]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/sock.c
net: this_cpu_xxx conversions
[mirror_ubuntu-bionic-kernel.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 #include <linux/user_namespace.h>
114
115 #include <asm/uaccess.h>
116 #include <asm/system.h>
117
118 #include <linux/netdevice.h>
119 #include <net/protocol.h>
120 #include <linux/skbuff.h>
121 #include <net/net_namespace.h>
122 #include <net/request_sock.h>
123 #include <net/sock.h>
124 #include <linux/net_tstamp.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
127 #include <net/cls_cgroup.h>
128
129 #include <linux/filter.h>
130
131 #ifdef CONFIG_INET
132 #include <net/tcp.h>
133 #endif
134
135 /*
136 * Each address family might have different locking rules, so we have
137 * one slock key per address family:
138 */
139 static struct lock_class_key af_family_keys[AF_MAX];
140 static struct lock_class_key af_family_slock_keys[AF_MAX];
141
142 /*
143 * Make lock validator output more readable. (we pre-construct these
144 * strings build-time, so that runtime initialization of socket
145 * locks is fast):
146 */
147 static const char *const af_family_key_strings[AF_MAX+1] = {
148 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
149 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
150 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
151 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
152 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
153 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
154 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
155 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
156 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
157 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
158 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
159 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
160 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" ,
161 "sk_lock-AF_MAX"
162 };
163 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
164 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
165 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
166 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
167 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
168 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
169 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
170 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
171 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
172 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
173 "slock-27" , "slock-28" , "slock-AF_CAN" ,
174 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
175 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
176 "slock-AF_IEEE802154", "slock-AF_CAIF" ,
177 "slock-AF_MAX"
178 };
179 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
180 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
181 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
182 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
183 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
184 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
185 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
186 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
187 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
188 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
189 "clock-27" , "clock-28" , "clock-AF_CAN" ,
190 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
191 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
192 "clock-AF_IEEE802154", "clock-AF_CAIF" ,
193 "clock-AF_MAX"
194 };
195
196 /*
197 * sk_callback_lock locking rules are per-address-family,
198 * so split the lock classes by using a per-AF key:
199 */
200 static struct lock_class_key af_callback_keys[AF_MAX];
201
202 /* Take into consideration the size of the struct sk_buff overhead in the
203 * determination of these values, since that is non-constant across
204 * platforms. This makes socket queueing behavior and performance
205 * not depend upon such differences.
206 */
207 #define _SK_MEM_PACKETS 256
208 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
209 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
210 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
211
212 /* Run time adjustable parameters. */
213 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
214 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
215 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
216 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
217
218 /* Maximal space eaten by iovec or ancilliary data plus some space */
219 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
220 EXPORT_SYMBOL(sysctl_optmem_max);
221
222 #if defined(CONFIG_CGROUPS) && !defined(CONFIG_NET_CLS_CGROUP)
223 int net_cls_subsys_id = -1;
224 EXPORT_SYMBOL_GPL(net_cls_subsys_id);
225 #endif
226
227 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
228 {
229 struct timeval tv;
230
231 if (optlen < sizeof(tv))
232 return -EINVAL;
233 if (copy_from_user(&tv, optval, sizeof(tv)))
234 return -EFAULT;
235 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
236 return -EDOM;
237
238 if (tv.tv_sec < 0) {
239 static int warned __read_mostly;
240
241 *timeo_p = 0;
242 if (warned < 10 && net_ratelimit()) {
243 warned++;
244 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
245 "tries to set negative timeout\n",
246 current->comm, task_pid_nr(current));
247 }
248 return 0;
249 }
250 *timeo_p = MAX_SCHEDULE_TIMEOUT;
251 if (tv.tv_sec == 0 && tv.tv_usec == 0)
252 return 0;
253 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
254 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
255 return 0;
256 }
257
258 static void sock_warn_obsolete_bsdism(const char *name)
259 {
260 static int warned;
261 static char warncomm[TASK_COMM_LEN];
262 if (strcmp(warncomm, current->comm) && warned < 5) {
263 strcpy(warncomm, current->comm);
264 printk(KERN_WARNING "process `%s' is using obsolete "
265 "%s SO_BSDCOMPAT\n", warncomm, name);
266 warned++;
267 }
268 }
269
270 static void sock_disable_timestamp(struct sock *sk, int flag)
271 {
272 if (sock_flag(sk, flag)) {
273 sock_reset_flag(sk, flag);
274 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
275 !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
276 net_disable_timestamp();
277 }
278 }
279 }
280
281
282 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
283 {
284 int err;
285 int skb_len;
286 unsigned long flags;
287 struct sk_buff_head *list = &sk->sk_receive_queue;
288
289 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
290 number of warnings when compiling with -W --ANK
291 */
292 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
293 (unsigned)sk->sk_rcvbuf) {
294 atomic_inc(&sk->sk_drops);
295 return -ENOMEM;
296 }
297
298 err = sk_filter(sk, skb);
299 if (err)
300 return err;
301
302 if (!sk_rmem_schedule(sk, skb->truesize)) {
303 atomic_inc(&sk->sk_drops);
304 return -ENOBUFS;
305 }
306
307 skb->dev = NULL;
308 skb_set_owner_r(skb, sk);
309
310 /* Cache the SKB length before we tack it onto the receive
311 * queue. Once it is added it no longer belongs to us and
312 * may be freed by other threads of control pulling packets
313 * from the queue.
314 */
315 skb_len = skb->len;
316
317 /* we escape from rcu protected region, make sure we dont leak
318 * a norefcounted dst
319 */
320 skb_dst_force(skb);
321
322 spin_lock_irqsave(&list->lock, flags);
323 skb->dropcount = atomic_read(&sk->sk_drops);
324 __skb_queue_tail(list, skb);
325 spin_unlock_irqrestore(&list->lock, flags);
326
327 if (!sock_flag(sk, SOCK_DEAD))
328 sk->sk_data_ready(sk, skb_len);
329 return 0;
330 }
331 EXPORT_SYMBOL(sock_queue_rcv_skb);
332
333 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
334 {
335 int rc = NET_RX_SUCCESS;
336
337 if (sk_filter(sk, skb))
338 goto discard_and_relse;
339
340 skb->dev = NULL;
341
342 if (sk_rcvqueues_full(sk, skb)) {
343 atomic_inc(&sk->sk_drops);
344 goto discard_and_relse;
345 }
346 if (nested)
347 bh_lock_sock_nested(sk);
348 else
349 bh_lock_sock(sk);
350 if (!sock_owned_by_user(sk)) {
351 /*
352 * trylock + unlock semantics:
353 */
354 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
355
356 rc = sk_backlog_rcv(sk, skb);
357
358 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
359 } else if (sk_add_backlog(sk, skb)) {
360 bh_unlock_sock(sk);
361 atomic_inc(&sk->sk_drops);
362 goto discard_and_relse;
363 }
364
365 bh_unlock_sock(sk);
366 out:
367 sock_put(sk);
368 return rc;
369 discard_and_relse:
370 kfree_skb(skb);
371 goto out;
372 }
373 EXPORT_SYMBOL(sk_receive_skb);
374
375 void sk_reset_txq(struct sock *sk)
376 {
377 sk_tx_queue_clear(sk);
378 }
379 EXPORT_SYMBOL(sk_reset_txq);
380
381 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
382 {
383 struct dst_entry *dst = __sk_dst_get(sk);
384
385 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
386 sk_tx_queue_clear(sk);
387 rcu_assign_pointer(sk->sk_dst_cache, NULL);
388 dst_release(dst);
389 return NULL;
390 }
391
392 return dst;
393 }
394 EXPORT_SYMBOL(__sk_dst_check);
395
396 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
397 {
398 struct dst_entry *dst = sk_dst_get(sk);
399
400 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
401 sk_dst_reset(sk);
402 dst_release(dst);
403 return NULL;
404 }
405
406 return dst;
407 }
408 EXPORT_SYMBOL(sk_dst_check);
409
410 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
411 {
412 int ret = -ENOPROTOOPT;
413 #ifdef CONFIG_NETDEVICES
414 struct net *net = sock_net(sk);
415 char devname[IFNAMSIZ];
416 int index;
417
418 /* Sorry... */
419 ret = -EPERM;
420 if (!capable(CAP_NET_RAW))
421 goto out;
422
423 ret = -EINVAL;
424 if (optlen < 0)
425 goto out;
426
427 /* Bind this socket to a particular device like "eth0",
428 * as specified in the passed interface name. If the
429 * name is "" or the option length is zero the socket
430 * is not bound.
431 */
432 if (optlen > IFNAMSIZ - 1)
433 optlen = IFNAMSIZ - 1;
434 memset(devname, 0, sizeof(devname));
435
436 ret = -EFAULT;
437 if (copy_from_user(devname, optval, optlen))
438 goto out;
439
440 index = 0;
441 if (devname[0] != '\0') {
442 struct net_device *dev;
443
444 rcu_read_lock();
445 dev = dev_get_by_name_rcu(net, devname);
446 if (dev)
447 index = dev->ifindex;
448 rcu_read_unlock();
449 ret = -ENODEV;
450 if (!dev)
451 goto out;
452 }
453
454 lock_sock(sk);
455 sk->sk_bound_dev_if = index;
456 sk_dst_reset(sk);
457 release_sock(sk);
458
459 ret = 0;
460
461 out:
462 #endif
463
464 return ret;
465 }
466
467 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
468 {
469 if (valbool)
470 sock_set_flag(sk, bit);
471 else
472 sock_reset_flag(sk, bit);
473 }
474
475 /*
476 * This is meant for all protocols to use and covers goings on
477 * at the socket level. Everything here is generic.
478 */
479
480 int sock_setsockopt(struct socket *sock, int level, int optname,
481 char __user *optval, unsigned int optlen)
482 {
483 struct sock *sk = sock->sk;
484 int val;
485 int valbool;
486 struct linger ling;
487 int ret = 0;
488
489 /*
490 * Options without arguments
491 */
492
493 if (optname == SO_BINDTODEVICE)
494 return sock_bindtodevice(sk, optval, optlen);
495
496 if (optlen < sizeof(int))
497 return -EINVAL;
498
499 if (get_user(val, (int __user *)optval))
500 return -EFAULT;
501
502 valbool = val ? 1 : 0;
503
504 lock_sock(sk);
505
506 switch (optname) {
507 case SO_DEBUG:
508 if (val && !capable(CAP_NET_ADMIN))
509 ret = -EACCES;
510 else
511 sock_valbool_flag(sk, SOCK_DBG, valbool);
512 break;
513 case SO_REUSEADDR:
514 sk->sk_reuse = valbool;
515 break;
516 case SO_TYPE:
517 case SO_PROTOCOL:
518 case SO_DOMAIN:
519 case SO_ERROR:
520 ret = -ENOPROTOOPT;
521 break;
522 case SO_DONTROUTE:
523 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
524 break;
525 case SO_BROADCAST:
526 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
527 break;
528 case SO_SNDBUF:
529 /* Don't error on this BSD doesn't and if you think
530 about it this is right. Otherwise apps have to
531 play 'guess the biggest size' games. RCVBUF/SNDBUF
532 are treated in BSD as hints */
533
534 if (val > sysctl_wmem_max)
535 val = sysctl_wmem_max;
536 set_sndbuf:
537 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
538 if ((val * 2) < SOCK_MIN_SNDBUF)
539 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
540 else
541 sk->sk_sndbuf = val * 2;
542
543 /*
544 * Wake up sending tasks if we
545 * upped the value.
546 */
547 sk->sk_write_space(sk);
548 break;
549
550 case SO_SNDBUFFORCE:
551 if (!capable(CAP_NET_ADMIN)) {
552 ret = -EPERM;
553 break;
554 }
555 goto set_sndbuf;
556
557 case SO_RCVBUF:
558 /* Don't error on this BSD doesn't and if you think
559 about it this is right. Otherwise apps have to
560 play 'guess the biggest size' games. RCVBUF/SNDBUF
561 are treated in BSD as hints */
562
563 if (val > sysctl_rmem_max)
564 val = sysctl_rmem_max;
565 set_rcvbuf:
566 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
567 /*
568 * We double it on the way in to account for
569 * "struct sk_buff" etc. overhead. Applications
570 * assume that the SO_RCVBUF setting they make will
571 * allow that much actual data to be received on that
572 * socket.
573 *
574 * Applications are unaware that "struct sk_buff" and
575 * other overheads allocate from the receive buffer
576 * during socket buffer allocation.
577 *
578 * And after considering the possible alternatives,
579 * returning the value we actually used in getsockopt
580 * is the most desirable behavior.
581 */
582 if ((val * 2) < SOCK_MIN_RCVBUF)
583 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
584 else
585 sk->sk_rcvbuf = val * 2;
586 break;
587
588 case SO_RCVBUFFORCE:
589 if (!capable(CAP_NET_ADMIN)) {
590 ret = -EPERM;
591 break;
592 }
593 goto set_rcvbuf;
594
595 case SO_KEEPALIVE:
596 #ifdef CONFIG_INET
597 if (sk->sk_protocol == IPPROTO_TCP)
598 tcp_set_keepalive(sk, valbool);
599 #endif
600 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
601 break;
602
603 case SO_OOBINLINE:
604 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
605 break;
606
607 case SO_NO_CHECK:
608 sk->sk_no_check = valbool;
609 break;
610
611 case SO_PRIORITY:
612 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
613 sk->sk_priority = val;
614 else
615 ret = -EPERM;
616 break;
617
618 case SO_LINGER:
619 if (optlen < sizeof(ling)) {
620 ret = -EINVAL; /* 1003.1g */
621 break;
622 }
623 if (copy_from_user(&ling, optval, sizeof(ling))) {
624 ret = -EFAULT;
625 break;
626 }
627 if (!ling.l_onoff)
628 sock_reset_flag(sk, SOCK_LINGER);
629 else {
630 #if (BITS_PER_LONG == 32)
631 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
632 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
633 else
634 #endif
635 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
636 sock_set_flag(sk, SOCK_LINGER);
637 }
638 break;
639
640 case SO_BSDCOMPAT:
641 sock_warn_obsolete_bsdism("setsockopt");
642 break;
643
644 case SO_PASSCRED:
645 if (valbool)
646 set_bit(SOCK_PASSCRED, &sock->flags);
647 else
648 clear_bit(SOCK_PASSCRED, &sock->flags);
649 break;
650
651 case SO_TIMESTAMP:
652 case SO_TIMESTAMPNS:
653 if (valbool) {
654 if (optname == SO_TIMESTAMP)
655 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
656 else
657 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
658 sock_set_flag(sk, SOCK_RCVTSTAMP);
659 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
660 } else {
661 sock_reset_flag(sk, SOCK_RCVTSTAMP);
662 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
663 }
664 break;
665
666 case SO_TIMESTAMPING:
667 if (val & ~SOF_TIMESTAMPING_MASK) {
668 ret = -EINVAL;
669 break;
670 }
671 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
672 val & SOF_TIMESTAMPING_TX_HARDWARE);
673 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
674 val & SOF_TIMESTAMPING_TX_SOFTWARE);
675 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
676 val & SOF_TIMESTAMPING_RX_HARDWARE);
677 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
678 sock_enable_timestamp(sk,
679 SOCK_TIMESTAMPING_RX_SOFTWARE);
680 else
681 sock_disable_timestamp(sk,
682 SOCK_TIMESTAMPING_RX_SOFTWARE);
683 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
684 val & SOF_TIMESTAMPING_SOFTWARE);
685 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
686 val & SOF_TIMESTAMPING_SYS_HARDWARE);
687 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
688 val & SOF_TIMESTAMPING_RAW_HARDWARE);
689 break;
690
691 case SO_RCVLOWAT:
692 if (val < 0)
693 val = INT_MAX;
694 sk->sk_rcvlowat = val ? : 1;
695 break;
696
697 case SO_RCVTIMEO:
698 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
699 break;
700
701 case SO_SNDTIMEO:
702 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
703 break;
704
705 case SO_ATTACH_FILTER:
706 ret = -EINVAL;
707 if (optlen == sizeof(struct sock_fprog)) {
708 struct sock_fprog fprog;
709
710 ret = -EFAULT;
711 if (copy_from_user(&fprog, optval, sizeof(fprog)))
712 break;
713
714 ret = sk_attach_filter(&fprog, sk);
715 }
716 break;
717
718 case SO_DETACH_FILTER:
719 ret = sk_detach_filter(sk);
720 break;
721
722 case SO_PASSSEC:
723 if (valbool)
724 set_bit(SOCK_PASSSEC, &sock->flags);
725 else
726 clear_bit(SOCK_PASSSEC, &sock->flags);
727 break;
728 case SO_MARK:
729 if (!capable(CAP_NET_ADMIN))
730 ret = -EPERM;
731 else
732 sk->sk_mark = val;
733 break;
734
735 /* We implement the SO_SNDLOWAT etc to
736 not be settable (1003.1g 5.3) */
737 case SO_RXQ_OVFL:
738 if (valbool)
739 sock_set_flag(sk, SOCK_RXQ_OVFL);
740 else
741 sock_reset_flag(sk, SOCK_RXQ_OVFL);
742 break;
743 default:
744 ret = -ENOPROTOOPT;
745 break;
746 }
747 release_sock(sk);
748 return ret;
749 }
750 EXPORT_SYMBOL(sock_setsockopt);
751
752
753 void cred_to_ucred(struct pid *pid, const struct cred *cred,
754 struct ucred *ucred)
755 {
756 ucred->pid = pid_vnr(pid);
757 ucred->uid = ucred->gid = -1;
758 if (cred) {
759 struct user_namespace *current_ns = current_user_ns();
760
761 ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
762 ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
763 }
764 }
765 EXPORT_SYMBOL_GPL(cred_to_ucred);
766
767 int sock_getsockopt(struct socket *sock, int level, int optname,
768 char __user *optval, int __user *optlen)
769 {
770 struct sock *sk = sock->sk;
771
772 union {
773 int val;
774 struct linger ling;
775 struct timeval tm;
776 } v;
777
778 int lv = sizeof(int);
779 int len;
780
781 if (get_user(len, optlen))
782 return -EFAULT;
783 if (len < 0)
784 return -EINVAL;
785
786 memset(&v, 0, sizeof(v));
787
788 switch (optname) {
789 case SO_DEBUG:
790 v.val = sock_flag(sk, SOCK_DBG);
791 break;
792
793 case SO_DONTROUTE:
794 v.val = sock_flag(sk, SOCK_LOCALROUTE);
795 break;
796
797 case SO_BROADCAST:
798 v.val = !!sock_flag(sk, SOCK_BROADCAST);
799 break;
800
801 case SO_SNDBUF:
802 v.val = sk->sk_sndbuf;
803 break;
804
805 case SO_RCVBUF:
806 v.val = sk->sk_rcvbuf;
807 break;
808
809 case SO_REUSEADDR:
810 v.val = sk->sk_reuse;
811 break;
812
813 case SO_KEEPALIVE:
814 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
815 break;
816
817 case SO_TYPE:
818 v.val = sk->sk_type;
819 break;
820
821 case SO_PROTOCOL:
822 v.val = sk->sk_protocol;
823 break;
824
825 case SO_DOMAIN:
826 v.val = sk->sk_family;
827 break;
828
829 case SO_ERROR:
830 v.val = -sock_error(sk);
831 if (v.val == 0)
832 v.val = xchg(&sk->sk_err_soft, 0);
833 break;
834
835 case SO_OOBINLINE:
836 v.val = !!sock_flag(sk, SOCK_URGINLINE);
837 break;
838
839 case SO_NO_CHECK:
840 v.val = sk->sk_no_check;
841 break;
842
843 case SO_PRIORITY:
844 v.val = sk->sk_priority;
845 break;
846
847 case SO_LINGER:
848 lv = sizeof(v.ling);
849 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
850 v.ling.l_linger = sk->sk_lingertime / HZ;
851 break;
852
853 case SO_BSDCOMPAT:
854 sock_warn_obsolete_bsdism("getsockopt");
855 break;
856
857 case SO_TIMESTAMP:
858 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
859 !sock_flag(sk, SOCK_RCVTSTAMPNS);
860 break;
861
862 case SO_TIMESTAMPNS:
863 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
864 break;
865
866 case SO_TIMESTAMPING:
867 v.val = 0;
868 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
869 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
870 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
871 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
872 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
873 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
874 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
875 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
876 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
877 v.val |= SOF_TIMESTAMPING_SOFTWARE;
878 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
879 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
880 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
881 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
882 break;
883
884 case SO_RCVTIMEO:
885 lv = sizeof(struct timeval);
886 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
887 v.tm.tv_sec = 0;
888 v.tm.tv_usec = 0;
889 } else {
890 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
891 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
892 }
893 break;
894
895 case SO_SNDTIMEO:
896 lv = sizeof(struct timeval);
897 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
898 v.tm.tv_sec = 0;
899 v.tm.tv_usec = 0;
900 } else {
901 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
902 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
903 }
904 break;
905
906 case SO_RCVLOWAT:
907 v.val = sk->sk_rcvlowat;
908 break;
909
910 case SO_SNDLOWAT:
911 v.val = 1;
912 break;
913
914 case SO_PASSCRED:
915 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
916 break;
917
918 case SO_PEERCRED:
919 {
920 struct ucred peercred;
921 if (len > sizeof(peercred))
922 len = sizeof(peercred);
923 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
924 if (copy_to_user(optval, &peercred, len))
925 return -EFAULT;
926 goto lenout;
927 }
928
929 case SO_PEERNAME:
930 {
931 char address[128];
932
933 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
934 return -ENOTCONN;
935 if (lv < len)
936 return -EINVAL;
937 if (copy_to_user(optval, address, len))
938 return -EFAULT;
939 goto lenout;
940 }
941
942 /* Dubious BSD thing... Probably nobody even uses it, but
943 * the UNIX standard wants it for whatever reason... -DaveM
944 */
945 case SO_ACCEPTCONN:
946 v.val = sk->sk_state == TCP_LISTEN;
947 break;
948
949 case SO_PASSSEC:
950 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
951 break;
952
953 case SO_PEERSEC:
954 return security_socket_getpeersec_stream(sock, optval, optlen, len);
955
956 case SO_MARK:
957 v.val = sk->sk_mark;
958 break;
959
960 case SO_RXQ_OVFL:
961 v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
962 break;
963
964 default:
965 return -ENOPROTOOPT;
966 }
967
968 if (len > lv)
969 len = lv;
970 if (copy_to_user(optval, &v, len))
971 return -EFAULT;
972 lenout:
973 if (put_user(len, optlen))
974 return -EFAULT;
975 return 0;
976 }
977
978 /*
979 * Initialize an sk_lock.
980 *
981 * (We also register the sk_lock with the lock validator.)
982 */
983 static inline void sock_lock_init(struct sock *sk)
984 {
985 sock_lock_init_class_and_name(sk,
986 af_family_slock_key_strings[sk->sk_family],
987 af_family_slock_keys + sk->sk_family,
988 af_family_key_strings[sk->sk_family],
989 af_family_keys + sk->sk_family);
990 }
991
992 /*
993 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
994 * even temporarly, because of RCU lookups. sk_node should also be left as is.
995 */
996 static void sock_copy(struct sock *nsk, const struct sock *osk)
997 {
998 #ifdef CONFIG_SECURITY_NETWORK
999 void *sptr = nsk->sk_security;
1000 #endif
1001 BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) !=
1002 sizeof(osk->sk_node) + sizeof(osk->sk_refcnt) +
1003 sizeof(osk->sk_tx_queue_mapping));
1004 memcpy(&nsk->sk_copy_start, &osk->sk_copy_start,
1005 osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start));
1006 #ifdef CONFIG_SECURITY_NETWORK
1007 nsk->sk_security = sptr;
1008 security_sk_clone(osk, nsk);
1009 #endif
1010 }
1011
1012 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1013 int family)
1014 {
1015 struct sock *sk;
1016 struct kmem_cache *slab;
1017
1018 slab = prot->slab;
1019 if (slab != NULL) {
1020 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1021 if (!sk)
1022 return sk;
1023 if (priority & __GFP_ZERO) {
1024 /*
1025 * caches using SLAB_DESTROY_BY_RCU should let
1026 * sk_node.next un-modified. Special care is taken
1027 * when initializing object to zero.
1028 */
1029 if (offsetof(struct sock, sk_node.next) != 0)
1030 memset(sk, 0, offsetof(struct sock, sk_node.next));
1031 memset(&sk->sk_node.pprev, 0,
1032 prot->obj_size - offsetof(struct sock,
1033 sk_node.pprev));
1034 }
1035 }
1036 else
1037 sk = kmalloc(prot->obj_size, priority);
1038
1039 if (sk != NULL) {
1040 kmemcheck_annotate_bitfield(sk, flags);
1041
1042 if (security_sk_alloc(sk, family, priority))
1043 goto out_free;
1044
1045 if (!try_module_get(prot->owner))
1046 goto out_free_sec;
1047 sk_tx_queue_clear(sk);
1048 }
1049
1050 return sk;
1051
1052 out_free_sec:
1053 security_sk_free(sk);
1054 out_free:
1055 if (slab != NULL)
1056 kmem_cache_free(slab, sk);
1057 else
1058 kfree(sk);
1059 return NULL;
1060 }
1061
1062 static void sk_prot_free(struct proto *prot, struct sock *sk)
1063 {
1064 struct kmem_cache *slab;
1065 struct module *owner;
1066
1067 owner = prot->owner;
1068 slab = prot->slab;
1069
1070 security_sk_free(sk);
1071 if (slab != NULL)
1072 kmem_cache_free(slab, sk);
1073 else
1074 kfree(sk);
1075 module_put(owner);
1076 }
1077
1078 #ifdef CONFIG_CGROUPS
1079 void sock_update_classid(struct sock *sk)
1080 {
1081 u32 classid = task_cls_classid(current);
1082
1083 if (classid && classid != sk->sk_classid)
1084 sk->sk_classid = classid;
1085 }
1086 EXPORT_SYMBOL(sock_update_classid);
1087 #endif
1088
1089 /**
1090 * sk_alloc - All socket objects are allocated here
1091 * @net: the applicable net namespace
1092 * @family: protocol family
1093 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1094 * @prot: struct proto associated with this new sock instance
1095 */
1096 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1097 struct proto *prot)
1098 {
1099 struct sock *sk;
1100
1101 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1102 if (sk) {
1103 sk->sk_family = family;
1104 /*
1105 * See comment in struct sock definition to understand
1106 * why we need sk_prot_creator -acme
1107 */
1108 sk->sk_prot = sk->sk_prot_creator = prot;
1109 sock_lock_init(sk);
1110 sock_net_set(sk, get_net(net));
1111 atomic_set(&sk->sk_wmem_alloc, 1);
1112
1113 sock_update_classid(sk);
1114 }
1115
1116 return sk;
1117 }
1118 EXPORT_SYMBOL(sk_alloc);
1119
1120 static void __sk_free(struct sock *sk)
1121 {
1122 struct sk_filter *filter;
1123
1124 if (sk->sk_destruct)
1125 sk->sk_destruct(sk);
1126
1127 filter = rcu_dereference_check(sk->sk_filter,
1128 atomic_read(&sk->sk_wmem_alloc) == 0);
1129 if (filter) {
1130 sk_filter_uncharge(sk, filter);
1131 rcu_assign_pointer(sk->sk_filter, NULL);
1132 }
1133
1134 sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1135 sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1136
1137 if (atomic_read(&sk->sk_omem_alloc))
1138 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1139 __func__, atomic_read(&sk->sk_omem_alloc));
1140
1141 if (sk->sk_peer_cred)
1142 put_cred(sk->sk_peer_cred);
1143 put_pid(sk->sk_peer_pid);
1144 put_net(sock_net(sk));
1145 sk_prot_free(sk->sk_prot_creator, sk);
1146 }
1147
1148 void sk_free(struct sock *sk)
1149 {
1150 /*
1151 * We substract one from sk_wmem_alloc and can know if
1152 * some packets are still in some tx queue.
1153 * If not null, sock_wfree() will call __sk_free(sk) later
1154 */
1155 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1156 __sk_free(sk);
1157 }
1158 EXPORT_SYMBOL(sk_free);
1159
1160 /*
1161 * Last sock_put should drop referrence to sk->sk_net. It has already
1162 * been dropped in sk_change_net. Taking referrence to stopping namespace
1163 * is not an option.
1164 * Take referrence to a socket to remove it from hash _alive_ and after that
1165 * destroy it in the context of init_net.
1166 */
1167 void sk_release_kernel(struct sock *sk)
1168 {
1169 if (sk == NULL || sk->sk_socket == NULL)
1170 return;
1171
1172 sock_hold(sk);
1173 sock_release(sk->sk_socket);
1174 release_net(sock_net(sk));
1175 sock_net_set(sk, get_net(&init_net));
1176 sock_put(sk);
1177 }
1178 EXPORT_SYMBOL(sk_release_kernel);
1179
1180 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1181 {
1182 struct sock *newsk;
1183
1184 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1185 if (newsk != NULL) {
1186 struct sk_filter *filter;
1187
1188 sock_copy(newsk, sk);
1189
1190 /* SANITY */
1191 get_net(sock_net(newsk));
1192 sk_node_init(&newsk->sk_node);
1193 sock_lock_init(newsk);
1194 bh_lock_sock(newsk);
1195 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1196 newsk->sk_backlog.len = 0;
1197
1198 atomic_set(&newsk->sk_rmem_alloc, 0);
1199 /*
1200 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1201 */
1202 atomic_set(&newsk->sk_wmem_alloc, 1);
1203 atomic_set(&newsk->sk_omem_alloc, 0);
1204 skb_queue_head_init(&newsk->sk_receive_queue);
1205 skb_queue_head_init(&newsk->sk_write_queue);
1206 #ifdef CONFIG_NET_DMA
1207 skb_queue_head_init(&newsk->sk_async_wait_queue);
1208 #endif
1209
1210 spin_lock_init(&newsk->sk_dst_lock);
1211 rwlock_init(&newsk->sk_callback_lock);
1212 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1213 af_callback_keys + newsk->sk_family,
1214 af_family_clock_key_strings[newsk->sk_family]);
1215
1216 newsk->sk_dst_cache = NULL;
1217 newsk->sk_wmem_queued = 0;
1218 newsk->sk_forward_alloc = 0;
1219 newsk->sk_send_head = NULL;
1220 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1221
1222 sock_reset_flag(newsk, SOCK_DONE);
1223 skb_queue_head_init(&newsk->sk_error_queue);
1224
1225 filter = newsk->sk_filter;
1226 if (filter != NULL)
1227 sk_filter_charge(newsk, filter);
1228
1229 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1230 /* It is still raw copy of parent, so invalidate
1231 * destructor and make plain sk_free() */
1232 newsk->sk_destruct = NULL;
1233 sk_free(newsk);
1234 newsk = NULL;
1235 goto out;
1236 }
1237
1238 newsk->sk_err = 0;
1239 newsk->sk_priority = 0;
1240 /*
1241 * Before updating sk_refcnt, we must commit prior changes to memory
1242 * (Documentation/RCU/rculist_nulls.txt for details)
1243 */
1244 smp_wmb();
1245 atomic_set(&newsk->sk_refcnt, 2);
1246
1247 /*
1248 * Increment the counter in the same struct proto as the master
1249 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1250 * is the same as sk->sk_prot->socks, as this field was copied
1251 * with memcpy).
1252 *
1253 * This _changes_ the previous behaviour, where
1254 * tcp_create_openreq_child always was incrementing the
1255 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1256 * to be taken into account in all callers. -acme
1257 */
1258 sk_refcnt_debug_inc(newsk);
1259 sk_set_socket(newsk, NULL);
1260 newsk->sk_wq = NULL;
1261
1262 if (newsk->sk_prot->sockets_allocated)
1263 percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1264
1265 if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1266 sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1267 net_enable_timestamp();
1268 }
1269 out:
1270 return newsk;
1271 }
1272 EXPORT_SYMBOL_GPL(sk_clone);
1273
1274 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1275 {
1276 __sk_dst_set(sk, dst);
1277 sk->sk_route_caps = dst->dev->features;
1278 if (sk->sk_route_caps & NETIF_F_GSO)
1279 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1280 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1281 if (sk_can_gso(sk)) {
1282 if (dst->header_len) {
1283 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1284 } else {
1285 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1286 sk->sk_gso_max_size = dst->dev->gso_max_size;
1287 }
1288 }
1289 }
1290 EXPORT_SYMBOL_GPL(sk_setup_caps);
1291
1292 void __init sk_init(void)
1293 {
1294 if (totalram_pages <= 4096) {
1295 sysctl_wmem_max = 32767;
1296 sysctl_rmem_max = 32767;
1297 sysctl_wmem_default = 32767;
1298 sysctl_rmem_default = 32767;
1299 } else if (totalram_pages >= 131072) {
1300 sysctl_wmem_max = 131071;
1301 sysctl_rmem_max = 131071;
1302 }
1303 }
1304
1305 /*
1306 * Simple resource managers for sockets.
1307 */
1308
1309
1310 /*
1311 * Write buffer destructor automatically called from kfree_skb.
1312 */
1313 void sock_wfree(struct sk_buff *skb)
1314 {
1315 struct sock *sk = skb->sk;
1316 unsigned int len = skb->truesize;
1317
1318 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1319 /*
1320 * Keep a reference on sk_wmem_alloc, this will be released
1321 * after sk_write_space() call
1322 */
1323 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1324 sk->sk_write_space(sk);
1325 len = 1;
1326 }
1327 /*
1328 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1329 * could not do because of in-flight packets
1330 */
1331 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1332 __sk_free(sk);
1333 }
1334 EXPORT_SYMBOL(sock_wfree);
1335
1336 /*
1337 * Read buffer destructor automatically called from kfree_skb.
1338 */
1339 void sock_rfree(struct sk_buff *skb)
1340 {
1341 struct sock *sk = skb->sk;
1342 unsigned int len = skb->truesize;
1343
1344 atomic_sub(len, &sk->sk_rmem_alloc);
1345 sk_mem_uncharge(sk, len);
1346 }
1347 EXPORT_SYMBOL(sock_rfree);
1348
1349
1350 int sock_i_uid(struct sock *sk)
1351 {
1352 int uid;
1353
1354 read_lock(&sk->sk_callback_lock);
1355 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1356 read_unlock(&sk->sk_callback_lock);
1357 return uid;
1358 }
1359 EXPORT_SYMBOL(sock_i_uid);
1360
1361 unsigned long sock_i_ino(struct sock *sk)
1362 {
1363 unsigned long ino;
1364
1365 read_lock(&sk->sk_callback_lock);
1366 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1367 read_unlock(&sk->sk_callback_lock);
1368 return ino;
1369 }
1370 EXPORT_SYMBOL(sock_i_ino);
1371
1372 /*
1373 * Allocate a skb from the socket's send buffer.
1374 */
1375 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1376 gfp_t priority)
1377 {
1378 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1379 struct sk_buff *skb = alloc_skb(size, priority);
1380 if (skb) {
1381 skb_set_owner_w(skb, sk);
1382 return skb;
1383 }
1384 }
1385 return NULL;
1386 }
1387 EXPORT_SYMBOL(sock_wmalloc);
1388
1389 /*
1390 * Allocate a skb from the socket's receive buffer.
1391 */
1392 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1393 gfp_t priority)
1394 {
1395 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1396 struct sk_buff *skb = alloc_skb(size, priority);
1397 if (skb) {
1398 skb_set_owner_r(skb, sk);
1399 return skb;
1400 }
1401 }
1402 return NULL;
1403 }
1404
1405 /*
1406 * Allocate a memory block from the socket's option memory buffer.
1407 */
1408 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1409 {
1410 if ((unsigned)size <= sysctl_optmem_max &&
1411 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1412 void *mem;
1413 /* First do the add, to avoid the race if kmalloc
1414 * might sleep.
1415 */
1416 atomic_add(size, &sk->sk_omem_alloc);
1417 mem = kmalloc(size, priority);
1418 if (mem)
1419 return mem;
1420 atomic_sub(size, &sk->sk_omem_alloc);
1421 }
1422 return NULL;
1423 }
1424 EXPORT_SYMBOL(sock_kmalloc);
1425
1426 /*
1427 * Free an option memory block.
1428 */
1429 void sock_kfree_s(struct sock *sk, void *mem, int size)
1430 {
1431 kfree(mem);
1432 atomic_sub(size, &sk->sk_omem_alloc);
1433 }
1434 EXPORT_SYMBOL(sock_kfree_s);
1435
1436 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1437 I think, these locks should be removed for datagram sockets.
1438 */
1439 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1440 {
1441 DEFINE_WAIT(wait);
1442
1443 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1444 for (;;) {
1445 if (!timeo)
1446 break;
1447 if (signal_pending(current))
1448 break;
1449 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1450 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1451 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1452 break;
1453 if (sk->sk_shutdown & SEND_SHUTDOWN)
1454 break;
1455 if (sk->sk_err)
1456 break;
1457 timeo = schedule_timeout(timeo);
1458 }
1459 finish_wait(sk_sleep(sk), &wait);
1460 return timeo;
1461 }
1462
1463
1464 /*
1465 * Generic send/receive buffer handlers
1466 */
1467
1468 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1469 unsigned long data_len, int noblock,
1470 int *errcode)
1471 {
1472 struct sk_buff *skb;
1473 gfp_t gfp_mask;
1474 long timeo;
1475 int err;
1476
1477 gfp_mask = sk->sk_allocation;
1478 if (gfp_mask & __GFP_WAIT)
1479 gfp_mask |= __GFP_REPEAT;
1480
1481 timeo = sock_sndtimeo(sk, noblock);
1482 while (1) {
1483 err = sock_error(sk);
1484 if (err != 0)
1485 goto failure;
1486
1487 err = -EPIPE;
1488 if (sk->sk_shutdown & SEND_SHUTDOWN)
1489 goto failure;
1490
1491 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1492 skb = alloc_skb(header_len, gfp_mask);
1493 if (skb) {
1494 int npages;
1495 int i;
1496
1497 /* No pages, we're done... */
1498 if (!data_len)
1499 break;
1500
1501 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1502 skb->truesize += data_len;
1503 skb_shinfo(skb)->nr_frags = npages;
1504 for (i = 0; i < npages; i++) {
1505 struct page *page;
1506 skb_frag_t *frag;
1507
1508 page = alloc_pages(sk->sk_allocation, 0);
1509 if (!page) {
1510 err = -ENOBUFS;
1511 skb_shinfo(skb)->nr_frags = i;
1512 kfree_skb(skb);
1513 goto failure;
1514 }
1515
1516 frag = &skb_shinfo(skb)->frags[i];
1517 frag->page = page;
1518 frag->page_offset = 0;
1519 frag->size = (data_len >= PAGE_SIZE ?
1520 PAGE_SIZE :
1521 data_len);
1522 data_len -= PAGE_SIZE;
1523 }
1524
1525 /* Full success... */
1526 break;
1527 }
1528 err = -ENOBUFS;
1529 goto failure;
1530 }
1531 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1532 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1533 err = -EAGAIN;
1534 if (!timeo)
1535 goto failure;
1536 if (signal_pending(current))
1537 goto interrupted;
1538 timeo = sock_wait_for_wmem(sk, timeo);
1539 }
1540
1541 skb_set_owner_w(skb, sk);
1542 return skb;
1543
1544 interrupted:
1545 err = sock_intr_errno(timeo);
1546 failure:
1547 *errcode = err;
1548 return NULL;
1549 }
1550 EXPORT_SYMBOL(sock_alloc_send_pskb);
1551
1552 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1553 int noblock, int *errcode)
1554 {
1555 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1556 }
1557 EXPORT_SYMBOL(sock_alloc_send_skb);
1558
1559 static void __lock_sock(struct sock *sk)
1560 {
1561 DEFINE_WAIT(wait);
1562
1563 for (;;) {
1564 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1565 TASK_UNINTERRUPTIBLE);
1566 spin_unlock_bh(&sk->sk_lock.slock);
1567 schedule();
1568 spin_lock_bh(&sk->sk_lock.slock);
1569 if (!sock_owned_by_user(sk))
1570 break;
1571 }
1572 finish_wait(&sk->sk_lock.wq, &wait);
1573 }
1574
1575 static void __release_sock(struct sock *sk)
1576 {
1577 struct sk_buff *skb = sk->sk_backlog.head;
1578
1579 do {
1580 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1581 bh_unlock_sock(sk);
1582
1583 do {
1584 struct sk_buff *next = skb->next;
1585
1586 WARN_ON_ONCE(skb_dst_is_noref(skb));
1587 skb->next = NULL;
1588 sk_backlog_rcv(sk, skb);
1589
1590 /*
1591 * We are in process context here with softirqs
1592 * disabled, use cond_resched_softirq() to preempt.
1593 * This is safe to do because we've taken the backlog
1594 * queue private:
1595 */
1596 cond_resched_softirq();
1597
1598 skb = next;
1599 } while (skb != NULL);
1600
1601 bh_lock_sock(sk);
1602 } while ((skb = sk->sk_backlog.head) != NULL);
1603
1604 /*
1605 * Doing the zeroing here guarantee we can not loop forever
1606 * while a wild producer attempts to flood us.
1607 */
1608 sk->sk_backlog.len = 0;
1609 }
1610
1611 /**
1612 * sk_wait_data - wait for data to arrive at sk_receive_queue
1613 * @sk: sock to wait on
1614 * @timeo: for how long
1615 *
1616 * Now socket state including sk->sk_err is changed only under lock,
1617 * hence we may omit checks after joining wait queue.
1618 * We check receive queue before schedule() only as optimization;
1619 * it is very likely that release_sock() added new data.
1620 */
1621 int sk_wait_data(struct sock *sk, long *timeo)
1622 {
1623 int rc;
1624 DEFINE_WAIT(wait);
1625
1626 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1627 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1628 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1629 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1630 finish_wait(sk_sleep(sk), &wait);
1631 return rc;
1632 }
1633 EXPORT_SYMBOL(sk_wait_data);
1634
1635 /**
1636 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1637 * @sk: socket
1638 * @size: memory size to allocate
1639 * @kind: allocation type
1640 *
1641 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1642 * rmem allocation. This function assumes that protocols which have
1643 * memory_pressure use sk_wmem_queued as write buffer accounting.
1644 */
1645 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1646 {
1647 struct proto *prot = sk->sk_prot;
1648 int amt = sk_mem_pages(size);
1649 int allocated;
1650
1651 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1652 allocated = atomic_add_return(amt, prot->memory_allocated);
1653
1654 /* Under limit. */
1655 if (allocated <= prot->sysctl_mem[0]) {
1656 if (prot->memory_pressure && *prot->memory_pressure)
1657 *prot->memory_pressure = 0;
1658 return 1;
1659 }
1660
1661 /* Under pressure. */
1662 if (allocated > prot->sysctl_mem[1])
1663 if (prot->enter_memory_pressure)
1664 prot->enter_memory_pressure(sk);
1665
1666 /* Over hard limit. */
1667 if (allocated > prot->sysctl_mem[2])
1668 goto suppress_allocation;
1669
1670 /* guarantee minimum buffer size under pressure */
1671 if (kind == SK_MEM_RECV) {
1672 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1673 return 1;
1674 } else { /* SK_MEM_SEND */
1675 if (sk->sk_type == SOCK_STREAM) {
1676 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1677 return 1;
1678 } else if (atomic_read(&sk->sk_wmem_alloc) <
1679 prot->sysctl_wmem[0])
1680 return 1;
1681 }
1682
1683 if (prot->memory_pressure) {
1684 int alloc;
1685
1686 if (!*prot->memory_pressure)
1687 return 1;
1688 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1689 if (prot->sysctl_mem[2] > alloc *
1690 sk_mem_pages(sk->sk_wmem_queued +
1691 atomic_read(&sk->sk_rmem_alloc) +
1692 sk->sk_forward_alloc))
1693 return 1;
1694 }
1695
1696 suppress_allocation:
1697
1698 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1699 sk_stream_moderate_sndbuf(sk);
1700
1701 /* Fail only if socket is _under_ its sndbuf.
1702 * In this case we cannot block, so that we have to fail.
1703 */
1704 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1705 return 1;
1706 }
1707
1708 /* Alas. Undo changes. */
1709 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1710 atomic_sub(amt, prot->memory_allocated);
1711 return 0;
1712 }
1713 EXPORT_SYMBOL(__sk_mem_schedule);
1714
1715 /**
1716 * __sk_reclaim - reclaim memory_allocated
1717 * @sk: socket
1718 */
1719 void __sk_mem_reclaim(struct sock *sk)
1720 {
1721 struct proto *prot = sk->sk_prot;
1722
1723 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1724 prot->memory_allocated);
1725 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1726
1727 if (prot->memory_pressure && *prot->memory_pressure &&
1728 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1729 *prot->memory_pressure = 0;
1730 }
1731 EXPORT_SYMBOL(__sk_mem_reclaim);
1732
1733
1734 /*
1735 * Set of default routines for initialising struct proto_ops when
1736 * the protocol does not support a particular function. In certain
1737 * cases where it makes no sense for a protocol to have a "do nothing"
1738 * function, some default processing is provided.
1739 */
1740
1741 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1742 {
1743 return -EOPNOTSUPP;
1744 }
1745 EXPORT_SYMBOL(sock_no_bind);
1746
1747 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1748 int len, int flags)
1749 {
1750 return -EOPNOTSUPP;
1751 }
1752 EXPORT_SYMBOL(sock_no_connect);
1753
1754 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1755 {
1756 return -EOPNOTSUPP;
1757 }
1758 EXPORT_SYMBOL(sock_no_socketpair);
1759
1760 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1761 {
1762 return -EOPNOTSUPP;
1763 }
1764 EXPORT_SYMBOL(sock_no_accept);
1765
1766 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1767 int *len, int peer)
1768 {
1769 return -EOPNOTSUPP;
1770 }
1771 EXPORT_SYMBOL(sock_no_getname);
1772
1773 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1774 {
1775 return 0;
1776 }
1777 EXPORT_SYMBOL(sock_no_poll);
1778
1779 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1780 {
1781 return -EOPNOTSUPP;
1782 }
1783 EXPORT_SYMBOL(sock_no_ioctl);
1784
1785 int sock_no_listen(struct socket *sock, int backlog)
1786 {
1787 return -EOPNOTSUPP;
1788 }
1789 EXPORT_SYMBOL(sock_no_listen);
1790
1791 int sock_no_shutdown(struct socket *sock, int how)
1792 {
1793 return -EOPNOTSUPP;
1794 }
1795 EXPORT_SYMBOL(sock_no_shutdown);
1796
1797 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1798 char __user *optval, unsigned int optlen)
1799 {
1800 return -EOPNOTSUPP;
1801 }
1802 EXPORT_SYMBOL(sock_no_setsockopt);
1803
1804 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1805 char __user *optval, int __user *optlen)
1806 {
1807 return -EOPNOTSUPP;
1808 }
1809 EXPORT_SYMBOL(sock_no_getsockopt);
1810
1811 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1812 size_t len)
1813 {
1814 return -EOPNOTSUPP;
1815 }
1816 EXPORT_SYMBOL(sock_no_sendmsg);
1817
1818 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1819 size_t len, int flags)
1820 {
1821 return -EOPNOTSUPP;
1822 }
1823 EXPORT_SYMBOL(sock_no_recvmsg);
1824
1825 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1826 {
1827 /* Mirror missing mmap method error code */
1828 return -ENODEV;
1829 }
1830 EXPORT_SYMBOL(sock_no_mmap);
1831
1832 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1833 {
1834 ssize_t res;
1835 struct msghdr msg = {.msg_flags = flags};
1836 struct kvec iov;
1837 char *kaddr = kmap(page);
1838 iov.iov_base = kaddr + offset;
1839 iov.iov_len = size;
1840 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1841 kunmap(page);
1842 return res;
1843 }
1844 EXPORT_SYMBOL(sock_no_sendpage);
1845
1846 /*
1847 * Default Socket Callbacks
1848 */
1849
1850 static void sock_def_wakeup(struct sock *sk)
1851 {
1852 struct socket_wq *wq;
1853
1854 rcu_read_lock();
1855 wq = rcu_dereference(sk->sk_wq);
1856 if (wq_has_sleeper(wq))
1857 wake_up_interruptible_all(&wq->wait);
1858 rcu_read_unlock();
1859 }
1860
1861 static void sock_def_error_report(struct sock *sk)
1862 {
1863 struct socket_wq *wq;
1864
1865 rcu_read_lock();
1866 wq = rcu_dereference(sk->sk_wq);
1867 if (wq_has_sleeper(wq))
1868 wake_up_interruptible_poll(&wq->wait, POLLERR);
1869 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1870 rcu_read_unlock();
1871 }
1872
1873 static void sock_def_readable(struct sock *sk, int len)
1874 {
1875 struct socket_wq *wq;
1876
1877 rcu_read_lock();
1878 wq = rcu_dereference(sk->sk_wq);
1879 if (wq_has_sleeper(wq))
1880 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
1881 POLLRDNORM | POLLRDBAND);
1882 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1883 rcu_read_unlock();
1884 }
1885
1886 static void sock_def_write_space(struct sock *sk)
1887 {
1888 struct socket_wq *wq;
1889
1890 rcu_read_lock();
1891
1892 /* Do not wake up a writer until he can make "significant"
1893 * progress. --DaveM
1894 */
1895 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1896 wq = rcu_dereference(sk->sk_wq);
1897 if (wq_has_sleeper(wq))
1898 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
1899 POLLWRNORM | POLLWRBAND);
1900
1901 /* Should agree with poll, otherwise some programs break */
1902 if (sock_writeable(sk))
1903 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1904 }
1905
1906 rcu_read_unlock();
1907 }
1908
1909 static void sock_def_destruct(struct sock *sk)
1910 {
1911 kfree(sk->sk_protinfo);
1912 }
1913
1914 void sk_send_sigurg(struct sock *sk)
1915 {
1916 if (sk->sk_socket && sk->sk_socket->file)
1917 if (send_sigurg(&sk->sk_socket->file->f_owner))
1918 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1919 }
1920 EXPORT_SYMBOL(sk_send_sigurg);
1921
1922 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1923 unsigned long expires)
1924 {
1925 if (!mod_timer(timer, expires))
1926 sock_hold(sk);
1927 }
1928 EXPORT_SYMBOL(sk_reset_timer);
1929
1930 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1931 {
1932 if (timer_pending(timer) && del_timer(timer))
1933 __sock_put(sk);
1934 }
1935 EXPORT_SYMBOL(sk_stop_timer);
1936
1937 void sock_init_data(struct socket *sock, struct sock *sk)
1938 {
1939 skb_queue_head_init(&sk->sk_receive_queue);
1940 skb_queue_head_init(&sk->sk_write_queue);
1941 skb_queue_head_init(&sk->sk_error_queue);
1942 #ifdef CONFIG_NET_DMA
1943 skb_queue_head_init(&sk->sk_async_wait_queue);
1944 #endif
1945
1946 sk->sk_send_head = NULL;
1947
1948 init_timer(&sk->sk_timer);
1949
1950 sk->sk_allocation = GFP_KERNEL;
1951 sk->sk_rcvbuf = sysctl_rmem_default;
1952 sk->sk_sndbuf = sysctl_wmem_default;
1953 sk->sk_state = TCP_CLOSE;
1954 sk_set_socket(sk, sock);
1955
1956 sock_set_flag(sk, SOCK_ZAPPED);
1957
1958 if (sock) {
1959 sk->sk_type = sock->type;
1960 sk->sk_wq = sock->wq;
1961 sock->sk = sk;
1962 } else
1963 sk->sk_wq = NULL;
1964
1965 spin_lock_init(&sk->sk_dst_lock);
1966 rwlock_init(&sk->sk_callback_lock);
1967 lockdep_set_class_and_name(&sk->sk_callback_lock,
1968 af_callback_keys + sk->sk_family,
1969 af_family_clock_key_strings[sk->sk_family]);
1970
1971 sk->sk_state_change = sock_def_wakeup;
1972 sk->sk_data_ready = sock_def_readable;
1973 sk->sk_write_space = sock_def_write_space;
1974 sk->sk_error_report = sock_def_error_report;
1975 sk->sk_destruct = sock_def_destruct;
1976
1977 sk->sk_sndmsg_page = NULL;
1978 sk->sk_sndmsg_off = 0;
1979
1980 sk->sk_peer_pid = NULL;
1981 sk->sk_peer_cred = NULL;
1982 sk->sk_write_pending = 0;
1983 sk->sk_rcvlowat = 1;
1984 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1985 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1986
1987 sk->sk_stamp = ktime_set(-1L, 0);
1988
1989 /*
1990 * Before updating sk_refcnt, we must commit prior changes to memory
1991 * (Documentation/RCU/rculist_nulls.txt for details)
1992 */
1993 smp_wmb();
1994 atomic_set(&sk->sk_refcnt, 1);
1995 atomic_set(&sk->sk_drops, 0);
1996 }
1997 EXPORT_SYMBOL(sock_init_data);
1998
1999 void lock_sock_nested(struct sock *sk, int subclass)
2000 {
2001 might_sleep();
2002 spin_lock_bh(&sk->sk_lock.slock);
2003 if (sk->sk_lock.owned)
2004 __lock_sock(sk);
2005 sk->sk_lock.owned = 1;
2006 spin_unlock(&sk->sk_lock.slock);
2007 /*
2008 * The sk_lock has mutex_lock() semantics here:
2009 */
2010 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2011 local_bh_enable();
2012 }
2013 EXPORT_SYMBOL(lock_sock_nested);
2014
2015 void release_sock(struct sock *sk)
2016 {
2017 /*
2018 * The sk_lock has mutex_unlock() semantics:
2019 */
2020 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2021
2022 spin_lock_bh(&sk->sk_lock.slock);
2023 if (sk->sk_backlog.tail)
2024 __release_sock(sk);
2025 sk->sk_lock.owned = 0;
2026 if (waitqueue_active(&sk->sk_lock.wq))
2027 wake_up(&sk->sk_lock.wq);
2028 spin_unlock_bh(&sk->sk_lock.slock);
2029 }
2030 EXPORT_SYMBOL(release_sock);
2031
2032 /**
2033 * lock_sock_fast - fast version of lock_sock
2034 * @sk: socket
2035 *
2036 * This version should be used for very small section, where process wont block
2037 * return false if fast path is taken
2038 * sk_lock.slock locked, owned = 0, BH disabled
2039 * return true if slow path is taken
2040 * sk_lock.slock unlocked, owned = 1, BH enabled
2041 */
2042 bool lock_sock_fast(struct sock *sk)
2043 {
2044 might_sleep();
2045 spin_lock_bh(&sk->sk_lock.slock);
2046
2047 if (!sk->sk_lock.owned)
2048 /*
2049 * Note : We must disable BH
2050 */
2051 return false;
2052
2053 __lock_sock(sk);
2054 sk->sk_lock.owned = 1;
2055 spin_unlock(&sk->sk_lock.slock);
2056 /*
2057 * The sk_lock has mutex_lock() semantics here:
2058 */
2059 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2060 local_bh_enable();
2061 return true;
2062 }
2063 EXPORT_SYMBOL(lock_sock_fast);
2064
2065 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2066 {
2067 struct timeval tv;
2068 if (!sock_flag(sk, SOCK_TIMESTAMP))
2069 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2070 tv = ktime_to_timeval(sk->sk_stamp);
2071 if (tv.tv_sec == -1)
2072 return -ENOENT;
2073 if (tv.tv_sec == 0) {
2074 sk->sk_stamp = ktime_get_real();
2075 tv = ktime_to_timeval(sk->sk_stamp);
2076 }
2077 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2078 }
2079 EXPORT_SYMBOL(sock_get_timestamp);
2080
2081 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2082 {
2083 struct timespec ts;
2084 if (!sock_flag(sk, SOCK_TIMESTAMP))
2085 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2086 ts = ktime_to_timespec(sk->sk_stamp);
2087 if (ts.tv_sec == -1)
2088 return -ENOENT;
2089 if (ts.tv_sec == 0) {
2090 sk->sk_stamp = ktime_get_real();
2091 ts = ktime_to_timespec(sk->sk_stamp);
2092 }
2093 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2094 }
2095 EXPORT_SYMBOL(sock_get_timestampns);
2096
2097 void sock_enable_timestamp(struct sock *sk, int flag)
2098 {
2099 if (!sock_flag(sk, flag)) {
2100 sock_set_flag(sk, flag);
2101 /*
2102 * we just set one of the two flags which require net
2103 * time stamping, but time stamping might have been on
2104 * already because of the other one
2105 */
2106 if (!sock_flag(sk,
2107 flag == SOCK_TIMESTAMP ?
2108 SOCK_TIMESTAMPING_RX_SOFTWARE :
2109 SOCK_TIMESTAMP))
2110 net_enable_timestamp();
2111 }
2112 }
2113
2114 /*
2115 * Get a socket option on an socket.
2116 *
2117 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2118 * asynchronous errors should be reported by getsockopt. We assume
2119 * this means if you specify SO_ERROR (otherwise whats the point of it).
2120 */
2121 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2122 char __user *optval, int __user *optlen)
2123 {
2124 struct sock *sk = sock->sk;
2125
2126 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2127 }
2128 EXPORT_SYMBOL(sock_common_getsockopt);
2129
2130 #ifdef CONFIG_COMPAT
2131 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2132 char __user *optval, int __user *optlen)
2133 {
2134 struct sock *sk = sock->sk;
2135
2136 if (sk->sk_prot->compat_getsockopt != NULL)
2137 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2138 optval, optlen);
2139 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2140 }
2141 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2142 #endif
2143
2144 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2145 struct msghdr *msg, size_t size, int flags)
2146 {
2147 struct sock *sk = sock->sk;
2148 int addr_len = 0;
2149 int err;
2150
2151 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2152 flags & ~MSG_DONTWAIT, &addr_len);
2153 if (err >= 0)
2154 msg->msg_namelen = addr_len;
2155 return err;
2156 }
2157 EXPORT_SYMBOL(sock_common_recvmsg);
2158
2159 /*
2160 * Set socket options on an inet socket.
2161 */
2162 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2163 char __user *optval, unsigned int optlen)
2164 {
2165 struct sock *sk = sock->sk;
2166
2167 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2168 }
2169 EXPORT_SYMBOL(sock_common_setsockopt);
2170
2171 #ifdef CONFIG_COMPAT
2172 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2173 char __user *optval, unsigned int optlen)
2174 {
2175 struct sock *sk = sock->sk;
2176
2177 if (sk->sk_prot->compat_setsockopt != NULL)
2178 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2179 optval, optlen);
2180 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2181 }
2182 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2183 #endif
2184
2185 void sk_common_release(struct sock *sk)
2186 {
2187 if (sk->sk_prot->destroy)
2188 sk->sk_prot->destroy(sk);
2189
2190 /*
2191 * Observation: when sock_common_release is called, processes have
2192 * no access to socket. But net still has.
2193 * Step one, detach it from networking:
2194 *
2195 * A. Remove from hash tables.
2196 */
2197
2198 sk->sk_prot->unhash(sk);
2199
2200 /*
2201 * In this point socket cannot receive new packets, but it is possible
2202 * that some packets are in flight because some CPU runs receiver and
2203 * did hash table lookup before we unhashed socket. They will achieve
2204 * receive queue and will be purged by socket destructor.
2205 *
2206 * Also we still have packets pending on receive queue and probably,
2207 * our own packets waiting in device queues. sock_destroy will drain
2208 * receive queue, but transmitted packets will delay socket destruction
2209 * until the last reference will be released.
2210 */
2211
2212 sock_orphan(sk);
2213
2214 xfrm_sk_free_policy(sk);
2215
2216 sk_refcnt_debug_release(sk);
2217 sock_put(sk);
2218 }
2219 EXPORT_SYMBOL(sk_common_release);
2220
2221 static DEFINE_RWLOCK(proto_list_lock);
2222 static LIST_HEAD(proto_list);
2223
2224 #ifdef CONFIG_PROC_FS
2225 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2226 struct prot_inuse {
2227 int val[PROTO_INUSE_NR];
2228 };
2229
2230 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2231
2232 #ifdef CONFIG_NET_NS
2233 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2234 {
2235 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2236 }
2237 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2238
2239 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2240 {
2241 int cpu, idx = prot->inuse_idx;
2242 int res = 0;
2243
2244 for_each_possible_cpu(cpu)
2245 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2246
2247 return res >= 0 ? res : 0;
2248 }
2249 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2250
2251 static int __net_init sock_inuse_init_net(struct net *net)
2252 {
2253 net->core.inuse = alloc_percpu(struct prot_inuse);
2254 return net->core.inuse ? 0 : -ENOMEM;
2255 }
2256
2257 static void __net_exit sock_inuse_exit_net(struct net *net)
2258 {
2259 free_percpu(net->core.inuse);
2260 }
2261
2262 static struct pernet_operations net_inuse_ops = {
2263 .init = sock_inuse_init_net,
2264 .exit = sock_inuse_exit_net,
2265 };
2266
2267 static __init int net_inuse_init(void)
2268 {
2269 if (register_pernet_subsys(&net_inuse_ops))
2270 panic("Cannot initialize net inuse counters");
2271
2272 return 0;
2273 }
2274
2275 core_initcall(net_inuse_init);
2276 #else
2277 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2278
2279 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2280 {
2281 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2282 }
2283 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2284
2285 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2286 {
2287 int cpu, idx = prot->inuse_idx;
2288 int res = 0;
2289
2290 for_each_possible_cpu(cpu)
2291 res += per_cpu(prot_inuse, cpu).val[idx];
2292
2293 return res >= 0 ? res : 0;
2294 }
2295 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2296 #endif
2297
2298 static void assign_proto_idx(struct proto *prot)
2299 {
2300 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2301
2302 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2303 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2304 return;
2305 }
2306
2307 set_bit(prot->inuse_idx, proto_inuse_idx);
2308 }
2309
2310 static void release_proto_idx(struct proto *prot)
2311 {
2312 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2313 clear_bit(prot->inuse_idx, proto_inuse_idx);
2314 }
2315 #else
2316 static inline void assign_proto_idx(struct proto *prot)
2317 {
2318 }
2319
2320 static inline void release_proto_idx(struct proto *prot)
2321 {
2322 }
2323 #endif
2324
2325 int proto_register(struct proto *prot, int alloc_slab)
2326 {
2327 if (alloc_slab) {
2328 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2329 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2330 NULL);
2331
2332 if (prot->slab == NULL) {
2333 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2334 prot->name);
2335 goto out;
2336 }
2337
2338 if (prot->rsk_prot != NULL) {
2339 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2340 if (prot->rsk_prot->slab_name == NULL)
2341 goto out_free_sock_slab;
2342
2343 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2344 prot->rsk_prot->obj_size, 0,
2345 SLAB_HWCACHE_ALIGN, NULL);
2346
2347 if (prot->rsk_prot->slab == NULL) {
2348 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2349 prot->name);
2350 goto out_free_request_sock_slab_name;
2351 }
2352 }
2353
2354 if (prot->twsk_prot != NULL) {
2355 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2356
2357 if (prot->twsk_prot->twsk_slab_name == NULL)
2358 goto out_free_request_sock_slab;
2359
2360 prot->twsk_prot->twsk_slab =
2361 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2362 prot->twsk_prot->twsk_obj_size,
2363 0,
2364 SLAB_HWCACHE_ALIGN |
2365 prot->slab_flags,
2366 NULL);
2367 if (prot->twsk_prot->twsk_slab == NULL)
2368 goto out_free_timewait_sock_slab_name;
2369 }
2370 }
2371
2372 write_lock(&proto_list_lock);
2373 list_add(&prot->node, &proto_list);
2374 assign_proto_idx(prot);
2375 write_unlock(&proto_list_lock);
2376 return 0;
2377
2378 out_free_timewait_sock_slab_name:
2379 kfree(prot->twsk_prot->twsk_slab_name);
2380 out_free_request_sock_slab:
2381 if (prot->rsk_prot && prot->rsk_prot->slab) {
2382 kmem_cache_destroy(prot->rsk_prot->slab);
2383 prot->rsk_prot->slab = NULL;
2384 }
2385 out_free_request_sock_slab_name:
2386 if (prot->rsk_prot)
2387 kfree(prot->rsk_prot->slab_name);
2388 out_free_sock_slab:
2389 kmem_cache_destroy(prot->slab);
2390 prot->slab = NULL;
2391 out:
2392 return -ENOBUFS;
2393 }
2394 EXPORT_SYMBOL(proto_register);
2395
2396 void proto_unregister(struct proto *prot)
2397 {
2398 write_lock(&proto_list_lock);
2399 release_proto_idx(prot);
2400 list_del(&prot->node);
2401 write_unlock(&proto_list_lock);
2402
2403 if (prot->slab != NULL) {
2404 kmem_cache_destroy(prot->slab);
2405 prot->slab = NULL;
2406 }
2407
2408 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2409 kmem_cache_destroy(prot->rsk_prot->slab);
2410 kfree(prot->rsk_prot->slab_name);
2411 prot->rsk_prot->slab = NULL;
2412 }
2413
2414 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2415 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2416 kfree(prot->twsk_prot->twsk_slab_name);
2417 prot->twsk_prot->twsk_slab = NULL;
2418 }
2419 }
2420 EXPORT_SYMBOL(proto_unregister);
2421
2422 #ifdef CONFIG_PROC_FS
2423 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2424 __acquires(proto_list_lock)
2425 {
2426 read_lock(&proto_list_lock);
2427 return seq_list_start_head(&proto_list, *pos);
2428 }
2429
2430 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2431 {
2432 return seq_list_next(v, &proto_list, pos);
2433 }
2434
2435 static void proto_seq_stop(struct seq_file *seq, void *v)
2436 __releases(proto_list_lock)
2437 {
2438 read_unlock(&proto_list_lock);
2439 }
2440
2441 static char proto_method_implemented(const void *method)
2442 {
2443 return method == NULL ? 'n' : 'y';
2444 }
2445
2446 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2447 {
2448 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2449 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2450 proto->name,
2451 proto->obj_size,
2452 sock_prot_inuse_get(seq_file_net(seq), proto),
2453 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2454 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2455 proto->max_header,
2456 proto->slab == NULL ? "no" : "yes",
2457 module_name(proto->owner),
2458 proto_method_implemented(proto->close),
2459 proto_method_implemented(proto->connect),
2460 proto_method_implemented(proto->disconnect),
2461 proto_method_implemented(proto->accept),
2462 proto_method_implemented(proto->ioctl),
2463 proto_method_implemented(proto->init),
2464 proto_method_implemented(proto->destroy),
2465 proto_method_implemented(proto->shutdown),
2466 proto_method_implemented(proto->setsockopt),
2467 proto_method_implemented(proto->getsockopt),
2468 proto_method_implemented(proto->sendmsg),
2469 proto_method_implemented(proto->recvmsg),
2470 proto_method_implemented(proto->sendpage),
2471 proto_method_implemented(proto->bind),
2472 proto_method_implemented(proto->backlog_rcv),
2473 proto_method_implemented(proto->hash),
2474 proto_method_implemented(proto->unhash),
2475 proto_method_implemented(proto->get_port),
2476 proto_method_implemented(proto->enter_memory_pressure));
2477 }
2478
2479 static int proto_seq_show(struct seq_file *seq, void *v)
2480 {
2481 if (v == &proto_list)
2482 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2483 "protocol",
2484 "size",
2485 "sockets",
2486 "memory",
2487 "press",
2488 "maxhdr",
2489 "slab",
2490 "module",
2491 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2492 else
2493 proto_seq_printf(seq, list_entry(v, struct proto, node));
2494 return 0;
2495 }
2496
2497 static const struct seq_operations proto_seq_ops = {
2498 .start = proto_seq_start,
2499 .next = proto_seq_next,
2500 .stop = proto_seq_stop,
2501 .show = proto_seq_show,
2502 };
2503
2504 static int proto_seq_open(struct inode *inode, struct file *file)
2505 {
2506 return seq_open_net(inode, file, &proto_seq_ops,
2507 sizeof(struct seq_net_private));
2508 }
2509
2510 static const struct file_operations proto_seq_fops = {
2511 .owner = THIS_MODULE,
2512 .open = proto_seq_open,
2513 .read = seq_read,
2514 .llseek = seq_lseek,
2515 .release = seq_release_net,
2516 };
2517
2518 static __net_init int proto_init_net(struct net *net)
2519 {
2520 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2521 return -ENOMEM;
2522
2523 return 0;
2524 }
2525
2526 static __net_exit void proto_exit_net(struct net *net)
2527 {
2528 proc_net_remove(net, "protocols");
2529 }
2530
2531
2532 static __net_initdata struct pernet_operations proto_net_ops = {
2533 .init = proto_init_net,
2534 .exit = proto_exit_net,
2535 };
2536
2537 static int __init proto_init(void)
2538 {
2539 return register_pernet_subsys(&proto_net_ops);
2540 }
2541
2542 subsys_initcall(proto_init);
2543
2544 #endif /* PROC_FS */