;
1196
1197 case SO_SNDTIMEO:
1198 lv = sizeof(struct timeval);
1199 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1200 v.tm.tv_sec = 0;
1201 v.tm.tv_usec = 0;
1202 } else {
1203 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1204 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ;
1205 }
1206 break;
1207
1208 case SO_RCVLOWAT:
1209 v.val = sk->sk_rcvlowat;
1210 break;
1211
1212 case SO_SNDLOWAT:
1213 v.val = 1;
1214 break;
1215
1216 case SO_PASSCRED:
1217 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1218 break;
1219
1220 case SO_PEERCRED:
1221 {
1222 struct ucred peercred;
1223 if (len > sizeof(peercred))
1224 len = sizeof(peercred);
1225 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1226 if (copy_to_user(optval, &peercred, len))
1227 return -EFAULT;
1228 goto lenout;
1229 }
1230
1231 case SO_PEERNAME:
1232 {
1233 char address[128];
1234
1235 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1236 return -ENOTCONN;
1237 if (lv < len)
1238 return -EINVAL;
1239 if (copy_to_user(optval, address, len))
1240 return -EFAULT;
1241 goto lenout;
1242 }
1243
1244 /* Dubious BSD thing... Probably nobody even uses it, but
1245 * the UNIX standard wants it for whatever reason... -DaveM
1246 */
1247 case SO_ACCEPTCONN:
1248 v.val = sk->sk_state == TCP_LISTEN;
1249 break;
1250
1251 case SO_PASSSEC:
1252 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1253 break;
1254
1255 case SO_PEERSEC:
1256 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1257
1258 case SO_MARK:
1259 v.val = sk->sk_mark;
1260 break;
1261
1262 case SO_RXQ_OVFL:
1263 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1264 break;
1265
1266 case SO_WIFI_STATUS:
1267 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1268 break;
1269
1270 case SO_PEEK_OFF:
1271 if (!sock->ops->set_peek_off)
1272 return -EOPNOTSUPP;
1273
1274 v.val = sk->sk_peek_off;
1275 break;
1276 case SO_NOFCS:
1277 v.val = sock_flag(sk, SOCK_NOFCS);
1278 break;
1279
1280 case SO_BINDTODEVICE:
1281 return sock_getbindtodevice(sk, optval, optlen, len);
1282
1283 case SO_GET_FILTER:
1284 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1285 if (len < 0)
1286 return len;
1287
1288 goto lenout;
1289
1290 case SO_LOCK_FILTER:
1291 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1292 break;
1293
1294 case SO_BPF_EXTENSIONS:
1295 v.val = bpf_tell_extensions();
1296 break;
1297
1298 case SO_SELECT_ERR_QUEUE:
1299 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1300 break;
1301
1302 #ifdef CONFIG_NET_RX_BUSY_POLL
1303 case SO_BUSY_POLL:
1304 v.val = sk->sk_ll_usec;
1305 break;
1306 #endif
1307
1308 case SO_MAX_PACING_RATE:
1309 v.val = sk->sk_max_pacing_rate;
1310 break;
1311
1312 case SO_INCOMING_CPU:
1313 v.val = sk->sk_incoming_cpu;
1314 break;
1315
1316 case SO_MEMINFO:
1317 {
1318 u32 meminfo[SK_MEMINFO_VARS];
1319
1320 if (get_user(len, optlen))
1321 return -EFAULT;
1322
1323 sk_get_meminfo(sk, meminfo);
1324
1325 len = min_t(unsigned int, len, sizeof(meminfo));
1326 if (copy_to_user(optval, &meminfo, len))
1327 return -EFAULT;
1328
1329 goto lenout;
1330 }
1331 default:
1332 /* We implement the SO_SNDLOWAT etc to not be settable
1333 * (1003.1g 7).
1334 */
1335 return -ENOPROTOOPT;
1336 }
1337
1338 if (len > lv)
1339 len = lv;
1340 if (copy_to_user(optval, &v, len))
1341 return -EFAULT;
1342 lenout:
1343 if (put_user(len, optlen))
1344 return -EFAULT;
1345 return 0;
1346 }
1347
1348 /*
1349 * Initialize an sk_lock.
1350 *
1351 * (We also register the sk_lock with the lock validator.)
1352 */
1353 static inline void sock_lock_init(struct sock *sk)
1354 {
1355 if (sk->sk_kern_sock)
1356 sock_lock_init_class_and_name(
1357 sk,
1358 af_family_kern_slock_key_strings[sk->sk_family],
1359 af_family_kern_slock_keys + sk->sk_family,
1360 af_family_kern_key_strings[sk->sk_family],
1361 af_family_kern_keys + sk->sk_family);
1362 else
1363 sock_lock_init_class_and_name(
1364 sk,
1365 af_family_slock_key_strings[sk->sk_family],
1366 af_family_slock_keys + sk->sk_family,
1367 af_family_key_strings[sk->sk_family],
1368 af_family_keys + sk->sk_family);
1369 }
1370
1371 /*
1372 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1373 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1374 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1375 */
1376 static void sock_copy(struct sock *nsk, const struct sock *osk)
1377 {
1378 #ifdef CONFIG_SECURITY_NETWORK
1379 void *sptr = nsk->sk_security;
1380 #endif
1381 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1382
1383 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1384 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1385
1386 #ifdef CONFIG_SECURITY_NETWORK
1387 nsk->sk_security = sptr;
1388 security_sk_clone(osk, nsk);
1389 #endif
1390 }
1391
1392 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1393 int family)
1394 {
1395 struct sock *sk;
1396 struct kmem_cache *slab;
1397
1398 slab = prot->slab;
1399 if (slab != NULL) {
1400 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1401 if (!sk)
1402 return sk;
1403 if (priority & __GFP_ZERO)
1404 sk_prot_clear_nulls(sk, prot->obj_size);
1405 } else
1406 sk = kmalloc(prot->obj_size, priority);
1407
1408 if (sk != NULL) {
1409 kmemcheck_annotate_bitfield(sk, flags);
1410
1411 if (security_sk_alloc(sk, family, priority))
1412 goto out_free;
1413
1414 if (!try_module_get(prot->owner))
1415 goto out_free_sec;
1416 sk_tx_queue_clear(sk);
1417 }
1418
1419 return sk;
1420
1421 out_free_sec:
1422 security_sk_free(sk);
1423 out_free:
1424 if (slab != NULL)
1425 kmem_cache_free(slab, sk);
1426 else
1427 kfree(sk);
1428 return NULL;
1429 }
1430
1431 static void sk_prot_free(struct proto *prot, struct sock *sk)
1432 {
1433 struct kmem_cache *slab;
1434 struct module *owner;
1435
1436 owner = prot->owner;
1437 slab = prot->slab;
1438
1439 cgroup_sk_free(&sk->sk_cgrp_data);
1440 mem_cgroup_sk_free(sk);
1441 security_sk_free(sk);
1442 if (slab != NULL)
1443 kmem_cache_free(slab, sk);
1444 else
1445 kfree(sk);
1446 module_put(owner);
1447 }
1448
1449 /**
1450 * sk_alloc - All socket objects are allocated here
1451 * @net: the applicable net namespace
1452 * @family: protocol family
1453 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1454 * @prot: struct proto associated with this new sock instance
1455 * @kern: is this to be a kernel socket?
1456 */
1457 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1458 struct proto *prot, int kern)
1459 {
1460 struct sock *sk;
1461
1462 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1463 if (sk) {
1464 sk->sk_family = family;
1465 /*
1466 * See comment in struct sock definition to understand
1467 * why we need sk_prot_creator -acme
1468 */
1469 sk->sk_prot = sk->sk_prot_creator = prot;
1470 sk->sk_kern_sock = kern;
1471 sock_lock_init(sk);
1472 sk->sk_net_refcnt = kern ? 0 : 1;
1473 if (likely(sk->sk_net_refcnt))
1474 get_net(net);
1475 sock_net_set(sk, net);
1476 atomic_set(&sk->sk_wmem_alloc, 1);
1477
1478 mem_cgroup_sk_alloc(sk);
1479 cgroup_sk_alloc(&sk->sk_cgrp_data);
1480 sock_update_classid(&sk->sk_cgrp_data);
1481 sock_update_netprioidx(&sk->sk_cgrp_data);
1482 }
1483
1484 return sk;
1485 }
1486 EXPORT_SYMBOL(sk_alloc);
1487
1488 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1489 * grace period. This is the case for UDP sockets and TCP listeners.
1490 */
1491 static void __sk_destruct(struct rcu_head *head)
1492 {
1493 struct sock *sk = container_of(head, struct sock, sk_rcu);
1494 struct sk_filter *filter;
1495
1496 if (sk->sk_destruct)
1497 sk->sk_destruct(sk);
1498
1499 filter = rcu_dereference_check(sk->sk_filter,
1500 atomic_read(&sk->sk_wmem_alloc) == 0);
1501 if (filter) {
1502 sk_filter_uncharge(sk, filter);
1503 RCU_INIT_POINTER(sk->sk_filter, NULL);
1504 }
1505 if (rcu_access_pointer(sk->sk_reuseport_cb))
1506 reuseport_detach_sock(sk);
1507
1508 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1509
1510 if (atomic_read(&sk->sk_omem_alloc))
1511 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1512 __func__, atomic_read(&sk->sk_omem_alloc));
1513
1514 if (sk->sk_frag.page) {
1515 put_page(sk->sk_frag.page);
1516 sk->sk_frag.page = NULL;
1517 }
1518
1519 if (sk->sk_peer_cred)
1520 put_cred(sk->sk_peer_cred);
1521 put_pid(sk->sk_peer_pid);
1522 if (likely(sk->sk_net_refcnt))
1523 put_net(sock_net(sk));
1524 sk_prot_free(sk->sk_prot_creator, sk);
1525 }
1526
1527 void sk_destruct(struct sock *sk)
1528 {
1529 if (sock_flag(sk, SOCK_RCU_FREE))
1530 call_rcu(&sk->sk_rcu, __sk_destruct);
1531 else
1532 __sk_destruct(&sk->sk_rcu);
1533 }
1534
1535 static void __sk_free(struct sock *sk)
1536 {
1537 if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1538 sock_diag_broadcast_destroy(sk);
1539 else
1540 sk_destruct(sk);
1541 }
1542
1543 void sk_free(struct sock *sk)
1544 {
1545 /*
1546 * We subtract one from sk_wmem_alloc and can know if
1547 * some packets are still in some tx queue.
1548 * If not null, sock_wfree() will call __sk_free(sk) later
1549 */
1550 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1551 __sk_free(sk);
1552 }
1553 EXPORT_SYMBOL(sk_free);
1554
1555 static void sk_init_common(struct sock *sk)
1556 {
1557 skb_queue_head_init(&sk->sk_receive_queue);
1558 skb_queue_head_init(&sk->sk_write_queue);
1559 skb_queue_head_init(&sk->sk_error_queue);
1560
1561 rwlock_init(&sk->sk_callback_lock);
1562 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1563 af_rlock_keys + sk->sk_family,
1564 af_family_rlock_key_strings[sk->sk_family]);
1565 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1566 af_wlock_keys + sk->sk_family,
1567 af_family_wlock_key_strings[sk->sk_family]);
1568 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1569 af_elock_keys + sk->sk_family,
1570 af_family_elock_key_strings[sk->sk_family]);
1571 lockdep_set_class_and_name(&sk->sk_callback_lock,
1572 af_callback_keys + sk->sk_family,
1573 af_family_clock_key_strings[sk->sk_family]);
1574 }
1575
1576 /**
1577 * sk_clone_lock - clone a socket, and lock its clone
1578 * @sk: the socket to clone
1579 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1580 *
1581 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1582 */
1583 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1584 {
1585 struct sock *newsk;
1586 bool is_charged = true;
1587
1588 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1589 if (newsk != NULL) {
1590 struct sk_filter *filter;
1591
1592 sock_copy(newsk, sk);
1593
1594 /* SANITY */
1595 if (likely(newsk->sk_net_refcnt))
1596 get_net(sock_net(newsk));
1597 sk_node_init(&newsk->sk_node);
1598 sock_lock_init(newsk);
1599 bh_lock_sock(newsk);
1600 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1601 newsk->sk_backlog.len = 0;
1602
1603 atomic_set(&newsk->sk_rmem_alloc, 0);
1604 /*
1605 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1606 */
1607 atomic_set(&newsk->sk_wmem_alloc, 1);
1608 atomic_set(&newsk->sk_omem_alloc, 0);
1609 sk_init_common(newsk);
1610
1611 newsk->sk_dst_cache = NULL;
1612 newsk->sk_dst_pending_confirm = 0;
1613 newsk->sk_wmem_queued = 0;
1614 newsk->sk_forward_alloc = 0;
1615 atomic_set(&newsk->sk_drops, 0);
1616 newsk->sk_send_head = NULL;
1617 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1618
1619 sock_reset_flag(newsk, SOCK_DONE);
1620
1621 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1622 if (filter != NULL)
1623 /* though it's an empty new sock, the charging may fail
1624 * if sysctl_optmem_max was changed between creation of
1625 * original socket and cloning
1626 */
1627 is_charged = sk_filter_charge(newsk, filter);
1628
1629 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1630 /* We need to make sure that we don't uncharge the new
1631 * socket if we couldn't charge it in the first place
1632 * as otherwise we uncharge the parent's filter.
1633 */
1634 if (!is_charged)
1635 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1636 sk_free_unlock_clone(newsk);
1637 newsk = NULL;
1638 goto out;
1639 }
1640 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1641
1642 newsk->sk_err = 0;
1643 newsk->sk_err_soft = 0;
1644 newsk->sk_priority = 0;
1645 newsk->sk_incoming_cpu = raw_smp_processor_id();
1646 atomic64_set(&newsk->sk_cookie, 0);
1647
1648 mem_cgroup_sk_alloc(newsk);
1649 cgroup_sk_alloc(&newsk->sk_cgrp_data);
1650
1651 /*
1652 * Before updating sk_refcnt, we must commit prior changes to memory
1653 * (Documentation/RCU/rculist_nulls.txt for details)
1654 */
1655 smp_wmb();
1656 atomic_set(&newsk->sk_refcnt, 2);
1657
1658 /*
1659 * Increment the counter in the same struct proto as the master
1660 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1661 * is the same as sk->sk_prot->socks, as this field was copied
1662 * with memcpy).
1663 *
1664 * This _changes_ the previous behaviour, where
1665 * tcp_create_openreq_child always was incrementing the
1666 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1667 * to be taken into account in all callers. -acme
1668 */
1669 sk_refcnt_debug_inc(newsk);
1670 sk_set_socket(newsk, NULL);
1671 newsk->sk_wq = NULL;
1672
1673 if (newsk->sk_prot->sockets_allocated)
1674 sk_sockets_allocated_inc(newsk);
1675
1676 if (sock_needs_netstamp(sk) &&
1677 newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1678 net_enable_timestamp();
1679 }
1680 out:
1681 return newsk;
1682 }
1683 EXPORT_SYMBOL_GPL(sk_clone_lock);
1684
1685 void sk_free_unlock_clone(struct sock *sk)
1686 {
1687 /* It is still raw copy of parent, so invalidate
1688 * destructor and make plain sk_free() */
1689 sk->sk_destruct = NULL;
1690 bh_unlock_sock(sk);
1691 sk_free(sk);
1692 }
1693 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1694
1695 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1696 {
1697 u32 max_segs = 1;
1698
1699 sk_dst_set(sk, dst);
1700 sk->sk_route_caps = dst->dev->features;
1701 if (sk->sk_route_caps & NETIF_F_GSO)
1702 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1703 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1704 if (sk_can_gso(sk)) {
1705 if (dst->header_len) {
1706 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1707 } else {
1708 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1709 sk->sk_gso_max_size = dst->dev->gso_max_size;
1710 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1711 }
1712 }
1713 sk->sk_gso_max_segs = max_segs;
1714 }
1715 EXPORT_SYMBOL_GPL(sk_setup_caps);
1716
1717 /*
1718 * Simple resource managers for sockets.
1719 */
1720
1721
1722 /*
1723 * Write buffer destructor automatically called from kfree_skb.
1724 */
1725 void sock_wfree(struct sk_buff *skb)
1726 {
1727 struct sock *sk = skb->sk;
1728 unsigned int len = skb->truesize;
1729
1730 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1731 /*
1732 * Keep a reference on sk_wmem_alloc, this will be released
1733 * after sk_write_space() call
1734 */
1735 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1736 sk->sk_write_space(sk);
1737 len = 1;
1738 }
1739 /*
1740 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1741 * could not do because of in-flight packets
1742 */
1743 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1744 __sk_free(sk);
1745 }
1746 EXPORT_SYMBOL(sock_wfree);
1747
1748 /* This variant of sock_wfree() is used by TCP,
1749 * since it sets SOCK_USE_WRITE_QUEUE.
1750 */
1751 void __sock_wfree(struct sk_buff *skb)
1752 {
1753 struct sock *sk = skb->sk;
1754
1755 if (atomic_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1756 __sk_free(sk);
1757 }
1758
1759 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1760 {
1761 skb_orphan(skb);
1762 skb->sk = sk;
1763 #ifdef CONFIG_INET
1764 if (unlikely(!sk_fullsock(sk))) {
1765 skb->destructor = sock_edemux;
1766 sock_hold(sk);
1767 return;
1768 }
1769 #endif
1770 skb->destructor = sock_wfree;
1771 skb_set_hash_from_sk(skb, sk);
1772 /*
1773 * We used to take a refcount on sk, but following operation
1774 * is enough to guarantee sk_free() wont free this sock until
1775 * all in-flight packets are completed
1776 */
1777 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1778 }
1779 EXPORT_SYMBOL(skb_set_owner_w);
1780
1781 /* This helper is used by netem, as it can hold packets in its
1782 * delay queue. We want to allow the owner socket to send more
1783 * packets, as if they were already TX completed by a typical driver.
1784 * But we also want to keep skb->sk set because some packet schedulers
1785 * rely on it (sch_fq for example). So we set skb->truesize to a small
1786 * amount (1) and decrease sk_wmem_alloc accordingly.
1787 */
1788 void skb_orphan_partial(struct sk_buff *skb)
1789 {
1790 /* If this skb is a TCP pure ACK or already went here,
1791 * we have nothing to do. 2 is already a very small truesize.
1792 */
1793 if (skb->truesize <= 2)
1794 return;
1795
1796 /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1797 * so we do not completely orphan skb, but transfert all
1798 * accounted bytes but one, to avoid unexpected reorders.
1799 */
1800 if (skb->destructor == sock_wfree
1801 #ifdef CONFIG_INET
1802 || skb->destructor == tcp_wfree
1803 #endif
1804 ) {
1805 atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1806 skb->truesize = 1;
1807 } else {
1808 skb_orphan(skb);
1809 }
1810 }
1811 EXPORT_SYMBOL(skb_orphan_partial);
1812
1813 /*
1814 * Read buffer destructor automatically called from kfree_skb.
1815 */
1816 void sock_rfree(struct sk_buff *skb)
1817 {
1818 struct sock *sk = skb->sk;
1819 unsigned int len = skb->truesize;
1820
1821 atomic_sub(len, &sk->sk_rmem_alloc);
1822 sk_mem_uncharge(sk, len);
1823 }
1824 EXPORT_SYMBOL(sock_rfree);
1825
1826 /*
1827 * Buffer destructor for skbs that are not used directly in read or write
1828 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1829 */
1830 void sock_efree(struct sk_buff *skb)
1831 {
1832 sock_put(skb->sk);
1833 }
1834 EXPORT_SYMBOL(sock_efree);
1835
1836 kuid_t sock_i_uid(struct sock *sk)
1837 {
1838 kuid_t uid;
1839
1840 read_lock_bh(&sk->sk_callback_lock);
1841 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1842 read_unlock_bh(&sk->sk_callback_lock);
1843 return uid;
1844 }
1845 EXPORT_SYMBOL(sock_i_uid);
1846
1847 unsigned long sock_i_ino(struct sock *sk)
1848 {
1849 unsigned long ino;
1850
1851 read_lock_bh(&sk->sk_callback_lock);
1852 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1853 read_unlock_bh(&sk->sk_callback_lock);
1854 return ino;
1855 }
1856 EXPORT_SYMBOL(sock_i_ino);
1857
1858 /*
1859 * Allocate a skb from the socket's send buffer.
1860 */
1861 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1862 gfp_t priority)
1863 {
1864 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1865 struct sk_buff *skb = alloc_skb(size, priority);
1866 if (skb) {
1867 skb_set_owner_w(skb, sk);
1868 return skb;
1869 }
1870 }
1871 return NULL;
1872 }
1873 EXPORT_SYMBOL(sock_wmalloc);
1874
1875 /*
1876 * Allocate a memory block from the socket's option memory buffer.
1877 */
1878 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1879 {
1880 if ((unsigned int)size <= sysctl_optmem_max &&
1881 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1882 void *mem;
1883 /* First do the add, to avoid the race if kmalloc
1884 * might sleep.
1885 */
1886 atomic_add(size, &sk->sk_omem_alloc);
1887 mem = kmalloc(size, priority);
1888 if (mem)
1889 return mem;
1890 atomic_sub(size, &sk->sk_omem_alloc);
1891 }
1892 return NULL;
1893 }
1894 EXPORT_SYMBOL(sock_kmalloc);
1895
1896 /* Free an option memory block. Note, we actually want the inline
1897 * here as this allows gcc to detect the nullify and fold away the
1898 * condition entirely.
1899 */
1900 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1901 const bool nullify)
1902 {
1903 if (WARN_ON_ONCE(!mem))
1904 return;
1905 if (nullify)
1906 kzfree(mem);
1907 else
1908 kfree(mem);
1909 atomic_sub(size, &sk->sk_omem_alloc);
1910 }
1911
1912 void sock_kfree_s(struct sock *sk, void *mem, int size)
1913 {
1914 __sock_kfree_s(sk, mem, size, false);
1915 }
1916 EXPORT_SYMBOL(sock_kfree_s);
1917
1918 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1919 {
1920 __sock_kfree_s(sk, mem, size, true);
1921 }
1922 EXPORT_SYMBOL(sock_kzfree_s);
1923
1924 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1925 I think, these locks should be removed for datagram sockets.
1926 */
1927 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1928 {
1929 DEFINE_WAIT(wait);
1930
1931 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1932 for (;;) {
1933 if (!timeo)
1934 break;
1935 if (signal_pending(current))
1936 break;
1937 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1938 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1939 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1940 break;
1941 if (sk->sk_shutdown & SEND_SHUTDOWN)
1942 break;
1943 if (sk->sk_err)
1944 break;
1945 timeo = schedule_timeout(timeo);
1946 }
1947 finish_wait(sk_sleep(sk), &wait);
1948 return timeo;
1949 }
1950
1951
1952 /*
1953 * Generic send/receive buffer handlers
1954 */
1955
1956 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1957 unsigned long data_len, int noblock,
1958 int *errcode, int max_page_order)
1959 {
1960 struct sk_buff *skb;
1961 long timeo;
1962 int err;
1963
1964 timeo = sock_sndtimeo(sk, noblock);
1965 for (;;) {
1966 err = sock_error(sk);
1967 if (err != 0)
1968 goto failure;
1969
1970 err = -EPIPE;
1971 if (sk->sk_shutdown & SEND_SHUTDOWN)
1972 goto failure;
1973
1974 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1975 break;
1976
1977 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1978 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1979 err = -EAGAIN;
1980 if (!timeo)
1981 goto failure;
1982 if (signal_pending(current))
1983 goto interrupted;
1984 timeo = sock_wait_for_wmem(sk, timeo);
1985 }
1986 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1987 errcode, sk->sk_allocation);
1988 if (skb)
1989 skb_set_owner_w(skb, sk);
1990 return skb;
1991
1992 interrupted:
1993 err = sock_intr_errno(timeo);
1994 failure:
1995 *errcode = err;
1996 return NULL;
1997 }
1998 EXPORT_SYMBOL(sock_alloc_send_pskb);
1999
2000 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2001 int noblock, int *errcode)
2002 {
2003 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2004 }
2005 EXPORT_SYMBOL(sock_alloc_send_skb);
2006
2007 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2008 struct sockcm_cookie *sockc)
2009 {
2010 u32 tsflags;
2011
2012 switch (cmsg->cmsg_type) {
2013 case SO_MARK:
2014 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2015 return -EPERM;
2016 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2017 return -EINVAL;
2018 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2019 break;
2020 case SO_TIMESTAMPING:
2021 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2022 return -EINVAL;
2023
2024 tsflags = *(u32 *)CMSG_DATA(cmsg);
2025 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2026 return -EINVAL;
2027
2028 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2029 sockc->tsflags |= tsflags;
2030 break;
2031 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2032 case SCM_RIGHTS:
2033 case SCM_CREDENTIALS:
2034 break;
2035 default:
2036 return -EINVAL;
2037 }
2038 return 0;
2039 }
2040 EXPORT_SYMBOL(__sock_cmsg_send);
2041
2042 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2043 struct sockcm_cookie *sockc)
2044 {
2045 struct cmsghdr *cmsg;
2046 int ret;
2047
2048 for_each_cmsghdr(cmsg, msg) {
2049 if (!CMSG_OK(msg, cmsg))
2050 return -EINVAL;
2051 if (cmsg->cmsg_level != SOL_SOCKET)
2052 continue;
2053 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2054 if (ret)
2055 return ret;
2056 }
2057 return 0;
2058 }
2059 EXPORT_SYMBOL(sock_cmsg_send);
2060
2061 /* On 32bit arches, an skb frag is limited to 2^15 */
2062 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2063
2064 /**
2065 * skb_page_frag_refill - check that a page_frag contains enough room
2066 * @sz: minimum size of the fragment we want to get
2067 * @pfrag: pointer to page_frag
2068 * @gfp: priority for memory allocation
2069 *
2070 * Note: While this allocator tries to use high order pages, there is
2071 * no guarantee that allocations succeed. Therefore, @sz MUST be
2072 * less or equal than PAGE_SIZE.
2073 */
2074 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2075 {
2076 if (pfrag->page) {
2077 if (page_ref_count(pfrag->page) == 1) {
2078 pfrag->offset = 0;
2079 return true;
2080 }
2081 if (pfrag->offset + sz <= pfrag->size)
2082 return true;
2083 put_page(pfrag->page);
2084 }
2085
2086 pfrag->offset = 0;
2087 if (SKB_FRAG_PAGE_ORDER) {
2088 /* Avoid direct reclaim but allow kswapd to wake */
2089 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2090 __GFP_COMP | __GFP_NOWARN |
2091 __GFP_NORETRY,
2092 SKB_FRAG_PAGE_ORDER);
2093 if (likely(pfrag->page)) {
2094 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2095 return true;
2096 }
2097 }
2098 pfrag->page = alloc_page(gfp);
2099 if (likely(pfrag->page)) {
2100 pfrag->size = PAGE_SIZE;
2101 return true;
2102 }
2103 return false;
2104 }
2105 EXPORT_SYMBOL(skb_page_frag_refill);
2106
2107 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2108 {
2109 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2110 return true;
2111
2112 sk_enter_memory_pressure(sk);
2113 sk_stream_moderate_sndbuf(sk);
2114 return false;
2115 }
2116 EXPORT_SYMBOL(sk_page_frag_refill);
2117
2118 static void __lock_sock(struct sock *sk)
2119 __releases(&sk->sk_lock.slock)
2120 __acquires(&sk->sk_lock.slock)
2121 {
2122 DEFINE_WAIT(wait);
2123
2124 for (;;) {
2125 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2126 TASK_UNINTERRUPTIBLE);
2127 spin_unlock_bh(&sk->sk_lock.slock);
2128 schedule();
2129 spin_lock_bh(&sk->sk_lock.slock);
2130 if (!sock_owned_by_user(sk))
2131 break;
2132 }
2133 finish_wait(&sk->sk_lock.wq, &wait);
2134 }
2135
2136 static void __release_sock(struct sock *sk)
2137 __releases(&sk->sk_lock.slock)
2138 __acquires(&sk->sk_lock.slock)
2139 {
2140 struct sk_buff *skb, *next;
2141
2142 while ((skb = sk->sk_backlog.head) != NULL) {
2143 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2144
2145 spin_unlock_bh(&sk->sk_lock.slock);
2146
2147 do {
2148 next = skb->next;
2149 prefetch(next);
2150 WARN_ON_ONCE(skb_dst_is_noref(skb));
2151 skb->next = NULL;
2152 sk_backlog_rcv(sk, skb);
2153
2154 cond_resched();
2155
2156 skb = next;
2157 } while (skb != NULL);
2158
2159 spin_lock_bh(&sk->sk_lock.slock);
2160 }
2161
2162 /*
2163 * Doing the zeroing here guarantee we can not loop forever
2164 * while a wild producer attempts to flood us.
2165 */
2166 sk->sk_backlog.len = 0;
2167 }
2168
2169 void __sk_flush_backlog(struct sock *sk)
2170 {
2171 spin_lock_bh(&sk->sk_lock.slock);
2172 __release_sock(sk);
2173 spin_unlock_bh(&sk->sk_lock.slock);
2174 }
2175
2176 /**
2177 * sk_wait_data - wait for data to arrive at sk_receive_queue
2178 * @sk: sock to wait on
2179 * @timeo: for how long
2180 * @skb: last skb seen on sk_receive_queue
2181 *
2182 * Now socket state including sk->sk_err is changed only under lock,
2183 * hence we may omit checks after joining wait queue.
2184 * We check receive queue before schedule() only as optimization;
2185 * it is very likely that release_sock() added new data.
2186 */
2187 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2188 {
2189 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2190 int rc;
2191
2192 add_wait_queue(sk_sleep(sk), &wait);
2193 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2194 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2195 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2196 remove_wait_queue(sk_sleep(sk), &wait);
2197 return rc;
2198 }
2199 EXPORT_SYMBOL(sk_wait_data);
2200
2201 /**
2202 * __sk_mem_raise_allocated - increase memory_allocated
2203 * @sk: socket
2204 * @size: memory size to allocate
2205 * @amt: pages to allocate
2206 * @kind: allocation type
2207 *
2208 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2209 */
2210 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2211 {
2212 struct proto *prot = sk->sk_prot;
2213 long allocated = sk_memory_allocated_add(sk, amt);
2214
2215 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2216 !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2217 goto suppress_allocation;
2218
2219 /* Under limit. */
2220 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2221 sk_leave_memory_pressure(sk);
2222 return 1;
2223 }
2224
2225 /* Under pressure. */
2226 if (allocated > sk_prot_mem_limits(sk, 1))
2227 sk_enter_memory_pressure(sk);
2228
2229 /* Over hard limit. */
2230 if (allocated > sk_prot_mem_limits(sk, 2))
2231 goto suppress_allocation;
2232
2233 /* guarantee minimum buffer size under pressure */
2234 if (kind == SK_MEM_RECV) {
2235 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2236 return 1;
2237
2238 } else { /* SK_MEM_SEND */
2239 if (sk->sk_type == SOCK_STREAM) {
2240 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2241 return 1;
2242 } else if (atomic_read(&sk->sk_wmem_alloc) <
2243 prot->sysctl_wmem[0])
2244 return 1;
2245 }
2246
2247 if (sk_has_memory_pressure(sk)) {
2248 int alloc;
2249
2250 if (!sk_under_memory_pressure(sk))
2251 return 1;
2252 alloc = sk_sockets_allocated_read_positive(sk);
2253 if (sk_prot_mem_limits(sk, 2) > alloc *
2254 sk_mem_pages(sk->sk_wmem_queued +
2255 atomic_read(&sk->sk_rmem_alloc) +
2256 sk->sk_forward_alloc))
2257 return 1;
2258 }
2259
2260 suppress_allocation:
2261
2262 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2263 sk_stream_moderate_sndbuf(sk);
2264
2265 /* Fail only if socket is _under_ its sndbuf.
2266 * In this case we cannot block, so that we have to fail.
2267 */
2268 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2269 return 1;
2270 }
2271
2272 trace_sock_exceed_buf_limit(sk, prot, allocated);
2273
2274 sk_memory_allocated_sub(sk, amt);
2275
2276 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2277 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2278
2279 return 0;
2280 }
2281 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2282
2283 /**
2284 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2285 * @sk: socket
2286 * @size: memory size to allocate
2287 * @kind: allocation type
2288 *
2289 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2290 * rmem allocation. This function assumes that protocols which have
2291 * memory_pressure use sk_wmem_queued as write buffer accounting.
2292 */
2293 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2294 {
2295 int ret, amt = sk_mem_pages(size);
2296
2297 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2298 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2299 if (!ret)
2300 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2301 return ret;
2302 }
2303 EXPORT_SYMBOL(__sk_mem_schedule);
2304
2305 /**
2306 * __sk_mem_reduce_allocated - reclaim memory_allocated
2307 * @sk: socket
2308 * @amount: number of quanta
2309 *
2310 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2311 */
2312 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2313 {
2314 sk_memory_allocated_sub(sk, amount);
2315
2316 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2317 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2318
2319 if (sk_under_memory_pressure(sk) &&
2320 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2321 sk_leave_memory_pressure(sk);
2322 }
2323 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2324
2325 /**
2326 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2327 * @sk: socket
2328 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2329 */
2330 void __sk_mem_reclaim(struct sock *sk, int amount)
2331 {
2332 amount >>= SK_MEM_QUANTUM_SHIFT;
2333 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2334 __sk_mem_reduce_allocated(sk, amount);
2335 }
2336 EXPORT_SYMBOL(__sk_mem_reclaim);
2337
2338 int sk_set_peek_off(struct sock *sk, int val)
2339 {
2340 if (val < 0)
2341 return -EINVAL;
2342
2343 sk->sk_peek_off = val;
2344 return 0;
2345 }
2346 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2347
2348 /*
2349 * Set of default routines for initialising struct proto_ops when
2350 * the protocol does not support a particular function. In certain
2351 * cases where it makes no sense for a protocol to have a "do nothing"
2352 * function, some default processing is provided.
2353 */
2354
2355 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2356 {
2357 return -EOPNOTSUPP;
2358 }
2359 EXPORT_SYMBOL(sock_no_bind);
2360
2361 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2362 int len, int flags)
2363 {
2364 return -EOPNOTSUPP;
2365 }
2366 EXPORT_SYMBOL(sock_no_connect);
2367
2368 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2369 {
2370 return -EOPNOTSUPP;
2371 }
2372 EXPORT_SYMBOL(sock_no_socketpair);
2373
2374 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2375 bool kern)
2376 {
2377 return -EOPNOTSUPP;
2378 }
2379 EXPORT_SYMBOL(sock_no_accept);
2380
2381 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2382 int *len, int peer)
2383 {
2384 return -EOPNOTSUPP;
2385 }
2386 EXPORT_SYMBOL(sock_no_getname);
2387
2388 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2389 {
2390 return 0;
2391 }
2392 EXPORT_SYMBOL(sock_no_poll);
2393
2394 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2395 {
2396 return -EOPNOTSUPP;
2397 }
2398 EXPORT_SYMBOL(sock_no_ioctl);
2399
2400 int sock_no_listen(struct socket *sock, int backlog)
2401 {
2402 return -EOPNOTSUPP;
2403 }
2404 EXPORT_SYMBOL(sock_no_listen);
2405
2406 int sock_no_shutdown(struct socket *sock, int how)
2407 {
2408 return -EOPNOTSUPP;
2409 }
2410 EXPORT_SYMBOL(sock_no_shutdown);
2411
2412 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2413 char __user *optval, unsigned int optlen)
2414 {
2415 return -EOPNOTSUPP;
2416 }
2417 EXPORT_SYMBOL(sock_no_setsockopt);
2418
2419 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2420 char __user *optval, int __user *optlen)
2421 {
2422 return -EOPNOTSUPP;
2423 }
2424 EXPORT_SYMBOL(sock_no_getsockopt);
2425
2426 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2427 {
2428 return -EOPNOTSUPP;
2429 }
2430 EXPORT_SYMBOL(sock_no_sendmsg);
2431
2432 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2433 int flags)
2434 {
2435 return -EOPNOTSUPP;
2436 }
2437 EXPORT_SYMBOL(sock_no_recvmsg);
2438
2439 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2440 {
2441 /* Mirror missing mmap method error code */
2442 return -ENODEV;
2443 }
2444 EXPORT_SYMBOL(sock_no_mmap);
2445
2446 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2447 {
2448 ssize_t res;
2449 struct msghdr msg = {.msg_flags = flags};
2450 struct kvec iov;
2451 char *kaddr = kmap(page);
2452 iov.iov_base = kaddr + offset;
2453 iov.iov_len = size;
2454 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2455 kunmap(page);
2456 return res;
2457 }
2458 EXPORT_SYMBOL(sock_no_sendpage);
2459
2460 /*
2461 * Default Socket Callbacks
2462 */
2463
2464 static void sock_def_wakeup(struct sock *sk)
2465 {
2466 struct socket_wq *wq;
2467
2468 rcu_read_lock();
2469 wq = rcu_dereference(sk->sk_wq);
2470 if (skwq_has_sleeper(wq))
2471 wake_up_interruptible_all(&wq->wait);
2472 rcu_read_unlock();
2473 }
2474
2475 static void sock_def_error_report(struct sock *sk)
2476 {
2477 struct socket_wq *wq;
2478
2479 rcu_read_lock();
2480 wq = rcu_dereference(sk->sk_wq);
2481 if (skwq_has_sleeper(wq))
2482 wake_up_interruptible_poll(&wq->wait, POLLERR);
2483 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2484 rcu_read_unlock();
2485 }
2486
2487 static void sock_def_readable(struct sock *sk)
2488 {
2489 struct socket_wq *wq;
2490
2491 rcu_read_lock();
2492 wq = rcu_dereference(sk->sk_wq);
2493 if (skwq_has_sleeper(wq))
2494 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2495 POLLRDNORM | POLLRDBAND);
2496 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2497 rcu_read_unlock();
2498 }
2499
2500 static void sock_def_write_space(struct sock *sk)
2501 {
2502 struct socket_wq *wq;
2503
2504 rcu_read_lock();
2505
2506 /* Do not wake up a writer until he can make "significant"
2507 * progress. --DaveM
2508 */
2509 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2510 wq = rcu_dereference(sk->sk_wq);
2511 if (skwq_has_sleeper(wq))
2512 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2513 POLLWRNORM | POLLWRBAND);
2514
2515 /* Should agree with poll, otherwise some programs break */
2516 if (sock_writeable(sk))
2517 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2518 }
2519
2520 rcu_read_unlock();
2521 }
2522
2523 static void sock_def_destruct(struct sock *sk)
2524 {
2525 }
2526
2527 void sk_send_sigurg(struct sock *sk)
2528 {
2529 if (sk->sk_socket && sk->sk_socket->file)
2530 if (send_sigurg(&sk->sk_socket->file->f_owner))
2531 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2532 }
2533 EXPORT_SYMBOL(sk_send_sigurg);
2534
2535 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2536 unsigned long expires)
2537 {
2538 if (!mod_timer(timer, expires))
2539 sock_hold(sk);
2540 }
2541 EXPORT_SYMBOL(sk_reset_timer);
2542
2543 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2544 {
2545 if (del_timer(timer))
2546 __sock_put(sk);
2547 }
2548 EXPORT_SYMBOL(sk_stop_timer);
2549
2550 void sock_init_data(struct socket *sock, struct sock *sk)
2551 {
2552 sk_init_common(sk);
2553 sk->sk_send_head = NULL;
2554
2555 init_timer(&sk->sk_timer);
2556
2557 sk->sk_allocation = GFP_KERNEL;
2558 sk->sk_rcvbuf = sysctl_rmem_default;
2559 sk->sk_sndbuf = sysctl_wmem_default;
2560 sk->sk_state = TCP_CLOSE;
2561 sk_set_socket(sk, sock);
2562
2563 sock_set_flag(sk, SOCK_ZAPPED);
2564
2565 if (sock) {
2566 sk->sk_type = sock->type;
2567 sk->sk_wq = sock->wq;
2568 sock->sk = sk;
2569 sk->sk_uid = SOCK_INODE(sock)->i_uid;
2570 } else {
2571 sk->sk_wq = NULL;
2572 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
2573 }
2574
2575 rwlock_init(&sk->sk_callback_lock);
2576 if (sk->sk_kern_sock)
2577 lockdep_set_class_and_name(
2578 &sk->sk_callback_lock,
2579 af_kern_callback_keys + sk->sk_family,
2580 af_family_kern_clock_key_strings[sk->sk_family]);
2581 else
2582 lockdep_set_class_and_name(
2583 &sk->sk_callback_lock,
2584 af_callback_keys + sk->sk_family,
2585 af_family_clock_key_strings[sk->sk_family]);
2586
2587 sk->sk_state_change = sock_def_wakeup;
2588 sk->sk_data_ready = sock_def_readable;
2589 sk->sk_write_space = sock_def_write_space;
2590 sk->sk_error_report = sock_def_error_report;
2591 sk->sk_destruct = sock_def_destruct;
2592
2593 sk->sk_frag.page = NULL;
2594 sk->sk_frag.offset = 0;
2595 sk->sk_peek_off = -1;
2596
2597 sk->sk_peer_pid = NULL;
2598 sk->sk_peer_cred = NULL;
2599 sk->sk_write_pending = 0;
2600 sk->sk_rcvlowat = 1;
2601 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2602 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2603
2604 sk->sk_stamp = ktime_set(-1L, 0);
2605
2606 #ifdef CONFIG_NET_RX_BUSY_POLL
2607 sk->sk_napi_id = 0;
2608 sk->sk_ll_usec = sysctl_net_busy_read;
2609 #endif
2610
2611 sk->sk_max_pacing_rate = ~0U;
2612 sk->sk_pacing_rate = ~0U;
2613 sk->sk_incoming_cpu = -1;
2614 /*
2615 * Before updating sk_refcnt, we must commit prior changes to memory
2616 * (Documentation/RCU/rculist_nulls.txt for details)
2617 */
2618 smp_wmb();
2619 atomic_set(&sk->sk_refcnt, 1);
2620 atomic_set(&sk->sk_drops, 0);
2621 }
2622 EXPORT_SYMBOL(sock_init_data);
2623
2624 void lock_sock_nested(struct sock *sk, int subclass)
2625 {
2626 might_sleep();
2627 spin_lock_bh(&sk->sk_lock.slock);
2628 if (sk->sk_lock.owned)
2629 __lock_sock(sk);
2630 sk->sk_lock.owned = 1;
2631 spin_unlock(&sk->sk_lock.slock);
2632 /*
2633 * The sk_lock has mutex_lock() semantics here:
2634 */
2635 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2636 local_bh_enable();
2637 }
2638 EXPORT_SYMBOL(lock_sock_nested);
2639
2640 void release_sock(struct sock *sk)
2641 {
2642 spin_lock_bh(&sk->sk_lock.slock);
2643 if (sk->sk_backlog.tail)
2644 __release_sock(sk);
2645
2646 /* Warning : release_cb() might need to release sk ownership,
2647 * ie call sock_release_ownership(sk) before us.
2648 */
2649 if (sk->sk_prot->release_cb)
2650 sk->sk_prot->release_cb(sk);
2651
2652 sock_release_ownership(sk);
2653 if (waitqueue_active(&sk->sk_lock.wq))
2654 wake_up(&sk->sk_lock.wq);
2655 spin_unlock_bh(&sk->sk_lock.slock);
2656 }
2657 EXPORT_SYMBOL(release_sock);
2658
2659 /**
2660 * lock_sock_fast - fast version of lock_sock
2661 * @sk: socket
2662 *
2663 * This version should be used for very small section, where process wont block
2664 * return false if fast path is taken
2665 * sk_lock.slock locked, owned = 0, BH disabled
2666 * return true if slow path is taken
2667 * sk_lock.slock unlocked, owned = 1, BH enabled
2668 */
2669 bool lock_sock_fast(struct sock *sk)
2670 {
2671 might_sleep();
2672 spin_lock_bh(&sk->sk_lock.slock);
2673
2674 if (!sk->sk_lock.owned)
2675 /*
2676 * Note : We must disable BH
2677 */
2678 return false;
2679
2680 __lock_sock(sk);
2681 sk->sk_lock.owned = 1;
2682 spin_unlock(&sk->sk_lock.slock);
2683 /*
2684 * The sk_lock has mutex_lock() semantics here:
2685 */
2686 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2687 local_bh_enable();
2688 return true;
2689 }
2690 EXPORT_SYMBOL(lock_sock_fast);
2691
2692 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2693 {
2694 struct timeval tv;
2695 if (!sock_flag(sk, SOCK_TIMESTAMP))
2696 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2697 tv = ktime_to_timeval(sk->sk_stamp);
2698 if (tv.tv_sec == -1)
2699 return -ENOENT;
2700 if (tv.tv_sec == 0) {
2701 sk->sk_stamp = ktime_get_real();
2702 tv = ktime_to_timeval(sk->sk_stamp);
2703 }
2704 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2705 }
2706 EXPORT_SYMBOL(sock_get_timestamp);
2707
2708 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2709 {
2710 struct timespec ts;
2711 if (!sock_flag(sk, SOCK_TIMESTAMP))
2712 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2713 ts = ktime_to_timespec(sk->sk_stamp);
2714 if (ts.tv_sec == -1)
2715 return -ENOENT;
2716 if (ts.tv_sec == 0) {
2717 sk->sk_stamp = ktime_get_real();
2718 ts = ktime_to_timespec(sk->sk_stamp);
2719 }
2720 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2721 }
2722 EXPORT_SYMBOL(sock_get_timestampns);
2723
2724 void sock_enable_timestamp(struct sock *sk, int flag)
2725 {
2726 if (!sock_flag(sk, flag)) {
2727 unsigned long previous_flags = sk->sk_flags;
2728
2729 sock_set_flag(sk, flag);
2730 /*
2731 * we just set one of the two flags which require net
2732 * time stamping, but time stamping might have been on
2733 * already because of the other one
2734 */
2735 if (sock_needs_netstamp(sk) &&
2736 !(previous_flags & SK_FLAGS_TIMESTAMP))
2737 net_enable_timestamp();
2738 }
2739 }
2740
2741 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2742 int level, int type)
2743 {
2744 struct sock_exterr_skb *serr;
2745 struct sk_buff *skb;
2746 int copied, err;
2747
2748 err = -EAGAIN;
2749 skb = sock_dequeue_err_skb(sk);
2750 if (skb == NULL)
2751 goto out;
2752
2753 copied = skb->len;
2754 if (copied > len) {
2755 msg->msg_flags |= MSG_TRUNC;
2756 copied = len;
2757 }
2758 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2759 if (err)
2760 goto out_free_skb;
2761
2762 sock_recv_timestamp(msg, sk, skb);
2763
2764 serr = SKB_EXT_ERR(skb);
2765 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2766
2767 msg->msg_flags |= MSG_ERRQUEUE;
2768 err = copied;
2769
2770 out_free_skb:
2771 kfree_skb(skb);
2772 out:
2773 return err;
2774 }
2775 EXPORT_SYMBOL(sock_recv_errqueue);
2776
2777 /*
2778 * Get a socket option on an socket.
2779 *
2780 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2781 * asynchronous errors should be reported by getsockopt. We assume
2782 * this means if you specify SO_ERROR (otherwise whats the point of it).
2783 */
2784 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2785 char __user *optval, int __user *optlen)
2786 {
2787 struct sock *sk = sock->sk;
2788
2789 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2790 }
2791 EXPORT_SYMBOL(sock_common_getsockopt);
2792
2793 #ifdef CONFIG_COMPAT
2794 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2795 char __user *optval, int __user *optlen)
2796 {
2797 struct sock *sk = sock->sk;
2798
2799 if (sk->sk_prot->compat_getsockopt != NULL)
2800 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2801 optval, optlen);
2802 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2803 }
2804 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2805 #endif
2806
2807 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2808 int flags)
2809 {
2810 struct sock *sk = sock->sk;
2811 int addr_len = 0;
2812 int err;
2813
2814 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2815 flags & ~MSG_DONTWAIT, &addr_len);
2816 if (err >= 0)
2817 msg->msg_namelen = addr_len;
2818 return err;
2819 }
2820 EXPORT_SYMBOL(sock_common_recvmsg);
2821
2822 /*
2823 * Set socket options on an inet socket.
2824 */
2825 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2826 char __user *optval, unsigned int optlen)
2827 {
2828 struct sock *sk = sock->sk;
2829
2830 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2831 }
2832 EXPORT_SYMBOL(sock_common_setsockopt);
2833
2834 #ifdef CONFIG_COMPAT
2835 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2836 char __user *optval, unsigned int optlen)
2837 {
2838 struct sock *sk = sock->sk;
2839
2840 if (sk->sk_prot->compat_setsockopt != NULL)
2841 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2842 optval, optlen);
2843 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2844 }
2845 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2846 #endif
2847
2848 void sk_common_release(struct sock *sk)
2849 {
2850 if (sk->sk_prot->destroy)
2851 sk->sk_prot->destroy(sk);
2852
2853 /*
2854 * Observation: when sock_common_release is called, processes have
2855 * no access to socket. But net still has.
2856 * Step one, detach it from networking:
2857 *
2858 * A. Remove from hash tables.
2859 */
2860
2861 sk->sk_prot->unhash(sk);
2862
2863 /*
2864 * In this point socket cannot receive new packets, but it is possible
2865 * that some packets are in flight because some CPU runs receiver and
2866 * did hash table lookup before we unhashed socket. They will achieve
2867 * receive queue and will be purged by socket destructor.
2868 *
2869 * Also we still have packets pending on receive queue and probably,
2870 * our own packets waiting in device queues. sock_destroy will drain
2871 * receive queue, but transmitted packets will delay socket destruction
2872 * until the last reference will be released.
2873 */
2874
2875 sock_orphan(sk);
2876
2877 xfrm_sk_free_policy(sk);
2878
2879 sk_refcnt_debug_release(sk);
2880
2881 sock_put(sk);
2882 }
2883 EXPORT_SYMBOL(sk_common_release);
2884
2885 void sk_get_meminfo(const struct sock *sk, u32 *mem)
2886 {
2887 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
2888
2889 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
2890 mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf;
2891 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
2892 mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf;
2893 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
2894 mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued;
2895 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
2896 mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len;
2897 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
2898 }
2899
2900 #ifdef CONFIG_PROC_FS
2901 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2902 struct prot_inuse {
2903 int val[PROTO_INUSE_NR];
2904 };
2905
2906 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2907
2908 #ifdef CONFIG_NET_NS
2909 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2910 {
2911 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2912 }
2913 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2914
2915 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2916 {
2917 int cpu, idx = prot->inuse_idx;
2918 int res = 0;
2919
2920 for_each_possible_cpu(cpu)
2921 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2922
2923 return res >= 0 ? res : 0;
2924 }
2925 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2926
2927 static int __net_init sock_inuse_init_net(struct net *net)
2928 {
2929 net->core.inuse = alloc_percpu(struct prot_inuse);
2930 return net->core.inuse ? 0 : -ENOMEM;
2931 }
2932
2933 static void __net_exit sock_inuse_exit_net(struct net *net)
2934 {
2935 free_percpu(net->core.inuse);
2936 }
2937
2938 static struct pernet_operations net_inuse_ops = {
2939 .init = sock_inuse_init_net,
2940 .exit = sock_inuse_exit_net,
2941 };
2942
2943 static __init int net_inuse_init(void)
2944 {
2945 if (register_pernet_subsys(&net_inuse_ops))
2946 panic("Cannot initialize net inuse counters");
2947
2948 return 0;
2949 }
2950
2951 core_initcall(net_inuse_init);
2952 #else
2953 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2954
2955 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2956 {
2957 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2958 }
2959 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2960
2961 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2962 {
2963 int cpu, idx = prot->inuse_idx;
2964 int res = 0;
2965
2966 for_each_possible_cpu(cpu)
2967 res += per_cpu(prot_inuse, cpu).val[idx];
2968
2969 return res >= 0 ? res : 0;
2970 }
2971 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2972 #endif
2973
2974 static void assign_proto_idx(struct proto *prot)
2975 {
2976 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2977
2978 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2979 pr_err("PROTO_INUSE_NR exhausted\n");
2980 return;
2981 }
2982
2983 set_bit(prot->inuse_idx, proto_inuse_idx);
2984 }
2985
2986 static void release_proto_idx(struct proto *prot)
2987 {
2988 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2989 clear_bit(prot->inuse_idx, proto_inuse_idx);
2990 }
2991 #else
2992 static inline void assign_proto_idx(struct proto *prot)
2993 {
2994 }
2995
2996 static inline void release_proto_idx(struct proto *prot)
2997 {
2998 }
2999 #endif
3000
3001 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3002 {
3003 if (!rsk_prot)
3004 return;
3005 kfree(rsk_prot->slab_name);
3006 rsk_prot->slab_name = NULL;
3007 kmem_cache_destroy(rsk_prot->slab);
3008 rsk_prot->slab = NULL;
3009 }
3010
3011 static int req_prot_init(const struct proto *prot)
3012 {
3013 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3014
3015 if (!rsk_prot)
3016 return 0;
3017
3018 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3019 prot->name);
3020 if (!rsk_prot->slab_name)
3021 return -ENOMEM;
3022
3023 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3024 rsk_prot->obj_size, 0,
3025 prot->slab_flags, NULL);
3026
3027 if (!rsk_prot->slab) {
3028 pr_crit("%s: Can't create request sock SLAB cache!\n",
3029 prot->name);
3030 return -ENOMEM;
3031 }
3032 return 0;
3033 }
3034
3035 int proto_register(struct proto *prot, int alloc_slab)
3036 {
3037 if (alloc_slab) {
3038 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
3039 SLAB_HWCACHE_ALIGN | prot->slab_flags,
3040 NULL);
3041
3042 if (prot->slab == NULL) {
3043 pr_crit("%s: Can't create sock SLAB cache!\n",
3044 prot->name);
3045 goto out;
3046 }
3047
3048 if (req_prot_init(prot))
3049 goto out_free_request_sock_slab;
3050
3051 if (prot->twsk_prot != NULL) {
3052 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3053
3054 if (prot->twsk_prot->twsk_slab_name == NULL)
3055 goto out_free_request_sock_slab;
3056
3057 prot->twsk_prot->twsk_slab =
3058 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3059 prot->twsk_prot->twsk_obj_size,
3060 0,
3061 prot->slab_flags,
3062 NULL);
3063 if (prot->twsk_prot->twsk_slab == NULL)
3064 goto out_free_timewait_sock_slab_name;
3065 }
3066 }
3067
3068 mutex_lock(&proto_list_mutex);
3069 list_add(&prot->node, &proto_list);
3070 assign_proto_idx(prot);
3071 mutex_unlock(&proto_list_mutex);
3072 return 0;
3073
3074 out_free_timewait_sock_slab_name:
3075 kfree(prot->twsk_prot->twsk_slab_name);
3076 out_free_request_sock_slab:
3077 req_prot_cleanup(prot->rsk_prot);
3078
3079 kmem_cache_destroy(prot->slab);
3080 prot->slab = NULL;
3081 out:
3082 return -ENOBUFS;
3083 }
3084 EXPORT_SYMBOL(proto_register);
3085
3086 void proto_unregister(struct proto *prot)
3087 {
3088 mutex_lock(&proto_list_mutex);
3089 release_proto_idx(prot);
3090 list_del(&prot->node);
3091 mutex_unlock(&proto_list_mutex);
3092
3093 kmem_cache_destroy(prot->slab);
3094 prot->slab = NULL;
3095
3096 req_prot_cleanup(prot->rsk_prot);
3097
3098 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3099 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3100 kfree(prot->twsk_prot->twsk_slab_name);
3101 prot->twsk_prot->twsk_slab = NULL;
3102 }
3103 }
3104 EXPORT_SYMBOL(proto_unregister);
3105
3106 #ifdef CONFIG_PROC_FS
3107 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3108 __acquires(proto_list_mutex)
3109 {
3110 mutex_lock(&proto_list_mutex);
3111 return seq_list_start_head(&proto_list, *pos);
3112 }
3113
3114 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3115 {
3116 return seq_list_next(v, &proto_list, pos);
3117 }
3118
3119 static void proto_seq_stop(struct seq_file *seq, void *v)
3120 __releases(proto_list_mutex)
3121 {
3122 mutex_unlock(&proto_list_mutex);
3123 }
3124
3125 static char proto_method_implemented(const void *method)
3126 {
3127 return method == NULL ? 'n' : 'y';
3128 }
3129 static long sock_prot_memory_allocated(struct proto *proto)
3130 {
3131 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3132 }
3133
3134 static char *sock_prot_memory_pressure(struct proto *proto)
3135 {
3136 return proto->memory_pressure != NULL ?
3137 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3138 }
3139
3140 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3141 {
3142
3143 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3144 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3145 proto->name,
3146 proto->obj_size,
3147 sock_prot_inuse_get(seq_file_net(seq), proto),
3148 sock_prot_memory_allocated(proto),
3149 sock_prot_memory_pressure(proto),
3150 proto->max_header,
3151 proto->slab == NULL ? "no" : "yes",
3152 module_name(proto->owner),
3153 proto_method_implemented(proto->close),
3154 proto_method_implemented(proto->connect),
3155 proto_method_implemented(proto->disconnect),
3156 proto_method_implemented(proto->accept),
3157 proto_method_implemented(proto->ioctl),
3158 proto_method_implemented(proto->init),
3159 proto_method_implemented(proto->destroy),
3160 proto_method_implemented(proto->shutdown),
3161 proto_method_implemented(proto->setsockopt),
3162 proto_method_implemented(proto->getsockopt),
3163 proto_method_implemented(proto->sendmsg),
3164 proto_method_implemented(proto->recvmsg),
3165 proto_method_implemented(proto->sendpage),
3166 proto_method_implemented(proto->bind),
3167 proto_method_implemented(proto->backlog_rcv),
3168 proto_method_implemented(proto->hash),
3169 proto_method_implemented(proto->unhash),
3170 proto_method_implemented(proto->get_port),
3171 proto_method_implemented(proto->enter_memory_pressure));
3172 }
3173
3174 static int proto_seq_show(struct seq_file *seq, void *v)
3175 {
3176 if (v == &proto_list)
3177 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3178 "protocol",
3179 "size",
3180 "sockets",
3181 "memory",
3182 "press",
3183 "maxhdr",
3184 "slab",
3185 "module",
3186 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3187 else
3188 proto_seq_printf(seq, list_entry(v, struct proto, node));
3189 return 0;
3190 }
3191
3192 static const struct seq_operations proto_seq_ops = {
3193 .start = proto_seq_start,
3194 .next = proto_seq_next,
3195 .stop = proto_seq_stop,
3196 .show = proto_seq_show,
3197 };
3198
3199 static int proto_seq_open(struct inode *inode, struct file *file)
3200 {
3201 return seq_open_net(inode, file, &proto_seq_ops,
3202 sizeof(struct seq_net_private));
3203 }
3204
3205 static const struct file_operations proto_seq_fops = {
3206 .owner = THIS_MODULE,
3207 .open = proto_seq_open,
3208 .read = seq_read,
3209 .llseek = seq_lseek,
3210 .release = seq_release_net,
3211 };
3212
3213 static __net_init int proto_init_net(struct net *net)
3214 {
3215 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3216 return -ENOMEM;
3217
3218 return 0;
3219 }
3220
3221 static __net_exit void proto_exit_net(struct net *net)
3222 {
3223 remove_proc_entry("protocols", net->proc_net);
3224 }
3225
3226
3227 static __net_initdata struct pernet_operations proto_net_ops = {
3228 .init = proto_init_net,
3229 .exit = proto_exit_net,
3230 };
3231
3232 static int __init proto_init(void)
3233 {
3234 return register_pernet_subsys(&proto_net_ops);
3235 }
3236
3237 subsys_initcall(proto_init);
3238
3239 #endif /* PROC_FS */
3240
3241 #ifdef CONFIG_NET_RX_BUSY_POLL
3242 bool sk_busy_loop_end(void *p, unsigned long start_time)
3243 {
3244 struct sock *sk = p;
3245
3246 return !skb_queue_empty(&sk->sk_receive_queue) ||
3247 sk_busy_loop_timeout(sk, start_time);
3248 }
3249 EXPORT_SYMBOL(sk_busy_loop_end);
3250 #endif /* CONFIG_NET_RX_BUSY_POLL */