]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/sock.c
Merge tag 'v4.13-rockchip-soc32-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/sched/mm.h>
106 #include <linux/timer.h>
107 #include <linux/string.h>
108 #include <linux/sockios.h>
109 #include <linux/net.h>
110 #include <linux/mm.h>
111 #include <linux/slab.h>
112 #include <linux/interrupt.h>
113 #include <linux/poll.h>
114 #include <linux/tcp.h>
115 #include <linux/init.h>
116 #include <linux/highmem.h>
117 #include <linux/user_namespace.h>
118 #include <linux/static_key.h>
119 #include <linux/memcontrol.h>
120 #include <linux/prefetch.h>
121
122 #include <linux/uaccess.h>
123
124 #include <linux/netdevice.h>
125 #include <net/protocol.h>
126 #include <linux/skbuff.h>
127 #include <net/net_namespace.h>
128 #include <net/request_sock.h>
129 #include <net/sock.h>
130 #include <linux/net_tstamp.h>
131 #include <net/xfrm.h>
132 #include <linux/ipsec.h>
133 #include <net/cls_cgroup.h>
134 #include <net/netprio_cgroup.h>
135 #include <linux/sock_diag.h>
136
137 #include <linux/filter.h>
138 #include <net/sock_reuseport.h>
139
140 #include <trace/events/sock.h>
141
142 #include <net/tcp.h>
143 #include <net/busy_poll.h>
144
145 static DEFINE_MUTEX(proto_list_mutex);
146 static LIST_HEAD(proto_list);
147
148 /**
149 * sk_ns_capable - General socket capability test
150 * @sk: Socket to use a capability on or through
151 * @user_ns: The user namespace of the capability to use
152 * @cap: The capability to use
153 *
154 * Test to see if the opener of the socket had when the socket was
155 * created and the current process has the capability @cap in the user
156 * namespace @user_ns.
157 */
158 bool sk_ns_capable(const struct sock *sk,
159 struct user_namespace *user_ns, int cap)
160 {
161 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
162 ns_capable(user_ns, cap);
163 }
164 EXPORT_SYMBOL(sk_ns_capable);
165
166 /**
167 * sk_capable - Socket global capability test
168 * @sk: Socket to use a capability on or through
169 * @cap: The global capability to use
170 *
171 * Test to see if the opener of the socket had when the socket was
172 * created and the current process has the capability @cap in all user
173 * namespaces.
174 */
175 bool sk_capable(const struct sock *sk, int cap)
176 {
177 return sk_ns_capable(sk, &init_user_ns, cap);
178 }
179 EXPORT_SYMBOL(sk_capable);
180
181 /**
182 * sk_net_capable - Network namespace socket capability test
183 * @sk: Socket to use a capability on or through
184 * @cap: The capability to use
185 *
186 * Test to see if the opener of the socket had when the socket was created
187 * and the current process has the capability @cap over the network namespace
188 * the socket is a member of.
189 */
190 bool sk_net_capable(const struct sock *sk, int cap)
191 {
192 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
193 }
194 EXPORT_SYMBOL(sk_net_capable);
195
196 /*
197 * Each address family might have different locking rules, so we have
198 * one slock key per address family and separate keys for internal and
199 * userspace sockets.
200 */
201 static struct lock_class_key af_family_keys[AF_MAX];
202 static struct lock_class_key af_family_kern_keys[AF_MAX];
203 static struct lock_class_key af_family_slock_keys[AF_MAX];
204 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
205
206 /*
207 * Make lock validator output more readable. (we pre-construct these
208 * strings build-time, so that runtime initialization of socket
209 * locks is fast):
210 */
211
212 #define _sock_locks(x) \
213 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
214 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
215 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
216 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
217 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
218 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
219 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
220 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
221 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
222 x "27" , x "28" , x "AF_CAN" , \
223 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
224 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
225 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
226 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
227 x "AF_QIPCRTR", x "AF_SMC" , x "AF_MAX"
228
229 static const char *const af_family_key_strings[AF_MAX+1] = {
230 _sock_locks("sk_lock-")
231 };
232 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
233 _sock_locks("slock-")
234 };
235 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
236 _sock_locks("clock-")
237 };
238
239 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
240 _sock_locks("k-sk_lock-")
241 };
242 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
243 _sock_locks("k-slock-")
244 };
245 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
246 _sock_locks("k-clock-")
247 };
248 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
249 "rlock-AF_UNSPEC", "rlock-AF_UNIX" , "rlock-AF_INET" ,
250 "rlock-AF_AX25" , "rlock-AF_IPX" , "rlock-AF_APPLETALK",
251 "rlock-AF_NETROM", "rlock-AF_BRIDGE" , "rlock-AF_ATMPVC" ,
252 "rlock-AF_X25" , "rlock-AF_INET6" , "rlock-AF_ROSE" ,
253 "rlock-AF_DECnet", "rlock-AF_NETBEUI" , "rlock-AF_SECURITY" ,
254 "rlock-AF_KEY" , "rlock-AF_NETLINK" , "rlock-AF_PACKET" ,
255 "rlock-AF_ASH" , "rlock-AF_ECONET" , "rlock-AF_ATMSVC" ,
256 "rlock-AF_RDS" , "rlock-AF_SNA" , "rlock-AF_IRDA" ,
257 "rlock-AF_PPPOX" , "rlock-AF_WANPIPE" , "rlock-AF_LLC" ,
258 "rlock-27" , "rlock-28" , "rlock-AF_CAN" ,
259 "rlock-AF_TIPC" , "rlock-AF_BLUETOOTH", "rlock-AF_IUCV" ,
260 "rlock-AF_RXRPC" , "rlock-AF_ISDN" , "rlock-AF_PHONET" ,
261 "rlock-AF_IEEE802154", "rlock-AF_CAIF" , "rlock-AF_ALG" ,
262 "rlock-AF_NFC" , "rlock-AF_VSOCK" , "rlock-AF_KCM" ,
263 "rlock-AF_QIPCRTR", "rlock-AF_SMC" , "rlock-AF_MAX"
264 };
265 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
266 "wlock-AF_UNSPEC", "wlock-AF_UNIX" , "wlock-AF_INET" ,
267 "wlock-AF_AX25" , "wlock-AF_IPX" , "wlock-AF_APPLETALK",
268 "wlock-AF_NETROM", "wlock-AF_BRIDGE" , "wlock-AF_ATMPVC" ,
269 "wlock-AF_X25" , "wlock-AF_INET6" , "wlock-AF_ROSE" ,
270 "wlock-AF_DECnet", "wlock-AF_NETBEUI" , "wlock-AF_SECURITY" ,
271 "wlock-AF_KEY" , "wlock-AF_NETLINK" , "wlock-AF_PACKET" ,
272 "wlock-AF_ASH" , "wlock-AF_ECONET" , "wlock-AF_ATMSVC" ,
273 "wlock-AF_RDS" , "wlock-AF_SNA" , "wlock-AF_IRDA" ,
274 "wlock-AF_PPPOX" , "wlock-AF_WANPIPE" , "wlock-AF_LLC" ,
275 "wlock-27" , "wlock-28" , "wlock-AF_CAN" ,
276 "wlock-AF_TIPC" , "wlock-AF_BLUETOOTH", "wlock-AF_IUCV" ,
277 "wlock-AF_RXRPC" , "wlock-AF_ISDN" , "wlock-AF_PHONET" ,
278 "wlock-AF_IEEE802154", "wlock-AF_CAIF" , "wlock-AF_ALG" ,
279 "wlock-AF_NFC" , "wlock-AF_VSOCK" , "wlock-AF_KCM" ,
280 "wlock-AF_QIPCRTR", "wlock-AF_SMC" , "wlock-AF_MAX"
281 };
282 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
283 "elock-AF_UNSPEC", "elock-AF_UNIX" , "elock-AF_INET" ,
284 "elock-AF_AX25" , "elock-AF_IPX" , "elock-AF_APPLETALK",
285 "elock-AF_NETROM", "elock-AF_BRIDGE" , "elock-AF_ATMPVC" ,
286 "elock-AF_X25" , "elock-AF_INET6" , "elock-AF_ROSE" ,
287 "elock-AF_DECnet", "elock-AF_NETBEUI" , "elock-AF_SECURITY" ,
288 "elock-AF_KEY" , "elock-AF_NETLINK" , "elock-AF_PACKET" ,
289 "elock-AF_ASH" , "elock-AF_ECONET" , "elock-AF_ATMSVC" ,
290 "elock-AF_RDS" , "elock-AF_SNA" , "elock-AF_IRDA" ,
291 "elock-AF_PPPOX" , "elock-AF_WANPIPE" , "elock-AF_LLC" ,
292 "elock-27" , "elock-28" , "elock-AF_CAN" ,
293 "elock-AF_TIPC" , "elock-AF_BLUETOOTH", "elock-AF_IUCV" ,
294 "elock-AF_RXRPC" , "elock-AF_ISDN" , "elock-AF_PHONET" ,
295 "elock-AF_IEEE802154", "elock-AF_CAIF" , "elock-AF_ALG" ,
296 "elock-AF_NFC" , "elock-AF_VSOCK" , "elock-AF_KCM" ,
297 "elock-AF_QIPCRTR", "elock-AF_SMC" , "elock-AF_MAX"
298 };
299
300 /*
301 * sk_callback_lock and sk queues locking rules are per-address-family,
302 * so split the lock classes by using a per-AF key:
303 */
304 static struct lock_class_key af_callback_keys[AF_MAX];
305 static struct lock_class_key af_rlock_keys[AF_MAX];
306 static struct lock_class_key af_wlock_keys[AF_MAX];
307 static struct lock_class_key af_elock_keys[AF_MAX];
308 static struct lock_class_key af_kern_callback_keys[AF_MAX];
309
310 /* Take into consideration the size of the struct sk_buff overhead in the
311 * determination of these values, since that is non-constant across
312 * platforms. This makes socket queueing behavior and performance
313 * not depend upon such differences.
314 */
315 #define _SK_MEM_PACKETS 256
316 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
317 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
318 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
319
320 /* Run time adjustable parameters. */
321 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
322 EXPORT_SYMBOL(sysctl_wmem_max);
323 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
324 EXPORT_SYMBOL(sysctl_rmem_max);
325 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
326 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
327
328 /* Maximal space eaten by iovec or ancillary data plus some space */
329 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
330 EXPORT_SYMBOL(sysctl_optmem_max);
331
332 int sysctl_tstamp_allow_data __read_mostly = 1;
333
334 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
335 EXPORT_SYMBOL_GPL(memalloc_socks);
336
337 /**
338 * sk_set_memalloc - sets %SOCK_MEMALLOC
339 * @sk: socket to set it on
340 *
341 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
342 * It's the responsibility of the admin to adjust min_free_kbytes
343 * to meet the requirements
344 */
345 void sk_set_memalloc(struct sock *sk)
346 {
347 sock_set_flag(sk, SOCK_MEMALLOC);
348 sk->sk_allocation |= __GFP_MEMALLOC;
349 static_key_slow_inc(&memalloc_socks);
350 }
351 EXPORT_SYMBOL_GPL(sk_set_memalloc);
352
353 void sk_clear_memalloc(struct sock *sk)
354 {
355 sock_reset_flag(sk, SOCK_MEMALLOC);
356 sk->sk_allocation &= ~__GFP_MEMALLOC;
357 static_key_slow_dec(&memalloc_socks);
358
359 /*
360 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
361 * progress of swapping. SOCK_MEMALLOC may be cleared while
362 * it has rmem allocations due to the last swapfile being deactivated
363 * but there is a risk that the socket is unusable due to exceeding
364 * the rmem limits. Reclaim the reserves and obey rmem limits again.
365 */
366 sk_mem_reclaim(sk);
367 }
368 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
369
370 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
371 {
372 int ret;
373 unsigned int noreclaim_flag;
374
375 /* these should have been dropped before queueing */
376 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
377
378 noreclaim_flag = memalloc_noreclaim_save();
379 ret = sk->sk_backlog_rcv(sk, skb);
380 memalloc_noreclaim_restore(noreclaim_flag);
381
382 return ret;
383 }
384 EXPORT_SYMBOL(__sk_backlog_rcv);
385
386 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
387 {
388 struct timeval tv;
389
390 if (optlen < sizeof(tv))
391 return -EINVAL;
392 if (copy_from_user(&tv, optval, sizeof(tv)))
393 return -EFAULT;
394 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
395 return -EDOM;
396
397 if (tv.tv_sec < 0) {
398 static int warned __read_mostly;
399
400 *timeo_p = 0;
401 if (warned < 10 && net_ratelimit()) {
402 warned++;
403 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
404 __func__, current->comm, task_pid_nr(current));
405 }
406 return 0;
407 }
408 *timeo_p = MAX_SCHEDULE_TIMEOUT;
409 if (tv.tv_sec == 0 && tv.tv_usec == 0)
410 return 0;
411 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
412 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC / HZ);
413 return 0;
414 }
415
416 static void sock_warn_obsolete_bsdism(const char *name)
417 {
418 static int warned;
419 static char warncomm[TASK_COMM_LEN];
420 if (strcmp(warncomm, current->comm) && warned < 5) {
421 strcpy(warncomm, current->comm);
422 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
423 warncomm, name);
424 warned++;
425 }
426 }
427
428 static bool sock_needs_netstamp(const struct sock *sk)
429 {
430 switch (sk->sk_family) {
431 case AF_UNSPEC:
432 case AF_UNIX:
433 return false;
434 default:
435 return true;
436 }
437 }
438
439 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
440 {
441 if (sk->sk_flags & flags) {
442 sk->sk_flags &= ~flags;
443 if (sock_needs_netstamp(sk) &&
444 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
445 net_disable_timestamp();
446 }
447 }
448
449
450 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
451 {
452 unsigned long flags;
453 struct sk_buff_head *list = &sk->sk_receive_queue;
454
455 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
456 atomic_inc(&sk->sk_drops);
457 trace_sock_rcvqueue_full(sk, skb);
458 return -ENOMEM;
459 }
460
461 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
462 atomic_inc(&sk->sk_drops);
463 return -ENOBUFS;
464 }
465
466 skb->dev = NULL;
467 skb_set_owner_r(skb, sk);
468
469 /* we escape from rcu protected region, make sure we dont leak
470 * a norefcounted dst
471 */
472 skb_dst_force(skb);
473
474 spin_lock_irqsave(&list->lock, flags);
475 sock_skb_set_dropcount(sk, skb);
476 __skb_queue_tail(list, skb);
477 spin_unlock_irqrestore(&list->lock, flags);
478
479 if (!sock_flag(sk, SOCK_DEAD))
480 sk->sk_data_ready(sk);
481 return 0;
482 }
483 EXPORT_SYMBOL(__sock_queue_rcv_skb);
484
485 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
486 {
487 int err;
488
489 err = sk_filter(sk, skb);
490 if (err)
491 return err;
492
493 return __sock_queue_rcv_skb(sk, skb);
494 }
495 EXPORT_SYMBOL(sock_queue_rcv_skb);
496
497 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
498 const int nested, unsigned int trim_cap, bool refcounted)
499 {
500 int rc = NET_RX_SUCCESS;
501
502 if (sk_filter_trim_cap(sk, skb, trim_cap))
503 goto discard_and_relse;
504
505 skb->dev = NULL;
506
507 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
508 atomic_inc(&sk->sk_drops);
509 goto discard_and_relse;
510 }
511 if (nested)
512 bh_lock_sock_nested(sk);
513 else
514 bh_lock_sock(sk);
515 if (!sock_owned_by_user(sk)) {
516 /*
517 * trylock + unlock semantics:
518 */
519 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
520
521 rc = sk_backlog_rcv(sk, skb);
522
523 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
524 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
525 bh_unlock_sock(sk);
526 atomic_inc(&sk->sk_drops);
527 goto discard_and_relse;
528 }
529
530 bh_unlock_sock(sk);
531 out:
532 if (refcounted)
533 sock_put(sk);
534 return rc;
535 discard_and_relse:
536 kfree_skb(skb);
537 goto out;
538 }
539 EXPORT_SYMBOL(__sk_receive_skb);
540
541 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
542 {
543 struct dst_entry *dst = __sk_dst_get(sk);
544
545 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
546 sk_tx_queue_clear(sk);
547 sk->sk_dst_pending_confirm = 0;
548 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
549 dst_release(dst);
550 return NULL;
551 }
552
553 return dst;
554 }
555 EXPORT_SYMBOL(__sk_dst_check);
556
557 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
558 {
559 struct dst_entry *dst = sk_dst_get(sk);
560
561 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
562 sk_dst_reset(sk);
563 dst_release(dst);
564 return NULL;
565 }
566
567 return dst;
568 }
569 EXPORT_SYMBOL(sk_dst_check);
570
571 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
572 int optlen)
573 {
574 int ret = -ENOPROTOOPT;
575 #ifdef CONFIG_NETDEVICES
576 struct net *net = sock_net(sk);
577 char devname[IFNAMSIZ];
578 int index;
579
580 /* Sorry... */
581 ret = -EPERM;
582 if (!ns_capable(net->user_ns, CAP_NET_RAW))
583 goto out;
584
585 ret = -EINVAL;
586 if (optlen < 0)
587 goto out;
588
589 /* Bind this socket to a particular device like "eth0",
590 * as specified in the passed interface name. If the
591 * name is "" or the option length is zero the socket
592 * is not bound.
593 */
594 if (optlen > IFNAMSIZ - 1)
595 optlen = IFNAMSIZ - 1;
596 memset(devname, 0, sizeof(devname));
597
598 ret = -EFAULT;
599 if (copy_from_user(devname, optval, optlen))
600 goto out;
601
602 index = 0;
603 if (devname[0] != '\0') {
604 struct net_device *dev;
605
606 rcu_read_lock();
607 dev = dev_get_by_name_rcu(net, devname);
608 if (dev)
609 index = dev->ifindex;
610 rcu_read_unlock();
611 ret = -ENODEV;
612 if (!dev)
613 goto out;
614 }
615
616 lock_sock(sk);
617 sk->sk_bound_dev_if = index;
618 sk_dst_reset(sk);
619 release_sock(sk);
620
621 ret = 0;
622
623 out:
624 #endif
625
626 return ret;
627 }
628
629 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
630 int __user *optlen, int len)
631 {
632 int ret = -ENOPROTOOPT;
633 #ifdef CONFIG_NETDEVICES
634 struct net *net = sock_net(sk);
635 char devname[IFNAMSIZ];
636
637 if (sk->sk_bound_dev_if == 0) {
638 len = 0;
639 goto zero;
640 }
641
642 ret = -EINVAL;
643 if (len < IFNAMSIZ)
644 goto out;
645
646 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
647 if (ret)
648 goto out;
649
650 len = strlen(devname) + 1;
651
652 ret = -EFAULT;
653 if (copy_to_user(optval, devname, len))
654 goto out;
655
656 zero:
657 ret = -EFAULT;
658 if (put_user(len, optlen))
659 goto out;
660
661 ret = 0;
662
663 out:
664 #endif
665
666 return ret;
667 }
668
669 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
670 {
671 if (valbool)
672 sock_set_flag(sk, bit);
673 else
674 sock_reset_flag(sk, bit);
675 }
676
677 bool sk_mc_loop(struct sock *sk)
678 {
679 if (dev_recursion_level())
680 return false;
681 if (!sk)
682 return true;
683 switch (sk->sk_family) {
684 case AF_INET:
685 return inet_sk(sk)->mc_loop;
686 #if IS_ENABLED(CONFIG_IPV6)
687 case AF_INET6:
688 return inet6_sk(sk)->mc_loop;
689 #endif
690 }
691 WARN_ON(1);
692 return true;
693 }
694 EXPORT_SYMBOL(sk_mc_loop);
695
696 /*
697 * This is meant for all protocols to use and covers goings on
698 * at the socket level. Everything here is generic.
699 */
700
701 int sock_setsockopt(struct socket *sock, int level, int optname,
702 char __user *optval, unsigned int optlen)
703 {
704 struct sock *sk = sock->sk;
705 int val;
706 int valbool;
707 struct linger ling;
708 int ret = 0;
709
710 /*
711 * Options without arguments
712 */
713
714 if (optname == SO_BINDTODEVICE)
715 return sock_setbindtodevice(sk, optval, optlen);
716
717 if (optlen < sizeof(int))
718 return -EINVAL;
719
720 if (get_user(val, (int __user *)optval))
721 return -EFAULT;
722
723 valbool = val ? 1 : 0;
724
725 lock_sock(sk);
726
727 switch (optname) {
728 case SO_DEBUG:
729 if (val && !capable(CAP_NET_ADMIN))
730 ret = -EACCES;
731 else
732 sock_valbool_flag(sk, SOCK_DBG, valbool);
733 break;
734 case SO_REUSEADDR:
735 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
736 break;
737 case SO_REUSEPORT:
738 sk->sk_reuseport = valbool;
739 break;
740 case SO_TYPE:
741 case SO_PROTOCOL:
742 case SO_DOMAIN:
743 case SO_ERROR:
744 ret = -ENOPROTOOPT;
745 break;
746 case SO_DONTROUTE:
747 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
748 break;
749 case SO_BROADCAST:
750 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
751 break;
752 case SO_SNDBUF:
753 /* Don't error on this BSD doesn't and if you think
754 * about it this is right. Otherwise apps have to
755 * play 'guess the biggest size' games. RCVBUF/SNDBUF
756 * are treated in BSD as hints
757 */
758 val = min_t(u32, val, sysctl_wmem_max);
759 set_sndbuf:
760 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
761 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
762 /* Wake up sending tasks if we upped the value. */
763 sk->sk_write_space(sk);
764 break;
765
766 case SO_SNDBUFFORCE:
767 if (!capable(CAP_NET_ADMIN)) {
768 ret = -EPERM;
769 break;
770 }
771 goto set_sndbuf;
772
773 case SO_RCVBUF:
774 /* Don't error on this BSD doesn't and if you think
775 * about it this is right. Otherwise apps have to
776 * play 'guess the biggest size' games. RCVBUF/SNDBUF
777 * are treated in BSD as hints
778 */
779 val = min_t(u32, val, sysctl_rmem_max);
780 set_rcvbuf:
781 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
782 /*
783 * We double it on the way in to account for
784 * "struct sk_buff" etc. overhead. Applications
785 * assume that the SO_RCVBUF setting they make will
786 * allow that much actual data to be received on that
787 * socket.
788 *
789 * Applications are unaware that "struct sk_buff" and
790 * other overheads allocate from the receive buffer
791 * during socket buffer allocation.
792 *
793 * And after considering the possible alternatives,
794 * returning the value we actually used in getsockopt
795 * is the most desirable behavior.
796 */
797 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
798 break;
799
800 case SO_RCVBUFFORCE:
801 if (!capable(CAP_NET_ADMIN)) {
802 ret = -EPERM;
803 break;
804 }
805 goto set_rcvbuf;
806
807 case SO_KEEPALIVE:
808 if (sk->sk_prot->keepalive)
809 sk->sk_prot->keepalive(sk, valbool);
810 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
811 break;
812
813 case SO_OOBINLINE:
814 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
815 break;
816
817 case SO_NO_CHECK:
818 sk->sk_no_check_tx = valbool;
819 break;
820
821 case SO_PRIORITY:
822 if ((val >= 0 && val <= 6) ||
823 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
824 sk->sk_priority = val;
825 else
826 ret = -EPERM;
827 break;
828
829 case SO_LINGER:
830 if (optlen < sizeof(ling)) {
831 ret = -EINVAL; /* 1003.1g */
832 break;
833 }
834 if (copy_from_user(&ling, optval, sizeof(ling))) {
835 ret = -EFAULT;
836 break;
837 }
838 if (!ling.l_onoff)
839 sock_reset_flag(sk, SOCK_LINGER);
840 else {
841 #if (BITS_PER_LONG == 32)
842 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
843 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
844 else
845 #endif
846 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
847 sock_set_flag(sk, SOCK_LINGER);
848 }
849 break;
850
851 case SO_BSDCOMPAT:
852 sock_warn_obsolete_bsdism("setsockopt");
853 break;
854
855 case SO_PASSCRED:
856 if (valbool)
857 set_bit(SOCK_PASSCRED, &sock->flags);
858 else
859 clear_bit(SOCK_PASSCRED, &sock->flags);
860 break;
861
862 case SO_TIMESTAMP:
863 case SO_TIMESTAMPNS:
864 if (valbool) {
865 if (optname == SO_TIMESTAMP)
866 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
867 else
868 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
869 sock_set_flag(sk, SOCK_RCVTSTAMP);
870 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
871 } else {
872 sock_reset_flag(sk, SOCK_RCVTSTAMP);
873 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
874 }
875 break;
876
877 case SO_TIMESTAMPING:
878 if (val & ~SOF_TIMESTAMPING_MASK) {
879 ret = -EINVAL;
880 break;
881 }
882
883 if (val & SOF_TIMESTAMPING_OPT_ID &&
884 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
885 if (sk->sk_protocol == IPPROTO_TCP &&
886 sk->sk_type == SOCK_STREAM) {
887 if ((1 << sk->sk_state) &
888 (TCPF_CLOSE | TCPF_LISTEN)) {
889 ret = -EINVAL;
890 break;
891 }
892 sk->sk_tskey = tcp_sk(sk)->snd_una;
893 } else {
894 sk->sk_tskey = 0;
895 }
896 }
897
898 if (val & SOF_TIMESTAMPING_OPT_STATS &&
899 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
900 ret = -EINVAL;
901 break;
902 }
903
904 sk->sk_tsflags = val;
905 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
906 sock_enable_timestamp(sk,
907 SOCK_TIMESTAMPING_RX_SOFTWARE);
908 else
909 sock_disable_timestamp(sk,
910 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
911 break;
912
913 case SO_RCVLOWAT:
914 if (val < 0)
915 val = INT_MAX;
916 sk->sk_rcvlowat = val ? : 1;
917 break;
918
919 case SO_RCVTIMEO:
920 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
921 break;
922
923 case SO_SNDTIMEO:
924 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
925 break;
926
927 case SO_ATTACH_FILTER:
928 ret = -EINVAL;
929 if (optlen == sizeof(struct sock_fprog)) {
930 struct sock_fprog fprog;
931
932 ret = -EFAULT;
933 if (copy_from_user(&fprog, optval, sizeof(fprog)))
934 break;
935
936 ret = sk_attach_filter(&fprog, sk);
937 }
938 break;
939
940 case SO_ATTACH_BPF:
941 ret = -EINVAL;
942 if (optlen == sizeof(u32)) {
943 u32 ufd;
944
945 ret = -EFAULT;
946 if (copy_from_user(&ufd, optval, sizeof(ufd)))
947 break;
948
949 ret = sk_attach_bpf(ufd, sk);
950 }
951 break;
952
953 case SO_ATTACH_REUSEPORT_CBPF:
954 ret = -EINVAL;
955 if (optlen == sizeof(struct sock_fprog)) {
956 struct sock_fprog fprog;
957
958 ret = -EFAULT;
959 if (copy_from_user(&fprog, optval, sizeof(fprog)))
960 break;
961
962 ret = sk_reuseport_attach_filter(&fprog, sk);
963 }
964 break;
965
966 case SO_ATTACH_REUSEPORT_EBPF:
967 ret = -EINVAL;
968 if (optlen == sizeof(u32)) {
969 u32 ufd;
970
971 ret = -EFAULT;
972 if (copy_from_user(&ufd, optval, sizeof(ufd)))
973 break;
974
975 ret = sk_reuseport_attach_bpf(ufd, sk);
976 }
977 break;
978
979 case SO_DETACH_FILTER:
980 ret = sk_detach_filter(sk);
981 break;
982
983 case SO_LOCK_FILTER:
984 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
985 ret = -EPERM;
986 else
987 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
988 break;
989
990 case SO_PASSSEC:
991 if (valbool)
992 set_bit(SOCK_PASSSEC, &sock->flags);
993 else
994 clear_bit(SOCK_PASSSEC, &sock->flags);
995 break;
996 case SO_MARK:
997 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
998 ret = -EPERM;
999 else
1000 sk->sk_mark = val;
1001 break;
1002
1003 case SO_RXQ_OVFL:
1004 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1005 break;
1006
1007 case SO_WIFI_STATUS:
1008 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1009 break;
1010
1011 case SO_PEEK_OFF:
1012 if (sock->ops->set_peek_off)
1013 ret = sock->ops->set_peek_off(sk, val);
1014 else
1015 ret = -EOPNOTSUPP;
1016 break;
1017
1018 case SO_NOFCS:
1019 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1020 break;
1021
1022 case SO_SELECT_ERR_QUEUE:
1023 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1024 break;
1025
1026 #ifdef CONFIG_NET_RX_BUSY_POLL
1027 case SO_BUSY_POLL:
1028 /* allow unprivileged users to decrease the value */
1029 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1030 ret = -EPERM;
1031 else {
1032 if (val < 0)
1033 ret = -EINVAL;
1034 else
1035 sk->sk_ll_usec = val;
1036 }
1037 break;
1038 #endif
1039
1040 case SO_MAX_PACING_RATE:
1041 sk->sk_max_pacing_rate = val;
1042 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1043 sk->sk_max_pacing_rate);
1044 break;
1045
1046 case SO_INCOMING_CPU:
1047 sk->sk_incoming_cpu = val;
1048 break;
1049
1050 case SO_CNX_ADVICE:
1051 if (val == 1)
1052 dst_negative_advice(sk);
1053 break;
1054 default:
1055 ret = -ENOPROTOOPT;
1056 break;
1057 }
1058 release_sock(sk);
1059 return ret;
1060 }
1061 EXPORT_SYMBOL(sock_setsockopt);
1062
1063
1064 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1065 struct ucred *ucred)
1066 {
1067 ucred->pid = pid_vnr(pid);
1068 ucred->uid = ucred->gid = -1;
1069 if (cred) {
1070 struct user_namespace *current_ns = current_user_ns();
1071
1072 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1073 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1074 }
1075 }
1076
1077 int sock_getsockopt(struct socket *sock, int level, int optname,
1078 char __user *optval, int __user *optlen)
1079 {
1080 struct sock *sk = sock->sk;
1081
1082 union {
1083 int val;
1084 u64 val64;
1085 struct linger ling;
1086 struct timeval tm;
1087 } v;
1088
1089 int lv = sizeof(int);
1090 int len;
1091
1092 if (get_user(len, optlen))
1093 return -EFAULT;
1094 if (len < 0)
1095 return -EINVAL;
1096
1097 memset(&v, 0, sizeof(v));
1098
1099 switch (optname) {
1100 case SO_DEBUG:
1101 v.val = sock_flag(sk, SOCK_DBG);
1102 break;
1103
1104 case SO_DONTROUTE:
1105 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1106 break;
1107
1108 case SO_BROADCAST:
1109 v.val = sock_flag(sk, SOCK_BROADCAST);
1110 break;
1111
1112 case SO_SNDBUF:
1113 v.val = sk->sk_sndbuf;
1114 break;
1115
1116 case SO_RCVBUF:
1117 v.val = sk->sk_rcvbuf;
1118 break;
1119
1120 case SO_REUSEADDR:
1121 v.val = sk->sk_reuse;
1122 break;
1123
1124 case SO_REUSEPORT:
1125 v.val = sk->sk_reuseport;
1126 break;
1127
1128 case SO_KEEPALIVE:
1129 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1130 break;
1131
1132 case SO_TYPE:
1133 v.val = sk->sk_type;
1134 break;
1135
1136 case SO_PROTOCOL:
1137 v.val = sk->sk_protocol;
1138 break;
1139
1140 case SO_DOMAIN:
1141 v.val = sk->sk_family;
1142 break;
1143
1144 case SO_ERROR:
1145 v.val = -sock_error(sk);
1146 if (v.val == 0)
1147 v.val = xchg(&sk->sk_err_soft, 0);
1148 break;
1149
1150 case SO_OOBINLINE:
1151 v.val = sock_flag(sk, SOCK_URGINLINE);
1152 break;
1153
1154 case SO_NO_CHECK:
1155 v.val = sk->sk_no_check_tx;
1156 break;
1157
1158 case SO_PRIORITY:
1159 v.val = sk->sk_priority;
1160 break;
1161
1162 case SO_LINGER:
1163 lv = sizeof(v.ling);
1164 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1165 v.ling.l_linger = sk->sk_lingertime / HZ;
1166 break;
1167
1168 case SO_BSDCOMPAT:
1169 sock_warn_obsolete_bsdism("getsockopt");
1170 break;
1171
1172 case SO_TIMESTAMP:
1173 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1174 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1175 break;
1176
1177 case SO_TIMESTAMPNS:
1178 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1179 break;
1180
1181 case SO_TIMESTAMPING:
1182 v.val = sk->sk_tsflags;
1183 break;
1184
1185 case SO_RCVTIMEO:
1186 lv = sizeof(struct timeval);
1187 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1188 v.tm.tv_sec = 0;
1189 v.tm.tv_usec = 0;
1190 } else {
1191 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1192 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * USEC_PER_SEC) / HZ;
1193 }
1194 break;
1195
1196 case SO_SNDTIMEO:
1197 lv = sizeof(struct timeval);
1198 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1199 v.tm.tv_sec = 0;
1200 v.tm.tv_usec = 0;
1201 } else {
1202 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1203 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * USEC_PER_SEC) / HZ;
1204 }
1205 break;
1206
1207 case SO_RCVLOWAT:
1208 v.val = sk->sk_rcvlowat;
1209 break;
1210
1211 case SO_SNDLOWAT:
1212 v.val = 1;
1213 break;
1214
1215 case SO_PASSCRED:
1216 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1217 break;
1218
1219 case SO_PEERCRED:
1220 {
1221 struct ucred peercred;
1222 if (len > sizeof(peercred))
1223 len = sizeof(peercred);
1224 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1225 if (copy_to_user(optval, &peercred, len))
1226 return -EFAULT;
1227 goto lenout;
1228 }
1229
1230 case SO_PEERNAME:
1231 {
1232 char address[128];
1233
1234 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1235 return -ENOTCONN;
1236 if (lv < len)
1237 return -EINVAL;
1238 if (copy_to_user(optval, address, len))
1239 return -EFAULT;
1240 goto lenout;
1241 }
1242
1243 /* Dubious BSD thing... Probably nobody even uses it, but
1244 * the UNIX standard wants it for whatever reason... -DaveM
1245 */
1246 case SO_ACCEPTCONN:
1247 v.val = sk->sk_state == TCP_LISTEN;
1248 break;
1249
1250 case SO_PASSSEC:
1251 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1252 break;
1253
1254 case SO_PEERSEC:
1255 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1256
1257 case SO_MARK:
1258 v.val = sk->sk_mark;
1259 break;
1260
1261 case SO_RXQ_OVFL:
1262 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1263 break;
1264
1265 case SO_WIFI_STATUS:
1266 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1267 break;
1268
1269 case SO_PEEK_OFF:
1270 if (!sock->ops->set_peek_off)
1271 return -EOPNOTSUPP;
1272
1273 v.val = sk->sk_peek_off;
1274 break;
1275 case SO_NOFCS:
1276 v.val = sock_flag(sk, SOCK_NOFCS);
1277 break;
1278
1279 case SO_BINDTODEVICE:
1280 return sock_getbindtodevice(sk, optval, optlen, len);
1281
1282 case SO_GET_FILTER:
1283 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1284 if (len < 0)
1285 return len;
1286
1287 goto lenout;
1288
1289 case SO_LOCK_FILTER:
1290 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1291 break;
1292
1293 case SO_BPF_EXTENSIONS:
1294 v.val = bpf_tell_extensions();
1295 break;
1296
1297 case SO_SELECT_ERR_QUEUE:
1298 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1299 break;
1300
1301 #ifdef CONFIG_NET_RX_BUSY_POLL
1302 case SO_BUSY_POLL:
1303 v.val = sk->sk_ll_usec;
1304 break;
1305 #endif
1306
1307 case SO_MAX_PACING_RATE:
1308 v.val = sk->sk_max_pacing_rate;
1309 break;
1310
1311 case SO_INCOMING_CPU:
1312 v.val = sk->sk_incoming_cpu;
1313 break;
1314
1315 case SO_MEMINFO:
1316 {
1317 u32 meminfo[SK_MEMINFO_VARS];
1318
1319 if (get_user(len, optlen))
1320 return -EFAULT;
1321
1322 sk_get_meminfo(sk, meminfo);
1323
1324 len = min_t(unsigned int, len, sizeof(meminfo));
1325 if (copy_to_user(optval, &meminfo, len))
1326 return -EFAULT;
1327
1328 goto lenout;
1329 }
1330
1331 #ifdef CONFIG_NET_RX_BUSY_POLL
1332 case SO_INCOMING_NAPI_ID:
1333 v.val = READ_ONCE(sk->sk_napi_id);
1334
1335 /* aggregate non-NAPI IDs down to 0 */
1336 if (v.val < MIN_NAPI_ID)
1337 v.val = 0;
1338
1339 break;
1340 #endif
1341
1342 case SO_COOKIE:
1343 lv = sizeof(u64);
1344 if (len < lv)
1345 return -EINVAL;
1346 v.val64 = sock_gen_cookie(sk);
1347 break;
1348
1349 default:
1350 /* We implement the SO_SNDLOWAT etc to not be settable
1351 * (1003.1g 7).
1352 */
1353 return -ENOPROTOOPT;
1354 }
1355
1356 if (len > lv)
1357 len = lv;
1358 if (copy_to_user(optval, &v, len))
1359 return -EFAULT;
1360 lenout:
1361 if (put_user(len, optlen))
1362 return -EFAULT;
1363 return 0;
1364 }
1365
1366 /*
1367 * Initialize an sk_lock.
1368 *
1369 * (We also register the sk_lock with the lock validator.)
1370 */
1371 static inline void sock_lock_init(struct sock *sk)
1372 {
1373 if (sk->sk_kern_sock)
1374 sock_lock_init_class_and_name(
1375 sk,
1376 af_family_kern_slock_key_strings[sk->sk_family],
1377 af_family_kern_slock_keys + sk->sk_family,
1378 af_family_kern_key_strings[sk->sk_family],
1379 af_family_kern_keys + sk->sk_family);
1380 else
1381 sock_lock_init_class_and_name(
1382 sk,
1383 af_family_slock_key_strings[sk->sk_family],
1384 af_family_slock_keys + sk->sk_family,
1385 af_family_key_strings[sk->sk_family],
1386 af_family_keys + sk->sk_family);
1387 }
1388
1389 /*
1390 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1391 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1392 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1393 */
1394 static void sock_copy(struct sock *nsk, const struct sock *osk)
1395 {
1396 #ifdef CONFIG_SECURITY_NETWORK
1397 void *sptr = nsk->sk_security;
1398 #endif
1399 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1400
1401 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1402 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1403
1404 #ifdef CONFIG_SECURITY_NETWORK
1405 nsk->sk_security = sptr;
1406 security_sk_clone(osk, nsk);
1407 #endif
1408 }
1409
1410 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1411 int family)
1412 {
1413 struct sock *sk;
1414 struct kmem_cache *slab;
1415
1416 slab = prot->slab;
1417 if (slab != NULL) {
1418 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1419 if (!sk)
1420 return sk;
1421 if (priority & __GFP_ZERO)
1422 sk_prot_clear_nulls(sk, prot->obj_size);
1423 } else
1424 sk = kmalloc(prot->obj_size, priority);
1425
1426 if (sk != NULL) {
1427 kmemcheck_annotate_bitfield(sk, flags);
1428
1429 if (security_sk_alloc(sk, family, priority))
1430 goto out_free;
1431
1432 if (!try_module_get(prot->owner))
1433 goto out_free_sec;
1434 sk_tx_queue_clear(sk);
1435 }
1436
1437 return sk;
1438
1439 out_free_sec:
1440 security_sk_free(sk);
1441 out_free:
1442 if (slab != NULL)
1443 kmem_cache_free(slab, sk);
1444 else
1445 kfree(sk);
1446 return NULL;
1447 }
1448
1449 static void sk_prot_free(struct proto *prot, struct sock *sk)
1450 {
1451 struct kmem_cache *slab;
1452 struct module *owner;
1453
1454 owner = prot->owner;
1455 slab = prot->slab;
1456
1457 cgroup_sk_free(&sk->sk_cgrp_data);
1458 mem_cgroup_sk_free(sk);
1459 security_sk_free(sk);
1460 if (slab != NULL)
1461 kmem_cache_free(slab, sk);
1462 else
1463 kfree(sk);
1464 module_put(owner);
1465 }
1466
1467 /**
1468 * sk_alloc - All socket objects are allocated here
1469 * @net: the applicable net namespace
1470 * @family: protocol family
1471 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1472 * @prot: struct proto associated with this new sock instance
1473 * @kern: is this to be a kernel socket?
1474 */
1475 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1476 struct proto *prot, int kern)
1477 {
1478 struct sock *sk;
1479
1480 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1481 if (sk) {
1482 sk->sk_family = family;
1483 /*
1484 * See comment in struct sock definition to understand
1485 * why we need sk_prot_creator -acme
1486 */
1487 sk->sk_prot = sk->sk_prot_creator = prot;
1488 sk->sk_kern_sock = kern;
1489 sock_lock_init(sk);
1490 sk->sk_net_refcnt = kern ? 0 : 1;
1491 if (likely(sk->sk_net_refcnt))
1492 get_net(net);
1493 sock_net_set(sk, net);
1494 atomic_set(&sk->sk_wmem_alloc, 1);
1495
1496 mem_cgroup_sk_alloc(sk);
1497 cgroup_sk_alloc(&sk->sk_cgrp_data);
1498 sock_update_classid(&sk->sk_cgrp_data);
1499 sock_update_netprioidx(&sk->sk_cgrp_data);
1500 }
1501
1502 return sk;
1503 }
1504 EXPORT_SYMBOL(sk_alloc);
1505
1506 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1507 * grace period. This is the case for UDP sockets and TCP listeners.
1508 */
1509 static void __sk_destruct(struct rcu_head *head)
1510 {
1511 struct sock *sk = container_of(head, struct sock, sk_rcu);
1512 struct sk_filter *filter;
1513
1514 if (sk->sk_destruct)
1515 sk->sk_destruct(sk);
1516
1517 filter = rcu_dereference_check(sk->sk_filter,
1518 atomic_read(&sk->sk_wmem_alloc) == 0);
1519 if (filter) {
1520 sk_filter_uncharge(sk, filter);
1521 RCU_INIT_POINTER(sk->sk_filter, NULL);
1522 }
1523 if (rcu_access_pointer(sk->sk_reuseport_cb))
1524 reuseport_detach_sock(sk);
1525
1526 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1527
1528 if (atomic_read(&sk->sk_omem_alloc))
1529 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1530 __func__, atomic_read(&sk->sk_omem_alloc));
1531
1532 if (sk->sk_frag.page) {
1533 put_page(sk->sk_frag.page);
1534 sk->sk_frag.page = NULL;
1535 }
1536
1537 if (sk->sk_peer_cred)
1538 put_cred(sk->sk_peer_cred);
1539 put_pid(sk->sk_peer_pid);
1540 if (likely(sk->sk_net_refcnt))
1541 put_net(sock_net(sk));
1542 sk_prot_free(sk->sk_prot_creator, sk);
1543 }
1544
1545 void sk_destruct(struct sock *sk)
1546 {
1547 if (sock_flag(sk, SOCK_RCU_FREE))
1548 call_rcu(&sk->sk_rcu, __sk_destruct);
1549 else
1550 __sk_destruct(&sk->sk_rcu);
1551 }
1552
1553 static void __sk_free(struct sock *sk)
1554 {
1555 if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1556 sock_diag_broadcast_destroy(sk);
1557 else
1558 sk_destruct(sk);
1559 }
1560
1561 void sk_free(struct sock *sk)
1562 {
1563 /*
1564 * We subtract one from sk_wmem_alloc and can know if
1565 * some packets are still in some tx queue.
1566 * If not null, sock_wfree() will call __sk_free(sk) later
1567 */
1568 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1569 __sk_free(sk);
1570 }
1571 EXPORT_SYMBOL(sk_free);
1572
1573 static void sk_init_common(struct sock *sk)
1574 {
1575 skb_queue_head_init(&sk->sk_receive_queue);
1576 skb_queue_head_init(&sk->sk_write_queue);
1577 skb_queue_head_init(&sk->sk_error_queue);
1578
1579 rwlock_init(&sk->sk_callback_lock);
1580 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1581 af_rlock_keys + sk->sk_family,
1582 af_family_rlock_key_strings[sk->sk_family]);
1583 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1584 af_wlock_keys + sk->sk_family,
1585 af_family_wlock_key_strings[sk->sk_family]);
1586 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1587 af_elock_keys + sk->sk_family,
1588 af_family_elock_key_strings[sk->sk_family]);
1589 lockdep_set_class_and_name(&sk->sk_callback_lock,
1590 af_callback_keys + sk->sk_family,
1591 af_family_clock_key_strings[sk->sk_family]);
1592 }
1593
1594 /**
1595 * sk_clone_lock - clone a socket, and lock its clone
1596 * @sk: the socket to clone
1597 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1598 *
1599 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1600 */
1601 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1602 {
1603 struct sock *newsk;
1604 bool is_charged = true;
1605
1606 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1607 if (newsk != NULL) {
1608 struct sk_filter *filter;
1609
1610 sock_copy(newsk, sk);
1611
1612 /* SANITY */
1613 if (likely(newsk->sk_net_refcnt))
1614 get_net(sock_net(newsk));
1615 sk_node_init(&newsk->sk_node);
1616 sock_lock_init(newsk);
1617 bh_lock_sock(newsk);
1618 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1619 newsk->sk_backlog.len = 0;
1620
1621 atomic_set(&newsk->sk_rmem_alloc, 0);
1622 /*
1623 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1624 */
1625 atomic_set(&newsk->sk_wmem_alloc, 1);
1626 atomic_set(&newsk->sk_omem_alloc, 0);
1627 sk_init_common(newsk);
1628
1629 newsk->sk_dst_cache = NULL;
1630 newsk->sk_dst_pending_confirm = 0;
1631 newsk->sk_wmem_queued = 0;
1632 newsk->sk_forward_alloc = 0;
1633 atomic_set(&newsk->sk_drops, 0);
1634 newsk->sk_send_head = NULL;
1635 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1636
1637 sock_reset_flag(newsk, SOCK_DONE);
1638
1639 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1640 if (filter != NULL)
1641 /* though it's an empty new sock, the charging may fail
1642 * if sysctl_optmem_max was changed between creation of
1643 * original socket and cloning
1644 */
1645 is_charged = sk_filter_charge(newsk, filter);
1646
1647 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1648 /* We need to make sure that we don't uncharge the new
1649 * socket if we couldn't charge it in the first place
1650 * as otherwise we uncharge the parent's filter.
1651 */
1652 if (!is_charged)
1653 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1654 sk_free_unlock_clone(newsk);
1655 newsk = NULL;
1656 goto out;
1657 }
1658 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1659
1660 newsk->sk_err = 0;
1661 newsk->sk_err_soft = 0;
1662 newsk->sk_priority = 0;
1663 newsk->sk_incoming_cpu = raw_smp_processor_id();
1664 atomic64_set(&newsk->sk_cookie, 0);
1665
1666 mem_cgroup_sk_alloc(newsk);
1667 cgroup_sk_alloc(&newsk->sk_cgrp_data);
1668
1669 /*
1670 * Before updating sk_refcnt, we must commit prior changes to memory
1671 * (Documentation/RCU/rculist_nulls.txt for details)
1672 */
1673 smp_wmb();
1674 atomic_set(&newsk->sk_refcnt, 2);
1675
1676 /*
1677 * Increment the counter in the same struct proto as the master
1678 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1679 * is the same as sk->sk_prot->socks, as this field was copied
1680 * with memcpy).
1681 *
1682 * This _changes_ the previous behaviour, where
1683 * tcp_create_openreq_child always was incrementing the
1684 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1685 * to be taken into account in all callers. -acme
1686 */
1687 sk_refcnt_debug_inc(newsk);
1688 sk_set_socket(newsk, NULL);
1689 newsk->sk_wq = NULL;
1690
1691 if (newsk->sk_prot->sockets_allocated)
1692 sk_sockets_allocated_inc(newsk);
1693
1694 if (sock_needs_netstamp(sk) &&
1695 newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1696 net_enable_timestamp();
1697 }
1698 out:
1699 return newsk;
1700 }
1701 EXPORT_SYMBOL_GPL(sk_clone_lock);
1702
1703 void sk_free_unlock_clone(struct sock *sk)
1704 {
1705 /* It is still raw copy of parent, so invalidate
1706 * destructor and make plain sk_free() */
1707 sk->sk_destruct = NULL;
1708 bh_unlock_sock(sk);
1709 sk_free(sk);
1710 }
1711 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1712
1713 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1714 {
1715 u32 max_segs = 1;
1716
1717 sk_dst_set(sk, dst);
1718 sk->sk_route_caps = dst->dev->features;
1719 if (sk->sk_route_caps & NETIF_F_GSO)
1720 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1721 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1722 if (sk_can_gso(sk)) {
1723 if (dst->header_len) {
1724 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1725 } else {
1726 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1727 sk->sk_gso_max_size = dst->dev->gso_max_size;
1728 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1729 }
1730 }
1731 sk->sk_gso_max_segs = max_segs;
1732 }
1733 EXPORT_SYMBOL_GPL(sk_setup_caps);
1734
1735 /*
1736 * Simple resource managers for sockets.
1737 */
1738
1739
1740 /*
1741 * Write buffer destructor automatically called from kfree_skb.
1742 */
1743 void sock_wfree(struct sk_buff *skb)
1744 {
1745 struct sock *sk = skb->sk;
1746 unsigned int len = skb->truesize;
1747
1748 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1749 /*
1750 * Keep a reference on sk_wmem_alloc, this will be released
1751 * after sk_write_space() call
1752 */
1753 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1754 sk->sk_write_space(sk);
1755 len = 1;
1756 }
1757 /*
1758 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1759 * could not do because of in-flight packets
1760 */
1761 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1762 __sk_free(sk);
1763 }
1764 EXPORT_SYMBOL(sock_wfree);
1765
1766 /* This variant of sock_wfree() is used by TCP,
1767 * since it sets SOCK_USE_WRITE_QUEUE.
1768 */
1769 void __sock_wfree(struct sk_buff *skb)
1770 {
1771 struct sock *sk = skb->sk;
1772
1773 if (atomic_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1774 __sk_free(sk);
1775 }
1776
1777 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1778 {
1779 skb_orphan(skb);
1780 skb->sk = sk;
1781 #ifdef CONFIG_INET
1782 if (unlikely(!sk_fullsock(sk))) {
1783 skb->destructor = sock_edemux;
1784 sock_hold(sk);
1785 return;
1786 }
1787 #endif
1788 skb->destructor = sock_wfree;
1789 skb_set_hash_from_sk(skb, sk);
1790 /*
1791 * We used to take a refcount on sk, but following operation
1792 * is enough to guarantee sk_free() wont free this sock until
1793 * all in-flight packets are completed
1794 */
1795 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1796 }
1797 EXPORT_SYMBOL(skb_set_owner_w);
1798
1799 /* This helper is used by netem, as it can hold packets in its
1800 * delay queue. We want to allow the owner socket to send more
1801 * packets, as if they were already TX completed by a typical driver.
1802 * But we also want to keep skb->sk set because some packet schedulers
1803 * rely on it (sch_fq for example).
1804 */
1805 void skb_orphan_partial(struct sk_buff *skb)
1806 {
1807 if (skb_is_tcp_pure_ack(skb))
1808 return;
1809
1810 if (skb->destructor == sock_wfree
1811 #ifdef CONFIG_INET
1812 || skb->destructor == tcp_wfree
1813 #endif
1814 ) {
1815 struct sock *sk = skb->sk;
1816
1817 if (atomic_inc_not_zero(&sk->sk_refcnt)) {
1818 atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1819 skb->destructor = sock_efree;
1820 }
1821 } else {
1822 skb_orphan(skb);
1823 }
1824 }
1825 EXPORT_SYMBOL(skb_orphan_partial);
1826
1827 /*
1828 * Read buffer destructor automatically called from kfree_skb.
1829 */
1830 void sock_rfree(struct sk_buff *skb)
1831 {
1832 struct sock *sk = skb->sk;
1833 unsigned int len = skb->truesize;
1834
1835 atomic_sub(len, &sk->sk_rmem_alloc);
1836 sk_mem_uncharge(sk, len);
1837 }
1838 EXPORT_SYMBOL(sock_rfree);
1839
1840 /*
1841 * Buffer destructor for skbs that are not used directly in read or write
1842 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1843 */
1844 void sock_efree(struct sk_buff *skb)
1845 {
1846 sock_put(skb->sk);
1847 }
1848 EXPORT_SYMBOL(sock_efree);
1849
1850 kuid_t sock_i_uid(struct sock *sk)
1851 {
1852 kuid_t uid;
1853
1854 read_lock_bh(&sk->sk_callback_lock);
1855 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1856 read_unlock_bh(&sk->sk_callback_lock);
1857 return uid;
1858 }
1859 EXPORT_SYMBOL(sock_i_uid);
1860
1861 unsigned long sock_i_ino(struct sock *sk)
1862 {
1863 unsigned long ino;
1864
1865 read_lock_bh(&sk->sk_callback_lock);
1866 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1867 read_unlock_bh(&sk->sk_callback_lock);
1868 return ino;
1869 }
1870 EXPORT_SYMBOL(sock_i_ino);
1871
1872 /*
1873 * Allocate a skb from the socket's send buffer.
1874 */
1875 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1876 gfp_t priority)
1877 {
1878 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1879 struct sk_buff *skb = alloc_skb(size, priority);
1880 if (skb) {
1881 skb_set_owner_w(skb, sk);
1882 return skb;
1883 }
1884 }
1885 return NULL;
1886 }
1887 EXPORT_SYMBOL(sock_wmalloc);
1888
1889 /*
1890 * Allocate a memory block from the socket's option memory buffer.
1891 */
1892 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1893 {
1894 if ((unsigned int)size <= sysctl_optmem_max &&
1895 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1896 void *mem;
1897 /* First do the add, to avoid the race if kmalloc
1898 * might sleep.
1899 */
1900 atomic_add(size, &sk->sk_omem_alloc);
1901 mem = kmalloc(size, priority);
1902 if (mem)
1903 return mem;
1904 atomic_sub(size, &sk->sk_omem_alloc);
1905 }
1906 return NULL;
1907 }
1908 EXPORT_SYMBOL(sock_kmalloc);
1909
1910 /* Free an option memory block. Note, we actually want the inline
1911 * here as this allows gcc to detect the nullify and fold away the
1912 * condition entirely.
1913 */
1914 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1915 const bool nullify)
1916 {
1917 if (WARN_ON_ONCE(!mem))
1918 return;
1919 if (nullify)
1920 kzfree(mem);
1921 else
1922 kfree(mem);
1923 atomic_sub(size, &sk->sk_omem_alloc);
1924 }
1925
1926 void sock_kfree_s(struct sock *sk, void *mem, int size)
1927 {
1928 __sock_kfree_s(sk, mem, size, false);
1929 }
1930 EXPORT_SYMBOL(sock_kfree_s);
1931
1932 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1933 {
1934 __sock_kfree_s(sk, mem, size, true);
1935 }
1936 EXPORT_SYMBOL(sock_kzfree_s);
1937
1938 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1939 I think, these locks should be removed for datagram sockets.
1940 */
1941 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1942 {
1943 DEFINE_WAIT(wait);
1944
1945 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1946 for (;;) {
1947 if (!timeo)
1948 break;
1949 if (signal_pending(current))
1950 break;
1951 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1952 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1953 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1954 break;
1955 if (sk->sk_shutdown & SEND_SHUTDOWN)
1956 break;
1957 if (sk->sk_err)
1958 break;
1959 timeo = schedule_timeout(timeo);
1960 }
1961 finish_wait(sk_sleep(sk), &wait);
1962 return timeo;
1963 }
1964
1965
1966 /*
1967 * Generic send/receive buffer handlers
1968 */
1969
1970 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1971 unsigned long data_len, int noblock,
1972 int *errcode, int max_page_order)
1973 {
1974 struct sk_buff *skb;
1975 long timeo;
1976 int err;
1977
1978 timeo = sock_sndtimeo(sk, noblock);
1979 for (;;) {
1980 err = sock_error(sk);
1981 if (err != 0)
1982 goto failure;
1983
1984 err = -EPIPE;
1985 if (sk->sk_shutdown & SEND_SHUTDOWN)
1986 goto failure;
1987
1988 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1989 break;
1990
1991 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1992 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1993 err = -EAGAIN;
1994 if (!timeo)
1995 goto failure;
1996 if (signal_pending(current))
1997 goto interrupted;
1998 timeo = sock_wait_for_wmem(sk, timeo);
1999 }
2000 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2001 errcode, sk->sk_allocation);
2002 if (skb)
2003 skb_set_owner_w(skb, sk);
2004 return skb;
2005
2006 interrupted:
2007 err = sock_intr_errno(timeo);
2008 failure:
2009 *errcode = err;
2010 return NULL;
2011 }
2012 EXPORT_SYMBOL(sock_alloc_send_pskb);
2013
2014 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2015 int noblock, int *errcode)
2016 {
2017 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2018 }
2019 EXPORT_SYMBOL(sock_alloc_send_skb);
2020
2021 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2022 struct sockcm_cookie *sockc)
2023 {
2024 u32 tsflags;
2025
2026 switch (cmsg->cmsg_type) {
2027 case SO_MARK:
2028 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2029 return -EPERM;
2030 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2031 return -EINVAL;
2032 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2033 break;
2034 case SO_TIMESTAMPING:
2035 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2036 return -EINVAL;
2037
2038 tsflags = *(u32 *)CMSG_DATA(cmsg);
2039 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2040 return -EINVAL;
2041
2042 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2043 sockc->tsflags |= tsflags;
2044 break;
2045 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2046 case SCM_RIGHTS:
2047 case SCM_CREDENTIALS:
2048 break;
2049 default:
2050 return -EINVAL;
2051 }
2052 return 0;
2053 }
2054 EXPORT_SYMBOL(__sock_cmsg_send);
2055
2056 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2057 struct sockcm_cookie *sockc)
2058 {
2059 struct cmsghdr *cmsg;
2060 int ret;
2061
2062 for_each_cmsghdr(cmsg, msg) {
2063 if (!CMSG_OK(msg, cmsg))
2064 return -EINVAL;
2065 if (cmsg->cmsg_level != SOL_SOCKET)
2066 continue;
2067 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2068 if (ret)
2069 return ret;
2070 }
2071 return 0;
2072 }
2073 EXPORT_SYMBOL(sock_cmsg_send);
2074
2075 /* On 32bit arches, an skb frag is limited to 2^15 */
2076 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2077
2078 /**
2079 * skb_page_frag_refill - check that a page_frag contains enough room
2080 * @sz: minimum size of the fragment we want to get
2081 * @pfrag: pointer to page_frag
2082 * @gfp: priority for memory allocation
2083 *
2084 * Note: While this allocator tries to use high order pages, there is
2085 * no guarantee that allocations succeed. Therefore, @sz MUST be
2086 * less or equal than PAGE_SIZE.
2087 */
2088 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2089 {
2090 if (pfrag->page) {
2091 if (page_ref_count(pfrag->page) == 1) {
2092 pfrag->offset = 0;
2093 return true;
2094 }
2095 if (pfrag->offset + sz <= pfrag->size)
2096 return true;
2097 put_page(pfrag->page);
2098 }
2099
2100 pfrag->offset = 0;
2101 if (SKB_FRAG_PAGE_ORDER) {
2102 /* Avoid direct reclaim but allow kswapd to wake */
2103 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2104 __GFP_COMP | __GFP_NOWARN |
2105 __GFP_NORETRY,
2106 SKB_FRAG_PAGE_ORDER);
2107 if (likely(pfrag->page)) {
2108 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2109 return true;
2110 }
2111 }
2112 pfrag->page = alloc_page(gfp);
2113 if (likely(pfrag->page)) {
2114 pfrag->size = PAGE_SIZE;
2115 return true;
2116 }
2117 return false;
2118 }
2119 EXPORT_SYMBOL(skb_page_frag_refill);
2120
2121 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2122 {
2123 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2124 return true;
2125
2126 sk_enter_memory_pressure(sk);
2127 sk_stream_moderate_sndbuf(sk);
2128 return false;
2129 }
2130 EXPORT_SYMBOL(sk_page_frag_refill);
2131
2132 static void __lock_sock(struct sock *sk)
2133 __releases(&sk->sk_lock.slock)
2134 __acquires(&sk->sk_lock.slock)
2135 {
2136 DEFINE_WAIT(wait);
2137
2138 for (;;) {
2139 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2140 TASK_UNINTERRUPTIBLE);
2141 spin_unlock_bh(&sk->sk_lock.slock);
2142 schedule();
2143 spin_lock_bh(&sk->sk_lock.slock);
2144 if (!sock_owned_by_user(sk))
2145 break;
2146 }
2147 finish_wait(&sk->sk_lock.wq, &wait);
2148 }
2149
2150 static void __release_sock(struct sock *sk)
2151 __releases(&sk->sk_lock.slock)
2152 __acquires(&sk->sk_lock.slock)
2153 {
2154 struct sk_buff *skb, *next;
2155
2156 while ((skb = sk->sk_backlog.head) != NULL) {
2157 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2158
2159 spin_unlock_bh(&sk->sk_lock.slock);
2160
2161 do {
2162 next = skb->next;
2163 prefetch(next);
2164 WARN_ON_ONCE(skb_dst_is_noref(skb));
2165 skb->next = NULL;
2166 sk_backlog_rcv(sk, skb);
2167
2168 cond_resched();
2169
2170 skb = next;
2171 } while (skb != NULL);
2172
2173 spin_lock_bh(&sk->sk_lock.slock);
2174 }
2175
2176 /*
2177 * Doing the zeroing here guarantee we can not loop forever
2178 * while a wild producer attempts to flood us.
2179 */
2180 sk->sk_backlog.len = 0;
2181 }
2182
2183 void __sk_flush_backlog(struct sock *sk)
2184 {
2185 spin_lock_bh(&sk->sk_lock.slock);
2186 __release_sock(sk);
2187 spin_unlock_bh(&sk->sk_lock.slock);
2188 }
2189
2190 /**
2191 * sk_wait_data - wait for data to arrive at sk_receive_queue
2192 * @sk: sock to wait on
2193 * @timeo: for how long
2194 * @skb: last skb seen on sk_receive_queue
2195 *
2196 * Now socket state including sk->sk_err is changed only under lock,
2197 * hence we may omit checks after joining wait queue.
2198 * We check receive queue before schedule() only as optimization;
2199 * it is very likely that release_sock() added new data.
2200 */
2201 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2202 {
2203 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2204 int rc;
2205
2206 add_wait_queue(sk_sleep(sk), &wait);
2207 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2208 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2209 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2210 remove_wait_queue(sk_sleep(sk), &wait);
2211 return rc;
2212 }
2213 EXPORT_SYMBOL(sk_wait_data);
2214
2215 /**
2216 * __sk_mem_raise_allocated - increase memory_allocated
2217 * @sk: socket
2218 * @size: memory size to allocate
2219 * @amt: pages to allocate
2220 * @kind: allocation type
2221 *
2222 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2223 */
2224 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2225 {
2226 struct proto *prot = sk->sk_prot;
2227 long allocated = sk_memory_allocated_add(sk, amt);
2228
2229 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2230 !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2231 goto suppress_allocation;
2232
2233 /* Under limit. */
2234 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2235 sk_leave_memory_pressure(sk);
2236 return 1;
2237 }
2238
2239 /* Under pressure. */
2240 if (allocated > sk_prot_mem_limits(sk, 1))
2241 sk_enter_memory_pressure(sk);
2242
2243 /* Over hard limit. */
2244 if (allocated > sk_prot_mem_limits(sk, 2))
2245 goto suppress_allocation;
2246
2247 /* guarantee minimum buffer size under pressure */
2248 if (kind == SK_MEM_RECV) {
2249 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2250 return 1;
2251
2252 } else { /* SK_MEM_SEND */
2253 if (sk->sk_type == SOCK_STREAM) {
2254 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2255 return 1;
2256 } else if (atomic_read(&sk->sk_wmem_alloc) <
2257 prot->sysctl_wmem[0])
2258 return 1;
2259 }
2260
2261 if (sk_has_memory_pressure(sk)) {
2262 int alloc;
2263
2264 if (!sk_under_memory_pressure(sk))
2265 return 1;
2266 alloc = sk_sockets_allocated_read_positive(sk);
2267 if (sk_prot_mem_limits(sk, 2) > alloc *
2268 sk_mem_pages(sk->sk_wmem_queued +
2269 atomic_read(&sk->sk_rmem_alloc) +
2270 sk->sk_forward_alloc))
2271 return 1;
2272 }
2273
2274 suppress_allocation:
2275
2276 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2277 sk_stream_moderate_sndbuf(sk);
2278
2279 /* Fail only if socket is _under_ its sndbuf.
2280 * In this case we cannot block, so that we have to fail.
2281 */
2282 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2283 return 1;
2284 }
2285
2286 trace_sock_exceed_buf_limit(sk, prot, allocated);
2287
2288 sk_memory_allocated_sub(sk, amt);
2289
2290 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2291 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2292
2293 return 0;
2294 }
2295 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2296
2297 /**
2298 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2299 * @sk: socket
2300 * @size: memory size to allocate
2301 * @kind: allocation type
2302 *
2303 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2304 * rmem allocation. This function assumes that protocols which have
2305 * memory_pressure use sk_wmem_queued as write buffer accounting.
2306 */
2307 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2308 {
2309 int ret, amt = sk_mem_pages(size);
2310
2311 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2312 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2313 if (!ret)
2314 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2315 return ret;
2316 }
2317 EXPORT_SYMBOL(__sk_mem_schedule);
2318
2319 /**
2320 * __sk_mem_reduce_allocated - reclaim memory_allocated
2321 * @sk: socket
2322 * @amount: number of quanta
2323 *
2324 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2325 */
2326 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2327 {
2328 sk_memory_allocated_sub(sk, amount);
2329
2330 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2331 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2332
2333 if (sk_under_memory_pressure(sk) &&
2334 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2335 sk_leave_memory_pressure(sk);
2336 }
2337 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2338
2339 /**
2340 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2341 * @sk: socket
2342 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2343 */
2344 void __sk_mem_reclaim(struct sock *sk, int amount)
2345 {
2346 amount >>= SK_MEM_QUANTUM_SHIFT;
2347 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2348 __sk_mem_reduce_allocated(sk, amount);
2349 }
2350 EXPORT_SYMBOL(__sk_mem_reclaim);
2351
2352 int sk_set_peek_off(struct sock *sk, int val)
2353 {
2354 if (val < 0)
2355 return -EINVAL;
2356
2357 sk->sk_peek_off = val;
2358 return 0;
2359 }
2360 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2361
2362 /*
2363 * Set of default routines for initialising struct proto_ops when
2364 * the protocol does not support a particular function. In certain
2365 * cases where it makes no sense for a protocol to have a "do nothing"
2366 * function, some default processing is provided.
2367 */
2368
2369 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2370 {
2371 return -EOPNOTSUPP;
2372 }
2373 EXPORT_SYMBOL(sock_no_bind);
2374
2375 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2376 int len, int flags)
2377 {
2378 return -EOPNOTSUPP;
2379 }
2380 EXPORT_SYMBOL(sock_no_connect);
2381
2382 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2383 {
2384 return -EOPNOTSUPP;
2385 }
2386 EXPORT_SYMBOL(sock_no_socketpair);
2387
2388 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2389 bool kern)
2390 {
2391 return -EOPNOTSUPP;
2392 }
2393 EXPORT_SYMBOL(sock_no_accept);
2394
2395 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2396 int *len, int peer)
2397 {
2398 return -EOPNOTSUPP;
2399 }
2400 EXPORT_SYMBOL(sock_no_getname);
2401
2402 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2403 {
2404 return 0;
2405 }
2406 EXPORT_SYMBOL(sock_no_poll);
2407
2408 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2409 {
2410 return -EOPNOTSUPP;
2411 }
2412 EXPORT_SYMBOL(sock_no_ioctl);
2413
2414 int sock_no_listen(struct socket *sock, int backlog)
2415 {
2416 return -EOPNOTSUPP;
2417 }
2418 EXPORT_SYMBOL(sock_no_listen);
2419
2420 int sock_no_shutdown(struct socket *sock, int how)
2421 {
2422 return -EOPNOTSUPP;
2423 }
2424 EXPORT_SYMBOL(sock_no_shutdown);
2425
2426 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2427 char __user *optval, unsigned int optlen)
2428 {
2429 return -EOPNOTSUPP;
2430 }
2431 EXPORT_SYMBOL(sock_no_setsockopt);
2432
2433 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2434 char __user *optval, int __user *optlen)
2435 {
2436 return -EOPNOTSUPP;
2437 }
2438 EXPORT_SYMBOL(sock_no_getsockopt);
2439
2440 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2441 {
2442 return -EOPNOTSUPP;
2443 }
2444 EXPORT_SYMBOL(sock_no_sendmsg);
2445
2446 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2447 int flags)
2448 {
2449 return -EOPNOTSUPP;
2450 }
2451 EXPORT_SYMBOL(sock_no_recvmsg);
2452
2453 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2454 {
2455 /* Mirror missing mmap method error code */
2456 return -ENODEV;
2457 }
2458 EXPORT_SYMBOL(sock_no_mmap);
2459
2460 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2461 {
2462 ssize_t res;
2463 struct msghdr msg = {.msg_flags = flags};
2464 struct kvec iov;
2465 char *kaddr = kmap(page);
2466 iov.iov_base = kaddr + offset;
2467 iov.iov_len = size;
2468 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2469 kunmap(page);
2470 return res;
2471 }
2472 EXPORT_SYMBOL(sock_no_sendpage);
2473
2474 /*
2475 * Default Socket Callbacks
2476 */
2477
2478 static void sock_def_wakeup(struct sock *sk)
2479 {
2480 struct socket_wq *wq;
2481
2482 rcu_read_lock();
2483 wq = rcu_dereference(sk->sk_wq);
2484 if (skwq_has_sleeper(wq))
2485 wake_up_interruptible_all(&wq->wait);
2486 rcu_read_unlock();
2487 }
2488
2489 static void sock_def_error_report(struct sock *sk)
2490 {
2491 struct socket_wq *wq;
2492
2493 rcu_read_lock();
2494 wq = rcu_dereference(sk->sk_wq);
2495 if (skwq_has_sleeper(wq))
2496 wake_up_interruptible_poll(&wq->wait, POLLERR);
2497 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2498 rcu_read_unlock();
2499 }
2500
2501 static void sock_def_readable(struct sock *sk)
2502 {
2503 struct socket_wq *wq;
2504
2505 rcu_read_lock();
2506 wq = rcu_dereference(sk->sk_wq);
2507 if (skwq_has_sleeper(wq))
2508 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2509 POLLRDNORM | POLLRDBAND);
2510 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2511 rcu_read_unlock();
2512 }
2513
2514 static void sock_def_write_space(struct sock *sk)
2515 {
2516 struct socket_wq *wq;
2517
2518 rcu_read_lock();
2519
2520 /* Do not wake up a writer until he can make "significant"
2521 * progress. --DaveM
2522 */
2523 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2524 wq = rcu_dereference(sk->sk_wq);
2525 if (skwq_has_sleeper(wq))
2526 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2527 POLLWRNORM | POLLWRBAND);
2528
2529 /* Should agree with poll, otherwise some programs break */
2530 if (sock_writeable(sk))
2531 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2532 }
2533
2534 rcu_read_unlock();
2535 }
2536
2537 static void sock_def_destruct(struct sock *sk)
2538 {
2539 }
2540
2541 void sk_send_sigurg(struct sock *sk)
2542 {
2543 if (sk->sk_socket && sk->sk_socket->file)
2544 if (send_sigurg(&sk->sk_socket->file->f_owner))
2545 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2546 }
2547 EXPORT_SYMBOL(sk_send_sigurg);
2548
2549 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2550 unsigned long expires)
2551 {
2552 if (!mod_timer(timer, expires))
2553 sock_hold(sk);
2554 }
2555 EXPORT_SYMBOL(sk_reset_timer);
2556
2557 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2558 {
2559 if (del_timer(timer))
2560 __sock_put(sk);
2561 }
2562 EXPORT_SYMBOL(sk_stop_timer);
2563
2564 void sock_init_data(struct socket *sock, struct sock *sk)
2565 {
2566 sk_init_common(sk);
2567 sk->sk_send_head = NULL;
2568
2569 init_timer(&sk->sk_timer);
2570
2571 sk->sk_allocation = GFP_KERNEL;
2572 sk->sk_rcvbuf = sysctl_rmem_default;
2573 sk->sk_sndbuf = sysctl_wmem_default;
2574 sk->sk_state = TCP_CLOSE;
2575 sk_set_socket(sk, sock);
2576
2577 sock_set_flag(sk, SOCK_ZAPPED);
2578
2579 if (sock) {
2580 sk->sk_type = sock->type;
2581 sk->sk_wq = sock->wq;
2582 sock->sk = sk;
2583 sk->sk_uid = SOCK_INODE(sock)->i_uid;
2584 } else {
2585 sk->sk_wq = NULL;
2586 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
2587 }
2588
2589 rwlock_init(&sk->sk_callback_lock);
2590 if (sk->sk_kern_sock)
2591 lockdep_set_class_and_name(
2592 &sk->sk_callback_lock,
2593 af_kern_callback_keys + sk->sk_family,
2594 af_family_kern_clock_key_strings[sk->sk_family]);
2595 else
2596 lockdep_set_class_and_name(
2597 &sk->sk_callback_lock,
2598 af_callback_keys + sk->sk_family,
2599 af_family_clock_key_strings[sk->sk_family]);
2600
2601 sk->sk_state_change = sock_def_wakeup;
2602 sk->sk_data_ready = sock_def_readable;
2603 sk->sk_write_space = sock_def_write_space;
2604 sk->sk_error_report = sock_def_error_report;
2605 sk->sk_destruct = sock_def_destruct;
2606
2607 sk->sk_frag.page = NULL;
2608 sk->sk_frag.offset = 0;
2609 sk->sk_peek_off = -1;
2610
2611 sk->sk_peer_pid = NULL;
2612 sk->sk_peer_cred = NULL;
2613 sk->sk_write_pending = 0;
2614 sk->sk_rcvlowat = 1;
2615 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2616 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2617
2618 sk->sk_stamp = SK_DEFAULT_STAMP;
2619
2620 #ifdef CONFIG_NET_RX_BUSY_POLL
2621 sk->sk_napi_id = 0;
2622 sk->sk_ll_usec = sysctl_net_busy_read;
2623 #endif
2624
2625 sk->sk_max_pacing_rate = ~0U;
2626 sk->sk_pacing_rate = ~0U;
2627 sk->sk_incoming_cpu = -1;
2628 /*
2629 * Before updating sk_refcnt, we must commit prior changes to memory
2630 * (Documentation/RCU/rculist_nulls.txt for details)
2631 */
2632 smp_wmb();
2633 atomic_set(&sk->sk_refcnt, 1);
2634 atomic_set(&sk->sk_drops, 0);
2635 }
2636 EXPORT_SYMBOL(sock_init_data);
2637
2638 void lock_sock_nested(struct sock *sk, int subclass)
2639 {
2640 might_sleep();
2641 spin_lock_bh(&sk->sk_lock.slock);
2642 if (sk->sk_lock.owned)
2643 __lock_sock(sk);
2644 sk->sk_lock.owned = 1;
2645 spin_unlock(&sk->sk_lock.slock);
2646 /*
2647 * The sk_lock has mutex_lock() semantics here:
2648 */
2649 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2650 local_bh_enable();
2651 }
2652 EXPORT_SYMBOL(lock_sock_nested);
2653
2654 void release_sock(struct sock *sk)
2655 {
2656 spin_lock_bh(&sk->sk_lock.slock);
2657 if (sk->sk_backlog.tail)
2658 __release_sock(sk);
2659
2660 /* Warning : release_cb() might need to release sk ownership,
2661 * ie call sock_release_ownership(sk) before us.
2662 */
2663 if (sk->sk_prot->release_cb)
2664 sk->sk_prot->release_cb(sk);
2665
2666 sock_release_ownership(sk);
2667 if (waitqueue_active(&sk->sk_lock.wq))
2668 wake_up(&sk->sk_lock.wq);
2669 spin_unlock_bh(&sk->sk_lock.slock);
2670 }
2671 EXPORT_SYMBOL(release_sock);
2672
2673 /**
2674 * lock_sock_fast - fast version of lock_sock
2675 * @sk: socket
2676 *
2677 * This version should be used for very small section, where process wont block
2678 * return false if fast path is taken
2679 * sk_lock.slock locked, owned = 0, BH disabled
2680 * return true if slow path is taken
2681 * sk_lock.slock unlocked, owned = 1, BH enabled
2682 */
2683 bool lock_sock_fast(struct sock *sk)
2684 {
2685 might_sleep();
2686 spin_lock_bh(&sk->sk_lock.slock);
2687
2688 if (!sk->sk_lock.owned)
2689 /*
2690 * Note : We must disable BH
2691 */
2692 return false;
2693
2694 __lock_sock(sk);
2695 sk->sk_lock.owned = 1;
2696 spin_unlock(&sk->sk_lock.slock);
2697 /*
2698 * The sk_lock has mutex_lock() semantics here:
2699 */
2700 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2701 local_bh_enable();
2702 return true;
2703 }
2704 EXPORT_SYMBOL(lock_sock_fast);
2705
2706 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2707 {
2708 struct timeval tv;
2709 if (!sock_flag(sk, SOCK_TIMESTAMP))
2710 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2711 tv = ktime_to_timeval(sk->sk_stamp);
2712 if (tv.tv_sec == -1)
2713 return -ENOENT;
2714 if (tv.tv_sec == 0) {
2715 sk->sk_stamp = ktime_get_real();
2716 tv = ktime_to_timeval(sk->sk_stamp);
2717 }
2718 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2719 }
2720 EXPORT_SYMBOL(sock_get_timestamp);
2721
2722 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2723 {
2724 struct timespec ts;
2725 if (!sock_flag(sk, SOCK_TIMESTAMP))
2726 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2727 ts = ktime_to_timespec(sk->sk_stamp);
2728 if (ts.tv_sec == -1)
2729 return -ENOENT;
2730 if (ts.tv_sec == 0) {
2731 sk->sk_stamp = ktime_get_real();
2732 ts = ktime_to_timespec(sk->sk_stamp);
2733 }
2734 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2735 }
2736 EXPORT_SYMBOL(sock_get_timestampns);
2737
2738 void sock_enable_timestamp(struct sock *sk, int flag)
2739 {
2740 if (!sock_flag(sk, flag)) {
2741 unsigned long previous_flags = sk->sk_flags;
2742
2743 sock_set_flag(sk, flag);
2744 /*
2745 * we just set one of the two flags which require net
2746 * time stamping, but time stamping might have been on
2747 * already because of the other one
2748 */
2749 if (sock_needs_netstamp(sk) &&
2750 !(previous_flags & SK_FLAGS_TIMESTAMP))
2751 net_enable_timestamp();
2752 }
2753 }
2754
2755 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2756 int level, int type)
2757 {
2758 struct sock_exterr_skb *serr;
2759 struct sk_buff *skb;
2760 int copied, err;
2761
2762 err = -EAGAIN;
2763 skb = sock_dequeue_err_skb(sk);
2764 if (skb == NULL)
2765 goto out;
2766
2767 copied = skb->len;
2768 if (copied > len) {
2769 msg->msg_flags |= MSG_TRUNC;
2770 copied = len;
2771 }
2772 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2773 if (err)
2774 goto out_free_skb;
2775
2776 sock_recv_timestamp(msg, sk, skb);
2777
2778 serr = SKB_EXT_ERR(skb);
2779 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2780
2781 msg->msg_flags |= MSG_ERRQUEUE;
2782 err = copied;
2783
2784 out_free_skb:
2785 kfree_skb(skb);
2786 out:
2787 return err;
2788 }
2789 EXPORT_SYMBOL(sock_recv_errqueue);
2790
2791 /*
2792 * Get a socket option on an socket.
2793 *
2794 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2795 * asynchronous errors should be reported by getsockopt. We assume
2796 * this means if you specify SO_ERROR (otherwise whats the point of it).
2797 */
2798 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2799 char __user *optval, int __user *optlen)
2800 {
2801 struct sock *sk = sock->sk;
2802
2803 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2804 }
2805 EXPORT_SYMBOL(sock_common_getsockopt);
2806
2807 #ifdef CONFIG_COMPAT
2808 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2809 char __user *optval, int __user *optlen)
2810 {
2811 struct sock *sk = sock->sk;
2812
2813 if (sk->sk_prot->compat_getsockopt != NULL)
2814 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2815 optval, optlen);
2816 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2817 }
2818 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2819 #endif
2820
2821 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2822 int flags)
2823 {
2824 struct sock *sk = sock->sk;
2825 int addr_len = 0;
2826 int err;
2827
2828 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2829 flags & ~MSG_DONTWAIT, &addr_len);
2830 if (err >= 0)
2831 msg->msg_namelen = addr_len;
2832 return err;
2833 }
2834 EXPORT_SYMBOL(sock_common_recvmsg);
2835
2836 /*
2837 * Set socket options on an inet socket.
2838 */
2839 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2840 char __user *optval, unsigned int optlen)
2841 {
2842 struct sock *sk = sock->sk;
2843
2844 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2845 }
2846 EXPORT_SYMBOL(sock_common_setsockopt);
2847
2848 #ifdef CONFIG_COMPAT
2849 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2850 char __user *optval, unsigned int optlen)
2851 {
2852 struct sock *sk = sock->sk;
2853
2854 if (sk->sk_prot->compat_setsockopt != NULL)
2855 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2856 optval, optlen);
2857 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2858 }
2859 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2860 #endif
2861
2862 void sk_common_release(struct sock *sk)
2863 {
2864 if (sk->sk_prot->destroy)
2865 sk->sk_prot->destroy(sk);
2866
2867 /*
2868 * Observation: when sock_common_release is called, processes have
2869 * no access to socket. But net still has.
2870 * Step one, detach it from networking:
2871 *
2872 * A. Remove from hash tables.
2873 */
2874
2875 sk->sk_prot->unhash(sk);
2876
2877 /*
2878 * In this point socket cannot receive new packets, but it is possible
2879 * that some packets are in flight because some CPU runs receiver and
2880 * did hash table lookup before we unhashed socket. They will achieve
2881 * receive queue and will be purged by socket destructor.
2882 *
2883 * Also we still have packets pending on receive queue and probably,
2884 * our own packets waiting in device queues. sock_destroy will drain
2885 * receive queue, but transmitted packets will delay socket destruction
2886 * until the last reference will be released.
2887 */
2888
2889 sock_orphan(sk);
2890
2891 xfrm_sk_free_policy(sk);
2892
2893 sk_refcnt_debug_release(sk);
2894
2895 sock_put(sk);
2896 }
2897 EXPORT_SYMBOL(sk_common_release);
2898
2899 void sk_get_meminfo(const struct sock *sk, u32 *mem)
2900 {
2901 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
2902
2903 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
2904 mem[SK_MEMINFO_RCVBUF] = sk->sk_rcvbuf;
2905 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
2906 mem[SK_MEMINFO_SNDBUF] = sk->sk_sndbuf;
2907 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
2908 mem[SK_MEMINFO_WMEM_QUEUED] = sk->sk_wmem_queued;
2909 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
2910 mem[SK_MEMINFO_BACKLOG] = sk->sk_backlog.len;
2911 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
2912 }
2913
2914 #ifdef CONFIG_PROC_FS
2915 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2916 struct prot_inuse {
2917 int val[PROTO_INUSE_NR];
2918 };
2919
2920 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2921
2922 #ifdef CONFIG_NET_NS
2923 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2924 {
2925 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2926 }
2927 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2928
2929 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2930 {
2931 int cpu, idx = prot->inuse_idx;
2932 int res = 0;
2933
2934 for_each_possible_cpu(cpu)
2935 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2936
2937 return res >= 0 ? res : 0;
2938 }
2939 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2940
2941 static int __net_init sock_inuse_init_net(struct net *net)
2942 {
2943 net->core.inuse = alloc_percpu(struct prot_inuse);
2944 return net->core.inuse ? 0 : -ENOMEM;
2945 }
2946
2947 static void __net_exit sock_inuse_exit_net(struct net *net)
2948 {
2949 free_percpu(net->core.inuse);
2950 }
2951
2952 static struct pernet_operations net_inuse_ops = {
2953 .init = sock_inuse_init_net,
2954 .exit = sock_inuse_exit_net,
2955 };
2956
2957 static __init int net_inuse_init(void)
2958 {
2959 if (register_pernet_subsys(&net_inuse_ops))
2960 panic("Cannot initialize net inuse counters");
2961
2962 return 0;
2963 }
2964
2965 core_initcall(net_inuse_init);
2966 #else
2967 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2968
2969 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2970 {
2971 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2972 }
2973 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2974
2975 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2976 {
2977 int cpu, idx = prot->inuse_idx;
2978 int res = 0;
2979
2980 for_each_possible_cpu(cpu)
2981 res += per_cpu(prot_inuse, cpu).val[idx];
2982
2983 return res >= 0 ? res : 0;
2984 }
2985 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2986 #endif
2987
2988 static void assign_proto_idx(struct proto *prot)
2989 {
2990 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2991
2992 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2993 pr_err("PROTO_INUSE_NR exhausted\n");
2994 return;
2995 }
2996
2997 set_bit(prot->inuse_idx, proto_inuse_idx);
2998 }
2999
3000 static void release_proto_idx(struct proto *prot)
3001 {
3002 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3003 clear_bit(prot->inuse_idx, proto_inuse_idx);
3004 }
3005 #else
3006 static inline void assign_proto_idx(struct proto *prot)
3007 {
3008 }
3009
3010 static inline void release_proto_idx(struct proto *prot)
3011 {
3012 }
3013 #endif
3014
3015 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3016 {
3017 if (!rsk_prot)
3018 return;
3019 kfree(rsk_prot->slab_name);
3020 rsk_prot->slab_name = NULL;
3021 kmem_cache_destroy(rsk_prot->slab);
3022 rsk_prot->slab = NULL;
3023 }
3024
3025 static int req_prot_init(const struct proto *prot)
3026 {
3027 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3028
3029 if (!rsk_prot)
3030 return 0;
3031
3032 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3033 prot->name);
3034 if (!rsk_prot->slab_name)
3035 return -ENOMEM;
3036
3037 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3038 rsk_prot->obj_size, 0,
3039 prot->slab_flags, NULL);
3040
3041 if (!rsk_prot->slab) {
3042 pr_crit("%s: Can't create request sock SLAB cache!\n",
3043 prot->name);
3044 return -ENOMEM;
3045 }
3046 return 0;
3047 }
3048
3049 int proto_register(struct proto *prot, int alloc_slab)
3050 {
3051 if (alloc_slab) {
3052 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
3053 SLAB_HWCACHE_ALIGN | prot->slab_flags,
3054 NULL);
3055
3056 if (prot->slab == NULL) {
3057 pr_crit("%s: Can't create sock SLAB cache!\n",
3058 prot->name);
3059 goto out;
3060 }
3061
3062 if (req_prot_init(prot))
3063 goto out_free_request_sock_slab;
3064
3065 if (prot->twsk_prot != NULL) {
3066 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3067
3068 if (prot->twsk_prot->twsk_slab_name == NULL)
3069 goto out_free_request_sock_slab;
3070
3071 prot->twsk_prot->twsk_slab =
3072 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3073 prot->twsk_prot->twsk_obj_size,
3074 0,
3075 prot->slab_flags,
3076 NULL);
3077 if (prot->twsk_prot->twsk_slab == NULL)
3078 goto out_free_timewait_sock_slab_name;
3079 }
3080 }
3081
3082 mutex_lock(&proto_list_mutex);
3083 list_add(&prot->node, &proto_list);
3084 assign_proto_idx(prot);
3085 mutex_unlock(&proto_list_mutex);
3086 return 0;
3087
3088 out_free_timewait_sock_slab_name:
3089 kfree(prot->twsk_prot->twsk_slab_name);
3090 out_free_request_sock_slab:
3091 req_prot_cleanup(prot->rsk_prot);
3092
3093 kmem_cache_destroy(prot->slab);
3094 prot->slab = NULL;
3095 out:
3096 return -ENOBUFS;
3097 }
3098 EXPORT_SYMBOL(proto_register);
3099
3100 void proto_unregister(struct proto *prot)
3101 {
3102 mutex_lock(&proto_list_mutex);
3103 release_proto_idx(prot);
3104 list_del(&prot->node);
3105 mutex_unlock(&proto_list_mutex);
3106
3107 kmem_cache_destroy(prot->slab);
3108 prot->slab = NULL;
3109
3110 req_prot_cleanup(prot->rsk_prot);
3111
3112 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3113 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3114 kfree(prot->twsk_prot->twsk_slab_name);
3115 prot->twsk_prot->twsk_slab = NULL;
3116 }
3117 }
3118 EXPORT_SYMBOL(proto_unregister);
3119
3120 #ifdef CONFIG_PROC_FS
3121 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3122 __acquires(proto_list_mutex)
3123 {
3124 mutex_lock(&proto_list_mutex);
3125 return seq_list_start_head(&proto_list, *pos);
3126 }
3127
3128 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3129 {
3130 return seq_list_next(v, &proto_list, pos);
3131 }
3132
3133 static void proto_seq_stop(struct seq_file *seq, void *v)
3134 __releases(proto_list_mutex)
3135 {
3136 mutex_unlock(&proto_list_mutex);
3137 }
3138
3139 static char proto_method_implemented(const void *method)
3140 {
3141 return method == NULL ? 'n' : 'y';
3142 }
3143 static long sock_prot_memory_allocated(struct proto *proto)
3144 {
3145 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3146 }
3147
3148 static char *sock_prot_memory_pressure(struct proto *proto)
3149 {
3150 return proto->memory_pressure != NULL ?
3151 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3152 }
3153
3154 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3155 {
3156
3157 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3158 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3159 proto->name,
3160 proto->obj_size,
3161 sock_prot_inuse_get(seq_file_net(seq), proto),
3162 sock_prot_memory_allocated(proto),
3163 sock_prot_memory_pressure(proto),
3164 proto->max_header,
3165 proto->slab == NULL ? "no" : "yes",
3166 module_name(proto->owner),
3167 proto_method_implemented(proto->close),
3168 proto_method_implemented(proto->connect),
3169 proto_method_implemented(proto->disconnect),
3170 proto_method_implemented(proto->accept),
3171 proto_method_implemented(proto->ioctl),
3172 proto_method_implemented(proto->init),
3173 proto_method_implemented(proto->destroy),
3174 proto_method_implemented(proto->shutdown),
3175 proto_method_implemented(proto->setsockopt),
3176 proto_method_implemented(proto->getsockopt),
3177 proto_method_implemented(proto->sendmsg),
3178 proto_method_implemented(proto->recvmsg),
3179 proto_method_implemented(proto->sendpage),
3180 proto_method_implemented(proto->bind),
3181 proto_method_implemented(proto->backlog_rcv),
3182 proto_method_implemented(proto->hash),
3183 proto_method_implemented(proto->unhash),
3184 proto_method_implemented(proto->get_port),
3185 proto_method_implemented(proto->enter_memory_pressure));
3186 }
3187
3188 static int proto_seq_show(struct seq_file *seq, void *v)
3189 {
3190 if (v == &proto_list)
3191 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3192 "protocol",
3193 "size",
3194 "sockets",
3195 "memory",
3196 "press",
3197 "maxhdr",
3198 "slab",
3199 "module",
3200 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3201 else
3202 proto_seq_printf(seq, list_entry(v, struct proto, node));
3203 return 0;
3204 }
3205
3206 static const struct seq_operations proto_seq_ops = {
3207 .start = proto_seq_start,
3208 .next = proto_seq_next,
3209 .stop = proto_seq_stop,
3210 .show = proto_seq_show,
3211 };
3212
3213 static int proto_seq_open(struct inode *inode, struct file *file)
3214 {
3215 return seq_open_net(inode, file, &proto_seq_ops,
3216 sizeof(struct seq_net_private));
3217 }
3218
3219 static const struct file_operations proto_seq_fops = {
3220 .owner = THIS_MODULE,
3221 .open = proto_seq_open,
3222 .read = seq_read,
3223 .llseek = seq_lseek,
3224 .release = seq_release_net,
3225 };
3226
3227 static __net_init int proto_init_net(struct net *net)
3228 {
3229 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3230 return -ENOMEM;
3231
3232 return 0;
3233 }
3234
3235 static __net_exit void proto_exit_net(struct net *net)
3236 {
3237 remove_proc_entry("protocols", net->proc_net);
3238 }
3239
3240
3241 static __net_initdata struct pernet_operations proto_net_ops = {
3242 .init = proto_init_net,
3243 .exit = proto_exit_net,
3244 };
3245
3246 static int __init proto_init(void)
3247 {
3248 return register_pernet_subsys(&proto_net_ops);
3249 }
3250
3251 subsys_initcall(proto_init);
3252
3253 #endif /* PROC_FS */
3254
3255 #ifdef CONFIG_NET_RX_BUSY_POLL
3256 bool sk_busy_loop_end(void *p, unsigned long start_time)
3257 {
3258 struct sock *sk = p;
3259
3260 return !skb_queue_empty(&sk->sk_receive_queue) ||
3261 sk_busy_loop_timeout(sk, start_time);
3262 }
3263 EXPORT_SYMBOL(sk_busy_loop_end);
3264 #endif /* CONFIG_NET_RX_BUSY_POLL */