]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - net/core/sock.c
ACPI / PCI: fix acpi_pci_irq_enable() memory leak
[mirror_ubuntu-focal-kernel.git] / net / core / sock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 */
85
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
116
117 #include <linux/uaccess.h>
118
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <linux/net_tstamp.h>
126 #include <net/xfrm.h>
127 #include <linux/ipsec.h>
128 #include <net/cls_cgroup.h>
129 #include <net/netprio_cgroup.h>
130 #include <linux/sock_diag.h>
131
132 #include <linux/filter.h>
133 #include <net/sock_reuseport.h>
134 #include <net/bpf_sk_storage.h>
135
136 #include <trace/events/sock.h>
137
138 #include <net/tcp.h>
139 #include <net/busy_poll.h>
140
141 static DEFINE_MUTEX(proto_list_mutex);
142 static LIST_HEAD(proto_list);
143
144 static void sock_inuse_add(struct net *net, int val);
145
146 /**
147 * sk_ns_capable - General socket capability test
148 * @sk: Socket to use a capability on or through
149 * @user_ns: The user namespace of the capability to use
150 * @cap: The capability to use
151 *
152 * Test to see if the opener of the socket had when the socket was
153 * created and the current process has the capability @cap in the user
154 * namespace @user_ns.
155 */
156 bool sk_ns_capable(const struct sock *sk,
157 struct user_namespace *user_ns, int cap)
158 {
159 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
160 ns_capable(user_ns, cap);
161 }
162 EXPORT_SYMBOL(sk_ns_capable);
163
164 /**
165 * sk_capable - Socket global capability test
166 * @sk: Socket to use a capability on or through
167 * @cap: The global capability to use
168 *
169 * Test to see if the opener of the socket had when the socket was
170 * created and the current process has the capability @cap in all user
171 * namespaces.
172 */
173 bool sk_capable(const struct sock *sk, int cap)
174 {
175 return sk_ns_capable(sk, &init_user_ns, cap);
176 }
177 EXPORT_SYMBOL(sk_capable);
178
179 /**
180 * sk_net_capable - Network namespace socket capability test
181 * @sk: Socket to use a capability on or through
182 * @cap: The capability to use
183 *
184 * Test to see if the opener of the socket had when the socket was created
185 * and the current process has the capability @cap over the network namespace
186 * the socket is a member of.
187 */
188 bool sk_net_capable(const struct sock *sk, int cap)
189 {
190 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
191 }
192 EXPORT_SYMBOL(sk_net_capable);
193
194 /*
195 * Each address family might have different locking rules, so we have
196 * one slock key per address family and separate keys for internal and
197 * userspace sockets.
198 */
199 static struct lock_class_key af_family_keys[AF_MAX];
200 static struct lock_class_key af_family_kern_keys[AF_MAX];
201 static struct lock_class_key af_family_slock_keys[AF_MAX];
202 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
203
204 /*
205 * Make lock validator output more readable. (we pre-construct these
206 * strings build-time, so that runtime initialization of socket
207 * locks is fast):
208 */
209
210 #define _sock_locks(x) \
211 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
212 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
213 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
214 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
215 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
216 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
217 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
218 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
219 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
220 x "27" , x "28" , x "AF_CAN" , \
221 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
222 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
223 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
224 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
225 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
226 x "AF_MAX"
227
228 static const char *const af_family_key_strings[AF_MAX+1] = {
229 _sock_locks("sk_lock-")
230 };
231 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
232 _sock_locks("slock-")
233 };
234 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
235 _sock_locks("clock-")
236 };
237
238 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
239 _sock_locks("k-sk_lock-")
240 };
241 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
242 _sock_locks("k-slock-")
243 };
244 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
245 _sock_locks("k-clock-")
246 };
247 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
248 _sock_locks("rlock-")
249 };
250 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
251 _sock_locks("wlock-")
252 };
253 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
254 _sock_locks("elock-")
255 };
256
257 /*
258 * sk_callback_lock and sk queues locking rules are per-address-family,
259 * so split the lock classes by using a per-AF key:
260 */
261 static struct lock_class_key af_callback_keys[AF_MAX];
262 static struct lock_class_key af_rlock_keys[AF_MAX];
263 static struct lock_class_key af_wlock_keys[AF_MAX];
264 static struct lock_class_key af_elock_keys[AF_MAX];
265 static struct lock_class_key af_kern_callback_keys[AF_MAX];
266
267 /* Run time adjustable parameters. */
268 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
269 EXPORT_SYMBOL(sysctl_wmem_max);
270 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
271 EXPORT_SYMBOL(sysctl_rmem_max);
272 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
273 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
274
275 /* Maximal space eaten by iovec or ancillary data plus some space */
276 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
277 EXPORT_SYMBOL(sysctl_optmem_max);
278
279 int sysctl_tstamp_allow_data __read_mostly = 1;
280
281 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
282 EXPORT_SYMBOL_GPL(memalloc_socks_key);
283
284 /**
285 * sk_set_memalloc - sets %SOCK_MEMALLOC
286 * @sk: socket to set it on
287 *
288 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
289 * It's the responsibility of the admin to adjust min_free_kbytes
290 * to meet the requirements
291 */
292 void sk_set_memalloc(struct sock *sk)
293 {
294 sock_set_flag(sk, SOCK_MEMALLOC);
295 sk->sk_allocation |= __GFP_MEMALLOC;
296 static_branch_inc(&memalloc_socks_key);
297 }
298 EXPORT_SYMBOL_GPL(sk_set_memalloc);
299
300 void sk_clear_memalloc(struct sock *sk)
301 {
302 sock_reset_flag(sk, SOCK_MEMALLOC);
303 sk->sk_allocation &= ~__GFP_MEMALLOC;
304 static_branch_dec(&memalloc_socks_key);
305
306 /*
307 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
308 * progress of swapping. SOCK_MEMALLOC may be cleared while
309 * it has rmem allocations due to the last swapfile being deactivated
310 * but there is a risk that the socket is unusable due to exceeding
311 * the rmem limits. Reclaim the reserves and obey rmem limits again.
312 */
313 sk_mem_reclaim(sk);
314 }
315 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
316
317 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
318 {
319 int ret;
320 unsigned int noreclaim_flag;
321
322 /* these should have been dropped before queueing */
323 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
324
325 noreclaim_flag = memalloc_noreclaim_save();
326 ret = sk->sk_backlog_rcv(sk, skb);
327 memalloc_noreclaim_restore(noreclaim_flag);
328
329 return ret;
330 }
331 EXPORT_SYMBOL(__sk_backlog_rcv);
332
333 static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
334 {
335 struct __kernel_sock_timeval tv;
336 int size;
337
338 if (timeo == MAX_SCHEDULE_TIMEOUT) {
339 tv.tv_sec = 0;
340 tv.tv_usec = 0;
341 } else {
342 tv.tv_sec = timeo / HZ;
343 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
344 }
345
346 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
347 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
348 *(struct old_timeval32 *)optval = tv32;
349 return sizeof(tv32);
350 }
351
352 if (old_timeval) {
353 struct __kernel_old_timeval old_tv;
354 old_tv.tv_sec = tv.tv_sec;
355 old_tv.tv_usec = tv.tv_usec;
356 *(struct __kernel_old_timeval *)optval = old_tv;
357 size = sizeof(old_tv);
358 } else {
359 *(struct __kernel_sock_timeval *)optval = tv;
360 size = sizeof(tv);
361 }
362
363 return size;
364 }
365
366 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen, bool old_timeval)
367 {
368 struct __kernel_sock_timeval tv;
369
370 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
371 struct old_timeval32 tv32;
372
373 if (optlen < sizeof(tv32))
374 return -EINVAL;
375
376 if (copy_from_user(&tv32, optval, sizeof(tv32)))
377 return -EFAULT;
378 tv.tv_sec = tv32.tv_sec;
379 tv.tv_usec = tv32.tv_usec;
380 } else if (old_timeval) {
381 struct __kernel_old_timeval old_tv;
382
383 if (optlen < sizeof(old_tv))
384 return -EINVAL;
385 if (copy_from_user(&old_tv, optval, sizeof(old_tv)))
386 return -EFAULT;
387 tv.tv_sec = old_tv.tv_sec;
388 tv.tv_usec = old_tv.tv_usec;
389 } else {
390 if (optlen < sizeof(tv))
391 return -EINVAL;
392 if (copy_from_user(&tv, optval, sizeof(tv)))
393 return -EFAULT;
394 }
395 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
396 return -EDOM;
397
398 if (tv.tv_sec < 0) {
399 static int warned __read_mostly;
400
401 *timeo_p = 0;
402 if (warned < 10 && net_ratelimit()) {
403 warned++;
404 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
405 __func__, current->comm, task_pid_nr(current));
406 }
407 return 0;
408 }
409 *timeo_p = MAX_SCHEDULE_TIMEOUT;
410 if (tv.tv_sec == 0 && tv.tv_usec == 0)
411 return 0;
412 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
413 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
414 return 0;
415 }
416
417 static void sock_warn_obsolete_bsdism(const char *name)
418 {
419 static int warned;
420 static char warncomm[TASK_COMM_LEN];
421 if (strcmp(warncomm, current->comm) && warned < 5) {
422 strcpy(warncomm, current->comm);
423 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
424 warncomm, name);
425 warned++;
426 }
427 }
428
429 static bool sock_needs_netstamp(const struct sock *sk)
430 {
431 switch (sk->sk_family) {
432 case AF_UNSPEC:
433 case AF_UNIX:
434 return false;
435 default:
436 return true;
437 }
438 }
439
440 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
441 {
442 if (sk->sk_flags & flags) {
443 sk->sk_flags &= ~flags;
444 if (sock_needs_netstamp(sk) &&
445 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
446 net_disable_timestamp();
447 }
448 }
449
450
451 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
452 {
453 unsigned long flags;
454 struct sk_buff_head *list = &sk->sk_receive_queue;
455
456 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
457 atomic_inc(&sk->sk_drops);
458 trace_sock_rcvqueue_full(sk, skb);
459 return -ENOMEM;
460 }
461
462 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
463 atomic_inc(&sk->sk_drops);
464 return -ENOBUFS;
465 }
466
467 skb->dev = NULL;
468 skb_set_owner_r(skb, sk);
469
470 /* we escape from rcu protected region, make sure we dont leak
471 * a norefcounted dst
472 */
473 skb_dst_force(skb);
474
475 spin_lock_irqsave(&list->lock, flags);
476 sock_skb_set_dropcount(sk, skb);
477 __skb_queue_tail(list, skb);
478 spin_unlock_irqrestore(&list->lock, flags);
479
480 if (!sock_flag(sk, SOCK_DEAD))
481 sk->sk_data_ready(sk);
482 return 0;
483 }
484 EXPORT_SYMBOL(__sock_queue_rcv_skb);
485
486 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
487 {
488 int err;
489
490 err = sk_filter(sk, skb);
491 if (err)
492 return err;
493
494 return __sock_queue_rcv_skb(sk, skb);
495 }
496 EXPORT_SYMBOL(sock_queue_rcv_skb);
497
498 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
499 const int nested, unsigned int trim_cap, bool refcounted)
500 {
501 int rc = NET_RX_SUCCESS;
502
503 if (sk_filter_trim_cap(sk, skb, trim_cap))
504 goto discard_and_relse;
505
506 skb->dev = NULL;
507
508 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
509 atomic_inc(&sk->sk_drops);
510 goto discard_and_relse;
511 }
512 if (nested)
513 bh_lock_sock_nested(sk);
514 else
515 bh_lock_sock(sk);
516 if (!sock_owned_by_user(sk)) {
517 /*
518 * trylock + unlock semantics:
519 */
520 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
521
522 rc = sk_backlog_rcv(sk, skb);
523
524 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
525 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
526 bh_unlock_sock(sk);
527 atomic_inc(&sk->sk_drops);
528 goto discard_and_relse;
529 }
530
531 bh_unlock_sock(sk);
532 out:
533 if (refcounted)
534 sock_put(sk);
535 return rc;
536 discard_and_relse:
537 kfree_skb(skb);
538 goto out;
539 }
540 EXPORT_SYMBOL(__sk_receive_skb);
541
542 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
543 {
544 struct dst_entry *dst = __sk_dst_get(sk);
545
546 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
547 sk_tx_queue_clear(sk);
548 sk->sk_dst_pending_confirm = 0;
549 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
550 dst_release(dst);
551 return NULL;
552 }
553
554 return dst;
555 }
556 EXPORT_SYMBOL(__sk_dst_check);
557
558 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
559 {
560 struct dst_entry *dst = sk_dst_get(sk);
561
562 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
563 sk_dst_reset(sk);
564 dst_release(dst);
565 return NULL;
566 }
567
568 return dst;
569 }
570 EXPORT_SYMBOL(sk_dst_check);
571
572 static int sock_setbindtodevice_locked(struct sock *sk, int ifindex)
573 {
574 int ret = -ENOPROTOOPT;
575 #ifdef CONFIG_NETDEVICES
576 struct net *net = sock_net(sk);
577
578 /* Sorry... */
579 ret = -EPERM;
580 if (!ns_capable(net->user_ns, CAP_NET_RAW))
581 goto out;
582
583 ret = -EINVAL;
584 if (ifindex < 0)
585 goto out;
586
587 sk->sk_bound_dev_if = ifindex;
588 if (sk->sk_prot->rehash)
589 sk->sk_prot->rehash(sk);
590 sk_dst_reset(sk);
591
592 ret = 0;
593
594 out:
595 #endif
596
597 return ret;
598 }
599
600 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
601 int optlen)
602 {
603 int ret = -ENOPROTOOPT;
604 #ifdef CONFIG_NETDEVICES
605 struct net *net = sock_net(sk);
606 char devname[IFNAMSIZ];
607 int index;
608
609 ret = -EINVAL;
610 if (optlen < 0)
611 goto out;
612
613 /* Bind this socket to a particular device like "eth0",
614 * as specified in the passed interface name. If the
615 * name is "" or the option length is zero the socket
616 * is not bound.
617 */
618 if (optlen > IFNAMSIZ - 1)
619 optlen = IFNAMSIZ - 1;
620 memset(devname, 0, sizeof(devname));
621
622 ret = -EFAULT;
623 if (copy_from_user(devname, optval, optlen))
624 goto out;
625
626 index = 0;
627 if (devname[0] != '\0') {
628 struct net_device *dev;
629
630 rcu_read_lock();
631 dev = dev_get_by_name_rcu(net, devname);
632 if (dev)
633 index = dev->ifindex;
634 rcu_read_unlock();
635 ret = -ENODEV;
636 if (!dev)
637 goto out;
638 }
639
640 lock_sock(sk);
641 ret = sock_setbindtodevice_locked(sk, index);
642 release_sock(sk);
643
644 out:
645 #endif
646
647 return ret;
648 }
649
650 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
651 int __user *optlen, int len)
652 {
653 int ret = -ENOPROTOOPT;
654 #ifdef CONFIG_NETDEVICES
655 struct net *net = sock_net(sk);
656 char devname[IFNAMSIZ];
657
658 if (sk->sk_bound_dev_if == 0) {
659 len = 0;
660 goto zero;
661 }
662
663 ret = -EINVAL;
664 if (len < IFNAMSIZ)
665 goto out;
666
667 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
668 if (ret)
669 goto out;
670
671 len = strlen(devname) + 1;
672
673 ret = -EFAULT;
674 if (copy_to_user(optval, devname, len))
675 goto out;
676
677 zero:
678 ret = -EFAULT;
679 if (put_user(len, optlen))
680 goto out;
681
682 ret = 0;
683
684 out:
685 #endif
686
687 return ret;
688 }
689
690 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
691 {
692 if (valbool)
693 sock_set_flag(sk, bit);
694 else
695 sock_reset_flag(sk, bit);
696 }
697
698 bool sk_mc_loop(struct sock *sk)
699 {
700 if (dev_recursion_level())
701 return false;
702 if (!sk)
703 return true;
704 switch (sk->sk_family) {
705 case AF_INET:
706 return inet_sk(sk)->mc_loop;
707 #if IS_ENABLED(CONFIG_IPV6)
708 case AF_INET6:
709 return inet6_sk(sk)->mc_loop;
710 #endif
711 }
712 WARN_ON(1);
713 return true;
714 }
715 EXPORT_SYMBOL(sk_mc_loop);
716
717 /*
718 * This is meant for all protocols to use and covers goings on
719 * at the socket level. Everything here is generic.
720 */
721
722 int sock_setsockopt(struct socket *sock, int level, int optname,
723 char __user *optval, unsigned int optlen)
724 {
725 struct sock_txtime sk_txtime;
726 struct sock *sk = sock->sk;
727 int val;
728 int valbool;
729 struct linger ling;
730 int ret = 0;
731
732 /*
733 * Options without arguments
734 */
735
736 if (optname == SO_BINDTODEVICE)
737 return sock_setbindtodevice(sk, optval, optlen);
738
739 if (optlen < sizeof(int))
740 return -EINVAL;
741
742 if (get_user(val, (int __user *)optval))
743 return -EFAULT;
744
745 valbool = val ? 1 : 0;
746
747 lock_sock(sk);
748
749 switch (optname) {
750 case SO_DEBUG:
751 if (val && !capable(CAP_NET_ADMIN))
752 ret = -EACCES;
753 else
754 sock_valbool_flag(sk, SOCK_DBG, valbool);
755 break;
756 case SO_REUSEADDR:
757 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
758 break;
759 case SO_REUSEPORT:
760 sk->sk_reuseport = valbool;
761 break;
762 case SO_TYPE:
763 case SO_PROTOCOL:
764 case SO_DOMAIN:
765 case SO_ERROR:
766 ret = -ENOPROTOOPT;
767 break;
768 case SO_DONTROUTE:
769 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
770 sk_dst_reset(sk);
771 break;
772 case SO_BROADCAST:
773 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
774 break;
775 case SO_SNDBUF:
776 /* Don't error on this BSD doesn't and if you think
777 * about it this is right. Otherwise apps have to
778 * play 'guess the biggest size' games. RCVBUF/SNDBUF
779 * are treated in BSD as hints
780 */
781 val = min_t(u32, val, sysctl_wmem_max);
782 set_sndbuf:
783 /* Ensure val * 2 fits into an int, to prevent max_t()
784 * from treating it as a negative value.
785 */
786 val = min_t(int, val, INT_MAX / 2);
787 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
788 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
789 /* Wake up sending tasks if we upped the value. */
790 sk->sk_write_space(sk);
791 break;
792
793 case SO_SNDBUFFORCE:
794 if (!capable(CAP_NET_ADMIN)) {
795 ret = -EPERM;
796 break;
797 }
798
799 /* No negative values (to prevent underflow, as val will be
800 * multiplied by 2).
801 */
802 if (val < 0)
803 val = 0;
804 goto set_sndbuf;
805
806 case SO_RCVBUF:
807 /* Don't error on this BSD doesn't and if you think
808 * about it this is right. Otherwise apps have to
809 * play 'guess the biggest size' games. RCVBUF/SNDBUF
810 * are treated in BSD as hints
811 */
812 val = min_t(u32, val, sysctl_rmem_max);
813 set_rcvbuf:
814 /* Ensure val * 2 fits into an int, to prevent max_t()
815 * from treating it as a negative value.
816 */
817 val = min_t(int, val, INT_MAX / 2);
818 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
819 /*
820 * We double it on the way in to account for
821 * "struct sk_buff" etc. overhead. Applications
822 * assume that the SO_RCVBUF setting they make will
823 * allow that much actual data to be received on that
824 * socket.
825 *
826 * Applications are unaware that "struct sk_buff" and
827 * other overheads allocate from the receive buffer
828 * during socket buffer allocation.
829 *
830 * And after considering the possible alternatives,
831 * returning the value we actually used in getsockopt
832 * is the most desirable behavior.
833 */
834 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
835 break;
836
837 case SO_RCVBUFFORCE:
838 if (!capable(CAP_NET_ADMIN)) {
839 ret = -EPERM;
840 break;
841 }
842
843 /* No negative values (to prevent underflow, as val will be
844 * multiplied by 2).
845 */
846 if (val < 0)
847 val = 0;
848 goto set_rcvbuf;
849
850 case SO_KEEPALIVE:
851 if (sk->sk_prot->keepalive)
852 sk->sk_prot->keepalive(sk, valbool);
853 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
854 break;
855
856 case SO_OOBINLINE:
857 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
858 break;
859
860 case SO_NO_CHECK:
861 sk->sk_no_check_tx = valbool;
862 break;
863
864 case SO_PRIORITY:
865 if ((val >= 0 && val <= 6) ||
866 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
867 sk->sk_priority = val;
868 else
869 ret = -EPERM;
870 break;
871
872 case SO_LINGER:
873 if (optlen < sizeof(ling)) {
874 ret = -EINVAL; /* 1003.1g */
875 break;
876 }
877 if (copy_from_user(&ling, optval, sizeof(ling))) {
878 ret = -EFAULT;
879 break;
880 }
881 if (!ling.l_onoff)
882 sock_reset_flag(sk, SOCK_LINGER);
883 else {
884 #if (BITS_PER_LONG == 32)
885 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
886 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
887 else
888 #endif
889 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
890 sock_set_flag(sk, SOCK_LINGER);
891 }
892 break;
893
894 case SO_BSDCOMPAT:
895 sock_warn_obsolete_bsdism("setsockopt");
896 break;
897
898 case SO_PASSCRED:
899 if (valbool)
900 set_bit(SOCK_PASSCRED, &sock->flags);
901 else
902 clear_bit(SOCK_PASSCRED, &sock->flags);
903 break;
904
905 case SO_TIMESTAMP_OLD:
906 case SO_TIMESTAMP_NEW:
907 case SO_TIMESTAMPNS_OLD:
908 case SO_TIMESTAMPNS_NEW:
909 if (valbool) {
910 if (optname == SO_TIMESTAMP_NEW || optname == SO_TIMESTAMPNS_NEW)
911 sock_set_flag(sk, SOCK_TSTAMP_NEW);
912 else
913 sock_reset_flag(sk, SOCK_TSTAMP_NEW);
914
915 if (optname == SO_TIMESTAMP_OLD || optname == SO_TIMESTAMP_NEW)
916 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
917 else
918 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
919 sock_set_flag(sk, SOCK_RCVTSTAMP);
920 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
921 } else {
922 sock_reset_flag(sk, SOCK_RCVTSTAMP);
923 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
924 sock_reset_flag(sk, SOCK_TSTAMP_NEW);
925 }
926 break;
927
928 case SO_TIMESTAMPING_NEW:
929 sock_set_flag(sk, SOCK_TSTAMP_NEW);
930 /* fall through */
931 case SO_TIMESTAMPING_OLD:
932 if (val & ~SOF_TIMESTAMPING_MASK) {
933 ret = -EINVAL;
934 break;
935 }
936
937 if (val & SOF_TIMESTAMPING_OPT_ID &&
938 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
939 if (sk->sk_protocol == IPPROTO_TCP &&
940 sk->sk_type == SOCK_STREAM) {
941 if ((1 << sk->sk_state) &
942 (TCPF_CLOSE | TCPF_LISTEN)) {
943 ret = -EINVAL;
944 break;
945 }
946 sk->sk_tskey = tcp_sk(sk)->snd_una;
947 } else {
948 sk->sk_tskey = 0;
949 }
950 }
951
952 if (val & SOF_TIMESTAMPING_OPT_STATS &&
953 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
954 ret = -EINVAL;
955 break;
956 }
957
958 sk->sk_tsflags = val;
959 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
960 sock_enable_timestamp(sk,
961 SOCK_TIMESTAMPING_RX_SOFTWARE);
962 else {
963 if (optname == SO_TIMESTAMPING_NEW)
964 sock_reset_flag(sk, SOCK_TSTAMP_NEW);
965
966 sock_disable_timestamp(sk,
967 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
968 }
969 break;
970
971 case SO_RCVLOWAT:
972 if (val < 0)
973 val = INT_MAX;
974 if (sock->ops->set_rcvlowat)
975 ret = sock->ops->set_rcvlowat(sk, val);
976 else
977 sk->sk_rcvlowat = val ? : 1;
978 break;
979
980 case SO_RCVTIMEO_OLD:
981 case SO_RCVTIMEO_NEW:
982 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen, optname == SO_RCVTIMEO_OLD);
983 break;
984
985 case SO_SNDTIMEO_OLD:
986 case SO_SNDTIMEO_NEW:
987 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen, optname == SO_SNDTIMEO_OLD);
988 break;
989
990 case SO_ATTACH_FILTER:
991 ret = -EINVAL;
992 if (optlen == sizeof(struct sock_fprog)) {
993 struct sock_fprog fprog;
994
995 ret = -EFAULT;
996 if (copy_from_user(&fprog, optval, sizeof(fprog)))
997 break;
998
999 ret = sk_attach_filter(&fprog, sk);
1000 }
1001 break;
1002
1003 case SO_ATTACH_BPF:
1004 ret = -EINVAL;
1005 if (optlen == sizeof(u32)) {
1006 u32 ufd;
1007
1008 ret = -EFAULT;
1009 if (copy_from_user(&ufd, optval, sizeof(ufd)))
1010 break;
1011
1012 ret = sk_attach_bpf(ufd, sk);
1013 }
1014 break;
1015
1016 case SO_ATTACH_REUSEPORT_CBPF:
1017 ret = -EINVAL;
1018 if (optlen == sizeof(struct sock_fprog)) {
1019 struct sock_fprog fprog;
1020
1021 ret = -EFAULT;
1022 if (copy_from_user(&fprog, optval, sizeof(fprog)))
1023 break;
1024
1025 ret = sk_reuseport_attach_filter(&fprog, sk);
1026 }
1027 break;
1028
1029 case SO_ATTACH_REUSEPORT_EBPF:
1030 ret = -EINVAL;
1031 if (optlen == sizeof(u32)) {
1032 u32 ufd;
1033
1034 ret = -EFAULT;
1035 if (copy_from_user(&ufd, optval, sizeof(ufd)))
1036 break;
1037
1038 ret = sk_reuseport_attach_bpf(ufd, sk);
1039 }
1040 break;
1041
1042 case SO_DETACH_REUSEPORT_BPF:
1043 ret = reuseport_detach_prog(sk);
1044 break;
1045
1046 case SO_DETACH_FILTER:
1047 ret = sk_detach_filter(sk);
1048 break;
1049
1050 case SO_LOCK_FILTER:
1051 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1052 ret = -EPERM;
1053 else
1054 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1055 break;
1056
1057 case SO_PASSSEC:
1058 if (valbool)
1059 set_bit(SOCK_PASSSEC, &sock->flags);
1060 else
1061 clear_bit(SOCK_PASSSEC, &sock->flags);
1062 break;
1063 case SO_MARK:
1064 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1065 ret = -EPERM;
1066 } else if (val != sk->sk_mark) {
1067 sk->sk_mark = val;
1068 sk_dst_reset(sk);
1069 }
1070 break;
1071
1072 case SO_RXQ_OVFL:
1073 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1074 break;
1075
1076 case SO_WIFI_STATUS:
1077 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1078 break;
1079
1080 case SO_PEEK_OFF:
1081 if (sock->ops->set_peek_off)
1082 ret = sock->ops->set_peek_off(sk, val);
1083 else
1084 ret = -EOPNOTSUPP;
1085 break;
1086
1087 case SO_NOFCS:
1088 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1089 break;
1090
1091 case SO_SELECT_ERR_QUEUE:
1092 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1093 break;
1094
1095 #ifdef CONFIG_NET_RX_BUSY_POLL
1096 case SO_BUSY_POLL:
1097 /* allow unprivileged users to decrease the value */
1098 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1099 ret = -EPERM;
1100 else {
1101 if (val < 0)
1102 ret = -EINVAL;
1103 else
1104 sk->sk_ll_usec = val;
1105 }
1106 break;
1107 #endif
1108
1109 case SO_MAX_PACING_RATE:
1110 {
1111 unsigned long ulval = (val == ~0U) ? ~0UL : val;
1112
1113 if (sizeof(ulval) != sizeof(val) &&
1114 optlen >= sizeof(ulval) &&
1115 get_user(ulval, (unsigned long __user *)optval)) {
1116 ret = -EFAULT;
1117 break;
1118 }
1119 if (ulval != ~0UL)
1120 cmpxchg(&sk->sk_pacing_status,
1121 SK_PACING_NONE,
1122 SK_PACING_NEEDED);
1123 sk->sk_max_pacing_rate = ulval;
1124 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1125 break;
1126 }
1127 case SO_INCOMING_CPU:
1128 sk->sk_incoming_cpu = val;
1129 break;
1130
1131 case SO_CNX_ADVICE:
1132 if (val == 1)
1133 dst_negative_advice(sk);
1134 break;
1135
1136 case SO_ZEROCOPY:
1137 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1138 if (!((sk->sk_type == SOCK_STREAM &&
1139 sk->sk_protocol == IPPROTO_TCP) ||
1140 (sk->sk_type == SOCK_DGRAM &&
1141 sk->sk_protocol == IPPROTO_UDP)))
1142 ret = -ENOTSUPP;
1143 } else if (sk->sk_family != PF_RDS) {
1144 ret = -ENOTSUPP;
1145 }
1146 if (!ret) {
1147 if (val < 0 || val > 1)
1148 ret = -EINVAL;
1149 else
1150 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1151 }
1152 break;
1153
1154 case SO_TXTIME:
1155 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1156 ret = -EPERM;
1157 } else if (optlen != sizeof(struct sock_txtime)) {
1158 ret = -EINVAL;
1159 } else if (copy_from_user(&sk_txtime, optval,
1160 sizeof(struct sock_txtime))) {
1161 ret = -EFAULT;
1162 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1163 ret = -EINVAL;
1164 } else {
1165 sock_valbool_flag(sk, SOCK_TXTIME, true);
1166 sk->sk_clockid = sk_txtime.clockid;
1167 sk->sk_txtime_deadline_mode =
1168 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1169 sk->sk_txtime_report_errors =
1170 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1171 }
1172 break;
1173
1174 case SO_BINDTOIFINDEX:
1175 ret = sock_setbindtodevice_locked(sk, val);
1176 break;
1177
1178 default:
1179 ret = -ENOPROTOOPT;
1180 break;
1181 }
1182 release_sock(sk);
1183 return ret;
1184 }
1185 EXPORT_SYMBOL(sock_setsockopt);
1186
1187
1188 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1189 struct ucred *ucred)
1190 {
1191 ucred->pid = pid_vnr(pid);
1192 ucred->uid = ucred->gid = -1;
1193 if (cred) {
1194 struct user_namespace *current_ns = current_user_ns();
1195
1196 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1197 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1198 }
1199 }
1200
1201 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1202 {
1203 struct user_namespace *user_ns = current_user_ns();
1204 int i;
1205
1206 for (i = 0; i < src->ngroups; i++)
1207 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1208 return -EFAULT;
1209
1210 return 0;
1211 }
1212
1213 int sock_getsockopt(struct socket *sock, int level, int optname,
1214 char __user *optval, int __user *optlen)
1215 {
1216 struct sock *sk = sock->sk;
1217
1218 union {
1219 int val;
1220 u64 val64;
1221 unsigned long ulval;
1222 struct linger ling;
1223 struct old_timeval32 tm32;
1224 struct __kernel_old_timeval tm;
1225 struct __kernel_sock_timeval stm;
1226 struct sock_txtime txtime;
1227 } v;
1228
1229 int lv = sizeof(int);
1230 int len;
1231
1232 if (get_user(len, optlen))
1233 return -EFAULT;
1234 if (len < 0)
1235 return -EINVAL;
1236
1237 memset(&v, 0, sizeof(v));
1238
1239 switch (optname) {
1240 case SO_DEBUG:
1241 v.val = sock_flag(sk, SOCK_DBG);
1242 break;
1243
1244 case SO_DONTROUTE:
1245 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1246 break;
1247
1248 case SO_BROADCAST:
1249 v.val = sock_flag(sk, SOCK_BROADCAST);
1250 break;
1251
1252 case SO_SNDBUF:
1253 v.val = sk->sk_sndbuf;
1254 break;
1255
1256 case SO_RCVBUF:
1257 v.val = sk->sk_rcvbuf;
1258 break;
1259
1260 case SO_REUSEADDR:
1261 v.val = sk->sk_reuse;
1262 break;
1263
1264 case SO_REUSEPORT:
1265 v.val = sk->sk_reuseport;
1266 break;
1267
1268 case SO_KEEPALIVE:
1269 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1270 break;
1271
1272 case SO_TYPE:
1273 v.val = sk->sk_type;
1274 break;
1275
1276 case SO_PROTOCOL:
1277 v.val = sk->sk_protocol;
1278 break;
1279
1280 case SO_DOMAIN:
1281 v.val = sk->sk_family;
1282 break;
1283
1284 case SO_ERROR:
1285 v.val = -sock_error(sk);
1286 if (v.val == 0)
1287 v.val = xchg(&sk->sk_err_soft, 0);
1288 break;
1289
1290 case SO_OOBINLINE:
1291 v.val = sock_flag(sk, SOCK_URGINLINE);
1292 break;
1293
1294 case SO_NO_CHECK:
1295 v.val = sk->sk_no_check_tx;
1296 break;
1297
1298 case SO_PRIORITY:
1299 v.val = sk->sk_priority;
1300 break;
1301
1302 case SO_LINGER:
1303 lv = sizeof(v.ling);
1304 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1305 v.ling.l_linger = sk->sk_lingertime / HZ;
1306 break;
1307
1308 case SO_BSDCOMPAT:
1309 sock_warn_obsolete_bsdism("getsockopt");
1310 break;
1311
1312 case SO_TIMESTAMP_OLD:
1313 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1314 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1315 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1316 break;
1317
1318 case SO_TIMESTAMPNS_OLD:
1319 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1320 break;
1321
1322 case SO_TIMESTAMP_NEW:
1323 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1324 break;
1325
1326 case SO_TIMESTAMPNS_NEW:
1327 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1328 break;
1329
1330 case SO_TIMESTAMPING_OLD:
1331 v.val = sk->sk_tsflags;
1332 break;
1333
1334 case SO_RCVTIMEO_OLD:
1335 case SO_RCVTIMEO_NEW:
1336 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1337 break;
1338
1339 case SO_SNDTIMEO_OLD:
1340 case SO_SNDTIMEO_NEW:
1341 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1342 break;
1343
1344 case SO_RCVLOWAT:
1345 v.val = sk->sk_rcvlowat;
1346 break;
1347
1348 case SO_SNDLOWAT:
1349 v.val = 1;
1350 break;
1351
1352 case SO_PASSCRED:
1353 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1354 break;
1355
1356 case SO_PEERCRED:
1357 {
1358 struct ucred peercred;
1359 if (len > sizeof(peercred))
1360 len = sizeof(peercred);
1361 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1362 if (copy_to_user(optval, &peercred, len))
1363 return -EFAULT;
1364 goto lenout;
1365 }
1366
1367 case SO_PEERGROUPS:
1368 {
1369 int ret, n;
1370
1371 if (!sk->sk_peer_cred)
1372 return -ENODATA;
1373
1374 n = sk->sk_peer_cred->group_info->ngroups;
1375 if (len < n * sizeof(gid_t)) {
1376 len = n * sizeof(gid_t);
1377 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1378 }
1379 len = n * sizeof(gid_t);
1380
1381 ret = groups_to_user((gid_t __user *)optval,
1382 sk->sk_peer_cred->group_info);
1383 if (ret)
1384 return ret;
1385 goto lenout;
1386 }
1387
1388 case SO_PEERNAME:
1389 {
1390 char address[128];
1391
1392 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1393 if (lv < 0)
1394 return -ENOTCONN;
1395 if (lv < len)
1396 return -EINVAL;
1397 if (copy_to_user(optval, address, len))
1398 return -EFAULT;
1399 goto lenout;
1400 }
1401
1402 /* Dubious BSD thing... Probably nobody even uses it, but
1403 * the UNIX standard wants it for whatever reason... -DaveM
1404 */
1405 case SO_ACCEPTCONN:
1406 v.val = sk->sk_state == TCP_LISTEN;
1407 break;
1408
1409 case SO_PASSSEC:
1410 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1411 break;
1412
1413 case SO_PEERSEC:
1414 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1415
1416 case SO_MARK:
1417 v.val = sk->sk_mark;
1418 break;
1419
1420 case SO_RXQ_OVFL:
1421 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1422 break;
1423
1424 case SO_WIFI_STATUS:
1425 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1426 break;
1427
1428 case SO_PEEK_OFF:
1429 if (!sock->ops->set_peek_off)
1430 return -EOPNOTSUPP;
1431
1432 v.val = sk->sk_peek_off;
1433 break;
1434 case SO_NOFCS:
1435 v.val = sock_flag(sk, SOCK_NOFCS);
1436 break;
1437
1438 case SO_BINDTODEVICE:
1439 return sock_getbindtodevice(sk, optval, optlen, len);
1440
1441 case SO_GET_FILTER:
1442 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1443 if (len < 0)
1444 return len;
1445
1446 goto lenout;
1447
1448 case SO_LOCK_FILTER:
1449 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1450 break;
1451
1452 case SO_BPF_EXTENSIONS:
1453 v.val = bpf_tell_extensions();
1454 break;
1455
1456 case SO_SELECT_ERR_QUEUE:
1457 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1458 break;
1459
1460 #ifdef CONFIG_NET_RX_BUSY_POLL
1461 case SO_BUSY_POLL:
1462 v.val = sk->sk_ll_usec;
1463 break;
1464 #endif
1465
1466 case SO_MAX_PACING_RATE:
1467 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1468 lv = sizeof(v.ulval);
1469 v.ulval = sk->sk_max_pacing_rate;
1470 } else {
1471 /* 32bit version */
1472 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1473 }
1474 break;
1475
1476 case SO_INCOMING_CPU:
1477 v.val = sk->sk_incoming_cpu;
1478 break;
1479
1480 case SO_MEMINFO:
1481 {
1482 u32 meminfo[SK_MEMINFO_VARS];
1483
1484 sk_get_meminfo(sk, meminfo);
1485
1486 len = min_t(unsigned int, len, sizeof(meminfo));
1487 if (copy_to_user(optval, &meminfo, len))
1488 return -EFAULT;
1489
1490 goto lenout;
1491 }
1492
1493 #ifdef CONFIG_NET_RX_BUSY_POLL
1494 case SO_INCOMING_NAPI_ID:
1495 v.val = READ_ONCE(sk->sk_napi_id);
1496
1497 /* aggregate non-NAPI IDs down to 0 */
1498 if (v.val < MIN_NAPI_ID)
1499 v.val = 0;
1500
1501 break;
1502 #endif
1503
1504 case SO_COOKIE:
1505 lv = sizeof(u64);
1506 if (len < lv)
1507 return -EINVAL;
1508 v.val64 = sock_gen_cookie(sk);
1509 break;
1510
1511 case SO_ZEROCOPY:
1512 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1513 break;
1514
1515 case SO_TXTIME:
1516 lv = sizeof(v.txtime);
1517 v.txtime.clockid = sk->sk_clockid;
1518 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1519 SOF_TXTIME_DEADLINE_MODE : 0;
1520 v.txtime.flags |= sk->sk_txtime_report_errors ?
1521 SOF_TXTIME_REPORT_ERRORS : 0;
1522 break;
1523
1524 case SO_BINDTOIFINDEX:
1525 v.val = sk->sk_bound_dev_if;
1526 break;
1527
1528 default:
1529 /* We implement the SO_SNDLOWAT etc to not be settable
1530 * (1003.1g 7).
1531 */
1532 return -ENOPROTOOPT;
1533 }
1534
1535 if (len > lv)
1536 len = lv;
1537 if (copy_to_user(optval, &v, len))
1538 return -EFAULT;
1539 lenout:
1540 if (put_user(len, optlen))
1541 return -EFAULT;
1542 return 0;
1543 }
1544
1545 /*
1546 * Initialize an sk_lock.
1547 *
1548 * (We also register the sk_lock with the lock validator.)
1549 */
1550 static inline void sock_lock_init(struct sock *sk)
1551 {
1552 if (sk->sk_kern_sock)
1553 sock_lock_init_class_and_name(
1554 sk,
1555 af_family_kern_slock_key_strings[sk->sk_family],
1556 af_family_kern_slock_keys + sk->sk_family,
1557 af_family_kern_key_strings[sk->sk_family],
1558 af_family_kern_keys + sk->sk_family);
1559 else
1560 sock_lock_init_class_and_name(
1561 sk,
1562 af_family_slock_key_strings[sk->sk_family],
1563 af_family_slock_keys + sk->sk_family,
1564 af_family_key_strings[sk->sk_family],
1565 af_family_keys + sk->sk_family);
1566 }
1567
1568 /*
1569 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1570 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1571 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1572 */
1573 static void sock_copy(struct sock *nsk, const struct sock *osk)
1574 {
1575 #ifdef CONFIG_SECURITY_NETWORK
1576 void *sptr = nsk->sk_security;
1577 #endif
1578 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1579
1580 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1581 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1582
1583 #ifdef CONFIG_SECURITY_NETWORK
1584 nsk->sk_security = sptr;
1585 security_sk_clone(osk, nsk);
1586 #endif
1587 }
1588
1589 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1590 int family)
1591 {
1592 struct sock *sk;
1593 struct kmem_cache *slab;
1594
1595 slab = prot->slab;
1596 if (slab != NULL) {
1597 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1598 if (!sk)
1599 return sk;
1600 if (want_init_on_alloc(priority))
1601 sk_prot_clear_nulls(sk, prot->obj_size);
1602 } else
1603 sk = kmalloc(prot->obj_size, priority);
1604
1605 if (sk != NULL) {
1606 if (security_sk_alloc(sk, family, priority))
1607 goto out_free;
1608
1609 if (!try_module_get(prot->owner))
1610 goto out_free_sec;
1611 sk_tx_queue_clear(sk);
1612 }
1613
1614 return sk;
1615
1616 out_free_sec:
1617 security_sk_free(sk);
1618 out_free:
1619 if (slab != NULL)
1620 kmem_cache_free(slab, sk);
1621 else
1622 kfree(sk);
1623 return NULL;
1624 }
1625
1626 static void sk_prot_free(struct proto *prot, struct sock *sk)
1627 {
1628 struct kmem_cache *slab;
1629 struct module *owner;
1630
1631 owner = prot->owner;
1632 slab = prot->slab;
1633
1634 cgroup_sk_free(&sk->sk_cgrp_data);
1635 mem_cgroup_sk_free(sk);
1636 security_sk_free(sk);
1637 if (slab != NULL)
1638 kmem_cache_free(slab, sk);
1639 else
1640 kfree(sk);
1641 module_put(owner);
1642 }
1643
1644 /**
1645 * sk_alloc - All socket objects are allocated here
1646 * @net: the applicable net namespace
1647 * @family: protocol family
1648 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1649 * @prot: struct proto associated with this new sock instance
1650 * @kern: is this to be a kernel socket?
1651 */
1652 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1653 struct proto *prot, int kern)
1654 {
1655 struct sock *sk;
1656
1657 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1658 if (sk) {
1659 sk->sk_family = family;
1660 /*
1661 * See comment in struct sock definition to understand
1662 * why we need sk_prot_creator -acme
1663 */
1664 sk->sk_prot = sk->sk_prot_creator = prot;
1665 sk->sk_kern_sock = kern;
1666 sock_lock_init(sk);
1667 sk->sk_net_refcnt = kern ? 0 : 1;
1668 if (likely(sk->sk_net_refcnt)) {
1669 get_net(net);
1670 sock_inuse_add(net, 1);
1671 }
1672
1673 sock_net_set(sk, net);
1674 refcount_set(&sk->sk_wmem_alloc, 1);
1675
1676 mem_cgroup_sk_alloc(sk);
1677 cgroup_sk_alloc(&sk->sk_cgrp_data);
1678 sock_update_classid(&sk->sk_cgrp_data);
1679 sock_update_netprioidx(&sk->sk_cgrp_data);
1680 }
1681
1682 return sk;
1683 }
1684 EXPORT_SYMBOL(sk_alloc);
1685
1686 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1687 * grace period. This is the case for UDP sockets and TCP listeners.
1688 */
1689 static void __sk_destruct(struct rcu_head *head)
1690 {
1691 struct sock *sk = container_of(head, struct sock, sk_rcu);
1692 struct sk_filter *filter;
1693
1694 if (sk->sk_destruct)
1695 sk->sk_destruct(sk);
1696
1697 filter = rcu_dereference_check(sk->sk_filter,
1698 refcount_read(&sk->sk_wmem_alloc) == 0);
1699 if (filter) {
1700 sk_filter_uncharge(sk, filter);
1701 RCU_INIT_POINTER(sk->sk_filter, NULL);
1702 }
1703 if (rcu_access_pointer(sk->sk_reuseport_cb))
1704 reuseport_detach_sock(sk);
1705
1706 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1707
1708 #ifdef CONFIG_BPF_SYSCALL
1709 bpf_sk_storage_free(sk);
1710 #endif
1711
1712 if (atomic_read(&sk->sk_omem_alloc))
1713 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1714 __func__, atomic_read(&sk->sk_omem_alloc));
1715
1716 if (sk->sk_frag.page) {
1717 put_page(sk->sk_frag.page);
1718 sk->sk_frag.page = NULL;
1719 }
1720
1721 if (sk->sk_peer_cred)
1722 put_cred(sk->sk_peer_cred);
1723 put_pid(sk->sk_peer_pid);
1724 if (likely(sk->sk_net_refcnt))
1725 put_net(sock_net(sk));
1726 sk_prot_free(sk->sk_prot_creator, sk);
1727 }
1728
1729 void sk_destruct(struct sock *sk)
1730 {
1731 if (sock_flag(sk, SOCK_RCU_FREE))
1732 call_rcu(&sk->sk_rcu, __sk_destruct);
1733 else
1734 __sk_destruct(&sk->sk_rcu);
1735 }
1736
1737 static void __sk_free(struct sock *sk)
1738 {
1739 if (likely(sk->sk_net_refcnt))
1740 sock_inuse_add(sock_net(sk), -1);
1741
1742 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1743 sock_diag_broadcast_destroy(sk);
1744 else
1745 sk_destruct(sk);
1746 }
1747
1748 void sk_free(struct sock *sk)
1749 {
1750 /*
1751 * We subtract one from sk_wmem_alloc and can know if
1752 * some packets are still in some tx queue.
1753 * If not null, sock_wfree() will call __sk_free(sk) later
1754 */
1755 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1756 __sk_free(sk);
1757 }
1758 EXPORT_SYMBOL(sk_free);
1759
1760 static void sk_init_common(struct sock *sk)
1761 {
1762 skb_queue_head_init(&sk->sk_receive_queue);
1763 skb_queue_head_init(&sk->sk_write_queue);
1764 skb_queue_head_init(&sk->sk_error_queue);
1765
1766 rwlock_init(&sk->sk_callback_lock);
1767 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1768 af_rlock_keys + sk->sk_family,
1769 af_family_rlock_key_strings[sk->sk_family]);
1770 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1771 af_wlock_keys + sk->sk_family,
1772 af_family_wlock_key_strings[sk->sk_family]);
1773 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1774 af_elock_keys + sk->sk_family,
1775 af_family_elock_key_strings[sk->sk_family]);
1776 lockdep_set_class_and_name(&sk->sk_callback_lock,
1777 af_callback_keys + sk->sk_family,
1778 af_family_clock_key_strings[sk->sk_family]);
1779 }
1780
1781 /**
1782 * sk_clone_lock - clone a socket, and lock its clone
1783 * @sk: the socket to clone
1784 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1785 *
1786 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1787 */
1788 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1789 {
1790 struct sock *newsk;
1791 bool is_charged = true;
1792
1793 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1794 if (newsk != NULL) {
1795 struct sk_filter *filter;
1796
1797 sock_copy(newsk, sk);
1798
1799 newsk->sk_prot_creator = sk->sk_prot;
1800
1801 /* SANITY */
1802 if (likely(newsk->sk_net_refcnt))
1803 get_net(sock_net(newsk));
1804 sk_node_init(&newsk->sk_node);
1805 sock_lock_init(newsk);
1806 bh_lock_sock(newsk);
1807 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1808 newsk->sk_backlog.len = 0;
1809
1810 atomic_set(&newsk->sk_rmem_alloc, 0);
1811 /*
1812 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1813 */
1814 refcount_set(&newsk->sk_wmem_alloc, 1);
1815 atomic_set(&newsk->sk_omem_alloc, 0);
1816 sk_init_common(newsk);
1817
1818 newsk->sk_dst_cache = NULL;
1819 newsk->sk_dst_pending_confirm = 0;
1820 newsk->sk_wmem_queued = 0;
1821 newsk->sk_forward_alloc = 0;
1822 atomic_set(&newsk->sk_drops, 0);
1823 newsk->sk_send_head = NULL;
1824 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1825 atomic_set(&newsk->sk_zckey, 0);
1826
1827 sock_reset_flag(newsk, SOCK_DONE);
1828 mem_cgroup_sk_alloc(newsk);
1829 cgroup_sk_alloc(&newsk->sk_cgrp_data);
1830
1831 rcu_read_lock();
1832 filter = rcu_dereference(sk->sk_filter);
1833 if (filter != NULL)
1834 /* though it's an empty new sock, the charging may fail
1835 * if sysctl_optmem_max was changed between creation of
1836 * original socket and cloning
1837 */
1838 is_charged = sk_filter_charge(newsk, filter);
1839 RCU_INIT_POINTER(newsk->sk_filter, filter);
1840 rcu_read_unlock();
1841
1842 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1843 /* We need to make sure that we don't uncharge the new
1844 * socket if we couldn't charge it in the first place
1845 * as otherwise we uncharge the parent's filter.
1846 */
1847 if (!is_charged)
1848 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1849 sk_free_unlock_clone(newsk);
1850 newsk = NULL;
1851 goto out;
1852 }
1853 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1854 #ifdef CONFIG_BPF_SYSCALL
1855 RCU_INIT_POINTER(newsk->sk_bpf_storage, NULL);
1856 #endif
1857
1858 newsk->sk_err = 0;
1859 newsk->sk_err_soft = 0;
1860 newsk->sk_priority = 0;
1861 newsk->sk_incoming_cpu = raw_smp_processor_id();
1862 if (likely(newsk->sk_net_refcnt))
1863 sock_inuse_add(sock_net(newsk), 1);
1864
1865 /*
1866 * Before updating sk_refcnt, we must commit prior changes to memory
1867 * (Documentation/RCU/rculist_nulls.txt for details)
1868 */
1869 smp_wmb();
1870 refcount_set(&newsk->sk_refcnt, 2);
1871
1872 /*
1873 * Increment the counter in the same struct proto as the master
1874 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1875 * is the same as sk->sk_prot->socks, as this field was copied
1876 * with memcpy).
1877 *
1878 * This _changes_ the previous behaviour, where
1879 * tcp_create_openreq_child always was incrementing the
1880 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1881 * to be taken into account in all callers. -acme
1882 */
1883 sk_refcnt_debug_inc(newsk);
1884 sk_set_socket(newsk, NULL);
1885 RCU_INIT_POINTER(newsk->sk_wq, NULL);
1886
1887 if (newsk->sk_prot->sockets_allocated)
1888 sk_sockets_allocated_inc(newsk);
1889
1890 if (sock_needs_netstamp(sk) &&
1891 newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1892 net_enable_timestamp();
1893 }
1894 out:
1895 return newsk;
1896 }
1897 EXPORT_SYMBOL_GPL(sk_clone_lock);
1898
1899 void sk_free_unlock_clone(struct sock *sk)
1900 {
1901 /* It is still raw copy of parent, so invalidate
1902 * destructor and make plain sk_free() */
1903 sk->sk_destruct = NULL;
1904 bh_unlock_sock(sk);
1905 sk_free(sk);
1906 }
1907 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1908
1909 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1910 {
1911 u32 max_segs = 1;
1912
1913 sk_dst_set(sk, dst);
1914 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
1915 if (sk->sk_route_caps & NETIF_F_GSO)
1916 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1917 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1918 if (sk_can_gso(sk)) {
1919 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1920 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1921 } else {
1922 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1923 sk->sk_gso_max_size = dst->dev->gso_max_size;
1924 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1925 }
1926 }
1927 sk->sk_gso_max_segs = max_segs;
1928 }
1929 EXPORT_SYMBOL_GPL(sk_setup_caps);
1930
1931 /*
1932 * Simple resource managers for sockets.
1933 */
1934
1935
1936 /*
1937 * Write buffer destructor automatically called from kfree_skb.
1938 */
1939 void sock_wfree(struct sk_buff *skb)
1940 {
1941 struct sock *sk = skb->sk;
1942 unsigned int len = skb->truesize;
1943
1944 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1945 /*
1946 * Keep a reference on sk_wmem_alloc, this will be released
1947 * after sk_write_space() call
1948 */
1949 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1950 sk->sk_write_space(sk);
1951 len = 1;
1952 }
1953 /*
1954 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1955 * could not do because of in-flight packets
1956 */
1957 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1958 __sk_free(sk);
1959 }
1960 EXPORT_SYMBOL(sock_wfree);
1961
1962 /* This variant of sock_wfree() is used by TCP,
1963 * since it sets SOCK_USE_WRITE_QUEUE.
1964 */
1965 void __sock_wfree(struct sk_buff *skb)
1966 {
1967 struct sock *sk = skb->sk;
1968
1969 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1970 __sk_free(sk);
1971 }
1972
1973 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1974 {
1975 skb_orphan(skb);
1976 skb->sk = sk;
1977 #ifdef CONFIG_INET
1978 if (unlikely(!sk_fullsock(sk))) {
1979 skb->destructor = sock_edemux;
1980 sock_hold(sk);
1981 return;
1982 }
1983 #endif
1984 skb->destructor = sock_wfree;
1985 skb_set_hash_from_sk(skb, sk);
1986 /*
1987 * We used to take a refcount on sk, but following operation
1988 * is enough to guarantee sk_free() wont free this sock until
1989 * all in-flight packets are completed
1990 */
1991 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1992 }
1993 EXPORT_SYMBOL(skb_set_owner_w);
1994
1995 /* This helper is used by netem, as it can hold packets in its
1996 * delay queue. We want to allow the owner socket to send more
1997 * packets, as if they were already TX completed by a typical driver.
1998 * But we also want to keep skb->sk set because some packet schedulers
1999 * rely on it (sch_fq for example).
2000 */
2001 void skb_orphan_partial(struct sk_buff *skb)
2002 {
2003 if (skb_is_tcp_pure_ack(skb))
2004 return;
2005
2006 if (skb->destructor == sock_wfree
2007 #ifdef CONFIG_INET
2008 || skb->destructor == tcp_wfree
2009 #endif
2010 ) {
2011 struct sock *sk = skb->sk;
2012
2013 if (refcount_inc_not_zero(&sk->sk_refcnt)) {
2014 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
2015 skb->destructor = sock_efree;
2016 }
2017 } else {
2018 skb_orphan(skb);
2019 }
2020 }
2021 EXPORT_SYMBOL(skb_orphan_partial);
2022
2023 /*
2024 * Read buffer destructor automatically called from kfree_skb.
2025 */
2026 void sock_rfree(struct sk_buff *skb)
2027 {
2028 struct sock *sk = skb->sk;
2029 unsigned int len = skb->truesize;
2030
2031 atomic_sub(len, &sk->sk_rmem_alloc);
2032 sk_mem_uncharge(sk, len);
2033 }
2034 EXPORT_SYMBOL(sock_rfree);
2035
2036 /*
2037 * Buffer destructor for skbs that are not used directly in read or write
2038 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2039 */
2040 void sock_efree(struct sk_buff *skb)
2041 {
2042 sock_put(skb->sk);
2043 }
2044 EXPORT_SYMBOL(sock_efree);
2045
2046 kuid_t sock_i_uid(struct sock *sk)
2047 {
2048 kuid_t uid;
2049
2050 read_lock_bh(&sk->sk_callback_lock);
2051 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2052 read_unlock_bh(&sk->sk_callback_lock);
2053 return uid;
2054 }
2055 EXPORT_SYMBOL(sock_i_uid);
2056
2057 unsigned long sock_i_ino(struct sock *sk)
2058 {
2059 unsigned long ino;
2060
2061 read_lock_bh(&sk->sk_callback_lock);
2062 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2063 read_unlock_bh(&sk->sk_callback_lock);
2064 return ino;
2065 }
2066 EXPORT_SYMBOL(sock_i_ino);
2067
2068 /*
2069 * Allocate a skb from the socket's send buffer.
2070 */
2071 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2072 gfp_t priority)
2073 {
2074 if (force || refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
2075 struct sk_buff *skb = alloc_skb(size, priority);
2076 if (skb) {
2077 skb_set_owner_w(skb, sk);
2078 return skb;
2079 }
2080 }
2081 return NULL;
2082 }
2083 EXPORT_SYMBOL(sock_wmalloc);
2084
2085 static void sock_ofree(struct sk_buff *skb)
2086 {
2087 struct sock *sk = skb->sk;
2088
2089 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2090 }
2091
2092 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2093 gfp_t priority)
2094 {
2095 struct sk_buff *skb;
2096
2097 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2098 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2099 sysctl_optmem_max)
2100 return NULL;
2101
2102 skb = alloc_skb(size, priority);
2103 if (!skb)
2104 return NULL;
2105
2106 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2107 skb->sk = sk;
2108 skb->destructor = sock_ofree;
2109 return skb;
2110 }
2111
2112 /*
2113 * Allocate a memory block from the socket's option memory buffer.
2114 */
2115 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2116 {
2117 if ((unsigned int)size <= sysctl_optmem_max &&
2118 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2119 void *mem;
2120 /* First do the add, to avoid the race if kmalloc
2121 * might sleep.
2122 */
2123 atomic_add(size, &sk->sk_omem_alloc);
2124 mem = kmalloc(size, priority);
2125 if (mem)
2126 return mem;
2127 atomic_sub(size, &sk->sk_omem_alloc);
2128 }
2129 return NULL;
2130 }
2131 EXPORT_SYMBOL(sock_kmalloc);
2132
2133 /* Free an option memory block. Note, we actually want the inline
2134 * here as this allows gcc to detect the nullify and fold away the
2135 * condition entirely.
2136 */
2137 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2138 const bool nullify)
2139 {
2140 if (WARN_ON_ONCE(!mem))
2141 return;
2142 if (nullify)
2143 kzfree(mem);
2144 else
2145 kfree(mem);
2146 atomic_sub(size, &sk->sk_omem_alloc);
2147 }
2148
2149 void sock_kfree_s(struct sock *sk, void *mem, int size)
2150 {
2151 __sock_kfree_s(sk, mem, size, false);
2152 }
2153 EXPORT_SYMBOL(sock_kfree_s);
2154
2155 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2156 {
2157 __sock_kfree_s(sk, mem, size, true);
2158 }
2159 EXPORT_SYMBOL(sock_kzfree_s);
2160
2161 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2162 I think, these locks should be removed for datagram sockets.
2163 */
2164 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2165 {
2166 DEFINE_WAIT(wait);
2167
2168 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2169 for (;;) {
2170 if (!timeo)
2171 break;
2172 if (signal_pending(current))
2173 break;
2174 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2175 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2176 if (refcount_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
2177 break;
2178 if (sk->sk_shutdown & SEND_SHUTDOWN)
2179 break;
2180 if (sk->sk_err)
2181 break;
2182 timeo = schedule_timeout(timeo);
2183 }
2184 finish_wait(sk_sleep(sk), &wait);
2185 return timeo;
2186 }
2187
2188
2189 /*
2190 * Generic send/receive buffer handlers
2191 */
2192
2193 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2194 unsigned long data_len, int noblock,
2195 int *errcode, int max_page_order)
2196 {
2197 struct sk_buff *skb;
2198 long timeo;
2199 int err;
2200
2201 timeo = sock_sndtimeo(sk, noblock);
2202 for (;;) {
2203 err = sock_error(sk);
2204 if (err != 0)
2205 goto failure;
2206
2207 err = -EPIPE;
2208 if (sk->sk_shutdown & SEND_SHUTDOWN)
2209 goto failure;
2210
2211 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
2212 break;
2213
2214 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2215 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2216 err = -EAGAIN;
2217 if (!timeo)
2218 goto failure;
2219 if (signal_pending(current))
2220 goto interrupted;
2221 timeo = sock_wait_for_wmem(sk, timeo);
2222 }
2223 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2224 errcode, sk->sk_allocation);
2225 if (skb)
2226 skb_set_owner_w(skb, sk);
2227 return skb;
2228
2229 interrupted:
2230 err = sock_intr_errno(timeo);
2231 failure:
2232 *errcode = err;
2233 return NULL;
2234 }
2235 EXPORT_SYMBOL(sock_alloc_send_pskb);
2236
2237 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2238 int noblock, int *errcode)
2239 {
2240 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2241 }
2242 EXPORT_SYMBOL(sock_alloc_send_skb);
2243
2244 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2245 struct sockcm_cookie *sockc)
2246 {
2247 u32 tsflags;
2248
2249 switch (cmsg->cmsg_type) {
2250 case SO_MARK:
2251 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2252 return -EPERM;
2253 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2254 return -EINVAL;
2255 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2256 break;
2257 case SO_TIMESTAMPING_OLD:
2258 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2259 return -EINVAL;
2260
2261 tsflags = *(u32 *)CMSG_DATA(cmsg);
2262 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2263 return -EINVAL;
2264
2265 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2266 sockc->tsflags |= tsflags;
2267 break;
2268 case SCM_TXTIME:
2269 if (!sock_flag(sk, SOCK_TXTIME))
2270 return -EINVAL;
2271 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2272 return -EINVAL;
2273 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2274 break;
2275 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2276 case SCM_RIGHTS:
2277 case SCM_CREDENTIALS:
2278 break;
2279 default:
2280 return -EINVAL;
2281 }
2282 return 0;
2283 }
2284 EXPORT_SYMBOL(__sock_cmsg_send);
2285
2286 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2287 struct sockcm_cookie *sockc)
2288 {
2289 struct cmsghdr *cmsg;
2290 int ret;
2291
2292 for_each_cmsghdr(cmsg, msg) {
2293 if (!CMSG_OK(msg, cmsg))
2294 return -EINVAL;
2295 if (cmsg->cmsg_level != SOL_SOCKET)
2296 continue;
2297 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2298 if (ret)
2299 return ret;
2300 }
2301 return 0;
2302 }
2303 EXPORT_SYMBOL(sock_cmsg_send);
2304
2305 static void sk_enter_memory_pressure(struct sock *sk)
2306 {
2307 if (!sk->sk_prot->enter_memory_pressure)
2308 return;
2309
2310 sk->sk_prot->enter_memory_pressure(sk);
2311 }
2312
2313 static void sk_leave_memory_pressure(struct sock *sk)
2314 {
2315 if (sk->sk_prot->leave_memory_pressure) {
2316 sk->sk_prot->leave_memory_pressure(sk);
2317 } else {
2318 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2319
2320 if (memory_pressure && *memory_pressure)
2321 *memory_pressure = 0;
2322 }
2323 }
2324
2325 /* On 32bit arches, an skb frag is limited to 2^15 */
2326 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2327 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2328
2329 /**
2330 * skb_page_frag_refill - check that a page_frag contains enough room
2331 * @sz: minimum size of the fragment we want to get
2332 * @pfrag: pointer to page_frag
2333 * @gfp: priority for memory allocation
2334 *
2335 * Note: While this allocator tries to use high order pages, there is
2336 * no guarantee that allocations succeed. Therefore, @sz MUST be
2337 * less or equal than PAGE_SIZE.
2338 */
2339 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2340 {
2341 if (pfrag->page) {
2342 if (page_ref_count(pfrag->page) == 1) {
2343 pfrag->offset = 0;
2344 return true;
2345 }
2346 if (pfrag->offset + sz <= pfrag->size)
2347 return true;
2348 put_page(pfrag->page);
2349 }
2350
2351 pfrag->offset = 0;
2352 if (SKB_FRAG_PAGE_ORDER &&
2353 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2354 /* Avoid direct reclaim but allow kswapd to wake */
2355 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2356 __GFP_COMP | __GFP_NOWARN |
2357 __GFP_NORETRY,
2358 SKB_FRAG_PAGE_ORDER);
2359 if (likely(pfrag->page)) {
2360 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2361 return true;
2362 }
2363 }
2364 pfrag->page = alloc_page(gfp);
2365 if (likely(pfrag->page)) {
2366 pfrag->size = PAGE_SIZE;
2367 return true;
2368 }
2369 return false;
2370 }
2371 EXPORT_SYMBOL(skb_page_frag_refill);
2372
2373 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2374 {
2375 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2376 return true;
2377
2378 sk_enter_memory_pressure(sk);
2379 sk_stream_moderate_sndbuf(sk);
2380 return false;
2381 }
2382 EXPORT_SYMBOL(sk_page_frag_refill);
2383
2384 static void __lock_sock(struct sock *sk)
2385 __releases(&sk->sk_lock.slock)
2386 __acquires(&sk->sk_lock.slock)
2387 {
2388 DEFINE_WAIT(wait);
2389
2390 for (;;) {
2391 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2392 TASK_UNINTERRUPTIBLE);
2393 spin_unlock_bh(&sk->sk_lock.slock);
2394 schedule();
2395 spin_lock_bh(&sk->sk_lock.slock);
2396 if (!sock_owned_by_user(sk))
2397 break;
2398 }
2399 finish_wait(&sk->sk_lock.wq, &wait);
2400 }
2401
2402 void __release_sock(struct sock *sk)
2403 __releases(&sk->sk_lock.slock)
2404 __acquires(&sk->sk_lock.slock)
2405 {
2406 struct sk_buff *skb, *next;
2407
2408 while ((skb = sk->sk_backlog.head) != NULL) {
2409 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2410
2411 spin_unlock_bh(&sk->sk_lock.slock);
2412
2413 do {
2414 next = skb->next;
2415 prefetch(next);
2416 WARN_ON_ONCE(skb_dst_is_noref(skb));
2417 skb_mark_not_on_list(skb);
2418 sk_backlog_rcv(sk, skb);
2419
2420 cond_resched();
2421
2422 skb = next;
2423 } while (skb != NULL);
2424
2425 spin_lock_bh(&sk->sk_lock.slock);
2426 }
2427
2428 /*
2429 * Doing the zeroing here guarantee we can not loop forever
2430 * while a wild producer attempts to flood us.
2431 */
2432 sk->sk_backlog.len = 0;
2433 }
2434
2435 void __sk_flush_backlog(struct sock *sk)
2436 {
2437 spin_lock_bh(&sk->sk_lock.slock);
2438 __release_sock(sk);
2439 spin_unlock_bh(&sk->sk_lock.slock);
2440 }
2441
2442 /**
2443 * sk_wait_data - wait for data to arrive at sk_receive_queue
2444 * @sk: sock to wait on
2445 * @timeo: for how long
2446 * @skb: last skb seen on sk_receive_queue
2447 *
2448 * Now socket state including sk->sk_err is changed only under lock,
2449 * hence we may omit checks after joining wait queue.
2450 * We check receive queue before schedule() only as optimization;
2451 * it is very likely that release_sock() added new data.
2452 */
2453 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2454 {
2455 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2456 int rc;
2457
2458 add_wait_queue(sk_sleep(sk), &wait);
2459 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2460 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2461 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2462 remove_wait_queue(sk_sleep(sk), &wait);
2463 return rc;
2464 }
2465 EXPORT_SYMBOL(sk_wait_data);
2466
2467 /**
2468 * __sk_mem_raise_allocated - increase memory_allocated
2469 * @sk: socket
2470 * @size: memory size to allocate
2471 * @amt: pages to allocate
2472 * @kind: allocation type
2473 *
2474 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2475 */
2476 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2477 {
2478 struct proto *prot = sk->sk_prot;
2479 long allocated = sk_memory_allocated_add(sk, amt);
2480 bool charged = true;
2481
2482 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2483 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2484 goto suppress_allocation;
2485
2486 /* Under limit. */
2487 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2488 sk_leave_memory_pressure(sk);
2489 return 1;
2490 }
2491
2492 /* Under pressure. */
2493 if (allocated > sk_prot_mem_limits(sk, 1))
2494 sk_enter_memory_pressure(sk);
2495
2496 /* Over hard limit. */
2497 if (allocated > sk_prot_mem_limits(sk, 2))
2498 goto suppress_allocation;
2499
2500 /* guarantee minimum buffer size under pressure */
2501 if (kind == SK_MEM_RECV) {
2502 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2503 return 1;
2504
2505 } else { /* SK_MEM_SEND */
2506 int wmem0 = sk_get_wmem0(sk, prot);
2507
2508 if (sk->sk_type == SOCK_STREAM) {
2509 if (sk->sk_wmem_queued < wmem0)
2510 return 1;
2511 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2512 return 1;
2513 }
2514 }
2515
2516 if (sk_has_memory_pressure(sk)) {
2517 u64 alloc;
2518
2519 if (!sk_under_memory_pressure(sk))
2520 return 1;
2521 alloc = sk_sockets_allocated_read_positive(sk);
2522 if (sk_prot_mem_limits(sk, 2) > alloc *
2523 sk_mem_pages(sk->sk_wmem_queued +
2524 atomic_read(&sk->sk_rmem_alloc) +
2525 sk->sk_forward_alloc))
2526 return 1;
2527 }
2528
2529 suppress_allocation:
2530
2531 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2532 sk_stream_moderate_sndbuf(sk);
2533
2534 /* Fail only if socket is _under_ its sndbuf.
2535 * In this case we cannot block, so that we have to fail.
2536 */
2537 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2538 return 1;
2539 }
2540
2541 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2542 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2543
2544 sk_memory_allocated_sub(sk, amt);
2545
2546 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2547 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2548
2549 return 0;
2550 }
2551 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2552
2553 /**
2554 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2555 * @sk: socket
2556 * @size: memory size to allocate
2557 * @kind: allocation type
2558 *
2559 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2560 * rmem allocation. This function assumes that protocols which have
2561 * memory_pressure use sk_wmem_queued as write buffer accounting.
2562 */
2563 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2564 {
2565 int ret, amt = sk_mem_pages(size);
2566
2567 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2568 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2569 if (!ret)
2570 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2571 return ret;
2572 }
2573 EXPORT_SYMBOL(__sk_mem_schedule);
2574
2575 /**
2576 * __sk_mem_reduce_allocated - reclaim memory_allocated
2577 * @sk: socket
2578 * @amount: number of quanta
2579 *
2580 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2581 */
2582 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2583 {
2584 sk_memory_allocated_sub(sk, amount);
2585
2586 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2587 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2588
2589 if (sk_under_memory_pressure(sk) &&
2590 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2591 sk_leave_memory_pressure(sk);
2592 }
2593 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2594
2595 /**
2596 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2597 * @sk: socket
2598 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2599 */
2600 void __sk_mem_reclaim(struct sock *sk, int amount)
2601 {
2602 amount >>= SK_MEM_QUANTUM_SHIFT;
2603 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2604 __sk_mem_reduce_allocated(sk, amount);
2605 }
2606 EXPORT_SYMBOL(__sk_mem_reclaim);
2607
2608 int sk_set_peek_off(struct sock *sk, int val)
2609 {
2610 sk->sk_peek_off = val;
2611 return 0;
2612 }
2613 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2614
2615 /*
2616 * Set of default routines for initialising struct proto_ops when
2617 * the protocol does not support a particular function. In certain
2618 * cases where it makes no sense for a protocol to have a "do nothing"
2619 * function, some default processing is provided.
2620 */
2621
2622 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2623 {
2624 return -EOPNOTSUPP;
2625 }
2626 EXPORT_SYMBOL(sock_no_bind);
2627
2628 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2629 int len, int flags)
2630 {
2631 return -EOPNOTSUPP;
2632 }
2633 EXPORT_SYMBOL(sock_no_connect);
2634
2635 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2636 {
2637 return -EOPNOTSUPP;
2638 }
2639 EXPORT_SYMBOL(sock_no_socketpair);
2640
2641 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2642 bool kern)
2643 {
2644 return -EOPNOTSUPP;
2645 }
2646 EXPORT_SYMBOL(sock_no_accept);
2647
2648 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2649 int peer)
2650 {
2651 return -EOPNOTSUPP;
2652 }
2653 EXPORT_SYMBOL(sock_no_getname);
2654
2655 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2656 {
2657 return -EOPNOTSUPP;
2658 }
2659 EXPORT_SYMBOL(sock_no_ioctl);
2660
2661 int sock_no_listen(struct socket *sock, int backlog)
2662 {
2663 return -EOPNOTSUPP;
2664 }
2665 EXPORT_SYMBOL(sock_no_listen);
2666
2667 int sock_no_shutdown(struct socket *sock, int how)
2668 {
2669 return -EOPNOTSUPP;
2670 }
2671 EXPORT_SYMBOL(sock_no_shutdown);
2672
2673 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2674 char __user *optval, unsigned int optlen)
2675 {
2676 return -EOPNOTSUPP;
2677 }
2678 EXPORT_SYMBOL(sock_no_setsockopt);
2679
2680 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2681 char __user *optval, int __user *optlen)
2682 {
2683 return -EOPNOTSUPP;
2684 }
2685 EXPORT_SYMBOL(sock_no_getsockopt);
2686
2687 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2688 {
2689 return -EOPNOTSUPP;
2690 }
2691 EXPORT_SYMBOL(sock_no_sendmsg);
2692
2693 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2694 {
2695 return -EOPNOTSUPP;
2696 }
2697 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2698
2699 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2700 int flags)
2701 {
2702 return -EOPNOTSUPP;
2703 }
2704 EXPORT_SYMBOL(sock_no_recvmsg);
2705
2706 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2707 {
2708 /* Mirror missing mmap method error code */
2709 return -ENODEV;
2710 }
2711 EXPORT_SYMBOL(sock_no_mmap);
2712
2713 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2714 {
2715 ssize_t res;
2716 struct msghdr msg = {.msg_flags = flags};
2717 struct kvec iov;
2718 char *kaddr = kmap(page);
2719 iov.iov_base = kaddr + offset;
2720 iov.iov_len = size;
2721 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2722 kunmap(page);
2723 return res;
2724 }
2725 EXPORT_SYMBOL(sock_no_sendpage);
2726
2727 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2728 int offset, size_t size, int flags)
2729 {
2730 ssize_t res;
2731 struct msghdr msg = {.msg_flags = flags};
2732 struct kvec iov;
2733 char *kaddr = kmap(page);
2734
2735 iov.iov_base = kaddr + offset;
2736 iov.iov_len = size;
2737 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2738 kunmap(page);
2739 return res;
2740 }
2741 EXPORT_SYMBOL(sock_no_sendpage_locked);
2742
2743 /*
2744 * Default Socket Callbacks
2745 */
2746
2747 static void sock_def_wakeup(struct sock *sk)
2748 {
2749 struct socket_wq *wq;
2750
2751 rcu_read_lock();
2752 wq = rcu_dereference(sk->sk_wq);
2753 if (skwq_has_sleeper(wq))
2754 wake_up_interruptible_all(&wq->wait);
2755 rcu_read_unlock();
2756 }
2757
2758 static void sock_def_error_report(struct sock *sk)
2759 {
2760 struct socket_wq *wq;
2761
2762 rcu_read_lock();
2763 wq = rcu_dereference(sk->sk_wq);
2764 if (skwq_has_sleeper(wq))
2765 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2766 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2767 rcu_read_unlock();
2768 }
2769
2770 static void sock_def_readable(struct sock *sk)
2771 {
2772 struct socket_wq *wq;
2773
2774 rcu_read_lock();
2775 wq = rcu_dereference(sk->sk_wq);
2776 if (skwq_has_sleeper(wq))
2777 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2778 EPOLLRDNORM | EPOLLRDBAND);
2779 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2780 rcu_read_unlock();
2781 }
2782
2783 static void sock_def_write_space(struct sock *sk)
2784 {
2785 struct socket_wq *wq;
2786
2787 rcu_read_lock();
2788
2789 /* Do not wake up a writer until he can make "significant"
2790 * progress. --DaveM
2791 */
2792 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2793 wq = rcu_dereference(sk->sk_wq);
2794 if (skwq_has_sleeper(wq))
2795 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2796 EPOLLWRNORM | EPOLLWRBAND);
2797
2798 /* Should agree with poll, otherwise some programs break */
2799 if (sock_writeable(sk))
2800 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2801 }
2802
2803 rcu_read_unlock();
2804 }
2805
2806 static void sock_def_destruct(struct sock *sk)
2807 {
2808 }
2809
2810 void sk_send_sigurg(struct sock *sk)
2811 {
2812 if (sk->sk_socket && sk->sk_socket->file)
2813 if (send_sigurg(&sk->sk_socket->file->f_owner))
2814 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2815 }
2816 EXPORT_SYMBOL(sk_send_sigurg);
2817
2818 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2819 unsigned long expires)
2820 {
2821 if (!mod_timer(timer, expires))
2822 sock_hold(sk);
2823 }
2824 EXPORT_SYMBOL(sk_reset_timer);
2825
2826 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2827 {
2828 if (del_timer(timer))
2829 __sock_put(sk);
2830 }
2831 EXPORT_SYMBOL(sk_stop_timer);
2832
2833 void sock_init_data(struct socket *sock, struct sock *sk)
2834 {
2835 sk_init_common(sk);
2836 sk->sk_send_head = NULL;
2837
2838 timer_setup(&sk->sk_timer, NULL, 0);
2839
2840 sk->sk_allocation = GFP_KERNEL;
2841 sk->sk_rcvbuf = sysctl_rmem_default;
2842 sk->sk_sndbuf = sysctl_wmem_default;
2843 sk->sk_state = TCP_CLOSE;
2844 sk_set_socket(sk, sock);
2845
2846 sock_set_flag(sk, SOCK_ZAPPED);
2847
2848 if (sock) {
2849 sk->sk_type = sock->type;
2850 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
2851 sock->sk = sk;
2852 sk->sk_uid = SOCK_INODE(sock)->i_uid;
2853 } else {
2854 RCU_INIT_POINTER(sk->sk_wq, NULL);
2855 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
2856 }
2857
2858 rwlock_init(&sk->sk_callback_lock);
2859 if (sk->sk_kern_sock)
2860 lockdep_set_class_and_name(
2861 &sk->sk_callback_lock,
2862 af_kern_callback_keys + sk->sk_family,
2863 af_family_kern_clock_key_strings[sk->sk_family]);
2864 else
2865 lockdep_set_class_and_name(
2866 &sk->sk_callback_lock,
2867 af_callback_keys + sk->sk_family,
2868 af_family_clock_key_strings[sk->sk_family]);
2869
2870 sk->sk_state_change = sock_def_wakeup;
2871 sk->sk_data_ready = sock_def_readable;
2872 sk->sk_write_space = sock_def_write_space;
2873 sk->sk_error_report = sock_def_error_report;
2874 sk->sk_destruct = sock_def_destruct;
2875
2876 sk->sk_frag.page = NULL;
2877 sk->sk_frag.offset = 0;
2878 sk->sk_peek_off = -1;
2879
2880 sk->sk_peer_pid = NULL;
2881 sk->sk_peer_cred = NULL;
2882 sk->sk_write_pending = 0;
2883 sk->sk_rcvlowat = 1;
2884 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2885 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2886
2887 sk->sk_stamp = SK_DEFAULT_STAMP;
2888 #if BITS_PER_LONG==32
2889 seqlock_init(&sk->sk_stamp_seq);
2890 #endif
2891 atomic_set(&sk->sk_zckey, 0);
2892
2893 #ifdef CONFIG_NET_RX_BUSY_POLL
2894 sk->sk_napi_id = 0;
2895 sk->sk_ll_usec = sysctl_net_busy_read;
2896 #endif
2897
2898 sk->sk_max_pacing_rate = ~0UL;
2899 sk->sk_pacing_rate = ~0UL;
2900 sk->sk_pacing_shift = 10;
2901 sk->sk_incoming_cpu = -1;
2902
2903 sk_rx_queue_clear(sk);
2904 /*
2905 * Before updating sk_refcnt, we must commit prior changes to memory
2906 * (Documentation/RCU/rculist_nulls.txt for details)
2907 */
2908 smp_wmb();
2909 refcount_set(&sk->sk_refcnt, 1);
2910 atomic_set(&sk->sk_drops, 0);
2911 }
2912 EXPORT_SYMBOL(sock_init_data);
2913
2914 void lock_sock_nested(struct sock *sk, int subclass)
2915 {
2916 might_sleep();
2917 spin_lock_bh(&sk->sk_lock.slock);
2918 if (sk->sk_lock.owned)
2919 __lock_sock(sk);
2920 sk->sk_lock.owned = 1;
2921 spin_unlock(&sk->sk_lock.slock);
2922 /*
2923 * The sk_lock has mutex_lock() semantics here:
2924 */
2925 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2926 local_bh_enable();
2927 }
2928 EXPORT_SYMBOL(lock_sock_nested);
2929
2930 void release_sock(struct sock *sk)
2931 {
2932 spin_lock_bh(&sk->sk_lock.slock);
2933 if (sk->sk_backlog.tail)
2934 __release_sock(sk);
2935
2936 /* Warning : release_cb() might need to release sk ownership,
2937 * ie call sock_release_ownership(sk) before us.
2938 */
2939 if (sk->sk_prot->release_cb)
2940 sk->sk_prot->release_cb(sk);
2941
2942 sock_release_ownership(sk);
2943 if (waitqueue_active(&sk->sk_lock.wq))
2944 wake_up(&sk->sk_lock.wq);
2945 spin_unlock_bh(&sk->sk_lock.slock);
2946 }
2947 EXPORT_SYMBOL(release_sock);
2948
2949 /**
2950 * lock_sock_fast - fast version of lock_sock
2951 * @sk: socket
2952 *
2953 * This version should be used for very small section, where process wont block
2954 * return false if fast path is taken:
2955 *
2956 * sk_lock.slock locked, owned = 0, BH disabled
2957 *
2958 * return true if slow path is taken:
2959 *
2960 * sk_lock.slock unlocked, owned = 1, BH enabled
2961 */
2962 bool lock_sock_fast(struct sock *sk)
2963 {
2964 might_sleep();
2965 spin_lock_bh(&sk->sk_lock.slock);
2966
2967 if (!sk->sk_lock.owned)
2968 /*
2969 * Note : We must disable BH
2970 */
2971 return false;
2972
2973 __lock_sock(sk);
2974 sk->sk_lock.owned = 1;
2975 spin_unlock(&sk->sk_lock.slock);
2976 /*
2977 * The sk_lock has mutex_lock() semantics here:
2978 */
2979 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2980 local_bh_enable();
2981 return true;
2982 }
2983 EXPORT_SYMBOL(lock_sock_fast);
2984
2985 int sock_gettstamp(struct socket *sock, void __user *userstamp,
2986 bool timeval, bool time32)
2987 {
2988 struct sock *sk = sock->sk;
2989 struct timespec64 ts;
2990
2991 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2992 ts = ktime_to_timespec64(sock_read_timestamp(sk));
2993 if (ts.tv_sec == -1)
2994 return -ENOENT;
2995 if (ts.tv_sec == 0) {
2996 ktime_t kt = ktime_get_real();
2997 sock_write_timestamp(sk, kt);;
2998 ts = ktime_to_timespec64(kt);
2999 }
3000
3001 if (timeval)
3002 ts.tv_nsec /= 1000;
3003
3004 #ifdef CONFIG_COMPAT_32BIT_TIME
3005 if (time32)
3006 return put_old_timespec32(&ts, userstamp);
3007 #endif
3008 #ifdef CONFIG_SPARC64
3009 /* beware of padding in sparc64 timeval */
3010 if (timeval && !in_compat_syscall()) {
3011 struct __kernel_old_timeval __user tv = {
3012 .tv_sec = ts.tv_sec,
3013 .tv_usec = ts.tv_nsec,
3014 };
3015 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3016 return -EFAULT;
3017 return 0;
3018 }
3019 #endif
3020 return put_timespec64(&ts, userstamp);
3021 }
3022 EXPORT_SYMBOL(sock_gettstamp);
3023
3024 void sock_enable_timestamp(struct sock *sk, int flag)
3025 {
3026 if (!sock_flag(sk, flag)) {
3027 unsigned long previous_flags = sk->sk_flags;
3028
3029 sock_set_flag(sk, flag);
3030 /*
3031 * we just set one of the two flags which require net
3032 * time stamping, but time stamping might have been on
3033 * already because of the other one
3034 */
3035 if (sock_needs_netstamp(sk) &&
3036 !(previous_flags & SK_FLAGS_TIMESTAMP))
3037 net_enable_timestamp();
3038 }
3039 }
3040
3041 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3042 int level, int type)
3043 {
3044 struct sock_exterr_skb *serr;
3045 struct sk_buff *skb;
3046 int copied, err;
3047
3048 err = -EAGAIN;
3049 skb = sock_dequeue_err_skb(sk);
3050 if (skb == NULL)
3051 goto out;
3052
3053 copied = skb->len;
3054 if (copied > len) {
3055 msg->msg_flags |= MSG_TRUNC;
3056 copied = len;
3057 }
3058 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3059 if (err)
3060 goto out_free_skb;
3061
3062 sock_recv_timestamp(msg, sk, skb);
3063
3064 serr = SKB_EXT_ERR(skb);
3065 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3066
3067 msg->msg_flags |= MSG_ERRQUEUE;
3068 err = copied;
3069
3070 out_free_skb:
3071 kfree_skb(skb);
3072 out:
3073 return err;
3074 }
3075 EXPORT_SYMBOL(sock_recv_errqueue);
3076
3077 /*
3078 * Get a socket option on an socket.
3079 *
3080 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3081 * asynchronous errors should be reported by getsockopt. We assume
3082 * this means if you specify SO_ERROR (otherwise whats the point of it).
3083 */
3084 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3085 char __user *optval, int __user *optlen)
3086 {
3087 struct sock *sk = sock->sk;
3088
3089 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3090 }
3091 EXPORT_SYMBOL(sock_common_getsockopt);
3092
3093 #ifdef CONFIG_COMPAT
3094 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
3095 char __user *optval, int __user *optlen)
3096 {
3097 struct sock *sk = sock->sk;
3098
3099 if (sk->sk_prot->compat_getsockopt != NULL)
3100 return sk->sk_prot->compat_getsockopt(sk, level, optname,
3101 optval, optlen);
3102 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3103 }
3104 EXPORT_SYMBOL(compat_sock_common_getsockopt);
3105 #endif
3106
3107 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3108 int flags)
3109 {
3110 struct sock *sk = sock->sk;
3111 int addr_len = 0;
3112 int err;
3113
3114 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3115 flags & ~MSG_DONTWAIT, &addr_len);
3116 if (err >= 0)
3117 msg->msg_namelen = addr_len;
3118 return err;
3119 }
3120 EXPORT_SYMBOL(sock_common_recvmsg);
3121
3122 /*
3123 * Set socket options on an inet socket.
3124 */
3125 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3126 char __user *optval, unsigned int optlen)
3127 {
3128 struct sock *sk = sock->sk;
3129
3130 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3131 }
3132 EXPORT_SYMBOL(sock_common_setsockopt);
3133
3134 #ifdef CONFIG_COMPAT
3135 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
3136 char __user *optval, unsigned int optlen)
3137 {
3138 struct sock *sk = sock->sk;
3139
3140 if (sk->sk_prot->compat_setsockopt != NULL)
3141 return sk->sk_prot->compat_setsockopt(sk, level, optname,
3142 optval, optlen);
3143 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3144 }
3145 EXPORT_SYMBOL(compat_sock_common_setsockopt);
3146 #endif
3147
3148 void sk_common_release(struct sock *sk)
3149 {
3150 if (sk->sk_prot->destroy)
3151 sk->sk_prot->destroy(sk);
3152
3153 /*
3154 * Observation: when sock_common_release is called, processes have
3155 * no access to socket. But net still has.
3156 * Step one, detach it from networking:
3157 *
3158 * A. Remove from hash tables.
3159 */
3160
3161 sk->sk_prot->unhash(sk);
3162
3163 /*
3164 * In this point socket cannot receive new packets, but it is possible
3165 * that some packets are in flight because some CPU runs receiver and
3166 * did hash table lookup before we unhashed socket. They will achieve
3167 * receive queue and will be purged by socket destructor.
3168 *
3169 * Also we still have packets pending on receive queue and probably,
3170 * our own packets waiting in device queues. sock_destroy will drain
3171 * receive queue, but transmitted packets will delay socket destruction
3172 * until the last reference will be released.
3173 */
3174
3175 sock_orphan(sk);
3176
3177 xfrm_sk_free_policy(sk);
3178
3179 sk_refcnt_debug_release(sk);
3180
3181 sock_put(sk);
3182 }
3183 EXPORT_SYMBOL(sk_common_release);
3184
3185 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3186 {
3187 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3188
3189 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3190 mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf;
3191 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3192 mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf;
3193 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3194 mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued;
3195 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3196 mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len;
3197 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3198 }
3199
3200 #ifdef CONFIG_PROC_FS
3201 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
3202 struct prot_inuse {
3203 int val[PROTO_INUSE_NR];
3204 };
3205
3206 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3207
3208 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3209 {
3210 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3211 }
3212 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3213
3214 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3215 {
3216 int cpu, idx = prot->inuse_idx;
3217 int res = 0;
3218
3219 for_each_possible_cpu(cpu)
3220 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3221
3222 return res >= 0 ? res : 0;
3223 }
3224 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3225
3226 static void sock_inuse_add(struct net *net, int val)
3227 {
3228 this_cpu_add(*net->core.sock_inuse, val);
3229 }
3230
3231 int sock_inuse_get(struct net *net)
3232 {
3233 int cpu, res = 0;
3234
3235 for_each_possible_cpu(cpu)
3236 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3237
3238 return res;
3239 }
3240
3241 EXPORT_SYMBOL_GPL(sock_inuse_get);
3242
3243 static int __net_init sock_inuse_init_net(struct net *net)
3244 {
3245 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3246 if (net->core.prot_inuse == NULL)
3247 return -ENOMEM;
3248
3249 net->core.sock_inuse = alloc_percpu(int);
3250 if (net->core.sock_inuse == NULL)
3251 goto out;
3252
3253 return 0;
3254
3255 out:
3256 free_percpu(net->core.prot_inuse);
3257 return -ENOMEM;
3258 }
3259
3260 static void __net_exit sock_inuse_exit_net(struct net *net)
3261 {
3262 free_percpu(net->core.prot_inuse);
3263 free_percpu(net->core.sock_inuse);
3264 }
3265
3266 static struct pernet_operations net_inuse_ops = {
3267 .init = sock_inuse_init_net,
3268 .exit = sock_inuse_exit_net,
3269 };
3270
3271 static __init int net_inuse_init(void)
3272 {
3273 if (register_pernet_subsys(&net_inuse_ops))
3274 panic("Cannot initialize net inuse counters");
3275
3276 return 0;
3277 }
3278
3279 core_initcall(net_inuse_init);
3280
3281 static void assign_proto_idx(struct proto *prot)
3282 {
3283 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3284
3285 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3286 pr_err("PROTO_INUSE_NR exhausted\n");
3287 return;
3288 }
3289
3290 set_bit(prot->inuse_idx, proto_inuse_idx);
3291 }
3292
3293 static void release_proto_idx(struct proto *prot)
3294 {
3295 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3296 clear_bit(prot->inuse_idx, proto_inuse_idx);
3297 }
3298 #else
3299 static inline void assign_proto_idx(struct proto *prot)
3300 {
3301 }
3302
3303 static inline void release_proto_idx(struct proto *prot)
3304 {
3305 }
3306
3307 static void sock_inuse_add(struct net *net, int val)
3308 {
3309 }
3310 #endif
3311
3312 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3313 {
3314 if (!rsk_prot)
3315 return;
3316 kfree(rsk_prot->slab_name);
3317 rsk_prot->slab_name = NULL;
3318 kmem_cache_destroy(rsk_prot->slab);
3319 rsk_prot->slab = NULL;
3320 }
3321
3322 static int req_prot_init(const struct proto *prot)
3323 {
3324 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3325
3326 if (!rsk_prot)
3327 return 0;
3328
3329 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3330 prot->name);
3331 if (!rsk_prot->slab_name)
3332 return -ENOMEM;
3333
3334 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3335 rsk_prot->obj_size, 0,
3336 SLAB_ACCOUNT | prot->slab_flags,
3337 NULL);
3338
3339 if (!rsk_prot->slab) {
3340 pr_crit("%s: Can't create request sock SLAB cache!\n",
3341 prot->name);
3342 return -ENOMEM;
3343 }
3344 return 0;
3345 }
3346
3347 int proto_register(struct proto *prot, int alloc_slab)
3348 {
3349 if (alloc_slab) {
3350 prot->slab = kmem_cache_create_usercopy(prot->name,
3351 prot->obj_size, 0,
3352 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3353 prot->slab_flags,
3354 prot->useroffset, prot->usersize,
3355 NULL);
3356
3357 if (prot->slab == NULL) {
3358 pr_crit("%s: Can't create sock SLAB cache!\n",
3359 prot->name);
3360 goto out;
3361 }
3362
3363 if (req_prot_init(prot))
3364 goto out_free_request_sock_slab;
3365
3366 if (prot->twsk_prot != NULL) {
3367 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3368
3369 if (prot->twsk_prot->twsk_slab_name == NULL)
3370 goto out_free_request_sock_slab;
3371
3372 prot->twsk_prot->twsk_slab =
3373 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3374 prot->twsk_prot->twsk_obj_size,
3375 0,
3376 SLAB_ACCOUNT |
3377 prot->slab_flags,
3378 NULL);
3379 if (prot->twsk_prot->twsk_slab == NULL)
3380 goto out_free_timewait_sock_slab_name;
3381 }
3382 }
3383
3384 mutex_lock(&proto_list_mutex);
3385 list_add(&prot->node, &proto_list);
3386 assign_proto_idx(prot);
3387 mutex_unlock(&proto_list_mutex);
3388 return 0;
3389
3390 out_free_timewait_sock_slab_name:
3391 kfree(prot->twsk_prot->twsk_slab_name);
3392 out_free_request_sock_slab:
3393 req_prot_cleanup(prot->rsk_prot);
3394
3395 kmem_cache_destroy(prot->slab);
3396 prot->slab = NULL;
3397 out:
3398 return -ENOBUFS;
3399 }
3400 EXPORT_SYMBOL(proto_register);
3401
3402 void proto_unregister(struct proto *prot)
3403 {
3404 mutex_lock(&proto_list_mutex);
3405 release_proto_idx(prot);
3406 list_del(&prot->node);
3407 mutex_unlock(&proto_list_mutex);
3408
3409 kmem_cache_destroy(prot->slab);
3410 prot->slab = NULL;
3411
3412 req_prot_cleanup(prot->rsk_prot);
3413
3414 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3415 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3416 kfree(prot->twsk_prot->twsk_slab_name);
3417 prot->twsk_prot->twsk_slab = NULL;
3418 }
3419 }
3420 EXPORT_SYMBOL(proto_unregister);
3421
3422 int sock_load_diag_module(int family, int protocol)
3423 {
3424 if (!protocol) {
3425 if (!sock_is_registered(family))
3426 return -ENOENT;
3427
3428 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3429 NETLINK_SOCK_DIAG, family);
3430 }
3431
3432 #ifdef CONFIG_INET
3433 if (family == AF_INET &&
3434 protocol != IPPROTO_RAW &&
3435 !rcu_access_pointer(inet_protos[protocol]))
3436 return -ENOENT;
3437 #endif
3438
3439 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3440 NETLINK_SOCK_DIAG, family, protocol);
3441 }
3442 EXPORT_SYMBOL(sock_load_diag_module);
3443
3444 #ifdef CONFIG_PROC_FS
3445 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3446 __acquires(proto_list_mutex)
3447 {
3448 mutex_lock(&proto_list_mutex);
3449 return seq_list_start_head(&proto_list, *pos);
3450 }
3451
3452 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3453 {
3454 return seq_list_next(v, &proto_list, pos);
3455 }
3456
3457 static void proto_seq_stop(struct seq_file *seq, void *v)
3458 __releases(proto_list_mutex)
3459 {
3460 mutex_unlock(&proto_list_mutex);
3461 }
3462
3463 static char proto_method_implemented(const void *method)
3464 {
3465 return method == NULL ? 'n' : 'y';
3466 }
3467 static long sock_prot_memory_allocated(struct proto *proto)
3468 {
3469 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3470 }
3471
3472 static char *sock_prot_memory_pressure(struct proto *proto)
3473 {
3474 return proto->memory_pressure != NULL ?
3475 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3476 }
3477
3478 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3479 {
3480
3481 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3482 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3483 proto->name,
3484 proto->obj_size,
3485 sock_prot_inuse_get(seq_file_net(seq), proto),
3486 sock_prot_memory_allocated(proto),
3487 sock_prot_memory_pressure(proto),
3488 proto->max_header,
3489 proto->slab == NULL ? "no" : "yes",
3490 module_name(proto->owner),
3491 proto_method_implemented(proto->close),
3492 proto_method_implemented(proto->connect),
3493 proto_method_implemented(proto->disconnect),
3494 proto_method_implemented(proto->accept),
3495 proto_method_implemented(proto->ioctl),
3496 proto_method_implemented(proto->init),
3497 proto_method_implemented(proto->destroy),
3498 proto_method_implemented(proto->shutdown),
3499 proto_method_implemented(proto->setsockopt),
3500 proto_method_implemented(proto->getsockopt),
3501 proto_method_implemented(proto->sendmsg),
3502 proto_method_implemented(proto->recvmsg),
3503 proto_method_implemented(proto->sendpage),
3504 proto_method_implemented(proto->bind),
3505 proto_method_implemented(proto->backlog_rcv),
3506 proto_method_implemented(proto->hash),
3507 proto_method_implemented(proto->unhash),
3508 proto_method_implemented(proto->get_port),
3509 proto_method_implemented(proto->enter_memory_pressure));
3510 }
3511
3512 static int proto_seq_show(struct seq_file *seq, void *v)
3513 {
3514 if (v == &proto_list)
3515 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3516 "protocol",
3517 "size",
3518 "sockets",
3519 "memory",
3520 "press",
3521 "maxhdr",
3522 "slab",
3523 "module",
3524 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3525 else
3526 proto_seq_printf(seq, list_entry(v, struct proto, node));
3527 return 0;
3528 }
3529
3530 static const struct seq_operations proto_seq_ops = {
3531 .start = proto_seq_start,
3532 .next = proto_seq_next,
3533 .stop = proto_seq_stop,
3534 .show = proto_seq_show,
3535 };
3536
3537 static __net_init int proto_init_net(struct net *net)
3538 {
3539 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3540 sizeof(struct seq_net_private)))
3541 return -ENOMEM;
3542
3543 return 0;
3544 }
3545
3546 static __net_exit void proto_exit_net(struct net *net)
3547 {
3548 remove_proc_entry("protocols", net->proc_net);
3549 }
3550
3551
3552 static __net_initdata struct pernet_operations proto_net_ops = {
3553 .init = proto_init_net,
3554 .exit = proto_exit_net,
3555 };
3556
3557 static int __init proto_init(void)
3558 {
3559 return register_pernet_subsys(&proto_net_ops);
3560 }
3561
3562 subsys_initcall(proto_init);
3563
3564 #endif /* PROC_FS */
3565
3566 #ifdef CONFIG_NET_RX_BUSY_POLL
3567 bool sk_busy_loop_end(void *p, unsigned long start_time)
3568 {
3569 struct sock *sk = p;
3570
3571 return !skb_queue_empty(&sk->sk_receive_queue) ||
3572 sk_busy_loop_timeout(sk, start_time);
3573 }
3574 EXPORT_SYMBOL(sk_busy_loop_end);
3575 #endif /* CONFIG_NET_RX_BUSY_POLL */