]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/sock.c
net: No more expensive sock_hold()/sock_put() on each tx
[mirror_ubuntu-artful-kernel.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
116
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <linux/net_tstamp.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
126
127 #include <linux/filter.h>
128
129 #ifdef CONFIG_INET
130 #include <net/tcp.h>
131 #endif
132
133 /*
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
136 */
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
139
140 /*
141 * Make lock validator output more readable. (we pre-construct these
142 * strings build-time, so that runtime initialization of socket
143 * locks is fast):
144 */
145 static const char *af_family_key_strings[AF_MAX+1] = {
146 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
147 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
148 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
149 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
150 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
151 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
152 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
153 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
154 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
155 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
156 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
157 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
158 "sk_lock-AF_IEEE802154",
159 "sk_lock-AF_MAX"
160 };
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
163 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
164 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
165 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
166 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
167 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
168 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
169 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
170 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
171 "slock-27" , "slock-28" , "slock-AF_CAN" ,
172 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
173 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
174 "slock-AF_IEEE802154",
175 "slock-AF_MAX"
176 };
177 static const char *af_family_clock_key_strings[AF_MAX+1] = {
178 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
179 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
180 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
181 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
182 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
183 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
184 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
185 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
186 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
187 "clock-27" , "clock-28" , "clock-AF_CAN" ,
188 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
189 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
190 "clock-AF_IEEE802154",
191 "clock-AF_MAX"
192 };
193
194 /*
195 * sk_callback_lock locking rules are per-address-family,
196 * so split the lock classes by using a per-AF key:
197 */
198 static struct lock_class_key af_callback_keys[AF_MAX];
199
200 /* Take into consideration the size of the struct sk_buff overhead in the
201 * determination of these values, since that is non-constant across
202 * platforms. This makes socket queueing behavior and performance
203 * not depend upon such differences.
204 */
205 #define _SK_MEM_PACKETS 256
206 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
207 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
208 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
209
210 /* Run time adjustable parameters. */
211 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
212 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
213 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
214 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
215
216 /* Maximal space eaten by iovec or ancilliary data plus some space */
217 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
218 EXPORT_SYMBOL(sysctl_optmem_max);
219
220 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
221 {
222 struct timeval tv;
223
224 if (optlen < sizeof(tv))
225 return -EINVAL;
226 if (copy_from_user(&tv, optval, sizeof(tv)))
227 return -EFAULT;
228 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
229 return -EDOM;
230
231 if (tv.tv_sec < 0) {
232 static int warned __read_mostly;
233
234 *timeo_p = 0;
235 if (warned < 10 && net_ratelimit()) {
236 warned++;
237 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
238 "tries to set negative timeout\n",
239 current->comm, task_pid_nr(current));
240 }
241 return 0;
242 }
243 *timeo_p = MAX_SCHEDULE_TIMEOUT;
244 if (tv.tv_sec == 0 && tv.tv_usec == 0)
245 return 0;
246 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
247 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
248 return 0;
249 }
250
251 static void sock_warn_obsolete_bsdism(const char *name)
252 {
253 static int warned;
254 static char warncomm[TASK_COMM_LEN];
255 if (strcmp(warncomm, current->comm) && warned < 5) {
256 strcpy(warncomm, current->comm);
257 printk(KERN_WARNING "process `%s' is using obsolete "
258 "%s SO_BSDCOMPAT\n", warncomm, name);
259 warned++;
260 }
261 }
262
263 static void sock_disable_timestamp(struct sock *sk, int flag)
264 {
265 if (sock_flag(sk, flag)) {
266 sock_reset_flag(sk, flag);
267 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
268 !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
269 net_disable_timestamp();
270 }
271 }
272 }
273
274
275 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
276 {
277 int err = 0;
278 int skb_len;
279
280 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
281 number of warnings when compiling with -W --ANK
282 */
283 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
284 (unsigned)sk->sk_rcvbuf) {
285 err = -ENOMEM;
286 goto out;
287 }
288
289 err = sk_filter(sk, skb);
290 if (err)
291 goto out;
292
293 if (!sk_rmem_schedule(sk, skb->truesize)) {
294 err = -ENOBUFS;
295 goto out;
296 }
297
298 skb->dev = NULL;
299 skb_set_owner_r(skb, sk);
300
301 /* Cache the SKB length before we tack it onto the receive
302 * queue. Once it is added it no longer belongs to us and
303 * may be freed by other threads of control pulling packets
304 * from the queue.
305 */
306 skb_len = skb->len;
307
308 skb_queue_tail(&sk->sk_receive_queue, skb);
309
310 if (!sock_flag(sk, SOCK_DEAD))
311 sk->sk_data_ready(sk, skb_len);
312 out:
313 return err;
314 }
315 EXPORT_SYMBOL(sock_queue_rcv_skb);
316
317 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
318 {
319 int rc = NET_RX_SUCCESS;
320
321 if (sk_filter(sk, skb))
322 goto discard_and_relse;
323
324 skb->dev = NULL;
325
326 if (nested)
327 bh_lock_sock_nested(sk);
328 else
329 bh_lock_sock(sk);
330 if (!sock_owned_by_user(sk)) {
331 /*
332 * trylock + unlock semantics:
333 */
334 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
335
336 rc = sk_backlog_rcv(sk, skb);
337
338 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
339 } else
340 sk_add_backlog(sk, skb);
341 bh_unlock_sock(sk);
342 out:
343 sock_put(sk);
344 return rc;
345 discard_and_relse:
346 kfree_skb(skb);
347 goto out;
348 }
349 EXPORT_SYMBOL(sk_receive_skb);
350
351 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
352 {
353 struct dst_entry *dst = sk->sk_dst_cache;
354
355 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
356 sk->sk_dst_cache = NULL;
357 dst_release(dst);
358 return NULL;
359 }
360
361 return dst;
362 }
363 EXPORT_SYMBOL(__sk_dst_check);
364
365 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
366 {
367 struct dst_entry *dst = sk_dst_get(sk);
368
369 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
370 sk_dst_reset(sk);
371 dst_release(dst);
372 return NULL;
373 }
374
375 return dst;
376 }
377 EXPORT_SYMBOL(sk_dst_check);
378
379 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
380 {
381 int ret = -ENOPROTOOPT;
382 #ifdef CONFIG_NETDEVICES
383 struct net *net = sock_net(sk);
384 char devname[IFNAMSIZ];
385 int index;
386
387 /* Sorry... */
388 ret = -EPERM;
389 if (!capable(CAP_NET_RAW))
390 goto out;
391
392 ret = -EINVAL;
393 if (optlen < 0)
394 goto out;
395
396 /* Bind this socket to a particular device like "eth0",
397 * as specified in the passed interface name. If the
398 * name is "" or the option length is zero the socket
399 * is not bound.
400 */
401 if (optlen > IFNAMSIZ - 1)
402 optlen = IFNAMSIZ - 1;
403 memset(devname, 0, sizeof(devname));
404
405 ret = -EFAULT;
406 if (copy_from_user(devname, optval, optlen))
407 goto out;
408
409 if (devname[0] == '\0') {
410 index = 0;
411 } else {
412 struct net_device *dev = dev_get_by_name(net, devname);
413
414 ret = -ENODEV;
415 if (!dev)
416 goto out;
417
418 index = dev->ifindex;
419 dev_put(dev);
420 }
421
422 lock_sock(sk);
423 sk->sk_bound_dev_if = index;
424 sk_dst_reset(sk);
425 release_sock(sk);
426
427 ret = 0;
428
429 out:
430 #endif
431
432 return ret;
433 }
434
435 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
436 {
437 if (valbool)
438 sock_set_flag(sk, bit);
439 else
440 sock_reset_flag(sk, bit);
441 }
442
443 /*
444 * This is meant for all protocols to use and covers goings on
445 * at the socket level. Everything here is generic.
446 */
447
448 int sock_setsockopt(struct socket *sock, int level, int optname,
449 char __user *optval, int optlen)
450 {
451 struct sock *sk = sock->sk;
452 int val;
453 int valbool;
454 struct linger ling;
455 int ret = 0;
456
457 /*
458 * Options without arguments
459 */
460
461 if (optname == SO_BINDTODEVICE)
462 return sock_bindtodevice(sk, optval, optlen);
463
464 if (optlen < sizeof(int))
465 return -EINVAL;
466
467 if (get_user(val, (int __user *)optval))
468 return -EFAULT;
469
470 valbool = val ? 1 : 0;
471
472 lock_sock(sk);
473
474 switch (optname) {
475 case SO_DEBUG:
476 if (val && !capable(CAP_NET_ADMIN))
477 ret = -EACCES;
478 else
479 sock_valbool_flag(sk, SOCK_DBG, valbool);
480 break;
481 case SO_REUSEADDR:
482 sk->sk_reuse = valbool;
483 break;
484 case SO_TYPE:
485 case SO_ERROR:
486 ret = -ENOPROTOOPT;
487 break;
488 case SO_DONTROUTE:
489 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
490 break;
491 case SO_BROADCAST:
492 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
493 break;
494 case SO_SNDBUF:
495 /* Don't error on this BSD doesn't and if you think
496 about it this is right. Otherwise apps have to
497 play 'guess the biggest size' games. RCVBUF/SNDBUF
498 are treated in BSD as hints */
499
500 if (val > sysctl_wmem_max)
501 val = sysctl_wmem_max;
502 set_sndbuf:
503 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
504 if ((val * 2) < SOCK_MIN_SNDBUF)
505 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
506 else
507 sk->sk_sndbuf = val * 2;
508
509 /*
510 * Wake up sending tasks if we
511 * upped the value.
512 */
513 sk->sk_write_space(sk);
514 break;
515
516 case SO_SNDBUFFORCE:
517 if (!capable(CAP_NET_ADMIN)) {
518 ret = -EPERM;
519 break;
520 }
521 goto set_sndbuf;
522
523 case SO_RCVBUF:
524 /* Don't error on this BSD doesn't and if you think
525 about it this is right. Otherwise apps have to
526 play 'guess the biggest size' games. RCVBUF/SNDBUF
527 are treated in BSD as hints */
528
529 if (val > sysctl_rmem_max)
530 val = sysctl_rmem_max;
531 set_rcvbuf:
532 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
533 /*
534 * We double it on the way in to account for
535 * "struct sk_buff" etc. overhead. Applications
536 * assume that the SO_RCVBUF setting they make will
537 * allow that much actual data to be received on that
538 * socket.
539 *
540 * Applications are unaware that "struct sk_buff" and
541 * other overheads allocate from the receive buffer
542 * during socket buffer allocation.
543 *
544 * And after considering the possible alternatives,
545 * returning the value we actually used in getsockopt
546 * is the most desirable behavior.
547 */
548 if ((val * 2) < SOCK_MIN_RCVBUF)
549 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
550 else
551 sk->sk_rcvbuf = val * 2;
552 break;
553
554 case SO_RCVBUFFORCE:
555 if (!capable(CAP_NET_ADMIN)) {
556 ret = -EPERM;
557 break;
558 }
559 goto set_rcvbuf;
560
561 case SO_KEEPALIVE:
562 #ifdef CONFIG_INET
563 if (sk->sk_protocol == IPPROTO_TCP)
564 tcp_set_keepalive(sk, valbool);
565 #endif
566 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
567 break;
568
569 case SO_OOBINLINE:
570 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
571 break;
572
573 case SO_NO_CHECK:
574 sk->sk_no_check = valbool;
575 break;
576
577 case SO_PRIORITY:
578 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
579 sk->sk_priority = val;
580 else
581 ret = -EPERM;
582 break;
583
584 case SO_LINGER:
585 if (optlen < sizeof(ling)) {
586 ret = -EINVAL; /* 1003.1g */
587 break;
588 }
589 if (copy_from_user(&ling, optval, sizeof(ling))) {
590 ret = -EFAULT;
591 break;
592 }
593 if (!ling.l_onoff)
594 sock_reset_flag(sk, SOCK_LINGER);
595 else {
596 #if (BITS_PER_LONG == 32)
597 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
598 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
599 else
600 #endif
601 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
602 sock_set_flag(sk, SOCK_LINGER);
603 }
604 break;
605
606 case SO_BSDCOMPAT:
607 sock_warn_obsolete_bsdism("setsockopt");
608 break;
609
610 case SO_PASSCRED:
611 if (valbool)
612 set_bit(SOCK_PASSCRED, &sock->flags);
613 else
614 clear_bit(SOCK_PASSCRED, &sock->flags);
615 break;
616
617 case SO_TIMESTAMP:
618 case SO_TIMESTAMPNS:
619 if (valbool) {
620 if (optname == SO_TIMESTAMP)
621 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
622 else
623 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
624 sock_set_flag(sk, SOCK_RCVTSTAMP);
625 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
626 } else {
627 sock_reset_flag(sk, SOCK_RCVTSTAMP);
628 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
629 }
630 break;
631
632 case SO_TIMESTAMPING:
633 if (val & ~SOF_TIMESTAMPING_MASK) {
634 ret = EINVAL;
635 break;
636 }
637 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
638 val & SOF_TIMESTAMPING_TX_HARDWARE);
639 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
640 val & SOF_TIMESTAMPING_TX_SOFTWARE);
641 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
642 val & SOF_TIMESTAMPING_RX_HARDWARE);
643 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
644 sock_enable_timestamp(sk,
645 SOCK_TIMESTAMPING_RX_SOFTWARE);
646 else
647 sock_disable_timestamp(sk,
648 SOCK_TIMESTAMPING_RX_SOFTWARE);
649 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
650 val & SOF_TIMESTAMPING_SOFTWARE);
651 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
652 val & SOF_TIMESTAMPING_SYS_HARDWARE);
653 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
654 val & SOF_TIMESTAMPING_RAW_HARDWARE);
655 break;
656
657 case SO_RCVLOWAT:
658 if (val < 0)
659 val = INT_MAX;
660 sk->sk_rcvlowat = val ? : 1;
661 break;
662
663 case SO_RCVTIMEO:
664 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
665 break;
666
667 case SO_SNDTIMEO:
668 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
669 break;
670
671 case SO_ATTACH_FILTER:
672 ret = -EINVAL;
673 if (optlen == sizeof(struct sock_fprog)) {
674 struct sock_fprog fprog;
675
676 ret = -EFAULT;
677 if (copy_from_user(&fprog, optval, sizeof(fprog)))
678 break;
679
680 ret = sk_attach_filter(&fprog, sk);
681 }
682 break;
683
684 case SO_DETACH_FILTER:
685 ret = sk_detach_filter(sk);
686 break;
687
688 case SO_PASSSEC:
689 if (valbool)
690 set_bit(SOCK_PASSSEC, &sock->flags);
691 else
692 clear_bit(SOCK_PASSSEC, &sock->flags);
693 break;
694 case SO_MARK:
695 if (!capable(CAP_NET_ADMIN))
696 ret = -EPERM;
697 else
698 sk->sk_mark = val;
699 break;
700
701 /* We implement the SO_SNDLOWAT etc to
702 not be settable (1003.1g 5.3) */
703 default:
704 ret = -ENOPROTOOPT;
705 break;
706 }
707 release_sock(sk);
708 return ret;
709 }
710 EXPORT_SYMBOL(sock_setsockopt);
711
712
713 int sock_getsockopt(struct socket *sock, int level, int optname,
714 char __user *optval, int __user *optlen)
715 {
716 struct sock *sk = sock->sk;
717
718 union {
719 int val;
720 struct linger ling;
721 struct timeval tm;
722 } v;
723
724 unsigned int lv = sizeof(int);
725 int len;
726
727 if (get_user(len, optlen))
728 return -EFAULT;
729 if (len < 0)
730 return -EINVAL;
731
732 memset(&v, 0, sizeof(v));
733
734 switch (optname) {
735 case SO_DEBUG:
736 v.val = sock_flag(sk, SOCK_DBG);
737 break;
738
739 case SO_DONTROUTE:
740 v.val = sock_flag(sk, SOCK_LOCALROUTE);
741 break;
742
743 case SO_BROADCAST:
744 v.val = !!sock_flag(sk, SOCK_BROADCAST);
745 break;
746
747 case SO_SNDBUF:
748 v.val = sk->sk_sndbuf;
749 break;
750
751 case SO_RCVBUF:
752 v.val = sk->sk_rcvbuf;
753 break;
754
755 case SO_REUSEADDR:
756 v.val = sk->sk_reuse;
757 break;
758
759 case SO_KEEPALIVE:
760 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
761 break;
762
763 case SO_TYPE:
764 v.val = sk->sk_type;
765 break;
766
767 case SO_ERROR:
768 v.val = -sock_error(sk);
769 if (v.val == 0)
770 v.val = xchg(&sk->sk_err_soft, 0);
771 break;
772
773 case SO_OOBINLINE:
774 v.val = !!sock_flag(sk, SOCK_URGINLINE);
775 break;
776
777 case SO_NO_CHECK:
778 v.val = sk->sk_no_check;
779 break;
780
781 case SO_PRIORITY:
782 v.val = sk->sk_priority;
783 break;
784
785 case SO_LINGER:
786 lv = sizeof(v.ling);
787 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
788 v.ling.l_linger = sk->sk_lingertime / HZ;
789 break;
790
791 case SO_BSDCOMPAT:
792 sock_warn_obsolete_bsdism("getsockopt");
793 break;
794
795 case SO_TIMESTAMP:
796 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
797 !sock_flag(sk, SOCK_RCVTSTAMPNS);
798 break;
799
800 case SO_TIMESTAMPNS:
801 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
802 break;
803
804 case SO_TIMESTAMPING:
805 v.val = 0;
806 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
807 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
808 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
809 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
810 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
811 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
812 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
813 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
814 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
815 v.val |= SOF_TIMESTAMPING_SOFTWARE;
816 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
817 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
818 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
819 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
820 break;
821
822 case SO_RCVTIMEO:
823 lv = sizeof(struct timeval);
824 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
825 v.tm.tv_sec = 0;
826 v.tm.tv_usec = 0;
827 } else {
828 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
829 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
830 }
831 break;
832
833 case SO_SNDTIMEO:
834 lv = sizeof(struct timeval);
835 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
836 v.tm.tv_sec = 0;
837 v.tm.tv_usec = 0;
838 } else {
839 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
840 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
841 }
842 break;
843
844 case SO_RCVLOWAT:
845 v.val = sk->sk_rcvlowat;
846 break;
847
848 case SO_SNDLOWAT:
849 v.val = 1;
850 break;
851
852 case SO_PASSCRED:
853 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
854 break;
855
856 case SO_PEERCRED:
857 if (len > sizeof(sk->sk_peercred))
858 len = sizeof(sk->sk_peercred);
859 if (copy_to_user(optval, &sk->sk_peercred, len))
860 return -EFAULT;
861 goto lenout;
862
863 case SO_PEERNAME:
864 {
865 char address[128];
866
867 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
868 return -ENOTCONN;
869 if (lv < len)
870 return -EINVAL;
871 if (copy_to_user(optval, address, len))
872 return -EFAULT;
873 goto lenout;
874 }
875
876 /* Dubious BSD thing... Probably nobody even uses it, but
877 * the UNIX standard wants it for whatever reason... -DaveM
878 */
879 case SO_ACCEPTCONN:
880 v.val = sk->sk_state == TCP_LISTEN;
881 break;
882
883 case SO_PASSSEC:
884 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
885 break;
886
887 case SO_PEERSEC:
888 return security_socket_getpeersec_stream(sock, optval, optlen, len);
889
890 case SO_MARK:
891 v.val = sk->sk_mark;
892 break;
893
894 default:
895 return -ENOPROTOOPT;
896 }
897
898 if (len > lv)
899 len = lv;
900 if (copy_to_user(optval, &v, len))
901 return -EFAULT;
902 lenout:
903 if (put_user(len, optlen))
904 return -EFAULT;
905 return 0;
906 }
907
908 /*
909 * Initialize an sk_lock.
910 *
911 * (We also register the sk_lock with the lock validator.)
912 */
913 static inline void sock_lock_init(struct sock *sk)
914 {
915 sock_lock_init_class_and_name(sk,
916 af_family_slock_key_strings[sk->sk_family],
917 af_family_slock_keys + sk->sk_family,
918 af_family_key_strings[sk->sk_family],
919 af_family_keys + sk->sk_family);
920 }
921
922 static void sock_copy(struct sock *nsk, const struct sock *osk)
923 {
924 #ifdef CONFIG_SECURITY_NETWORK
925 void *sptr = nsk->sk_security;
926 #endif
927
928 memcpy(nsk, osk, osk->sk_prot->obj_size);
929 #ifdef CONFIG_SECURITY_NETWORK
930 nsk->sk_security = sptr;
931 security_sk_clone(osk, nsk);
932 #endif
933 }
934
935 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
936 int family)
937 {
938 struct sock *sk;
939 struct kmem_cache *slab;
940
941 slab = prot->slab;
942 if (slab != NULL)
943 sk = kmem_cache_alloc(slab, priority);
944 else
945 sk = kmalloc(prot->obj_size, priority);
946
947 if (sk != NULL) {
948 if (security_sk_alloc(sk, family, priority))
949 goto out_free;
950
951 if (!try_module_get(prot->owner))
952 goto out_free_sec;
953 }
954
955 return sk;
956
957 out_free_sec:
958 security_sk_free(sk);
959 out_free:
960 if (slab != NULL)
961 kmem_cache_free(slab, sk);
962 else
963 kfree(sk);
964 return NULL;
965 }
966
967 static void sk_prot_free(struct proto *prot, struct sock *sk)
968 {
969 struct kmem_cache *slab;
970 struct module *owner;
971
972 owner = prot->owner;
973 slab = prot->slab;
974
975 security_sk_free(sk);
976 if (slab != NULL)
977 kmem_cache_free(slab, sk);
978 else
979 kfree(sk);
980 module_put(owner);
981 }
982
983 /**
984 * sk_alloc - All socket objects are allocated here
985 * @net: the applicable net namespace
986 * @family: protocol family
987 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
988 * @prot: struct proto associated with this new sock instance
989 */
990 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
991 struct proto *prot)
992 {
993 struct sock *sk;
994
995 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
996 if (sk) {
997 sk->sk_family = family;
998 /*
999 * See comment in struct sock definition to understand
1000 * why we need sk_prot_creator -acme
1001 */
1002 sk->sk_prot = sk->sk_prot_creator = prot;
1003 sock_lock_init(sk);
1004 sock_net_set(sk, get_net(net));
1005 }
1006
1007 return sk;
1008 }
1009 EXPORT_SYMBOL(sk_alloc);
1010
1011 static void __sk_free(struct sock *sk)
1012 {
1013 struct sk_filter *filter;
1014
1015 if (sk->sk_destruct)
1016 sk->sk_destruct(sk);
1017
1018 filter = rcu_dereference(sk->sk_filter);
1019 if (filter) {
1020 sk_filter_uncharge(sk, filter);
1021 rcu_assign_pointer(sk->sk_filter, NULL);
1022 }
1023
1024 sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1025 sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1026
1027 if (atomic_read(&sk->sk_omem_alloc))
1028 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1029 __func__, atomic_read(&sk->sk_omem_alloc));
1030
1031 put_net(sock_net(sk));
1032 sk_prot_free(sk->sk_prot_creator, sk);
1033 }
1034
1035 void sk_free(struct sock *sk)
1036 {
1037 /*
1038 * We substract one from sk_wmem_alloc and can know if
1039 * some packets are still in some tx queue.
1040 * If not null, sock_wfree() will call __sk_free(sk) later
1041 */
1042 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1043 __sk_free(sk);
1044 }
1045 EXPORT_SYMBOL(sk_free);
1046
1047 /*
1048 * Last sock_put should drop referrence to sk->sk_net. It has already
1049 * been dropped in sk_change_net. Taking referrence to stopping namespace
1050 * is not an option.
1051 * Take referrence to a socket to remove it from hash _alive_ and after that
1052 * destroy it in the context of init_net.
1053 */
1054 void sk_release_kernel(struct sock *sk)
1055 {
1056 if (sk == NULL || sk->sk_socket == NULL)
1057 return;
1058
1059 sock_hold(sk);
1060 sock_release(sk->sk_socket);
1061 release_net(sock_net(sk));
1062 sock_net_set(sk, get_net(&init_net));
1063 sock_put(sk);
1064 }
1065 EXPORT_SYMBOL(sk_release_kernel);
1066
1067 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1068 {
1069 struct sock *newsk;
1070
1071 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1072 if (newsk != NULL) {
1073 struct sk_filter *filter;
1074
1075 sock_copy(newsk, sk);
1076
1077 /* SANITY */
1078 get_net(sock_net(newsk));
1079 sk_node_init(&newsk->sk_node);
1080 sock_lock_init(newsk);
1081 bh_lock_sock(newsk);
1082 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1083
1084 atomic_set(&newsk->sk_rmem_alloc, 0);
1085 /*
1086 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1087 */
1088 atomic_set(&newsk->sk_wmem_alloc, 1);
1089 atomic_set(&newsk->sk_omem_alloc, 0);
1090 skb_queue_head_init(&newsk->sk_receive_queue);
1091 skb_queue_head_init(&newsk->sk_write_queue);
1092 #ifdef CONFIG_NET_DMA
1093 skb_queue_head_init(&newsk->sk_async_wait_queue);
1094 #endif
1095
1096 rwlock_init(&newsk->sk_dst_lock);
1097 rwlock_init(&newsk->sk_callback_lock);
1098 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1099 af_callback_keys + newsk->sk_family,
1100 af_family_clock_key_strings[newsk->sk_family]);
1101
1102 newsk->sk_dst_cache = NULL;
1103 newsk->sk_wmem_queued = 0;
1104 newsk->sk_forward_alloc = 0;
1105 newsk->sk_send_head = NULL;
1106 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1107
1108 sock_reset_flag(newsk, SOCK_DONE);
1109 skb_queue_head_init(&newsk->sk_error_queue);
1110
1111 filter = newsk->sk_filter;
1112 if (filter != NULL)
1113 sk_filter_charge(newsk, filter);
1114
1115 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1116 /* It is still raw copy of parent, so invalidate
1117 * destructor and make plain sk_free() */
1118 newsk->sk_destruct = NULL;
1119 sk_free(newsk);
1120 newsk = NULL;
1121 goto out;
1122 }
1123
1124 newsk->sk_err = 0;
1125 newsk->sk_priority = 0;
1126 atomic_set(&newsk->sk_refcnt, 2);
1127
1128 /*
1129 * Increment the counter in the same struct proto as the master
1130 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1131 * is the same as sk->sk_prot->socks, as this field was copied
1132 * with memcpy).
1133 *
1134 * This _changes_ the previous behaviour, where
1135 * tcp_create_openreq_child always was incrementing the
1136 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1137 * to be taken into account in all callers. -acme
1138 */
1139 sk_refcnt_debug_inc(newsk);
1140 sk_set_socket(newsk, NULL);
1141 newsk->sk_sleep = NULL;
1142
1143 if (newsk->sk_prot->sockets_allocated)
1144 percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1145 }
1146 out:
1147 return newsk;
1148 }
1149 EXPORT_SYMBOL_GPL(sk_clone);
1150
1151 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1152 {
1153 __sk_dst_set(sk, dst);
1154 sk->sk_route_caps = dst->dev->features;
1155 if (sk->sk_route_caps & NETIF_F_GSO)
1156 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1157 if (sk_can_gso(sk)) {
1158 if (dst->header_len) {
1159 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1160 } else {
1161 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1162 sk->sk_gso_max_size = dst->dev->gso_max_size;
1163 }
1164 }
1165 }
1166 EXPORT_SYMBOL_GPL(sk_setup_caps);
1167
1168 void __init sk_init(void)
1169 {
1170 if (num_physpages <= 4096) {
1171 sysctl_wmem_max = 32767;
1172 sysctl_rmem_max = 32767;
1173 sysctl_wmem_default = 32767;
1174 sysctl_rmem_default = 32767;
1175 } else if (num_physpages >= 131072) {
1176 sysctl_wmem_max = 131071;
1177 sysctl_rmem_max = 131071;
1178 }
1179 }
1180
1181 /*
1182 * Simple resource managers for sockets.
1183 */
1184
1185
1186 /*
1187 * Write buffer destructor automatically called from kfree_skb.
1188 */
1189 void sock_wfree(struct sk_buff *skb)
1190 {
1191 struct sock *sk = skb->sk;
1192 int res;
1193
1194 /* In case it might be waiting for more memory. */
1195 res = atomic_sub_return(skb->truesize, &sk->sk_wmem_alloc);
1196 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1197 sk->sk_write_space(sk);
1198 /*
1199 * if sk_wmem_alloc reached 0, we are last user and should
1200 * free this sock, as sk_free() call could not do it.
1201 */
1202 if (res == 0)
1203 __sk_free(sk);
1204 }
1205 EXPORT_SYMBOL(sock_wfree);
1206
1207 /*
1208 * Read buffer destructor automatically called from kfree_skb.
1209 */
1210 void sock_rfree(struct sk_buff *skb)
1211 {
1212 struct sock *sk = skb->sk;
1213
1214 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1215 sk_mem_uncharge(skb->sk, skb->truesize);
1216 }
1217 EXPORT_SYMBOL(sock_rfree);
1218
1219
1220 int sock_i_uid(struct sock *sk)
1221 {
1222 int uid;
1223
1224 read_lock(&sk->sk_callback_lock);
1225 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1226 read_unlock(&sk->sk_callback_lock);
1227 return uid;
1228 }
1229 EXPORT_SYMBOL(sock_i_uid);
1230
1231 unsigned long sock_i_ino(struct sock *sk)
1232 {
1233 unsigned long ino;
1234
1235 read_lock(&sk->sk_callback_lock);
1236 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1237 read_unlock(&sk->sk_callback_lock);
1238 return ino;
1239 }
1240 EXPORT_SYMBOL(sock_i_ino);
1241
1242 /*
1243 * Allocate a skb from the socket's send buffer.
1244 */
1245 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1246 gfp_t priority)
1247 {
1248 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1249 struct sk_buff *skb = alloc_skb(size, priority);
1250 if (skb) {
1251 skb_set_owner_w(skb, sk);
1252 return skb;
1253 }
1254 }
1255 return NULL;
1256 }
1257 EXPORT_SYMBOL(sock_wmalloc);
1258
1259 /*
1260 * Allocate a skb from the socket's receive buffer.
1261 */
1262 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1263 gfp_t priority)
1264 {
1265 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1266 struct sk_buff *skb = alloc_skb(size, priority);
1267 if (skb) {
1268 skb_set_owner_r(skb, sk);
1269 return skb;
1270 }
1271 }
1272 return NULL;
1273 }
1274
1275 /*
1276 * Allocate a memory block from the socket's option memory buffer.
1277 */
1278 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1279 {
1280 if ((unsigned)size <= sysctl_optmem_max &&
1281 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1282 void *mem;
1283 /* First do the add, to avoid the race if kmalloc
1284 * might sleep.
1285 */
1286 atomic_add(size, &sk->sk_omem_alloc);
1287 mem = kmalloc(size, priority);
1288 if (mem)
1289 return mem;
1290 atomic_sub(size, &sk->sk_omem_alloc);
1291 }
1292 return NULL;
1293 }
1294 EXPORT_SYMBOL(sock_kmalloc);
1295
1296 /*
1297 * Free an option memory block.
1298 */
1299 void sock_kfree_s(struct sock *sk, void *mem, int size)
1300 {
1301 kfree(mem);
1302 atomic_sub(size, &sk->sk_omem_alloc);
1303 }
1304 EXPORT_SYMBOL(sock_kfree_s);
1305
1306 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1307 I think, these locks should be removed for datagram sockets.
1308 */
1309 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1310 {
1311 DEFINE_WAIT(wait);
1312
1313 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1314 for (;;) {
1315 if (!timeo)
1316 break;
1317 if (signal_pending(current))
1318 break;
1319 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1320 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1321 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1322 break;
1323 if (sk->sk_shutdown & SEND_SHUTDOWN)
1324 break;
1325 if (sk->sk_err)
1326 break;
1327 timeo = schedule_timeout(timeo);
1328 }
1329 finish_wait(sk->sk_sleep, &wait);
1330 return timeo;
1331 }
1332
1333
1334 /*
1335 * Generic send/receive buffer handlers
1336 */
1337
1338 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1339 unsigned long data_len, int noblock,
1340 int *errcode)
1341 {
1342 struct sk_buff *skb;
1343 gfp_t gfp_mask;
1344 long timeo;
1345 int err;
1346
1347 gfp_mask = sk->sk_allocation;
1348 if (gfp_mask & __GFP_WAIT)
1349 gfp_mask |= __GFP_REPEAT;
1350
1351 timeo = sock_sndtimeo(sk, noblock);
1352 while (1) {
1353 err = sock_error(sk);
1354 if (err != 0)
1355 goto failure;
1356
1357 err = -EPIPE;
1358 if (sk->sk_shutdown & SEND_SHUTDOWN)
1359 goto failure;
1360
1361 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1362 skb = alloc_skb(header_len, gfp_mask);
1363 if (skb) {
1364 int npages;
1365 int i;
1366
1367 /* No pages, we're done... */
1368 if (!data_len)
1369 break;
1370
1371 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1372 skb->truesize += data_len;
1373 skb_shinfo(skb)->nr_frags = npages;
1374 for (i = 0; i < npages; i++) {
1375 struct page *page;
1376 skb_frag_t *frag;
1377
1378 page = alloc_pages(sk->sk_allocation, 0);
1379 if (!page) {
1380 err = -ENOBUFS;
1381 skb_shinfo(skb)->nr_frags = i;
1382 kfree_skb(skb);
1383 goto failure;
1384 }
1385
1386 frag = &skb_shinfo(skb)->frags[i];
1387 frag->page = page;
1388 frag->page_offset = 0;
1389 frag->size = (data_len >= PAGE_SIZE ?
1390 PAGE_SIZE :
1391 data_len);
1392 data_len -= PAGE_SIZE;
1393 }
1394
1395 /* Full success... */
1396 break;
1397 }
1398 err = -ENOBUFS;
1399 goto failure;
1400 }
1401 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1402 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1403 err = -EAGAIN;
1404 if (!timeo)
1405 goto failure;
1406 if (signal_pending(current))
1407 goto interrupted;
1408 timeo = sock_wait_for_wmem(sk, timeo);
1409 }
1410
1411 skb_set_owner_w(skb, sk);
1412 return skb;
1413
1414 interrupted:
1415 err = sock_intr_errno(timeo);
1416 failure:
1417 *errcode = err;
1418 return NULL;
1419 }
1420 EXPORT_SYMBOL(sock_alloc_send_pskb);
1421
1422 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1423 int noblock, int *errcode)
1424 {
1425 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1426 }
1427 EXPORT_SYMBOL(sock_alloc_send_skb);
1428
1429 static void __lock_sock(struct sock *sk)
1430 {
1431 DEFINE_WAIT(wait);
1432
1433 for (;;) {
1434 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1435 TASK_UNINTERRUPTIBLE);
1436 spin_unlock_bh(&sk->sk_lock.slock);
1437 schedule();
1438 spin_lock_bh(&sk->sk_lock.slock);
1439 if (!sock_owned_by_user(sk))
1440 break;
1441 }
1442 finish_wait(&sk->sk_lock.wq, &wait);
1443 }
1444
1445 static void __release_sock(struct sock *sk)
1446 {
1447 struct sk_buff *skb = sk->sk_backlog.head;
1448
1449 do {
1450 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1451 bh_unlock_sock(sk);
1452
1453 do {
1454 struct sk_buff *next = skb->next;
1455
1456 skb->next = NULL;
1457 sk_backlog_rcv(sk, skb);
1458
1459 /*
1460 * We are in process context here with softirqs
1461 * disabled, use cond_resched_softirq() to preempt.
1462 * This is safe to do because we've taken the backlog
1463 * queue private:
1464 */
1465 cond_resched_softirq();
1466
1467 skb = next;
1468 } while (skb != NULL);
1469
1470 bh_lock_sock(sk);
1471 } while ((skb = sk->sk_backlog.head) != NULL);
1472 }
1473
1474 /**
1475 * sk_wait_data - wait for data to arrive at sk_receive_queue
1476 * @sk: sock to wait on
1477 * @timeo: for how long
1478 *
1479 * Now socket state including sk->sk_err is changed only under lock,
1480 * hence we may omit checks after joining wait queue.
1481 * We check receive queue before schedule() only as optimization;
1482 * it is very likely that release_sock() added new data.
1483 */
1484 int sk_wait_data(struct sock *sk, long *timeo)
1485 {
1486 int rc;
1487 DEFINE_WAIT(wait);
1488
1489 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1490 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1491 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1492 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1493 finish_wait(sk->sk_sleep, &wait);
1494 return rc;
1495 }
1496 EXPORT_SYMBOL(sk_wait_data);
1497
1498 /**
1499 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1500 * @sk: socket
1501 * @size: memory size to allocate
1502 * @kind: allocation type
1503 *
1504 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1505 * rmem allocation. This function assumes that protocols which have
1506 * memory_pressure use sk_wmem_queued as write buffer accounting.
1507 */
1508 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1509 {
1510 struct proto *prot = sk->sk_prot;
1511 int amt = sk_mem_pages(size);
1512 int allocated;
1513
1514 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1515 allocated = atomic_add_return(amt, prot->memory_allocated);
1516
1517 /* Under limit. */
1518 if (allocated <= prot->sysctl_mem[0]) {
1519 if (prot->memory_pressure && *prot->memory_pressure)
1520 *prot->memory_pressure = 0;
1521 return 1;
1522 }
1523
1524 /* Under pressure. */
1525 if (allocated > prot->sysctl_mem[1])
1526 if (prot->enter_memory_pressure)
1527 prot->enter_memory_pressure(sk);
1528
1529 /* Over hard limit. */
1530 if (allocated > prot->sysctl_mem[2])
1531 goto suppress_allocation;
1532
1533 /* guarantee minimum buffer size under pressure */
1534 if (kind == SK_MEM_RECV) {
1535 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1536 return 1;
1537 } else { /* SK_MEM_SEND */
1538 if (sk->sk_type == SOCK_STREAM) {
1539 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1540 return 1;
1541 } else if (atomic_read(&sk->sk_wmem_alloc) <
1542 prot->sysctl_wmem[0])
1543 return 1;
1544 }
1545
1546 if (prot->memory_pressure) {
1547 int alloc;
1548
1549 if (!*prot->memory_pressure)
1550 return 1;
1551 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1552 if (prot->sysctl_mem[2] > alloc *
1553 sk_mem_pages(sk->sk_wmem_queued +
1554 atomic_read(&sk->sk_rmem_alloc) +
1555 sk->sk_forward_alloc))
1556 return 1;
1557 }
1558
1559 suppress_allocation:
1560
1561 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1562 sk_stream_moderate_sndbuf(sk);
1563
1564 /* Fail only if socket is _under_ its sndbuf.
1565 * In this case we cannot block, so that we have to fail.
1566 */
1567 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1568 return 1;
1569 }
1570
1571 /* Alas. Undo changes. */
1572 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1573 atomic_sub(amt, prot->memory_allocated);
1574 return 0;
1575 }
1576 EXPORT_SYMBOL(__sk_mem_schedule);
1577
1578 /**
1579 * __sk_reclaim - reclaim memory_allocated
1580 * @sk: socket
1581 */
1582 void __sk_mem_reclaim(struct sock *sk)
1583 {
1584 struct proto *prot = sk->sk_prot;
1585
1586 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1587 prot->memory_allocated);
1588 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1589
1590 if (prot->memory_pressure && *prot->memory_pressure &&
1591 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1592 *prot->memory_pressure = 0;
1593 }
1594 EXPORT_SYMBOL(__sk_mem_reclaim);
1595
1596
1597 /*
1598 * Set of default routines for initialising struct proto_ops when
1599 * the protocol does not support a particular function. In certain
1600 * cases where it makes no sense for a protocol to have a "do nothing"
1601 * function, some default processing is provided.
1602 */
1603
1604 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1605 {
1606 return -EOPNOTSUPP;
1607 }
1608 EXPORT_SYMBOL(sock_no_bind);
1609
1610 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1611 int len, int flags)
1612 {
1613 return -EOPNOTSUPP;
1614 }
1615 EXPORT_SYMBOL(sock_no_connect);
1616
1617 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1618 {
1619 return -EOPNOTSUPP;
1620 }
1621 EXPORT_SYMBOL(sock_no_socketpair);
1622
1623 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1624 {
1625 return -EOPNOTSUPP;
1626 }
1627 EXPORT_SYMBOL(sock_no_accept);
1628
1629 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1630 int *len, int peer)
1631 {
1632 return -EOPNOTSUPP;
1633 }
1634 EXPORT_SYMBOL(sock_no_getname);
1635
1636 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1637 {
1638 return 0;
1639 }
1640 EXPORT_SYMBOL(sock_no_poll);
1641
1642 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1643 {
1644 return -EOPNOTSUPP;
1645 }
1646 EXPORT_SYMBOL(sock_no_ioctl);
1647
1648 int sock_no_listen(struct socket *sock, int backlog)
1649 {
1650 return -EOPNOTSUPP;
1651 }
1652 EXPORT_SYMBOL(sock_no_listen);
1653
1654 int sock_no_shutdown(struct socket *sock, int how)
1655 {
1656 return -EOPNOTSUPP;
1657 }
1658 EXPORT_SYMBOL(sock_no_shutdown);
1659
1660 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1661 char __user *optval, int optlen)
1662 {
1663 return -EOPNOTSUPP;
1664 }
1665 EXPORT_SYMBOL(sock_no_setsockopt);
1666
1667 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1668 char __user *optval, int __user *optlen)
1669 {
1670 return -EOPNOTSUPP;
1671 }
1672 EXPORT_SYMBOL(sock_no_getsockopt);
1673
1674 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1675 size_t len)
1676 {
1677 return -EOPNOTSUPP;
1678 }
1679 EXPORT_SYMBOL(sock_no_sendmsg);
1680
1681 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1682 size_t len, int flags)
1683 {
1684 return -EOPNOTSUPP;
1685 }
1686 EXPORT_SYMBOL(sock_no_recvmsg);
1687
1688 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1689 {
1690 /* Mirror missing mmap method error code */
1691 return -ENODEV;
1692 }
1693 EXPORT_SYMBOL(sock_no_mmap);
1694
1695 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1696 {
1697 ssize_t res;
1698 struct msghdr msg = {.msg_flags = flags};
1699 struct kvec iov;
1700 char *kaddr = kmap(page);
1701 iov.iov_base = kaddr + offset;
1702 iov.iov_len = size;
1703 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1704 kunmap(page);
1705 return res;
1706 }
1707 EXPORT_SYMBOL(sock_no_sendpage);
1708
1709 /*
1710 * Default Socket Callbacks
1711 */
1712
1713 static void sock_def_wakeup(struct sock *sk)
1714 {
1715 read_lock(&sk->sk_callback_lock);
1716 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1717 wake_up_interruptible_all(sk->sk_sleep);
1718 read_unlock(&sk->sk_callback_lock);
1719 }
1720
1721 static void sock_def_error_report(struct sock *sk)
1722 {
1723 read_lock(&sk->sk_callback_lock);
1724 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1725 wake_up_interruptible_poll(sk->sk_sleep, POLLERR);
1726 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1727 read_unlock(&sk->sk_callback_lock);
1728 }
1729
1730 static void sock_def_readable(struct sock *sk, int len)
1731 {
1732 read_lock(&sk->sk_callback_lock);
1733 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1734 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN |
1735 POLLRDNORM | POLLRDBAND);
1736 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1737 read_unlock(&sk->sk_callback_lock);
1738 }
1739
1740 static void sock_def_write_space(struct sock *sk)
1741 {
1742 read_lock(&sk->sk_callback_lock);
1743
1744 /* Do not wake up a writer until he can make "significant"
1745 * progress. --DaveM
1746 */
1747 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1748 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1749 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT |
1750 POLLWRNORM | POLLWRBAND);
1751
1752 /* Should agree with poll, otherwise some programs break */
1753 if (sock_writeable(sk))
1754 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1755 }
1756
1757 read_unlock(&sk->sk_callback_lock);
1758 }
1759
1760 static void sock_def_destruct(struct sock *sk)
1761 {
1762 kfree(sk->sk_protinfo);
1763 }
1764
1765 void sk_send_sigurg(struct sock *sk)
1766 {
1767 if (sk->sk_socket && sk->sk_socket->file)
1768 if (send_sigurg(&sk->sk_socket->file->f_owner))
1769 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1770 }
1771 EXPORT_SYMBOL(sk_send_sigurg);
1772
1773 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1774 unsigned long expires)
1775 {
1776 if (!mod_timer(timer, expires))
1777 sock_hold(sk);
1778 }
1779 EXPORT_SYMBOL(sk_reset_timer);
1780
1781 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1782 {
1783 if (timer_pending(timer) && del_timer(timer))
1784 __sock_put(sk);
1785 }
1786 EXPORT_SYMBOL(sk_stop_timer);
1787
1788 void sock_init_data(struct socket *sock, struct sock *sk)
1789 {
1790 skb_queue_head_init(&sk->sk_receive_queue);
1791 skb_queue_head_init(&sk->sk_write_queue);
1792 skb_queue_head_init(&sk->sk_error_queue);
1793 #ifdef CONFIG_NET_DMA
1794 skb_queue_head_init(&sk->sk_async_wait_queue);
1795 #endif
1796
1797 sk->sk_send_head = NULL;
1798
1799 init_timer(&sk->sk_timer);
1800
1801 sk->sk_allocation = GFP_KERNEL;
1802 sk->sk_rcvbuf = sysctl_rmem_default;
1803 sk->sk_sndbuf = sysctl_wmem_default;
1804 sk->sk_state = TCP_CLOSE;
1805 sk_set_socket(sk, sock);
1806
1807 sock_set_flag(sk, SOCK_ZAPPED);
1808
1809 if (sock) {
1810 sk->sk_type = sock->type;
1811 sk->sk_sleep = &sock->wait;
1812 sock->sk = sk;
1813 } else
1814 sk->sk_sleep = NULL;
1815
1816 rwlock_init(&sk->sk_dst_lock);
1817 rwlock_init(&sk->sk_callback_lock);
1818 lockdep_set_class_and_name(&sk->sk_callback_lock,
1819 af_callback_keys + sk->sk_family,
1820 af_family_clock_key_strings[sk->sk_family]);
1821
1822 sk->sk_state_change = sock_def_wakeup;
1823 sk->sk_data_ready = sock_def_readable;
1824 sk->sk_write_space = sock_def_write_space;
1825 sk->sk_error_report = sock_def_error_report;
1826 sk->sk_destruct = sock_def_destruct;
1827
1828 sk->sk_sndmsg_page = NULL;
1829 sk->sk_sndmsg_off = 0;
1830
1831 sk->sk_peercred.pid = 0;
1832 sk->sk_peercred.uid = -1;
1833 sk->sk_peercred.gid = -1;
1834 sk->sk_write_pending = 0;
1835 sk->sk_rcvlowat = 1;
1836 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1837 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1838
1839 sk->sk_stamp = ktime_set(-1L, 0);
1840
1841 atomic_set(&sk->sk_refcnt, 1);
1842 atomic_set(&sk->sk_wmem_alloc, 1);
1843 atomic_set(&sk->sk_drops, 0);
1844 }
1845 EXPORT_SYMBOL(sock_init_data);
1846
1847 void lock_sock_nested(struct sock *sk, int subclass)
1848 {
1849 might_sleep();
1850 spin_lock_bh(&sk->sk_lock.slock);
1851 if (sk->sk_lock.owned)
1852 __lock_sock(sk);
1853 sk->sk_lock.owned = 1;
1854 spin_unlock(&sk->sk_lock.slock);
1855 /*
1856 * The sk_lock has mutex_lock() semantics here:
1857 */
1858 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1859 local_bh_enable();
1860 }
1861 EXPORT_SYMBOL(lock_sock_nested);
1862
1863 void release_sock(struct sock *sk)
1864 {
1865 /*
1866 * The sk_lock has mutex_unlock() semantics:
1867 */
1868 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1869
1870 spin_lock_bh(&sk->sk_lock.slock);
1871 if (sk->sk_backlog.tail)
1872 __release_sock(sk);
1873 sk->sk_lock.owned = 0;
1874 if (waitqueue_active(&sk->sk_lock.wq))
1875 wake_up(&sk->sk_lock.wq);
1876 spin_unlock_bh(&sk->sk_lock.slock);
1877 }
1878 EXPORT_SYMBOL(release_sock);
1879
1880 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1881 {
1882 struct timeval tv;
1883 if (!sock_flag(sk, SOCK_TIMESTAMP))
1884 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1885 tv = ktime_to_timeval(sk->sk_stamp);
1886 if (tv.tv_sec == -1)
1887 return -ENOENT;
1888 if (tv.tv_sec == 0) {
1889 sk->sk_stamp = ktime_get_real();
1890 tv = ktime_to_timeval(sk->sk_stamp);
1891 }
1892 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1893 }
1894 EXPORT_SYMBOL(sock_get_timestamp);
1895
1896 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1897 {
1898 struct timespec ts;
1899 if (!sock_flag(sk, SOCK_TIMESTAMP))
1900 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1901 ts = ktime_to_timespec(sk->sk_stamp);
1902 if (ts.tv_sec == -1)
1903 return -ENOENT;
1904 if (ts.tv_sec == 0) {
1905 sk->sk_stamp = ktime_get_real();
1906 ts = ktime_to_timespec(sk->sk_stamp);
1907 }
1908 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1909 }
1910 EXPORT_SYMBOL(sock_get_timestampns);
1911
1912 void sock_enable_timestamp(struct sock *sk, int flag)
1913 {
1914 if (!sock_flag(sk, flag)) {
1915 sock_set_flag(sk, flag);
1916 /*
1917 * we just set one of the two flags which require net
1918 * time stamping, but time stamping might have been on
1919 * already because of the other one
1920 */
1921 if (!sock_flag(sk,
1922 flag == SOCK_TIMESTAMP ?
1923 SOCK_TIMESTAMPING_RX_SOFTWARE :
1924 SOCK_TIMESTAMP))
1925 net_enable_timestamp();
1926 }
1927 }
1928
1929 /*
1930 * Get a socket option on an socket.
1931 *
1932 * FIX: POSIX 1003.1g is very ambiguous here. It states that
1933 * asynchronous errors should be reported by getsockopt. We assume
1934 * this means if you specify SO_ERROR (otherwise whats the point of it).
1935 */
1936 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1937 char __user *optval, int __user *optlen)
1938 {
1939 struct sock *sk = sock->sk;
1940
1941 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1942 }
1943 EXPORT_SYMBOL(sock_common_getsockopt);
1944
1945 #ifdef CONFIG_COMPAT
1946 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1947 char __user *optval, int __user *optlen)
1948 {
1949 struct sock *sk = sock->sk;
1950
1951 if (sk->sk_prot->compat_getsockopt != NULL)
1952 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1953 optval, optlen);
1954 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1955 }
1956 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1957 #endif
1958
1959 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1960 struct msghdr *msg, size_t size, int flags)
1961 {
1962 struct sock *sk = sock->sk;
1963 int addr_len = 0;
1964 int err;
1965
1966 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1967 flags & ~MSG_DONTWAIT, &addr_len);
1968 if (err >= 0)
1969 msg->msg_namelen = addr_len;
1970 return err;
1971 }
1972 EXPORT_SYMBOL(sock_common_recvmsg);
1973
1974 /*
1975 * Set socket options on an inet socket.
1976 */
1977 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1978 char __user *optval, int optlen)
1979 {
1980 struct sock *sk = sock->sk;
1981
1982 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1983 }
1984 EXPORT_SYMBOL(sock_common_setsockopt);
1985
1986 #ifdef CONFIG_COMPAT
1987 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1988 char __user *optval, int optlen)
1989 {
1990 struct sock *sk = sock->sk;
1991
1992 if (sk->sk_prot->compat_setsockopt != NULL)
1993 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1994 optval, optlen);
1995 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1996 }
1997 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1998 #endif
1999
2000 void sk_common_release(struct sock *sk)
2001 {
2002 if (sk->sk_prot->destroy)
2003 sk->sk_prot->destroy(sk);
2004
2005 /*
2006 * Observation: when sock_common_release is called, processes have
2007 * no access to socket. But net still has.
2008 * Step one, detach it from networking:
2009 *
2010 * A. Remove from hash tables.
2011 */
2012
2013 sk->sk_prot->unhash(sk);
2014
2015 /*
2016 * In this point socket cannot receive new packets, but it is possible
2017 * that some packets are in flight because some CPU runs receiver and
2018 * did hash table lookup before we unhashed socket. They will achieve
2019 * receive queue and will be purged by socket destructor.
2020 *
2021 * Also we still have packets pending on receive queue and probably,
2022 * our own packets waiting in device queues. sock_destroy will drain
2023 * receive queue, but transmitted packets will delay socket destruction
2024 * until the last reference will be released.
2025 */
2026
2027 sock_orphan(sk);
2028
2029 xfrm_sk_free_policy(sk);
2030
2031 sk_refcnt_debug_release(sk);
2032 sock_put(sk);
2033 }
2034 EXPORT_SYMBOL(sk_common_release);
2035
2036 static DEFINE_RWLOCK(proto_list_lock);
2037 static LIST_HEAD(proto_list);
2038
2039 #ifdef CONFIG_PROC_FS
2040 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2041 struct prot_inuse {
2042 int val[PROTO_INUSE_NR];
2043 };
2044
2045 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2046
2047 #ifdef CONFIG_NET_NS
2048 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2049 {
2050 int cpu = smp_processor_id();
2051 per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2052 }
2053 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2054
2055 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2056 {
2057 int cpu, idx = prot->inuse_idx;
2058 int res = 0;
2059
2060 for_each_possible_cpu(cpu)
2061 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2062
2063 return res >= 0 ? res : 0;
2064 }
2065 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2066
2067 static int sock_inuse_init_net(struct net *net)
2068 {
2069 net->core.inuse = alloc_percpu(struct prot_inuse);
2070 return net->core.inuse ? 0 : -ENOMEM;
2071 }
2072
2073 static void sock_inuse_exit_net(struct net *net)
2074 {
2075 free_percpu(net->core.inuse);
2076 }
2077
2078 static struct pernet_operations net_inuse_ops = {
2079 .init = sock_inuse_init_net,
2080 .exit = sock_inuse_exit_net,
2081 };
2082
2083 static __init int net_inuse_init(void)
2084 {
2085 if (register_pernet_subsys(&net_inuse_ops))
2086 panic("Cannot initialize net inuse counters");
2087
2088 return 0;
2089 }
2090
2091 core_initcall(net_inuse_init);
2092 #else
2093 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2094
2095 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2096 {
2097 __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2098 }
2099 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2100
2101 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2102 {
2103 int cpu, idx = prot->inuse_idx;
2104 int res = 0;
2105
2106 for_each_possible_cpu(cpu)
2107 res += per_cpu(prot_inuse, cpu).val[idx];
2108
2109 return res >= 0 ? res : 0;
2110 }
2111 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2112 #endif
2113
2114 static void assign_proto_idx(struct proto *prot)
2115 {
2116 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2117
2118 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2119 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2120 return;
2121 }
2122
2123 set_bit(prot->inuse_idx, proto_inuse_idx);
2124 }
2125
2126 static void release_proto_idx(struct proto *prot)
2127 {
2128 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2129 clear_bit(prot->inuse_idx, proto_inuse_idx);
2130 }
2131 #else
2132 static inline void assign_proto_idx(struct proto *prot)
2133 {
2134 }
2135
2136 static inline void release_proto_idx(struct proto *prot)
2137 {
2138 }
2139 #endif
2140
2141 int proto_register(struct proto *prot, int alloc_slab)
2142 {
2143 if (alloc_slab) {
2144 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2145 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2146 NULL);
2147
2148 if (prot->slab == NULL) {
2149 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2150 prot->name);
2151 goto out;
2152 }
2153
2154 if (prot->rsk_prot != NULL) {
2155 static const char mask[] = "request_sock_%s";
2156
2157 prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2158 if (prot->rsk_prot->slab_name == NULL)
2159 goto out_free_sock_slab;
2160
2161 sprintf(prot->rsk_prot->slab_name, mask, prot->name);
2162 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2163 prot->rsk_prot->obj_size, 0,
2164 SLAB_HWCACHE_ALIGN, NULL);
2165
2166 if (prot->rsk_prot->slab == NULL) {
2167 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2168 prot->name);
2169 goto out_free_request_sock_slab_name;
2170 }
2171 }
2172
2173 if (prot->twsk_prot != NULL) {
2174 static const char mask[] = "tw_sock_%s";
2175
2176 prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2177
2178 if (prot->twsk_prot->twsk_slab_name == NULL)
2179 goto out_free_request_sock_slab;
2180
2181 sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name);
2182 prot->twsk_prot->twsk_slab =
2183 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2184 prot->twsk_prot->twsk_obj_size,
2185 0,
2186 SLAB_HWCACHE_ALIGN |
2187 prot->slab_flags,
2188 NULL);
2189 if (prot->twsk_prot->twsk_slab == NULL)
2190 goto out_free_timewait_sock_slab_name;
2191 }
2192 }
2193
2194 write_lock(&proto_list_lock);
2195 list_add(&prot->node, &proto_list);
2196 assign_proto_idx(prot);
2197 write_unlock(&proto_list_lock);
2198 return 0;
2199
2200 out_free_timewait_sock_slab_name:
2201 kfree(prot->twsk_prot->twsk_slab_name);
2202 out_free_request_sock_slab:
2203 if (prot->rsk_prot && prot->rsk_prot->slab) {
2204 kmem_cache_destroy(prot->rsk_prot->slab);
2205 prot->rsk_prot->slab = NULL;
2206 }
2207 out_free_request_sock_slab_name:
2208 kfree(prot->rsk_prot->slab_name);
2209 out_free_sock_slab:
2210 kmem_cache_destroy(prot->slab);
2211 prot->slab = NULL;
2212 out:
2213 return -ENOBUFS;
2214 }
2215 EXPORT_SYMBOL(proto_register);
2216
2217 void proto_unregister(struct proto *prot)
2218 {
2219 write_lock(&proto_list_lock);
2220 release_proto_idx(prot);
2221 list_del(&prot->node);
2222 write_unlock(&proto_list_lock);
2223
2224 if (prot->slab != NULL) {
2225 kmem_cache_destroy(prot->slab);
2226 prot->slab = NULL;
2227 }
2228
2229 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2230 kmem_cache_destroy(prot->rsk_prot->slab);
2231 kfree(prot->rsk_prot->slab_name);
2232 prot->rsk_prot->slab = NULL;
2233 }
2234
2235 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2236 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2237 kfree(prot->twsk_prot->twsk_slab_name);
2238 prot->twsk_prot->twsk_slab = NULL;
2239 }
2240 }
2241 EXPORT_SYMBOL(proto_unregister);
2242
2243 #ifdef CONFIG_PROC_FS
2244 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2245 __acquires(proto_list_lock)
2246 {
2247 read_lock(&proto_list_lock);
2248 return seq_list_start_head(&proto_list, *pos);
2249 }
2250
2251 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2252 {
2253 return seq_list_next(v, &proto_list, pos);
2254 }
2255
2256 static void proto_seq_stop(struct seq_file *seq, void *v)
2257 __releases(proto_list_lock)
2258 {
2259 read_unlock(&proto_list_lock);
2260 }
2261
2262 static char proto_method_implemented(const void *method)
2263 {
2264 return method == NULL ? 'n' : 'y';
2265 }
2266
2267 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2268 {
2269 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2270 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2271 proto->name,
2272 proto->obj_size,
2273 sock_prot_inuse_get(seq_file_net(seq), proto),
2274 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2275 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2276 proto->max_header,
2277 proto->slab == NULL ? "no" : "yes",
2278 module_name(proto->owner),
2279 proto_method_implemented(proto->close),
2280 proto_method_implemented(proto->connect),
2281 proto_method_implemented(proto->disconnect),
2282 proto_method_implemented(proto->accept),
2283 proto_method_implemented(proto->ioctl),
2284 proto_method_implemented(proto->init),
2285 proto_method_implemented(proto->destroy),
2286 proto_method_implemented(proto->shutdown),
2287 proto_method_implemented(proto->setsockopt),
2288 proto_method_implemented(proto->getsockopt),
2289 proto_method_implemented(proto->sendmsg),
2290 proto_method_implemented(proto->recvmsg),
2291 proto_method_implemented(proto->sendpage),
2292 proto_method_implemented(proto->bind),
2293 proto_method_implemented(proto->backlog_rcv),
2294 proto_method_implemented(proto->hash),
2295 proto_method_implemented(proto->unhash),
2296 proto_method_implemented(proto->get_port),
2297 proto_method_implemented(proto->enter_memory_pressure));
2298 }
2299
2300 static int proto_seq_show(struct seq_file *seq, void *v)
2301 {
2302 if (v == &proto_list)
2303 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2304 "protocol",
2305 "size",
2306 "sockets",
2307 "memory",
2308 "press",
2309 "maxhdr",
2310 "slab",
2311 "module",
2312 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2313 else
2314 proto_seq_printf(seq, list_entry(v, struct proto, node));
2315 return 0;
2316 }
2317
2318 static const struct seq_operations proto_seq_ops = {
2319 .start = proto_seq_start,
2320 .next = proto_seq_next,
2321 .stop = proto_seq_stop,
2322 .show = proto_seq_show,
2323 };
2324
2325 static int proto_seq_open(struct inode *inode, struct file *file)
2326 {
2327 return seq_open_net(inode, file, &proto_seq_ops,
2328 sizeof(struct seq_net_private));
2329 }
2330
2331 static const struct file_operations proto_seq_fops = {
2332 .owner = THIS_MODULE,
2333 .open = proto_seq_open,
2334 .read = seq_read,
2335 .llseek = seq_lseek,
2336 .release = seq_release_net,
2337 };
2338
2339 static __net_init int proto_init_net(struct net *net)
2340 {
2341 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2342 return -ENOMEM;
2343
2344 return 0;
2345 }
2346
2347 static __net_exit void proto_exit_net(struct net *net)
2348 {
2349 proc_net_remove(net, "protocols");
2350 }
2351
2352
2353 static __net_initdata struct pernet_operations proto_net_ops = {
2354 .init = proto_init_net,
2355 .exit = proto_exit_net,
2356 };
2357
2358 static int __init proto_init(void)
2359 {
2360 return register_pernet_subsys(&proto_net_ops);
2361 }
2362
2363 subsys_initcall(proto_init);
2364
2365 #endif /* PROC_FS */