]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/core/sock.c
4e7f10c92666c92e611d09567dc42835259efa71
[mirror_ubuntu-zesty-kernel.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120
121 #include <linux/uaccess.h>
122
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
135
136 #include <linux/filter.h>
137 #include <net/sock_reuseport.h>
138
139 #include <trace/events/sock.h>
140
141 #ifdef CONFIG_INET
142 #include <net/tcp.h>
143 #endif
144
145 #include <net/busy_poll.h>
146
147 static DEFINE_MUTEX(proto_list_mutex);
148 static LIST_HEAD(proto_list);
149
150 /**
151 * sk_ns_capable - General socket capability test
152 * @sk: Socket to use a capability on or through
153 * @user_ns: The user namespace of the capability to use
154 * @cap: The capability to use
155 *
156 * Test to see if the opener of the socket had when the socket was
157 * created and the current process has the capability @cap in the user
158 * namespace @user_ns.
159 */
160 bool sk_ns_capable(const struct sock *sk,
161 struct user_namespace *user_ns, int cap)
162 {
163 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
164 ns_capable(user_ns, cap);
165 }
166 EXPORT_SYMBOL(sk_ns_capable);
167
168 /**
169 * sk_capable - Socket global capability test
170 * @sk: Socket to use a capability on or through
171 * @cap: The global capability to use
172 *
173 * Test to see if the opener of the socket had when the socket was
174 * created and the current process has the capability @cap in all user
175 * namespaces.
176 */
177 bool sk_capable(const struct sock *sk, int cap)
178 {
179 return sk_ns_capable(sk, &init_user_ns, cap);
180 }
181 EXPORT_SYMBOL(sk_capable);
182
183 /**
184 * sk_net_capable - Network namespace socket capability test
185 * @sk: Socket to use a capability on or through
186 * @cap: The capability to use
187 *
188 * Test to see if the opener of the socket had when the socket was created
189 * and the current process has the capability @cap over the network namespace
190 * the socket is a member of.
191 */
192 bool sk_net_capable(const struct sock *sk, int cap)
193 {
194 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
195 }
196 EXPORT_SYMBOL(sk_net_capable);
197
198 /*
199 * Each address family might have different locking rules, so we have
200 * one slock key per address family:
201 */
202 static struct lock_class_key af_family_keys[AF_MAX];
203 static struct lock_class_key af_family_slock_keys[AF_MAX];
204
205 /*
206 * Make lock validator output more readable. (we pre-construct these
207 * strings build-time, so that runtime initialization of socket
208 * locks is fast):
209 */
210 static const char *const af_family_key_strings[AF_MAX+1] = {
211 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
212 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
213 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
214 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
215 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
216 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
217 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
218 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
219 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
220 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
221 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
222 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
223 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
224 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_KCM" ,
225 "sk_lock-AF_QIPCRTR", "sk_lock-AF_MAX"
226 };
227 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
228 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
229 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
230 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
231 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
232 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
233 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
234 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
235 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
236 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
237 "slock-27" , "slock-28" , "slock-AF_CAN" ,
238 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
239 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
240 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
241 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_KCM" ,
242 "slock-AF_QIPCRTR", "slock-AF_MAX"
243 };
244 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
245 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
246 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
247 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
248 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
249 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
250 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
251 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
252 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
253 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
254 "clock-27" , "clock-28" , "clock-AF_CAN" ,
255 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
256 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
257 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
258 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_KCM" ,
259 "clock-AF_QIPCRTR", "clock-AF_MAX"
260 };
261
262 /*
263 * sk_callback_lock locking rules are per-address-family,
264 * so split the lock classes by using a per-AF key:
265 */
266 static struct lock_class_key af_callback_keys[AF_MAX];
267
268 /* Take into consideration the size of the struct sk_buff overhead in the
269 * determination of these values, since that is non-constant across
270 * platforms. This makes socket queueing behavior and performance
271 * not depend upon such differences.
272 */
273 #define _SK_MEM_PACKETS 256
274 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
275 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
276 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
277
278 /* Run time adjustable parameters. */
279 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
280 EXPORT_SYMBOL(sysctl_wmem_max);
281 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
282 EXPORT_SYMBOL(sysctl_rmem_max);
283 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
284 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
285
286 /* Maximal space eaten by iovec or ancillary data plus some space */
287 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
288 EXPORT_SYMBOL(sysctl_optmem_max);
289
290 int sysctl_tstamp_allow_data __read_mostly = 1;
291
292 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
293 EXPORT_SYMBOL_GPL(memalloc_socks);
294
295 /**
296 * sk_set_memalloc - sets %SOCK_MEMALLOC
297 * @sk: socket to set it on
298 *
299 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
300 * It's the responsibility of the admin to adjust min_free_kbytes
301 * to meet the requirements
302 */
303 void sk_set_memalloc(struct sock *sk)
304 {
305 sock_set_flag(sk, SOCK_MEMALLOC);
306 sk->sk_allocation |= __GFP_MEMALLOC;
307 static_key_slow_inc(&memalloc_socks);
308 }
309 EXPORT_SYMBOL_GPL(sk_set_memalloc);
310
311 void sk_clear_memalloc(struct sock *sk)
312 {
313 sock_reset_flag(sk, SOCK_MEMALLOC);
314 sk->sk_allocation &= ~__GFP_MEMALLOC;
315 static_key_slow_dec(&memalloc_socks);
316
317 /*
318 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
319 * progress of swapping. SOCK_MEMALLOC may be cleared while
320 * it has rmem allocations due to the last swapfile being deactivated
321 * but there is a risk that the socket is unusable due to exceeding
322 * the rmem limits. Reclaim the reserves and obey rmem limits again.
323 */
324 sk_mem_reclaim(sk);
325 }
326 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
327
328 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
329 {
330 int ret;
331 unsigned long pflags = current->flags;
332
333 /* these should have been dropped before queueing */
334 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
335
336 current->flags |= PF_MEMALLOC;
337 ret = sk->sk_backlog_rcv(sk, skb);
338 tsk_restore_flags(current, pflags, PF_MEMALLOC);
339
340 return ret;
341 }
342 EXPORT_SYMBOL(__sk_backlog_rcv);
343
344 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
345 {
346 struct timeval tv;
347
348 if (optlen < sizeof(tv))
349 return -EINVAL;
350 if (copy_from_user(&tv, optval, sizeof(tv)))
351 return -EFAULT;
352 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
353 return -EDOM;
354
355 if (tv.tv_sec < 0) {
356 static int warned __read_mostly;
357
358 *timeo_p = 0;
359 if (warned < 10 && net_ratelimit()) {
360 warned++;
361 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
362 __func__, current->comm, task_pid_nr(current));
363 }
364 return 0;
365 }
366 *timeo_p = MAX_SCHEDULE_TIMEOUT;
367 if (tv.tv_sec == 0 && tv.tv_usec == 0)
368 return 0;
369 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
370 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
371 return 0;
372 }
373
374 static void sock_warn_obsolete_bsdism(const char *name)
375 {
376 static int warned;
377 static char warncomm[TASK_COMM_LEN];
378 if (strcmp(warncomm, current->comm) && warned < 5) {
379 strcpy(warncomm, current->comm);
380 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
381 warncomm, name);
382 warned++;
383 }
384 }
385
386 static bool sock_needs_netstamp(const struct sock *sk)
387 {
388 switch (sk->sk_family) {
389 case AF_UNSPEC:
390 case AF_UNIX:
391 return false;
392 default:
393 return true;
394 }
395 }
396
397 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
398 {
399 if (sk->sk_flags & flags) {
400 sk->sk_flags &= ~flags;
401 if (sock_needs_netstamp(sk) &&
402 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
403 net_disable_timestamp();
404 }
405 }
406
407
408 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
409 {
410 unsigned long flags;
411 struct sk_buff_head *list = &sk->sk_receive_queue;
412
413 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
414 atomic_inc(&sk->sk_drops);
415 trace_sock_rcvqueue_full(sk, skb);
416 return -ENOMEM;
417 }
418
419 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
420 atomic_inc(&sk->sk_drops);
421 return -ENOBUFS;
422 }
423
424 skb->dev = NULL;
425 skb_set_owner_r(skb, sk);
426
427 /* we escape from rcu protected region, make sure we dont leak
428 * a norefcounted dst
429 */
430 skb_dst_force(skb);
431
432 spin_lock_irqsave(&list->lock, flags);
433 sock_skb_set_dropcount(sk, skb);
434 __skb_queue_tail(list, skb);
435 spin_unlock_irqrestore(&list->lock, flags);
436
437 if (!sock_flag(sk, SOCK_DEAD))
438 sk->sk_data_ready(sk);
439 return 0;
440 }
441 EXPORT_SYMBOL(__sock_queue_rcv_skb);
442
443 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
444 {
445 int err;
446
447 err = sk_filter(sk, skb);
448 if (err)
449 return err;
450
451 return __sock_queue_rcv_skb(sk, skb);
452 }
453 EXPORT_SYMBOL(sock_queue_rcv_skb);
454
455 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
456 const int nested, unsigned int trim_cap, bool refcounted)
457 {
458 int rc = NET_RX_SUCCESS;
459
460 if (sk_filter_trim_cap(sk, skb, trim_cap))
461 goto discard_and_relse;
462
463 skb->dev = NULL;
464
465 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
466 atomic_inc(&sk->sk_drops);
467 goto discard_and_relse;
468 }
469 if (nested)
470 bh_lock_sock_nested(sk);
471 else
472 bh_lock_sock(sk);
473 if (!sock_owned_by_user(sk)) {
474 /*
475 * trylock + unlock semantics:
476 */
477 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
478
479 rc = sk_backlog_rcv(sk, skb);
480
481 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
482 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
483 bh_unlock_sock(sk);
484 atomic_inc(&sk->sk_drops);
485 goto discard_and_relse;
486 }
487
488 bh_unlock_sock(sk);
489 out:
490 if (refcounted)
491 sock_put(sk);
492 return rc;
493 discard_and_relse:
494 kfree_skb(skb);
495 goto out;
496 }
497 EXPORT_SYMBOL(__sk_receive_skb);
498
499 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
500 {
501 struct dst_entry *dst = __sk_dst_get(sk);
502
503 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
504 sk_tx_queue_clear(sk);
505 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
506 dst_release(dst);
507 return NULL;
508 }
509
510 return dst;
511 }
512 EXPORT_SYMBOL(__sk_dst_check);
513
514 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
515 {
516 struct dst_entry *dst = sk_dst_get(sk);
517
518 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
519 sk_dst_reset(sk);
520 dst_release(dst);
521 return NULL;
522 }
523
524 return dst;
525 }
526 EXPORT_SYMBOL(sk_dst_check);
527
528 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
529 int optlen)
530 {
531 int ret = -ENOPROTOOPT;
532 #ifdef CONFIG_NETDEVICES
533 struct net *net = sock_net(sk);
534 char devname[IFNAMSIZ];
535 int index;
536
537 /* Sorry... */
538 ret = -EPERM;
539 if (!ns_capable(net->user_ns, CAP_NET_RAW))
540 goto out;
541
542 ret = -EINVAL;
543 if (optlen < 0)
544 goto out;
545
546 /* Bind this socket to a particular device like "eth0",
547 * as specified in the passed interface name. If the
548 * name is "" or the option length is zero the socket
549 * is not bound.
550 */
551 if (optlen > IFNAMSIZ - 1)
552 optlen = IFNAMSIZ - 1;
553 memset(devname, 0, sizeof(devname));
554
555 ret = -EFAULT;
556 if (copy_from_user(devname, optval, optlen))
557 goto out;
558
559 index = 0;
560 if (devname[0] != '\0') {
561 struct net_device *dev;
562
563 rcu_read_lock();
564 dev = dev_get_by_name_rcu(net, devname);
565 if (dev)
566 index = dev->ifindex;
567 rcu_read_unlock();
568 ret = -ENODEV;
569 if (!dev)
570 goto out;
571 }
572
573 lock_sock(sk);
574 sk->sk_bound_dev_if = index;
575 sk_dst_reset(sk);
576 release_sock(sk);
577
578 ret = 0;
579
580 out:
581 #endif
582
583 return ret;
584 }
585
586 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
587 int __user *optlen, int len)
588 {
589 int ret = -ENOPROTOOPT;
590 #ifdef CONFIG_NETDEVICES
591 struct net *net = sock_net(sk);
592 char devname[IFNAMSIZ];
593
594 if (sk->sk_bound_dev_if == 0) {
595 len = 0;
596 goto zero;
597 }
598
599 ret = -EINVAL;
600 if (len < IFNAMSIZ)
601 goto out;
602
603 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
604 if (ret)
605 goto out;
606
607 len = strlen(devname) + 1;
608
609 ret = -EFAULT;
610 if (copy_to_user(optval, devname, len))
611 goto out;
612
613 zero:
614 ret = -EFAULT;
615 if (put_user(len, optlen))
616 goto out;
617
618 ret = 0;
619
620 out:
621 #endif
622
623 return ret;
624 }
625
626 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
627 {
628 if (valbool)
629 sock_set_flag(sk, bit);
630 else
631 sock_reset_flag(sk, bit);
632 }
633
634 bool sk_mc_loop(struct sock *sk)
635 {
636 if (dev_recursion_level())
637 return false;
638 if (!sk)
639 return true;
640 switch (sk->sk_family) {
641 case AF_INET:
642 return inet_sk(sk)->mc_loop;
643 #if IS_ENABLED(CONFIG_IPV6)
644 case AF_INET6:
645 return inet6_sk(sk)->mc_loop;
646 #endif
647 }
648 WARN_ON(1);
649 return true;
650 }
651 EXPORT_SYMBOL(sk_mc_loop);
652
653 /*
654 * This is meant for all protocols to use and covers goings on
655 * at the socket level. Everything here is generic.
656 */
657
658 int sock_setsockopt(struct socket *sock, int level, int optname,
659 char __user *optval, unsigned int optlen)
660 {
661 struct sock *sk = sock->sk;
662 int val;
663 int valbool;
664 struct linger ling;
665 int ret = 0;
666
667 /*
668 * Options without arguments
669 */
670
671 if (optname == SO_BINDTODEVICE)
672 return sock_setbindtodevice(sk, optval, optlen);
673
674 if (optlen < sizeof(int))
675 return -EINVAL;
676
677 if (get_user(val, (int __user *)optval))
678 return -EFAULT;
679
680 valbool = val ? 1 : 0;
681
682 lock_sock(sk);
683
684 switch (optname) {
685 case SO_DEBUG:
686 if (val && !capable(CAP_NET_ADMIN))
687 ret = -EACCES;
688 else
689 sock_valbool_flag(sk, SOCK_DBG, valbool);
690 break;
691 case SO_REUSEADDR:
692 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
693 break;
694 case SO_REUSEPORT:
695 sk->sk_reuseport = valbool;
696 break;
697 case SO_TYPE:
698 case SO_PROTOCOL:
699 case SO_DOMAIN:
700 case SO_ERROR:
701 ret = -ENOPROTOOPT;
702 break;
703 case SO_DONTROUTE:
704 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
705 break;
706 case SO_BROADCAST:
707 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
708 break;
709 case SO_SNDBUF:
710 /* Don't error on this BSD doesn't and if you think
711 * about it this is right. Otherwise apps have to
712 * play 'guess the biggest size' games. RCVBUF/SNDBUF
713 * are treated in BSD as hints
714 */
715 val = min_t(u32, val, sysctl_wmem_max);
716 set_sndbuf:
717 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
718 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
719 /* Wake up sending tasks if we upped the value. */
720 sk->sk_write_space(sk);
721 break;
722
723 case SO_SNDBUFFORCE:
724 if (!capable(CAP_NET_ADMIN)) {
725 ret = -EPERM;
726 break;
727 }
728 goto set_sndbuf;
729
730 case SO_RCVBUF:
731 /* Don't error on this BSD doesn't and if you think
732 * about it this is right. Otherwise apps have to
733 * play 'guess the biggest size' games. RCVBUF/SNDBUF
734 * are treated in BSD as hints
735 */
736 val = min_t(u32, val, sysctl_rmem_max);
737 set_rcvbuf:
738 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
739 /*
740 * We double it on the way in to account for
741 * "struct sk_buff" etc. overhead. Applications
742 * assume that the SO_RCVBUF setting they make will
743 * allow that much actual data to be received on that
744 * socket.
745 *
746 * Applications are unaware that "struct sk_buff" and
747 * other overheads allocate from the receive buffer
748 * during socket buffer allocation.
749 *
750 * And after considering the possible alternatives,
751 * returning the value we actually used in getsockopt
752 * is the most desirable behavior.
753 */
754 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
755 break;
756
757 case SO_RCVBUFFORCE:
758 if (!capable(CAP_NET_ADMIN)) {
759 ret = -EPERM;
760 break;
761 }
762 goto set_rcvbuf;
763
764 case SO_KEEPALIVE:
765 #ifdef CONFIG_INET
766 if (sk->sk_protocol == IPPROTO_TCP &&
767 sk->sk_type == SOCK_STREAM)
768 tcp_set_keepalive(sk, valbool);
769 #endif
770 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
771 break;
772
773 case SO_OOBINLINE:
774 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
775 break;
776
777 case SO_NO_CHECK:
778 sk->sk_no_check_tx = valbool;
779 break;
780
781 case SO_PRIORITY:
782 if ((val >= 0 && val <= 6) ||
783 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
784 sk->sk_priority = val;
785 else
786 ret = -EPERM;
787 break;
788
789 case SO_LINGER:
790 if (optlen < sizeof(ling)) {
791 ret = -EINVAL; /* 1003.1g */
792 break;
793 }
794 if (copy_from_user(&ling, optval, sizeof(ling))) {
795 ret = -EFAULT;
796 break;
797 }
798 if (!ling.l_onoff)
799 sock_reset_flag(sk, SOCK_LINGER);
800 else {
801 #if (BITS_PER_LONG == 32)
802 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
803 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
804 else
805 #endif
806 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
807 sock_set_flag(sk, SOCK_LINGER);
808 }
809 break;
810
811 case SO_BSDCOMPAT:
812 sock_warn_obsolete_bsdism("setsockopt");
813 break;
814
815 case SO_PASSCRED:
816 if (valbool)
817 set_bit(SOCK_PASSCRED, &sock->flags);
818 else
819 clear_bit(SOCK_PASSCRED, &sock->flags);
820 break;
821
822 case SO_TIMESTAMP:
823 case SO_TIMESTAMPNS:
824 if (valbool) {
825 if (optname == SO_TIMESTAMP)
826 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
827 else
828 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
829 sock_set_flag(sk, SOCK_RCVTSTAMP);
830 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
831 } else {
832 sock_reset_flag(sk, SOCK_RCVTSTAMP);
833 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
834 }
835 break;
836
837 case SO_TIMESTAMPING:
838 if (val & ~SOF_TIMESTAMPING_MASK) {
839 ret = -EINVAL;
840 break;
841 }
842
843 if (val & SOF_TIMESTAMPING_OPT_ID &&
844 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
845 if (sk->sk_protocol == IPPROTO_TCP &&
846 sk->sk_type == SOCK_STREAM) {
847 if ((1 << sk->sk_state) &
848 (TCPF_CLOSE | TCPF_LISTEN)) {
849 ret = -EINVAL;
850 break;
851 }
852 sk->sk_tskey = tcp_sk(sk)->snd_una;
853 } else {
854 sk->sk_tskey = 0;
855 }
856 }
857
858 if (val & SOF_TIMESTAMPING_OPT_STATS &&
859 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
860 ret = -EINVAL;
861 break;
862 }
863
864 sk->sk_tsflags = val;
865 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
866 sock_enable_timestamp(sk,
867 SOCK_TIMESTAMPING_RX_SOFTWARE);
868 else
869 sock_disable_timestamp(sk,
870 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
871 break;
872
873 case SO_RCVLOWAT:
874 if (val < 0)
875 val = INT_MAX;
876 sk->sk_rcvlowat = val ? : 1;
877 break;
878
879 case SO_RCVTIMEO:
880 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
881 break;
882
883 case SO_SNDTIMEO:
884 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
885 break;
886
887 case SO_ATTACH_FILTER:
888 ret = -EINVAL;
889 if (optlen == sizeof(struct sock_fprog)) {
890 struct sock_fprog fprog;
891
892 ret = -EFAULT;
893 if (copy_from_user(&fprog, optval, sizeof(fprog)))
894 break;
895
896 ret = sk_attach_filter(&fprog, sk);
897 }
898 break;
899
900 case SO_ATTACH_BPF:
901 ret = -EINVAL;
902 if (optlen == sizeof(u32)) {
903 u32 ufd;
904
905 ret = -EFAULT;
906 if (copy_from_user(&ufd, optval, sizeof(ufd)))
907 break;
908
909 ret = sk_attach_bpf(ufd, sk);
910 }
911 break;
912
913 case SO_ATTACH_REUSEPORT_CBPF:
914 ret = -EINVAL;
915 if (optlen == sizeof(struct sock_fprog)) {
916 struct sock_fprog fprog;
917
918 ret = -EFAULT;
919 if (copy_from_user(&fprog, optval, sizeof(fprog)))
920 break;
921
922 ret = sk_reuseport_attach_filter(&fprog, sk);
923 }
924 break;
925
926 case SO_ATTACH_REUSEPORT_EBPF:
927 ret = -EINVAL;
928 if (optlen == sizeof(u32)) {
929 u32 ufd;
930
931 ret = -EFAULT;
932 if (copy_from_user(&ufd, optval, sizeof(ufd)))
933 break;
934
935 ret = sk_reuseport_attach_bpf(ufd, sk);
936 }
937 break;
938
939 case SO_DETACH_FILTER:
940 ret = sk_detach_filter(sk);
941 break;
942
943 case SO_LOCK_FILTER:
944 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
945 ret = -EPERM;
946 else
947 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
948 break;
949
950 case SO_PASSSEC:
951 if (valbool)
952 set_bit(SOCK_PASSSEC, &sock->flags);
953 else
954 clear_bit(SOCK_PASSSEC, &sock->flags);
955 break;
956 case SO_MARK:
957 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
958 ret = -EPERM;
959 else
960 sk->sk_mark = val;
961 break;
962
963 case SO_RXQ_OVFL:
964 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
965 break;
966
967 case SO_WIFI_STATUS:
968 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
969 break;
970
971 case SO_PEEK_OFF:
972 if (sock->ops->set_peek_off)
973 ret = sock->ops->set_peek_off(sk, val);
974 else
975 ret = -EOPNOTSUPP;
976 break;
977
978 case SO_NOFCS:
979 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
980 break;
981
982 case SO_SELECT_ERR_QUEUE:
983 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
984 break;
985
986 #ifdef CONFIG_NET_RX_BUSY_POLL
987 case SO_BUSY_POLL:
988 /* allow unprivileged users to decrease the value */
989 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
990 ret = -EPERM;
991 else {
992 if (val < 0)
993 ret = -EINVAL;
994 else
995 sk->sk_ll_usec = val;
996 }
997 break;
998 #endif
999
1000 case SO_MAX_PACING_RATE:
1001 sk->sk_max_pacing_rate = val;
1002 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1003 sk->sk_max_pacing_rate);
1004 break;
1005
1006 case SO_INCOMING_CPU:
1007 sk->sk_incoming_cpu = val;
1008 break;
1009
1010 case SO_CNX_ADVICE:
1011 if (val == 1)
1012 dst_negative_advice(sk);
1013 break;
1014 default:
1015 ret = -ENOPROTOOPT;
1016 break;
1017 }
1018 release_sock(sk);
1019 return ret;
1020 }
1021 EXPORT_SYMBOL(sock_setsockopt);
1022
1023
1024 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1025 struct ucred *ucred)
1026 {
1027 ucred->pid = pid_vnr(pid);
1028 ucred->uid = ucred->gid = -1;
1029 if (cred) {
1030 struct user_namespace *current_ns = current_user_ns();
1031
1032 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1033 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1034 }
1035 }
1036
1037 int sock_getsockopt(struct socket *sock, int level, int optname,
1038 char __user *optval, int __user *optlen)
1039 {
1040 struct sock *sk = sock->sk;
1041
1042 union {
1043 int val;
1044 struct linger ling;
1045 struct timeval tm;
1046 } v;
1047
1048 int lv = sizeof(int);
1049 int len;
1050
1051 if (get_user(len, optlen))
1052 return -EFAULT;
1053 if (len < 0)
1054 return -EINVAL;
1055
1056 memset(&v, 0, sizeof(v));
1057
1058 switch (optname) {
1059 case SO_DEBUG:
1060 v.val = sock_flag(sk, SOCK_DBG);
1061 break;
1062
1063 case SO_DONTROUTE:
1064 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1065 break;
1066
1067 case SO_BROADCAST:
1068 v.val = sock_flag(sk, SOCK_BROADCAST);
1069 break;
1070
1071 case SO_SNDBUF:
1072 v.val = sk->sk_sndbuf;
1073 break;
1074
1075 case SO_RCVBUF:
1076 v.val = sk->sk_rcvbuf;
1077 break;
1078
1079 case SO_REUSEADDR:
1080 v.val = sk->sk_reuse;
1081 break;
1082
1083 case SO_REUSEPORT:
1084 v.val = sk->sk_reuseport;
1085 break;
1086
1087 case SO_KEEPALIVE:
1088 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1089 break;
1090
1091 case SO_TYPE:
1092 v.val = sk->sk_type;
1093 break;
1094
1095 case SO_PROTOCOL:
1096 v.val = sk->sk_protocol;
1097 break;
1098
1099 case SO_DOMAIN:
1100 v.val = sk->sk_family;
1101 break;
1102
1103 case SO_ERROR:
1104 v.val = -sock_error(sk);
1105 if (v.val == 0)
1106 v.val = xchg(&sk->sk_err_soft, 0);
1107 break;
1108
1109 case SO_OOBINLINE:
1110 v.val = sock_flag(sk, SOCK_URGINLINE);
1111 break;
1112
1113 case SO_NO_CHECK:
1114 v.val = sk->sk_no_check_tx;
1115 break;
1116
1117 case SO_PRIORITY:
1118 v.val = sk->sk_priority;
1119 break;
1120
1121 case SO_LINGER:
1122 lv = sizeof(v.ling);
1123 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1124 v.ling.l_linger = sk->sk_lingertime / HZ;
1125 break;
1126
1127 case SO_BSDCOMPAT:
1128 sock_warn_obsolete_bsdism("getsockopt");
1129 break;
1130
1131 case SO_TIMESTAMP:
1132 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1133 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1134 break;
1135
1136 case SO_TIMESTAMPNS:
1137 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1138 break;
1139
1140 case SO_TIMESTAMPING:
1141 v.val = sk->sk_tsflags;
1142 break;
1143
1144 case SO_RCVTIMEO:
1145 lv = sizeof(struct timeval);
1146 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1147 v.tm.tv_sec = 0;
1148 v.tm.tv_usec = 0;
1149 } else {
1150 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1151 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1152 }
1153 break;
1154
1155 case SO_SNDTIMEO:
1156 lv = sizeof(struct timeval);
1157 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1158 v.tm.tv_sec = 0;
1159 v.tm.tv_usec = 0;
1160 } else {
1161 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1162 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1163 }
1164 break;
1165
1166 case SO_RCVLOWAT:
1167 v.val = sk->sk_rcvlowat;
1168 break;
1169
1170 case SO_SNDLOWAT:
1171 v.val = 1;
1172 break;
1173
1174 case SO_PASSCRED:
1175 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1176 break;
1177
1178 case SO_PEERCRED:
1179 {
1180 struct ucred peercred;
1181 if (len > sizeof(peercred))
1182 len = sizeof(peercred);
1183 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1184 if (copy_to_user(optval, &peercred, len))
1185 return -EFAULT;
1186 goto lenout;
1187 }
1188
1189 case SO_PEERNAME:
1190 {
1191 char address[128];
1192
1193 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1194 return -ENOTCONN;
1195 if (lv < len)
1196 return -EINVAL;
1197 if (copy_to_user(optval, address, len))
1198 return -EFAULT;
1199 goto lenout;
1200 }
1201
1202 /* Dubious BSD thing... Probably nobody even uses it, but
1203 * the UNIX standard wants it for whatever reason... -DaveM
1204 */
1205 case SO_ACCEPTCONN:
1206 v.val = sk->sk_state == TCP_LISTEN;
1207 break;
1208
1209 case SO_PASSSEC:
1210 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1211 break;
1212
1213 case SO_PEERSEC:
1214 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1215
1216 case SO_MARK:
1217 v.val = sk->sk_mark;
1218 break;
1219
1220 case SO_RXQ_OVFL:
1221 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1222 break;
1223
1224 case SO_WIFI_STATUS:
1225 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1226 break;
1227
1228 case SO_PEEK_OFF:
1229 if (!sock->ops->set_peek_off)
1230 return -EOPNOTSUPP;
1231
1232 v.val = sk->sk_peek_off;
1233 break;
1234 case SO_NOFCS:
1235 v.val = sock_flag(sk, SOCK_NOFCS);
1236 break;
1237
1238 case SO_BINDTODEVICE:
1239 return sock_getbindtodevice(sk, optval, optlen, len);
1240
1241 case SO_GET_FILTER:
1242 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1243 if (len < 0)
1244 return len;
1245
1246 goto lenout;
1247
1248 case SO_LOCK_FILTER:
1249 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1250 break;
1251
1252 case SO_BPF_EXTENSIONS:
1253 v.val = bpf_tell_extensions();
1254 break;
1255
1256 case SO_SELECT_ERR_QUEUE:
1257 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1258 break;
1259
1260 #ifdef CONFIG_NET_RX_BUSY_POLL
1261 case SO_BUSY_POLL:
1262 v.val = sk->sk_ll_usec;
1263 break;
1264 #endif
1265
1266 case SO_MAX_PACING_RATE:
1267 v.val = sk->sk_max_pacing_rate;
1268 break;
1269
1270 case SO_INCOMING_CPU:
1271 v.val = sk->sk_incoming_cpu;
1272 break;
1273
1274 default:
1275 /* We implement the SO_SNDLOWAT etc to not be settable
1276 * (1003.1g 7).
1277 */
1278 return -ENOPROTOOPT;
1279 }
1280
1281 if (len > lv)
1282 len = lv;
1283 if (copy_to_user(optval, &v, len))
1284 return -EFAULT;
1285 lenout:
1286 if (put_user(len, optlen))
1287 return -EFAULT;
1288 return 0;
1289 }
1290
1291 /*
1292 * Initialize an sk_lock.
1293 *
1294 * (We also register the sk_lock with the lock validator.)
1295 */
1296 static inline void sock_lock_init(struct sock *sk)
1297 {
1298 sock_lock_init_class_and_name(sk,
1299 af_family_slock_key_strings[sk->sk_family],
1300 af_family_slock_keys + sk->sk_family,
1301 af_family_key_strings[sk->sk_family],
1302 af_family_keys + sk->sk_family);
1303 }
1304
1305 /*
1306 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1307 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1308 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1309 */
1310 static void sock_copy(struct sock *nsk, const struct sock *osk)
1311 {
1312 #ifdef CONFIG_SECURITY_NETWORK
1313 void *sptr = nsk->sk_security;
1314 #endif
1315 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1316
1317 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1318 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1319
1320 #ifdef CONFIG_SECURITY_NETWORK
1321 nsk->sk_security = sptr;
1322 security_sk_clone(osk, nsk);
1323 #endif
1324 }
1325
1326 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1327 int family)
1328 {
1329 struct sock *sk;
1330 struct kmem_cache *slab;
1331
1332 slab = prot->slab;
1333 if (slab != NULL) {
1334 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1335 if (!sk)
1336 return sk;
1337 if (priority & __GFP_ZERO)
1338 sk_prot_clear_nulls(sk, prot->obj_size);
1339 } else
1340 sk = kmalloc(prot->obj_size, priority);
1341
1342 if (sk != NULL) {
1343 kmemcheck_annotate_bitfield(sk, flags);
1344
1345 if (security_sk_alloc(sk, family, priority))
1346 goto out_free;
1347
1348 if (!try_module_get(prot->owner))
1349 goto out_free_sec;
1350 sk_tx_queue_clear(sk);
1351 }
1352
1353 return sk;
1354
1355 out_free_sec:
1356 security_sk_free(sk);
1357 out_free:
1358 if (slab != NULL)
1359 kmem_cache_free(slab, sk);
1360 else
1361 kfree(sk);
1362 return NULL;
1363 }
1364
1365 static void sk_prot_free(struct proto *prot, struct sock *sk)
1366 {
1367 struct kmem_cache *slab;
1368 struct module *owner;
1369
1370 owner = prot->owner;
1371 slab = prot->slab;
1372
1373 cgroup_sk_free(&sk->sk_cgrp_data);
1374 mem_cgroup_sk_free(sk);
1375 security_sk_free(sk);
1376 if (slab != NULL)
1377 kmem_cache_free(slab, sk);
1378 else
1379 kfree(sk);
1380 module_put(owner);
1381 }
1382
1383 /**
1384 * sk_alloc - All socket objects are allocated here
1385 * @net: the applicable net namespace
1386 * @family: protocol family
1387 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1388 * @prot: struct proto associated with this new sock instance
1389 * @kern: is this to be a kernel socket?
1390 */
1391 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1392 struct proto *prot, int kern)
1393 {
1394 struct sock *sk;
1395
1396 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1397 if (sk) {
1398 sk->sk_family = family;
1399 /*
1400 * See comment in struct sock definition to understand
1401 * why we need sk_prot_creator -acme
1402 */
1403 sk->sk_prot = sk->sk_prot_creator = prot;
1404 sock_lock_init(sk);
1405 sk->sk_net_refcnt = kern ? 0 : 1;
1406 if (likely(sk->sk_net_refcnt))
1407 get_net(net);
1408 sock_net_set(sk, net);
1409 atomic_set(&sk->sk_wmem_alloc, 1);
1410
1411 mem_cgroup_sk_alloc(sk);
1412 cgroup_sk_alloc(&sk->sk_cgrp_data);
1413 sock_update_classid(&sk->sk_cgrp_data);
1414 sock_update_netprioidx(&sk->sk_cgrp_data);
1415 }
1416
1417 return sk;
1418 }
1419 EXPORT_SYMBOL(sk_alloc);
1420
1421 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1422 * grace period. This is the case for UDP sockets and TCP listeners.
1423 */
1424 static void __sk_destruct(struct rcu_head *head)
1425 {
1426 struct sock *sk = container_of(head, struct sock, sk_rcu);
1427 struct sk_filter *filter;
1428
1429 if (sk->sk_destruct)
1430 sk->sk_destruct(sk);
1431
1432 filter = rcu_dereference_check(sk->sk_filter,
1433 atomic_read(&sk->sk_wmem_alloc) == 0);
1434 if (filter) {
1435 sk_filter_uncharge(sk, filter);
1436 RCU_INIT_POINTER(sk->sk_filter, NULL);
1437 }
1438 if (rcu_access_pointer(sk->sk_reuseport_cb))
1439 reuseport_detach_sock(sk);
1440
1441 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1442
1443 if (atomic_read(&sk->sk_omem_alloc))
1444 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1445 __func__, atomic_read(&sk->sk_omem_alloc));
1446
1447 if (sk->sk_frag.page) {
1448 put_page(sk->sk_frag.page);
1449 sk->sk_frag.page = NULL;
1450 }
1451
1452 if (sk->sk_peer_cred)
1453 put_cred(sk->sk_peer_cred);
1454 put_pid(sk->sk_peer_pid);
1455 if (likely(sk->sk_net_refcnt))
1456 put_net(sock_net(sk));
1457 sk_prot_free(sk->sk_prot_creator, sk);
1458 }
1459
1460 void sk_destruct(struct sock *sk)
1461 {
1462 if (sock_flag(sk, SOCK_RCU_FREE))
1463 call_rcu(&sk->sk_rcu, __sk_destruct);
1464 else
1465 __sk_destruct(&sk->sk_rcu);
1466 }
1467
1468 static void __sk_free(struct sock *sk)
1469 {
1470 if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1471 sock_diag_broadcast_destroy(sk);
1472 else
1473 sk_destruct(sk);
1474 }
1475
1476 void sk_free(struct sock *sk)
1477 {
1478 /*
1479 * We subtract one from sk_wmem_alloc and can know if
1480 * some packets are still in some tx queue.
1481 * If not null, sock_wfree() will call __sk_free(sk) later
1482 */
1483 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1484 __sk_free(sk);
1485 }
1486 EXPORT_SYMBOL(sk_free);
1487
1488 /**
1489 * sk_clone_lock - clone a socket, and lock its clone
1490 * @sk: the socket to clone
1491 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1492 *
1493 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1494 */
1495 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1496 {
1497 struct sock *newsk;
1498 bool is_charged = true;
1499
1500 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1501 if (newsk != NULL) {
1502 struct sk_filter *filter;
1503
1504 sock_copy(newsk, sk);
1505
1506 /* SANITY */
1507 if (likely(newsk->sk_net_refcnt))
1508 get_net(sock_net(newsk));
1509 sk_node_init(&newsk->sk_node);
1510 sock_lock_init(newsk);
1511 bh_lock_sock(newsk);
1512 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1513 newsk->sk_backlog.len = 0;
1514
1515 atomic_set(&newsk->sk_rmem_alloc, 0);
1516 /*
1517 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1518 */
1519 atomic_set(&newsk->sk_wmem_alloc, 1);
1520 atomic_set(&newsk->sk_omem_alloc, 0);
1521 skb_queue_head_init(&newsk->sk_receive_queue);
1522 skb_queue_head_init(&newsk->sk_write_queue);
1523
1524 rwlock_init(&newsk->sk_callback_lock);
1525 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1526 af_callback_keys + newsk->sk_family,
1527 af_family_clock_key_strings[newsk->sk_family]);
1528
1529 newsk->sk_dst_cache = NULL;
1530 newsk->sk_wmem_queued = 0;
1531 newsk->sk_forward_alloc = 0;
1532 atomic_set(&newsk->sk_drops, 0);
1533 newsk->sk_send_head = NULL;
1534 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1535
1536 sock_reset_flag(newsk, SOCK_DONE);
1537 skb_queue_head_init(&newsk->sk_error_queue);
1538
1539 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1540 if (filter != NULL)
1541 /* though it's an empty new sock, the charging may fail
1542 * if sysctl_optmem_max was changed between creation of
1543 * original socket and cloning
1544 */
1545 is_charged = sk_filter_charge(newsk, filter);
1546
1547 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1548 /* We need to make sure that we don't uncharge the new
1549 * socket if we couldn't charge it in the first place
1550 * as otherwise we uncharge the parent's filter.
1551 */
1552 if (!is_charged)
1553 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1554 /* It is still raw copy of parent, so invalidate
1555 * destructor and make plain sk_free() */
1556 newsk->sk_destruct = NULL;
1557 bh_unlock_sock(newsk);
1558 sk_free(newsk);
1559 newsk = NULL;
1560 goto out;
1561 }
1562 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1563
1564 newsk->sk_err = 0;
1565 newsk->sk_err_soft = 0;
1566 newsk->sk_priority = 0;
1567 newsk->sk_incoming_cpu = raw_smp_processor_id();
1568 atomic64_set(&newsk->sk_cookie, 0);
1569
1570 mem_cgroup_sk_alloc(newsk);
1571 cgroup_sk_alloc(&newsk->sk_cgrp_data);
1572
1573 /*
1574 * Before updating sk_refcnt, we must commit prior changes to memory
1575 * (Documentation/RCU/rculist_nulls.txt for details)
1576 */
1577 smp_wmb();
1578 atomic_set(&newsk->sk_refcnt, 2);
1579
1580 /*
1581 * Increment the counter in the same struct proto as the master
1582 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1583 * is the same as sk->sk_prot->socks, as this field was copied
1584 * with memcpy).
1585 *
1586 * This _changes_ the previous behaviour, where
1587 * tcp_create_openreq_child always was incrementing the
1588 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1589 * to be taken into account in all callers. -acme
1590 */
1591 sk_refcnt_debug_inc(newsk);
1592 sk_set_socket(newsk, NULL);
1593 newsk->sk_wq = NULL;
1594
1595 if (newsk->sk_prot->sockets_allocated)
1596 sk_sockets_allocated_inc(newsk);
1597
1598 if (sock_needs_netstamp(sk) &&
1599 newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1600 net_enable_timestamp();
1601 }
1602 out:
1603 return newsk;
1604 }
1605 EXPORT_SYMBOL_GPL(sk_clone_lock);
1606
1607 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1608 {
1609 u32 max_segs = 1;
1610
1611 sk_dst_set(sk, dst);
1612 sk->sk_route_caps = dst->dev->features;
1613 if (sk->sk_route_caps & NETIF_F_GSO)
1614 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1615 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1616 if (sk_can_gso(sk)) {
1617 if (dst->header_len) {
1618 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1619 } else {
1620 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1621 sk->sk_gso_max_size = dst->dev->gso_max_size;
1622 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1623 }
1624 }
1625 sk->sk_gso_max_segs = max_segs;
1626 }
1627 EXPORT_SYMBOL_GPL(sk_setup_caps);
1628
1629 /*
1630 * Simple resource managers for sockets.
1631 */
1632
1633
1634 /*
1635 * Write buffer destructor automatically called from kfree_skb.
1636 */
1637 void sock_wfree(struct sk_buff *skb)
1638 {
1639 struct sock *sk = skb->sk;
1640 unsigned int len = skb->truesize;
1641
1642 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1643 /*
1644 * Keep a reference on sk_wmem_alloc, this will be released
1645 * after sk_write_space() call
1646 */
1647 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1648 sk->sk_write_space(sk);
1649 len = 1;
1650 }
1651 /*
1652 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1653 * could not do because of in-flight packets
1654 */
1655 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1656 __sk_free(sk);
1657 }
1658 EXPORT_SYMBOL(sock_wfree);
1659
1660 /* This variant of sock_wfree() is used by TCP,
1661 * since it sets SOCK_USE_WRITE_QUEUE.
1662 */
1663 void __sock_wfree(struct sk_buff *skb)
1664 {
1665 struct sock *sk = skb->sk;
1666
1667 if (atomic_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1668 __sk_free(sk);
1669 }
1670
1671 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1672 {
1673 skb_orphan(skb);
1674 skb->sk = sk;
1675 #ifdef CONFIG_INET
1676 if (unlikely(!sk_fullsock(sk))) {
1677 skb->destructor = sock_edemux;
1678 sock_hold(sk);
1679 return;
1680 }
1681 #endif
1682 skb->destructor = sock_wfree;
1683 skb_set_hash_from_sk(skb, sk);
1684 /*
1685 * We used to take a refcount on sk, but following operation
1686 * is enough to guarantee sk_free() wont free this sock until
1687 * all in-flight packets are completed
1688 */
1689 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1690 }
1691 EXPORT_SYMBOL(skb_set_owner_w);
1692
1693 /* This helper is used by netem, as it can hold packets in its
1694 * delay queue. We want to allow the owner socket to send more
1695 * packets, as if they were already TX completed by a typical driver.
1696 * But we also want to keep skb->sk set because some packet schedulers
1697 * rely on it (sch_fq for example). So we set skb->truesize to a small
1698 * amount (1) and decrease sk_wmem_alloc accordingly.
1699 */
1700 void skb_orphan_partial(struct sk_buff *skb)
1701 {
1702 /* If this skb is a TCP pure ACK or already went here,
1703 * we have nothing to do. 2 is already a very small truesize.
1704 */
1705 if (skb->truesize <= 2)
1706 return;
1707
1708 /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1709 * so we do not completely orphan skb, but transfert all
1710 * accounted bytes but one, to avoid unexpected reorders.
1711 */
1712 if (skb->destructor == sock_wfree
1713 #ifdef CONFIG_INET
1714 || skb->destructor == tcp_wfree
1715 #endif
1716 ) {
1717 atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1718 skb->truesize = 1;
1719 } else {
1720 skb_orphan(skb);
1721 }
1722 }
1723 EXPORT_SYMBOL(skb_orphan_partial);
1724
1725 /*
1726 * Read buffer destructor automatically called from kfree_skb.
1727 */
1728 void sock_rfree(struct sk_buff *skb)
1729 {
1730 struct sock *sk = skb->sk;
1731 unsigned int len = skb->truesize;
1732
1733 atomic_sub(len, &sk->sk_rmem_alloc);
1734 sk_mem_uncharge(sk, len);
1735 }
1736 EXPORT_SYMBOL(sock_rfree);
1737
1738 /*
1739 * Buffer destructor for skbs that are not used directly in read or write
1740 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1741 */
1742 void sock_efree(struct sk_buff *skb)
1743 {
1744 sock_put(skb->sk);
1745 }
1746 EXPORT_SYMBOL(sock_efree);
1747
1748 kuid_t sock_i_uid(struct sock *sk)
1749 {
1750 kuid_t uid;
1751
1752 read_lock_bh(&sk->sk_callback_lock);
1753 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1754 read_unlock_bh(&sk->sk_callback_lock);
1755 return uid;
1756 }
1757 EXPORT_SYMBOL(sock_i_uid);
1758
1759 unsigned long sock_i_ino(struct sock *sk)
1760 {
1761 unsigned long ino;
1762
1763 read_lock_bh(&sk->sk_callback_lock);
1764 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1765 read_unlock_bh(&sk->sk_callback_lock);
1766 return ino;
1767 }
1768 EXPORT_SYMBOL(sock_i_ino);
1769
1770 /*
1771 * Allocate a skb from the socket's send buffer.
1772 */
1773 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1774 gfp_t priority)
1775 {
1776 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1777 struct sk_buff *skb = alloc_skb(size, priority);
1778 if (skb) {
1779 skb_set_owner_w(skb, sk);
1780 return skb;
1781 }
1782 }
1783 return NULL;
1784 }
1785 EXPORT_SYMBOL(sock_wmalloc);
1786
1787 /*
1788 * Allocate a memory block from the socket's option memory buffer.
1789 */
1790 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1791 {
1792 if ((unsigned int)size <= sysctl_optmem_max &&
1793 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1794 void *mem;
1795 /* First do the add, to avoid the race if kmalloc
1796 * might sleep.
1797 */
1798 atomic_add(size, &sk->sk_omem_alloc);
1799 mem = kmalloc(size, priority);
1800 if (mem)
1801 return mem;
1802 atomic_sub(size, &sk->sk_omem_alloc);
1803 }
1804 return NULL;
1805 }
1806 EXPORT_SYMBOL(sock_kmalloc);
1807
1808 /* Free an option memory block. Note, we actually want the inline
1809 * here as this allows gcc to detect the nullify and fold away the
1810 * condition entirely.
1811 */
1812 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1813 const bool nullify)
1814 {
1815 if (WARN_ON_ONCE(!mem))
1816 return;
1817 if (nullify)
1818 kzfree(mem);
1819 else
1820 kfree(mem);
1821 atomic_sub(size, &sk->sk_omem_alloc);
1822 }
1823
1824 void sock_kfree_s(struct sock *sk, void *mem, int size)
1825 {
1826 __sock_kfree_s(sk, mem, size, false);
1827 }
1828 EXPORT_SYMBOL(sock_kfree_s);
1829
1830 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1831 {
1832 __sock_kfree_s(sk, mem, size, true);
1833 }
1834 EXPORT_SYMBOL(sock_kzfree_s);
1835
1836 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1837 I think, these locks should be removed for datagram sockets.
1838 */
1839 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1840 {
1841 DEFINE_WAIT(wait);
1842
1843 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1844 for (;;) {
1845 if (!timeo)
1846 break;
1847 if (signal_pending(current))
1848 break;
1849 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1850 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1851 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1852 break;
1853 if (sk->sk_shutdown & SEND_SHUTDOWN)
1854 break;
1855 if (sk->sk_err)
1856 break;
1857 timeo = schedule_timeout(timeo);
1858 }
1859 finish_wait(sk_sleep(sk), &wait);
1860 return timeo;
1861 }
1862
1863
1864 /*
1865 * Generic send/receive buffer handlers
1866 */
1867
1868 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1869 unsigned long data_len, int noblock,
1870 int *errcode, int max_page_order)
1871 {
1872 struct sk_buff *skb;
1873 long timeo;
1874 int err;
1875
1876 timeo = sock_sndtimeo(sk, noblock);
1877 for (;;) {
1878 err = sock_error(sk);
1879 if (err != 0)
1880 goto failure;
1881
1882 err = -EPIPE;
1883 if (sk->sk_shutdown & SEND_SHUTDOWN)
1884 goto failure;
1885
1886 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1887 break;
1888
1889 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1890 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1891 err = -EAGAIN;
1892 if (!timeo)
1893 goto failure;
1894 if (signal_pending(current))
1895 goto interrupted;
1896 timeo = sock_wait_for_wmem(sk, timeo);
1897 }
1898 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1899 errcode, sk->sk_allocation);
1900 if (skb)
1901 skb_set_owner_w(skb, sk);
1902 return skb;
1903
1904 interrupted:
1905 err = sock_intr_errno(timeo);
1906 failure:
1907 *errcode = err;
1908 return NULL;
1909 }
1910 EXPORT_SYMBOL(sock_alloc_send_pskb);
1911
1912 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1913 int noblock, int *errcode)
1914 {
1915 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1916 }
1917 EXPORT_SYMBOL(sock_alloc_send_skb);
1918
1919 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1920 struct sockcm_cookie *sockc)
1921 {
1922 u32 tsflags;
1923
1924 switch (cmsg->cmsg_type) {
1925 case SO_MARK:
1926 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1927 return -EPERM;
1928 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1929 return -EINVAL;
1930 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
1931 break;
1932 case SO_TIMESTAMPING:
1933 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1934 return -EINVAL;
1935
1936 tsflags = *(u32 *)CMSG_DATA(cmsg);
1937 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
1938 return -EINVAL;
1939
1940 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
1941 sockc->tsflags |= tsflags;
1942 break;
1943 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
1944 case SCM_RIGHTS:
1945 case SCM_CREDENTIALS:
1946 break;
1947 default:
1948 return -EINVAL;
1949 }
1950 return 0;
1951 }
1952 EXPORT_SYMBOL(__sock_cmsg_send);
1953
1954 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1955 struct sockcm_cookie *sockc)
1956 {
1957 struct cmsghdr *cmsg;
1958 int ret;
1959
1960 for_each_cmsghdr(cmsg, msg) {
1961 if (!CMSG_OK(msg, cmsg))
1962 return -EINVAL;
1963 if (cmsg->cmsg_level != SOL_SOCKET)
1964 continue;
1965 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
1966 if (ret)
1967 return ret;
1968 }
1969 return 0;
1970 }
1971 EXPORT_SYMBOL(sock_cmsg_send);
1972
1973 /* On 32bit arches, an skb frag is limited to 2^15 */
1974 #define SKB_FRAG_PAGE_ORDER get_order(32768)
1975
1976 /**
1977 * skb_page_frag_refill - check that a page_frag contains enough room
1978 * @sz: minimum size of the fragment we want to get
1979 * @pfrag: pointer to page_frag
1980 * @gfp: priority for memory allocation
1981 *
1982 * Note: While this allocator tries to use high order pages, there is
1983 * no guarantee that allocations succeed. Therefore, @sz MUST be
1984 * less or equal than PAGE_SIZE.
1985 */
1986 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1987 {
1988 if (pfrag->page) {
1989 if (page_ref_count(pfrag->page) == 1) {
1990 pfrag->offset = 0;
1991 return true;
1992 }
1993 if (pfrag->offset + sz <= pfrag->size)
1994 return true;
1995 put_page(pfrag->page);
1996 }
1997
1998 pfrag->offset = 0;
1999 if (SKB_FRAG_PAGE_ORDER) {
2000 /* Avoid direct reclaim but allow kswapd to wake */
2001 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2002 __GFP_COMP | __GFP_NOWARN |
2003 __GFP_NORETRY,
2004 SKB_FRAG_PAGE_ORDER);
2005 if (likely(pfrag->page)) {
2006 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2007 return true;
2008 }
2009 }
2010 pfrag->page = alloc_page(gfp);
2011 if (likely(pfrag->page)) {
2012 pfrag->size = PAGE_SIZE;
2013 return true;
2014 }
2015 return false;
2016 }
2017 EXPORT_SYMBOL(skb_page_frag_refill);
2018
2019 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2020 {
2021 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2022 return true;
2023
2024 sk_enter_memory_pressure(sk);
2025 sk_stream_moderate_sndbuf(sk);
2026 return false;
2027 }
2028 EXPORT_SYMBOL(sk_page_frag_refill);
2029
2030 static void __lock_sock(struct sock *sk)
2031 __releases(&sk->sk_lock.slock)
2032 __acquires(&sk->sk_lock.slock)
2033 {
2034 DEFINE_WAIT(wait);
2035
2036 for (;;) {
2037 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2038 TASK_UNINTERRUPTIBLE);
2039 spin_unlock_bh(&sk->sk_lock.slock);
2040 schedule();
2041 spin_lock_bh(&sk->sk_lock.slock);
2042 if (!sock_owned_by_user(sk))
2043 break;
2044 }
2045 finish_wait(&sk->sk_lock.wq, &wait);
2046 }
2047
2048 static void __release_sock(struct sock *sk)
2049 __releases(&sk->sk_lock.slock)
2050 __acquires(&sk->sk_lock.slock)
2051 {
2052 struct sk_buff *skb, *next;
2053
2054 while ((skb = sk->sk_backlog.head) != NULL) {
2055 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2056
2057 spin_unlock_bh(&sk->sk_lock.slock);
2058
2059 do {
2060 next = skb->next;
2061 prefetch(next);
2062 WARN_ON_ONCE(skb_dst_is_noref(skb));
2063 skb->next = NULL;
2064 sk_backlog_rcv(sk, skb);
2065
2066 cond_resched();
2067
2068 skb = next;
2069 } while (skb != NULL);
2070
2071 spin_lock_bh(&sk->sk_lock.slock);
2072 }
2073
2074 /*
2075 * Doing the zeroing here guarantee we can not loop forever
2076 * while a wild producer attempts to flood us.
2077 */
2078 sk->sk_backlog.len = 0;
2079 }
2080
2081 void __sk_flush_backlog(struct sock *sk)
2082 {
2083 spin_lock_bh(&sk->sk_lock.slock);
2084 __release_sock(sk);
2085 spin_unlock_bh(&sk->sk_lock.slock);
2086 }
2087
2088 /**
2089 * sk_wait_data - wait for data to arrive at sk_receive_queue
2090 * @sk: sock to wait on
2091 * @timeo: for how long
2092 * @skb: last skb seen on sk_receive_queue
2093 *
2094 * Now socket state including sk->sk_err is changed only under lock,
2095 * hence we may omit checks after joining wait queue.
2096 * We check receive queue before schedule() only as optimization;
2097 * it is very likely that release_sock() added new data.
2098 */
2099 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2100 {
2101 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2102 int rc;
2103
2104 add_wait_queue(sk_sleep(sk), &wait);
2105 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2106 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2107 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2108 remove_wait_queue(sk_sleep(sk), &wait);
2109 return rc;
2110 }
2111 EXPORT_SYMBOL(sk_wait_data);
2112
2113 /**
2114 * __sk_mem_raise_allocated - increase memory_allocated
2115 * @sk: socket
2116 * @size: memory size to allocate
2117 * @amt: pages to allocate
2118 * @kind: allocation type
2119 *
2120 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2121 */
2122 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2123 {
2124 struct proto *prot = sk->sk_prot;
2125 long allocated = sk_memory_allocated_add(sk, amt);
2126
2127 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2128 !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2129 goto suppress_allocation;
2130
2131 /* Under limit. */
2132 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2133 sk_leave_memory_pressure(sk);
2134 return 1;
2135 }
2136
2137 /* Under pressure. */
2138 if (allocated > sk_prot_mem_limits(sk, 1))
2139 sk_enter_memory_pressure(sk);
2140
2141 /* Over hard limit. */
2142 if (allocated > sk_prot_mem_limits(sk, 2))
2143 goto suppress_allocation;
2144
2145 /* guarantee minimum buffer size under pressure */
2146 if (kind == SK_MEM_RECV) {
2147 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2148 return 1;
2149
2150 } else { /* SK_MEM_SEND */
2151 if (sk->sk_type == SOCK_STREAM) {
2152 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2153 return 1;
2154 } else if (atomic_read(&sk->sk_wmem_alloc) <
2155 prot->sysctl_wmem[0])
2156 return 1;
2157 }
2158
2159 if (sk_has_memory_pressure(sk)) {
2160 int alloc;
2161
2162 if (!sk_under_memory_pressure(sk))
2163 return 1;
2164 alloc = sk_sockets_allocated_read_positive(sk);
2165 if (sk_prot_mem_limits(sk, 2) > alloc *
2166 sk_mem_pages(sk->sk_wmem_queued +
2167 atomic_read(&sk->sk_rmem_alloc) +
2168 sk->sk_forward_alloc))
2169 return 1;
2170 }
2171
2172 suppress_allocation:
2173
2174 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2175 sk_stream_moderate_sndbuf(sk);
2176
2177 /* Fail only if socket is _under_ its sndbuf.
2178 * In this case we cannot block, so that we have to fail.
2179 */
2180 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2181 return 1;
2182 }
2183
2184 trace_sock_exceed_buf_limit(sk, prot, allocated);
2185
2186 sk_memory_allocated_sub(sk, amt);
2187
2188 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2189 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2190
2191 return 0;
2192 }
2193 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2194
2195 /**
2196 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2197 * @sk: socket
2198 * @size: memory size to allocate
2199 * @kind: allocation type
2200 *
2201 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2202 * rmem allocation. This function assumes that protocols which have
2203 * memory_pressure use sk_wmem_queued as write buffer accounting.
2204 */
2205 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2206 {
2207 int ret, amt = sk_mem_pages(size);
2208
2209 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2210 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2211 if (!ret)
2212 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2213 return ret;
2214 }
2215 EXPORT_SYMBOL(__sk_mem_schedule);
2216
2217 /**
2218 * __sk_mem_reduce_allocated - reclaim memory_allocated
2219 * @sk: socket
2220 * @amount: number of quanta
2221 *
2222 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2223 */
2224 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2225 {
2226 sk_memory_allocated_sub(sk, amount);
2227
2228 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2229 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2230
2231 if (sk_under_memory_pressure(sk) &&
2232 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2233 sk_leave_memory_pressure(sk);
2234 }
2235 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2236
2237 /**
2238 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2239 * @sk: socket
2240 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2241 */
2242 void __sk_mem_reclaim(struct sock *sk, int amount)
2243 {
2244 amount >>= SK_MEM_QUANTUM_SHIFT;
2245 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2246 __sk_mem_reduce_allocated(sk, amount);
2247 }
2248 EXPORT_SYMBOL(__sk_mem_reclaim);
2249
2250 int sk_set_peek_off(struct sock *sk, int val)
2251 {
2252 if (val < 0)
2253 return -EINVAL;
2254
2255 sk->sk_peek_off = val;
2256 return 0;
2257 }
2258 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2259
2260 /*
2261 * Set of default routines for initialising struct proto_ops when
2262 * the protocol does not support a particular function. In certain
2263 * cases where it makes no sense for a protocol to have a "do nothing"
2264 * function, some default processing is provided.
2265 */
2266
2267 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2268 {
2269 return -EOPNOTSUPP;
2270 }
2271 EXPORT_SYMBOL(sock_no_bind);
2272
2273 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2274 int len, int flags)
2275 {
2276 return -EOPNOTSUPP;
2277 }
2278 EXPORT_SYMBOL(sock_no_connect);
2279
2280 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2281 {
2282 return -EOPNOTSUPP;
2283 }
2284 EXPORT_SYMBOL(sock_no_socketpair);
2285
2286 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2287 {
2288 return -EOPNOTSUPP;
2289 }
2290 EXPORT_SYMBOL(sock_no_accept);
2291
2292 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2293 int *len, int peer)
2294 {
2295 return -EOPNOTSUPP;
2296 }
2297 EXPORT_SYMBOL(sock_no_getname);
2298
2299 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2300 {
2301 return 0;
2302 }
2303 EXPORT_SYMBOL(sock_no_poll);
2304
2305 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2306 {
2307 return -EOPNOTSUPP;
2308 }
2309 EXPORT_SYMBOL(sock_no_ioctl);
2310
2311 int sock_no_listen(struct socket *sock, int backlog)
2312 {
2313 return -EOPNOTSUPP;
2314 }
2315 EXPORT_SYMBOL(sock_no_listen);
2316
2317 int sock_no_shutdown(struct socket *sock, int how)
2318 {
2319 return -EOPNOTSUPP;
2320 }
2321 EXPORT_SYMBOL(sock_no_shutdown);
2322
2323 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2324 char __user *optval, unsigned int optlen)
2325 {
2326 return -EOPNOTSUPP;
2327 }
2328 EXPORT_SYMBOL(sock_no_setsockopt);
2329
2330 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2331 char __user *optval, int __user *optlen)
2332 {
2333 return -EOPNOTSUPP;
2334 }
2335 EXPORT_SYMBOL(sock_no_getsockopt);
2336
2337 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2338 {
2339 return -EOPNOTSUPP;
2340 }
2341 EXPORT_SYMBOL(sock_no_sendmsg);
2342
2343 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2344 int flags)
2345 {
2346 return -EOPNOTSUPP;
2347 }
2348 EXPORT_SYMBOL(sock_no_recvmsg);
2349
2350 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2351 {
2352 /* Mirror missing mmap method error code */
2353 return -ENODEV;
2354 }
2355 EXPORT_SYMBOL(sock_no_mmap);
2356
2357 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2358 {
2359 ssize_t res;
2360 struct msghdr msg = {.msg_flags = flags};
2361 struct kvec iov;
2362 char *kaddr = kmap(page);
2363 iov.iov_base = kaddr + offset;
2364 iov.iov_len = size;
2365 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2366 kunmap(page);
2367 return res;
2368 }
2369 EXPORT_SYMBOL(sock_no_sendpage);
2370
2371 /*
2372 * Default Socket Callbacks
2373 */
2374
2375 static void sock_def_wakeup(struct sock *sk)
2376 {
2377 struct socket_wq *wq;
2378
2379 rcu_read_lock();
2380 wq = rcu_dereference(sk->sk_wq);
2381 if (skwq_has_sleeper(wq))
2382 wake_up_interruptible_all(&wq->wait);
2383 rcu_read_unlock();
2384 }
2385
2386 static void sock_def_error_report(struct sock *sk)
2387 {
2388 struct socket_wq *wq;
2389
2390 rcu_read_lock();
2391 wq = rcu_dereference(sk->sk_wq);
2392 if (skwq_has_sleeper(wq))
2393 wake_up_interruptible_poll(&wq->wait, POLLERR);
2394 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2395 rcu_read_unlock();
2396 }
2397
2398 static void sock_def_readable(struct sock *sk)
2399 {
2400 struct socket_wq *wq;
2401
2402 rcu_read_lock();
2403 wq = rcu_dereference(sk->sk_wq);
2404 if (skwq_has_sleeper(wq))
2405 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2406 POLLRDNORM | POLLRDBAND);
2407 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2408 rcu_read_unlock();
2409 }
2410
2411 static void sock_def_write_space(struct sock *sk)
2412 {
2413 struct socket_wq *wq;
2414
2415 rcu_read_lock();
2416
2417 /* Do not wake up a writer until he can make "significant"
2418 * progress. --DaveM
2419 */
2420 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2421 wq = rcu_dereference(sk->sk_wq);
2422 if (skwq_has_sleeper(wq))
2423 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2424 POLLWRNORM | POLLWRBAND);
2425
2426 /* Should agree with poll, otherwise some programs break */
2427 if (sock_writeable(sk))
2428 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2429 }
2430
2431 rcu_read_unlock();
2432 }
2433
2434 static void sock_def_destruct(struct sock *sk)
2435 {
2436 }
2437
2438 void sk_send_sigurg(struct sock *sk)
2439 {
2440 if (sk->sk_socket && sk->sk_socket->file)
2441 if (send_sigurg(&sk->sk_socket->file->f_owner))
2442 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2443 }
2444 EXPORT_SYMBOL(sk_send_sigurg);
2445
2446 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2447 unsigned long expires)
2448 {
2449 if (!mod_timer(timer, expires))
2450 sock_hold(sk);
2451 }
2452 EXPORT_SYMBOL(sk_reset_timer);
2453
2454 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2455 {
2456 if (del_timer(timer))
2457 __sock_put(sk);
2458 }
2459 EXPORT_SYMBOL(sk_stop_timer);
2460
2461 void sock_init_data(struct socket *sock, struct sock *sk)
2462 {
2463 skb_queue_head_init(&sk->sk_receive_queue);
2464 skb_queue_head_init(&sk->sk_write_queue);
2465 skb_queue_head_init(&sk->sk_error_queue);
2466
2467 sk->sk_send_head = NULL;
2468
2469 init_timer(&sk->sk_timer);
2470
2471 sk->sk_allocation = GFP_KERNEL;
2472 sk->sk_rcvbuf = sysctl_rmem_default;
2473 sk->sk_sndbuf = sysctl_wmem_default;
2474 sk->sk_state = TCP_CLOSE;
2475 sk_set_socket(sk, sock);
2476
2477 sock_set_flag(sk, SOCK_ZAPPED);
2478
2479 if (sock) {
2480 sk->sk_type = sock->type;
2481 sk->sk_wq = sock->wq;
2482 sock->sk = sk;
2483 sk->sk_uid = SOCK_INODE(sock)->i_uid;
2484 } else {
2485 sk->sk_wq = NULL;
2486 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
2487 }
2488
2489 rwlock_init(&sk->sk_callback_lock);
2490 lockdep_set_class_and_name(&sk->sk_callback_lock,
2491 af_callback_keys + sk->sk_family,
2492 af_family_clock_key_strings[sk->sk_family]);
2493
2494 sk->sk_state_change = sock_def_wakeup;
2495 sk->sk_data_ready = sock_def_readable;
2496 sk->sk_write_space = sock_def_write_space;
2497 sk->sk_error_report = sock_def_error_report;
2498 sk->sk_destruct = sock_def_destruct;
2499
2500 sk->sk_frag.page = NULL;
2501 sk->sk_frag.offset = 0;
2502 sk->sk_peek_off = -1;
2503
2504 sk->sk_peer_pid = NULL;
2505 sk->sk_peer_cred = NULL;
2506 sk->sk_write_pending = 0;
2507 sk->sk_rcvlowat = 1;
2508 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2509 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2510
2511 sk->sk_stamp = ktime_set(-1L, 0);
2512
2513 #ifdef CONFIG_NET_RX_BUSY_POLL
2514 sk->sk_napi_id = 0;
2515 sk->sk_ll_usec = sysctl_net_busy_read;
2516 #endif
2517
2518 sk->sk_max_pacing_rate = ~0U;
2519 sk->sk_pacing_rate = ~0U;
2520 sk->sk_incoming_cpu = -1;
2521 /*
2522 * Before updating sk_refcnt, we must commit prior changes to memory
2523 * (Documentation/RCU/rculist_nulls.txt for details)
2524 */
2525 smp_wmb();
2526 atomic_set(&sk->sk_refcnt, 1);
2527 atomic_set(&sk->sk_drops, 0);
2528 }
2529 EXPORT_SYMBOL(sock_init_data);
2530
2531 void lock_sock_nested(struct sock *sk, int subclass)
2532 {
2533 might_sleep();
2534 spin_lock_bh(&sk->sk_lock.slock);
2535 if (sk->sk_lock.owned)
2536 __lock_sock(sk);
2537 sk->sk_lock.owned = 1;
2538 spin_unlock(&sk->sk_lock.slock);
2539 /*
2540 * The sk_lock has mutex_lock() semantics here:
2541 */
2542 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2543 local_bh_enable();
2544 }
2545 EXPORT_SYMBOL(lock_sock_nested);
2546
2547 void release_sock(struct sock *sk)
2548 {
2549 spin_lock_bh(&sk->sk_lock.slock);
2550 if (sk->sk_backlog.tail)
2551 __release_sock(sk);
2552
2553 /* Warning : release_cb() might need to release sk ownership,
2554 * ie call sock_release_ownership(sk) before us.
2555 */
2556 if (sk->sk_prot->release_cb)
2557 sk->sk_prot->release_cb(sk);
2558
2559 sock_release_ownership(sk);
2560 if (waitqueue_active(&sk->sk_lock.wq))
2561 wake_up(&sk->sk_lock.wq);
2562 spin_unlock_bh(&sk->sk_lock.slock);
2563 }
2564 EXPORT_SYMBOL(release_sock);
2565
2566 /**
2567 * lock_sock_fast - fast version of lock_sock
2568 * @sk: socket
2569 *
2570 * This version should be used for very small section, where process wont block
2571 * return false if fast path is taken
2572 * sk_lock.slock locked, owned = 0, BH disabled
2573 * return true if slow path is taken
2574 * sk_lock.slock unlocked, owned = 1, BH enabled
2575 */
2576 bool lock_sock_fast(struct sock *sk)
2577 {
2578 might_sleep();
2579 spin_lock_bh(&sk->sk_lock.slock);
2580
2581 if (!sk->sk_lock.owned)
2582 /*
2583 * Note : We must disable BH
2584 */
2585 return false;
2586
2587 __lock_sock(sk);
2588 sk->sk_lock.owned = 1;
2589 spin_unlock(&sk->sk_lock.slock);
2590 /*
2591 * The sk_lock has mutex_lock() semantics here:
2592 */
2593 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2594 local_bh_enable();
2595 return true;
2596 }
2597 EXPORT_SYMBOL(lock_sock_fast);
2598
2599 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2600 {
2601 struct timeval tv;
2602 if (!sock_flag(sk, SOCK_TIMESTAMP))
2603 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2604 tv = ktime_to_timeval(sk->sk_stamp);
2605 if (tv.tv_sec == -1)
2606 return -ENOENT;
2607 if (tv.tv_sec == 0) {
2608 sk->sk_stamp = ktime_get_real();
2609 tv = ktime_to_timeval(sk->sk_stamp);
2610 }
2611 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2612 }
2613 EXPORT_SYMBOL(sock_get_timestamp);
2614
2615 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2616 {
2617 struct timespec ts;
2618 if (!sock_flag(sk, SOCK_TIMESTAMP))
2619 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2620 ts = ktime_to_timespec(sk->sk_stamp);
2621 if (ts.tv_sec == -1)
2622 return -ENOENT;
2623 if (ts.tv_sec == 0) {
2624 sk->sk_stamp = ktime_get_real();
2625 ts = ktime_to_timespec(sk->sk_stamp);
2626 }
2627 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2628 }
2629 EXPORT_SYMBOL(sock_get_timestampns);
2630
2631 void sock_enable_timestamp(struct sock *sk, int flag)
2632 {
2633 if (!sock_flag(sk, flag)) {
2634 unsigned long previous_flags = sk->sk_flags;
2635
2636 sock_set_flag(sk, flag);
2637 /*
2638 * we just set one of the two flags which require net
2639 * time stamping, but time stamping might have been on
2640 * already because of the other one
2641 */
2642 if (sock_needs_netstamp(sk) &&
2643 !(previous_flags & SK_FLAGS_TIMESTAMP))
2644 net_enable_timestamp();
2645 }
2646 }
2647
2648 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2649 int level, int type)
2650 {
2651 struct sock_exterr_skb *serr;
2652 struct sk_buff *skb;
2653 int copied, err;
2654
2655 err = -EAGAIN;
2656 skb = sock_dequeue_err_skb(sk);
2657 if (skb == NULL)
2658 goto out;
2659
2660 copied = skb->len;
2661 if (copied > len) {
2662 msg->msg_flags |= MSG_TRUNC;
2663 copied = len;
2664 }
2665 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2666 if (err)
2667 goto out_free_skb;
2668
2669 sock_recv_timestamp(msg, sk, skb);
2670
2671 serr = SKB_EXT_ERR(skb);
2672 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2673
2674 msg->msg_flags |= MSG_ERRQUEUE;
2675 err = copied;
2676
2677 out_free_skb:
2678 kfree_skb(skb);
2679 out:
2680 return err;
2681 }
2682 EXPORT_SYMBOL(sock_recv_errqueue);
2683
2684 /*
2685 * Get a socket option on an socket.
2686 *
2687 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2688 * asynchronous errors should be reported by getsockopt. We assume
2689 * this means if you specify SO_ERROR (otherwise whats the point of it).
2690 */
2691 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2692 char __user *optval, int __user *optlen)
2693 {
2694 struct sock *sk = sock->sk;
2695
2696 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2697 }
2698 EXPORT_SYMBOL(sock_common_getsockopt);
2699
2700 #ifdef CONFIG_COMPAT
2701 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2702 char __user *optval, int __user *optlen)
2703 {
2704 struct sock *sk = sock->sk;
2705
2706 if (sk->sk_prot->compat_getsockopt != NULL)
2707 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2708 optval, optlen);
2709 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2710 }
2711 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2712 #endif
2713
2714 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2715 int flags)
2716 {
2717 struct sock *sk = sock->sk;
2718 int addr_len = 0;
2719 int err;
2720
2721 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2722 flags & ~MSG_DONTWAIT, &addr_len);
2723 if (err >= 0)
2724 msg->msg_namelen = addr_len;
2725 return err;
2726 }
2727 EXPORT_SYMBOL(sock_common_recvmsg);
2728
2729 /*
2730 * Set socket options on an inet socket.
2731 */
2732 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2733 char __user *optval, unsigned int optlen)
2734 {
2735 struct sock *sk = sock->sk;
2736
2737 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2738 }
2739 EXPORT_SYMBOL(sock_common_setsockopt);
2740
2741 #ifdef CONFIG_COMPAT
2742 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2743 char __user *optval, unsigned int optlen)
2744 {
2745 struct sock *sk = sock->sk;
2746
2747 if (sk->sk_prot->compat_setsockopt != NULL)
2748 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2749 optval, optlen);
2750 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2751 }
2752 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2753 #endif
2754
2755 void sk_common_release(struct sock *sk)
2756 {
2757 if (sk->sk_prot->destroy)
2758 sk->sk_prot->destroy(sk);
2759
2760 /*
2761 * Observation: when sock_common_release is called, processes have
2762 * no access to socket. But net still has.
2763 * Step one, detach it from networking:
2764 *
2765 * A. Remove from hash tables.
2766 */
2767
2768 sk->sk_prot->unhash(sk);
2769
2770 /*
2771 * In this point socket cannot receive new packets, but it is possible
2772 * that some packets are in flight because some CPU runs receiver and
2773 * did hash table lookup before we unhashed socket. They will achieve
2774 * receive queue and will be purged by socket destructor.
2775 *
2776 * Also we still have packets pending on receive queue and probably,
2777 * our own packets waiting in device queues. sock_destroy will drain
2778 * receive queue, but transmitted packets will delay socket destruction
2779 * until the last reference will be released.
2780 */
2781
2782 sock_orphan(sk);
2783
2784 xfrm_sk_free_policy(sk);
2785
2786 sk_refcnt_debug_release(sk);
2787
2788 sock_put(sk);
2789 }
2790 EXPORT_SYMBOL(sk_common_release);
2791
2792 #ifdef CONFIG_PROC_FS
2793 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2794 struct prot_inuse {
2795 int val[PROTO_INUSE_NR];
2796 };
2797
2798 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2799
2800 #ifdef CONFIG_NET_NS
2801 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2802 {
2803 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2804 }
2805 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2806
2807 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2808 {
2809 int cpu, idx = prot->inuse_idx;
2810 int res = 0;
2811
2812 for_each_possible_cpu(cpu)
2813 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2814
2815 return res >= 0 ? res : 0;
2816 }
2817 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2818
2819 static int __net_init sock_inuse_init_net(struct net *net)
2820 {
2821 net->core.inuse = alloc_percpu(struct prot_inuse);
2822 return net->core.inuse ? 0 : -ENOMEM;
2823 }
2824
2825 static void __net_exit sock_inuse_exit_net(struct net *net)
2826 {
2827 free_percpu(net->core.inuse);
2828 }
2829
2830 static struct pernet_operations net_inuse_ops = {
2831 .init = sock_inuse_init_net,
2832 .exit = sock_inuse_exit_net,
2833 };
2834
2835 static __init int net_inuse_init(void)
2836 {
2837 if (register_pernet_subsys(&net_inuse_ops))
2838 panic("Cannot initialize net inuse counters");
2839
2840 return 0;
2841 }
2842
2843 core_initcall(net_inuse_init);
2844 #else
2845 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2846
2847 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2848 {
2849 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2850 }
2851 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2852
2853 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2854 {
2855 int cpu, idx = prot->inuse_idx;
2856 int res = 0;
2857
2858 for_each_possible_cpu(cpu)
2859 res += per_cpu(prot_inuse, cpu).val[idx];
2860
2861 return res >= 0 ? res : 0;
2862 }
2863 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2864 #endif
2865
2866 static void assign_proto_idx(struct proto *prot)
2867 {
2868 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2869
2870 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2871 pr_err("PROTO_INUSE_NR exhausted\n");
2872 return;
2873 }
2874
2875 set_bit(prot->inuse_idx, proto_inuse_idx);
2876 }
2877
2878 static void release_proto_idx(struct proto *prot)
2879 {
2880 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2881 clear_bit(prot->inuse_idx, proto_inuse_idx);
2882 }
2883 #else
2884 static inline void assign_proto_idx(struct proto *prot)
2885 {
2886 }
2887
2888 static inline void release_proto_idx(struct proto *prot)
2889 {
2890 }
2891 #endif
2892
2893 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
2894 {
2895 if (!rsk_prot)
2896 return;
2897 kfree(rsk_prot->slab_name);
2898 rsk_prot->slab_name = NULL;
2899 kmem_cache_destroy(rsk_prot->slab);
2900 rsk_prot->slab = NULL;
2901 }
2902
2903 static int req_prot_init(const struct proto *prot)
2904 {
2905 struct request_sock_ops *rsk_prot = prot->rsk_prot;
2906
2907 if (!rsk_prot)
2908 return 0;
2909
2910 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
2911 prot->name);
2912 if (!rsk_prot->slab_name)
2913 return -ENOMEM;
2914
2915 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
2916 rsk_prot->obj_size, 0,
2917 prot->slab_flags, NULL);
2918
2919 if (!rsk_prot->slab) {
2920 pr_crit("%s: Can't create request sock SLAB cache!\n",
2921 prot->name);
2922 return -ENOMEM;
2923 }
2924 return 0;
2925 }
2926
2927 int proto_register(struct proto *prot, int alloc_slab)
2928 {
2929 if (alloc_slab) {
2930 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2931 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2932 NULL);
2933
2934 if (prot->slab == NULL) {
2935 pr_crit("%s: Can't create sock SLAB cache!\n",
2936 prot->name);
2937 goto out;
2938 }
2939
2940 if (req_prot_init(prot))
2941 goto out_free_request_sock_slab;
2942
2943 if (prot->twsk_prot != NULL) {
2944 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2945
2946 if (prot->twsk_prot->twsk_slab_name == NULL)
2947 goto out_free_request_sock_slab;
2948
2949 prot->twsk_prot->twsk_slab =
2950 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2951 prot->twsk_prot->twsk_obj_size,
2952 0,
2953 prot->slab_flags,
2954 NULL);
2955 if (prot->twsk_prot->twsk_slab == NULL)
2956 goto out_free_timewait_sock_slab_name;
2957 }
2958 }
2959
2960 mutex_lock(&proto_list_mutex);
2961 list_add(&prot->node, &proto_list);
2962 assign_proto_idx(prot);
2963 mutex_unlock(&proto_list_mutex);
2964 return 0;
2965
2966 out_free_timewait_sock_slab_name:
2967 kfree(prot->twsk_prot->twsk_slab_name);
2968 out_free_request_sock_slab:
2969 req_prot_cleanup(prot->rsk_prot);
2970
2971 kmem_cache_destroy(prot->slab);
2972 prot->slab = NULL;
2973 out:
2974 return -ENOBUFS;
2975 }
2976 EXPORT_SYMBOL(proto_register);
2977
2978 void proto_unregister(struct proto *prot)
2979 {
2980 mutex_lock(&proto_list_mutex);
2981 release_proto_idx(prot);
2982 list_del(&prot->node);
2983 mutex_unlock(&proto_list_mutex);
2984
2985 kmem_cache_destroy(prot->slab);
2986 prot->slab = NULL;
2987
2988 req_prot_cleanup(prot->rsk_prot);
2989
2990 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2991 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2992 kfree(prot->twsk_prot->twsk_slab_name);
2993 prot->twsk_prot->twsk_slab = NULL;
2994 }
2995 }
2996 EXPORT_SYMBOL(proto_unregister);
2997
2998 #ifdef CONFIG_PROC_FS
2999 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3000 __acquires(proto_list_mutex)
3001 {
3002 mutex_lock(&proto_list_mutex);
3003 return seq_list_start_head(&proto_list, *pos);
3004 }
3005
3006 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3007 {
3008 return seq_list_next(v, &proto_list, pos);
3009 }
3010
3011 static void proto_seq_stop(struct seq_file *seq, void *v)
3012 __releases(proto_list_mutex)
3013 {
3014 mutex_unlock(&proto_list_mutex);
3015 }
3016
3017 static char proto_method_implemented(const void *method)
3018 {
3019 return method == NULL ? 'n' : 'y';
3020 }
3021 static long sock_prot_memory_allocated(struct proto *proto)
3022 {
3023 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3024 }
3025
3026 static char *sock_prot_memory_pressure(struct proto *proto)
3027 {
3028 return proto->memory_pressure != NULL ?
3029 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3030 }
3031
3032 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3033 {
3034
3035 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3036 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3037 proto->name,
3038 proto->obj_size,
3039 sock_prot_inuse_get(seq_file_net(seq), proto),
3040 sock_prot_memory_allocated(proto),
3041 sock_prot_memory_pressure(proto),
3042 proto->max_header,
3043 proto->slab == NULL ? "no" : "yes",
3044 module_name(proto->owner),
3045 proto_method_implemented(proto->close),
3046 proto_method_implemented(proto->connect),
3047 proto_method_implemented(proto->disconnect),
3048 proto_method_implemented(proto->accept),
3049 proto_method_implemented(proto->ioctl),
3050 proto_method_implemented(proto->init),
3051 proto_method_implemented(proto->destroy),
3052 proto_method_implemented(proto->shutdown),
3053 proto_method_implemented(proto->setsockopt),
3054 proto_method_implemented(proto->getsockopt),
3055 proto_method_implemented(proto->sendmsg),
3056 proto_method_implemented(proto->recvmsg),
3057 proto_method_implemented(proto->sendpage),
3058 proto_method_implemented(proto->bind),
3059 proto_method_implemented(proto->backlog_rcv),
3060 proto_method_implemented(proto->hash),
3061 proto_method_implemented(proto->unhash),
3062 proto_method_implemented(proto->get_port),
3063 proto_method_implemented(proto->enter_memory_pressure));
3064 }
3065
3066 static int proto_seq_show(struct seq_file *seq, void *v)
3067 {
3068 if (v == &proto_list)
3069 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3070 "protocol",
3071 "size",
3072 "sockets",
3073 "memory",
3074 "press",
3075 "maxhdr",
3076 "slab",
3077 "module",
3078 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3079 else
3080 proto_seq_printf(seq, list_entry(v, struct proto, node));
3081 return 0;
3082 }
3083
3084 static const struct seq_operations proto_seq_ops = {
3085 .start = proto_seq_start,
3086 .next = proto_seq_next,
3087 .stop = proto_seq_stop,
3088 .show = proto_seq_show,
3089 };
3090
3091 static int proto_seq_open(struct inode *inode, struct file *file)
3092 {
3093 return seq_open_net(inode, file, &proto_seq_ops,
3094 sizeof(struct seq_net_private));
3095 }
3096
3097 static const struct file_operations proto_seq_fops = {
3098 .owner = THIS_MODULE,
3099 .open = proto_seq_open,
3100 .read = seq_read,
3101 .llseek = seq_lseek,
3102 .release = seq_release_net,
3103 };
3104
3105 static __net_init int proto_init_net(struct net *net)
3106 {
3107 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3108 return -ENOMEM;
3109
3110 return 0;
3111 }
3112
3113 static __net_exit void proto_exit_net(struct net *net)
3114 {
3115 remove_proc_entry("protocols", net->proc_net);
3116 }
3117
3118
3119 static __net_initdata struct pernet_operations proto_net_ops = {
3120 .init = proto_init_net,
3121 .exit = proto_exit_net,
3122 };
3123
3124 static int __init proto_init(void)
3125 {
3126 return register_pernet_subsys(&proto_net_ops);
3127 }
3128
3129 subsys_initcall(proto_init);
3130
3131 #endif /* PROC_FS */