]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/sock.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[mirror_ubuntu-artful-kernel.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
116
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <linux/net_tstamp.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
126
127 #include <linux/filter.h>
128
129 #ifdef CONFIG_INET
130 #include <net/tcp.h>
131 #endif
132
133 /*
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
136 */
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
139
140 /*
141 * Make lock validator output more readable. (we pre-construct these
142 * strings build-time, so that runtime initialization of socket
143 * locks is fast):
144 */
145 static const char *af_family_key_strings[AF_MAX+1] = {
146 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
147 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
148 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
149 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
150 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
151 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
152 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
153 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
154 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
155 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
156 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
157 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
158 "sk_lock-AF_IEEE802154",
159 "sk_lock-AF_MAX"
160 };
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
163 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
164 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
165 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
166 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
167 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
168 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
169 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
170 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
171 "slock-27" , "slock-28" , "slock-AF_CAN" ,
172 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
173 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
174 "slock-AF_IEEE802154",
175 "slock-AF_MAX"
176 };
177 static const char *af_family_clock_key_strings[AF_MAX+1] = {
178 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
179 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
180 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
181 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
182 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
183 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
184 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
185 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
186 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
187 "clock-27" , "clock-28" , "clock-AF_CAN" ,
188 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
189 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
190 "clock-AF_IEEE802154",
191 "clock-AF_MAX"
192 };
193
194 /*
195 * sk_callback_lock locking rules are per-address-family,
196 * so split the lock classes by using a per-AF key:
197 */
198 static struct lock_class_key af_callback_keys[AF_MAX];
199
200 /* Take into consideration the size of the struct sk_buff overhead in the
201 * determination of these values, since that is non-constant across
202 * platforms. This makes socket queueing behavior and performance
203 * not depend upon such differences.
204 */
205 #define _SK_MEM_PACKETS 256
206 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
207 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
208 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
209
210 /* Run time adjustable parameters. */
211 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
212 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
213 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
214 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
215
216 /* Maximal space eaten by iovec or ancilliary data plus some space */
217 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
218 EXPORT_SYMBOL(sysctl_optmem_max);
219
220 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
221 {
222 struct timeval tv;
223
224 if (optlen < sizeof(tv))
225 return -EINVAL;
226 if (copy_from_user(&tv, optval, sizeof(tv)))
227 return -EFAULT;
228 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
229 return -EDOM;
230
231 if (tv.tv_sec < 0) {
232 static int warned __read_mostly;
233
234 *timeo_p = 0;
235 if (warned < 10 && net_ratelimit()) {
236 warned++;
237 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
238 "tries to set negative timeout\n",
239 current->comm, task_pid_nr(current));
240 }
241 return 0;
242 }
243 *timeo_p = MAX_SCHEDULE_TIMEOUT;
244 if (tv.tv_sec == 0 && tv.tv_usec == 0)
245 return 0;
246 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
247 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
248 return 0;
249 }
250
251 static void sock_warn_obsolete_bsdism(const char *name)
252 {
253 static int warned;
254 static char warncomm[TASK_COMM_LEN];
255 if (strcmp(warncomm, current->comm) && warned < 5) {
256 strcpy(warncomm, current->comm);
257 printk(KERN_WARNING "process `%s' is using obsolete "
258 "%s SO_BSDCOMPAT\n", warncomm, name);
259 warned++;
260 }
261 }
262
263 static void sock_disable_timestamp(struct sock *sk, int flag)
264 {
265 if (sock_flag(sk, flag)) {
266 sock_reset_flag(sk, flag);
267 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
268 !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
269 net_disable_timestamp();
270 }
271 }
272 }
273
274
275 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
276 {
277 int err = 0;
278 int skb_len;
279
280 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
281 number of warnings when compiling with -W --ANK
282 */
283 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
284 (unsigned)sk->sk_rcvbuf) {
285 err = -ENOMEM;
286 goto out;
287 }
288
289 err = sk_filter(sk, skb);
290 if (err)
291 goto out;
292
293 if (!sk_rmem_schedule(sk, skb->truesize)) {
294 err = -ENOBUFS;
295 goto out;
296 }
297
298 skb->dev = NULL;
299 skb_set_owner_r(skb, sk);
300
301 /* Cache the SKB length before we tack it onto the receive
302 * queue. Once it is added it no longer belongs to us and
303 * may be freed by other threads of control pulling packets
304 * from the queue.
305 */
306 skb_len = skb->len;
307
308 skb_queue_tail(&sk->sk_receive_queue, skb);
309
310 if (!sock_flag(sk, SOCK_DEAD))
311 sk->sk_data_ready(sk, skb_len);
312 out:
313 return err;
314 }
315 EXPORT_SYMBOL(sock_queue_rcv_skb);
316
317 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
318 {
319 int rc = NET_RX_SUCCESS;
320
321 if (sk_filter(sk, skb))
322 goto discard_and_relse;
323
324 skb->dev = NULL;
325
326 if (nested)
327 bh_lock_sock_nested(sk);
328 else
329 bh_lock_sock(sk);
330 if (!sock_owned_by_user(sk)) {
331 /*
332 * trylock + unlock semantics:
333 */
334 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
335
336 rc = sk_backlog_rcv(sk, skb);
337
338 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
339 } else
340 sk_add_backlog(sk, skb);
341 bh_unlock_sock(sk);
342 out:
343 sock_put(sk);
344 return rc;
345 discard_and_relse:
346 kfree_skb(skb);
347 goto out;
348 }
349 EXPORT_SYMBOL(sk_receive_skb);
350
351 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
352 {
353 struct dst_entry *dst = sk->sk_dst_cache;
354
355 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
356 sk->sk_dst_cache = NULL;
357 dst_release(dst);
358 return NULL;
359 }
360
361 return dst;
362 }
363 EXPORT_SYMBOL(__sk_dst_check);
364
365 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
366 {
367 struct dst_entry *dst = sk_dst_get(sk);
368
369 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
370 sk_dst_reset(sk);
371 dst_release(dst);
372 return NULL;
373 }
374
375 return dst;
376 }
377 EXPORT_SYMBOL(sk_dst_check);
378
379 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
380 {
381 int ret = -ENOPROTOOPT;
382 #ifdef CONFIG_NETDEVICES
383 struct net *net = sock_net(sk);
384 char devname[IFNAMSIZ];
385 int index;
386
387 /* Sorry... */
388 ret = -EPERM;
389 if (!capable(CAP_NET_RAW))
390 goto out;
391
392 ret = -EINVAL;
393 if (optlen < 0)
394 goto out;
395
396 /* Bind this socket to a particular device like "eth0",
397 * as specified in the passed interface name. If the
398 * name is "" or the option length is zero the socket
399 * is not bound.
400 */
401 if (optlen > IFNAMSIZ - 1)
402 optlen = IFNAMSIZ - 1;
403 memset(devname, 0, sizeof(devname));
404
405 ret = -EFAULT;
406 if (copy_from_user(devname, optval, optlen))
407 goto out;
408
409 if (devname[0] == '\0') {
410 index = 0;
411 } else {
412 struct net_device *dev = dev_get_by_name(net, devname);
413
414 ret = -ENODEV;
415 if (!dev)
416 goto out;
417
418 index = dev->ifindex;
419 dev_put(dev);
420 }
421
422 lock_sock(sk);
423 sk->sk_bound_dev_if = index;
424 sk_dst_reset(sk);
425 release_sock(sk);
426
427 ret = 0;
428
429 out:
430 #endif
431
432 return ret;
433 }
434
435 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
436 {
437 if (valbool)
438 sock_set_flag(sk, bit);
439 else
440 sock_reset_flag(sk, bit);
441 }
442
443 /*
444 * This is meant for all protocols to use and covers goings on
445 * at the socket level. Everything here is generic.
446 */
447
448 int sock_setsockopt(struct socket *sock, int level, int optname,
449 char __user *optval, int optlen)
450 {
451 struct sock *sk = sock->sk;
452 int val;
453 int valbool;
454 struct linger ling;
455 int ret = 0;
456
457 /*
458 * Options without arguments
459 */
460
461 if (optname == SO_BINDTODEVICE)
462 return sock_bindtodevice(sk, optval, optlen);
463
464 if (optlen < sizeof(int))
465 return -EINVAL;
466
467 if (get_user(val, (int __user *)optval))
468 return -EFAULT;
469
470 valbool = val ? 1 : 0;
471
472 lock_sock(sk);
473
474 switch (optname) {
475 case SO_DEBUG:
476 if (val && !capable(CAP_NET_ADMIN))
477 ret = -EACCES;
478 else
479 sock_valbool_flag(sk, SOCK_DBG, valbool);
480 break;
481 case SO_REUSEADDR:
482 sk->sk_reuse = valbool;
483 break;
484 case SO_TYPE:
485 case SO_ERROR:
486 ret = -ENOPROTOOPT;
487 break;
488 case SO_DONTROUTE:
489 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
490 break;
491 case SO_BROADCAST:
492 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
493 break;
494 case SO_SNDBUF:
495 /* Don't error on this BSD doesn't and if you think
496 about it this is right. Otherwise apps have to
497 play 'guess the biggest size' games. RCVBUF/SNDBUF
498 are treated in BSD as hints */
499
500 if (val > sysctl_wmem_max)
501 val = sysctl_wmem_max;
502 set_sndbuf:
503 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
504 if ((val * 2) < SOCK_MIN_SNDBUF)
505 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
506 else
507 sk->sk_sndbuf = val * 2;
508
509 /*
510 * Wake up sending tasks if we
511 * upped the value.
512 */
513 sk->sk_write_space(sk);
514 break;
515
516 case SO_SNDBUFFORCE:
517 if (!capable(CAP_NET_ADMIN)) {
518 ret = -EPERM;
519 break;
520 }
521 goto set_sndbuf;
522
523 case SO_RCVBUF:
524 /* Don't error on this BSD doesn't and if you think
525 about it this is right. Otherwise apps have to
526 play 'guess the biggest size' games. RCVBUF/SNDBUF
527 are treated in BSD as hints */
528
529 if (val > sysctl_rmem_max)
530 val = sysctl_rmem_max;
531 set_rcvbuf:
532 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
533 /*
534 * We double it on the way in to account for
535 * "struct sk_buff" etc. overhead. Applications
536 * assume that the SO_RCVBUF setting they make will
537 * allow that much actual data to be received on that
538 * socket.
539 *
540 * Applications are unaware that "struct sk_buff" and
541 * other overheads allocate from the receive buffer
542 * during socket buffer allocation.
543 *
544 * And after considering the possible alternatives,
545 * returning the value we actually used in getsockopt
546 * is the most desirable behavior.
547 */
548 if ((val * 2) < SOCK_MIN_RCVBUF)
549 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
550 else
551 sk->sk_rcvbuf = val * 2;
552 break;
553
554 case SO_RCVBUFFORCE:
555 if (!capable(CAP_NET_ADMIN)) {
556 ret = -EPERM;
557 break;
558 }
559 goto set_rcvbuf;
560
561 case SO_KEEPALIVE:
562 #ifdef CONFIG_INET
563 if (sk->sk_protocol == IPPROTO_TCP)
564 tcp_set_keepalive(sk, valbool);
565 #endif
566 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
567 break;
568
569 case SO_OOBINLINE:
570 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
571 break;
572
573 case SO_NO_CHECK:
574 sk->sk_no_check = valbool;
575 break;
576
577 case SO_PRIORITY:
578 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
579 sk->sk_priority = val;
580 else
581 ret = -EPERM;
582 break;
583
584 case SO_LINGER:
585 if (optlen < sizeof(ling)) {
586 ret = -EINVAL; /* 1003.1g */
587 break;
588 }
589 if (copy_from_user(&ling, optval, sizeof(ling))) {
590 ret = -EFAULT;
591 break;
592 }
593 if (!ling.l_onoff)
594 sock_reset_flag(sk, SOCK_LINGER);
595 else {
596 #if (BITS_PER_LONG == 32)
597 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
598 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
599 else
600 #endif
601 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
602 sock_set_flag(sk, SOCK_LINGER);
603 }
604 break;
605
606 case SO_BSDCOMPAT:
607 sock_warn_obsolete_bsdism("setsockopt");
608 break;
609
610 case SO_PASSCRED:
611 if (valbool)
612 set_bit(SOCK_PASSCRED, &sock->flags);
613 else
614 clear_bit(SOCK_PASSCRED, &sock->flags);
615 break;
616
617 case SO_TIMESTAMP:
618 case SO_TIMESTAMPNS:
619 if (valbool) {
620 if (optname == SO_TIMESTAMP)
621 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
622 else
623 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
624 sock_set_flag(sk, SOCK_RCVTSTAMP);
625 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
626 } else {
627 sock_reset_flag(sk, SOCK_RCVTSTAMP);
628 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
629 }
630 break;
631
632 case SO_TIMESTAMPING:
633 if (val & ~SOF_TIMESTAMPING_MASK) {
634 ret = EINVAL;
635 break;
636 }
637 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
638 val & SOF_TIMESTAMPING_TX_HARDWARE);
639 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
640 val & SOF_TIMESTAMPING_TX_SOFTWARE);
641 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
642 val & SOF_TIMESTAMPING_RX_HARDWARE);
643 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
644 sock_enable_timestamp(sk,
645 SOCK_TIMESTAMPING_RX_SOFTWARE);
646 else
647 sock_disable_timestamp(sk,
648 SOCK_TIMESTAMPING_RX_SOFTWARE);
649 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
650 val & SOF_TIMESTAMPING_SOFTWARE);
651 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
652 val & SOF_TIMESTAMPING_SYS_HARDWARE);
653 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
654 val & SOF_TIMESTAMPING_RAW_HARDWARE);
655 break;
656
657 case SO_RCVLOWAT:
658 if (val < 0)
659 val = INT_MAX;
660 sk->sk_rcvlowat = val ? : 1;
661 break;
662
663 case SO_RCVTIMEO:
664 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
665 break;
666
667 case SO_SNDTIMEO:
668 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
669 break;
670
671 case SO_ATTACH_FILTER:
672 ret = -EINVAL;
673 if (optlen == sizeof(struct sock_fprog)) {
674 struct sock_fprog fprog;
675
676 ret = -EFAULT;
677 if (copy_from_user(&fprog, optval, sizeof(fprog)))
678 break;
679
680 ret = sk_attach_filter(&fprog, sk);
681 }
682 break;
683
684 case SO_DETACH_FILTER:
685 ret = sk_detach_filter(sk);
686 break;
687
688 case SO_PASSSEC:
689 if (valbool)
690 set_bit(SOCK_PASSSEC, &sock->flags);
691 else
692 clear_bit(SOCK_PASSSEC, &sock->flags);
693 break;
694 case SO_MARK:
695 if (!capable(CAP_NET_ADMIN))
696 ret = -EPERM;
697 else
698 sk->sk_mark = val;
699 break;
700
701 /* We implement the SO_SNDLOWAT etc to
702 not be settable (1003.1g 5.3) */
703 default:
704 ret = -ENOPROTOOPT;
705 break;
706 }
707 release_sock(sk);
708 return ret;
709 }
710 EXPORT_SYMBOL(sock_setsockopt);
711
712
713 int sock_getsockopt(struct socket *sock, int level, int optname,
714 char __user *optval, int __user *optlen)
715 {
716 struct sock *sk = sock->sk;
717
718 union {
719 int val;
720 struct linger ling;
721 struct timeval tm;
722 } v;
723
724 unsigned int lv = sizeof(int);
725 int len;
726
727 if (get_user(len, optlen))
728 return -EFAULT;
729 if (len < 0)
730 return -EINVAL;
731
732 memset(&v, 0, sizeof(v));
733
734 switch (optname) {
735 case SO_DEBUG:
736 v.val = sock_flag(sk, SOCK_DBG);
737 break;
738
739 case SO_DONTROUTE:
740 v.val = sock_flag(sk, SOCK_LOCALROUTE);
741 break;
742
743 case SO_BROADCAST:
744 v.val = !!sock_flag(sk, SOCK_BROADCAST);
745 break;
746
747 case SO_SNDBUF:
748 v.val = sk->sk_sndbuf;
749 break;
750
751 case SO_RCVBUF:
752 v.val = sk->sk_rcvbuf;
753 break;
754
755 case SO_REUSEADDR:
756 v.val = sk->sk_reuse;
757 break;
758
759 case SO_KEEPALIVE:
760 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
761 break;
762
763 case SO_TYPE:
764 v.val = sk->sk_type;
765 break;
766
767 case SO_ERROR:
768 v.val = -sock_error(sk);
769 if (v.val == 0)
770 v.val = xchg(&sk->sk_err_soft, 0);
771 break;
772
773 case SO_OOBINLINE:
774 v.val = !!sock_flag(sk, SOCK_URGINLINE);
775 break;
776
777 case SO_NO_CHECK:
778 v.val = sk->sk_no_check;
779 break;
780
781 case SO_PRIORITY:
782 v.val = sk->sk_priority;
783 break;
784
785 case SO_LINGER:
786 lv = sizeof(v.ling);
787 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
788 v.ling.l_linger = sk->sk_lingertime / HZ;
789 break;
790
791 case SO_BSDCOMPAT:
792 sock_warn_obsolete_bsdism("getsockopt");
793 break;
794
795 case SO_TIMESTAMP:
796 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
797 !sock_flag(sk, SOCK_RCVTSTAMPNS);
798 break;
799
800 case SO_TIMESTAMPNS:
801 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
802 break;
803
804 case SO_TIMESTAMPING:
805 v.val = 0;
806 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
807 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
808 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
809 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
810 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
811 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
812 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
813 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
814 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
815 v.val |= SOF_TIMESTAMPING_SOFTWARE;
816 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
817 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
818 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
819 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
820 break;
821
822 case SO_RCVTIMEO:
823 lv = sizeof(struct timeval);
824 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
825 v.tm.tv_sec = 0;
826 v.tm.tv_usec = 0;
827 } else {
828 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
829 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
830 }
831 break;
832
833 case SO_SNDTIMEO:
834 lv = sizeof(struct timeval);
835 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
836 v.tm.tv_sec = 0;
837 v.tm.tv_usec = 0;
838 } else {
839 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
840 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
841 }
842 break;
843
844 case SO_RCVLOWAT:
845 v.val = sk->sk_rcvlowat;
846 break;
847
848 case SO_SNDLOWAT:
849 v.val = 1;
850 break;
851
852 case SO_PASSCRED:
853 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
854 break;
855
856 case SO_PEERCRED:
857 if (len > sizeof(sk->sk_peercred))
858 len = sizeof(sk->sk_peercred);
859 if (copy_to_user(optval, &sk->sk_peercred, len))
860 return -EFAULT;
861 goto lenout;
862
863 case SO_PEERNAME:
864 {
865 char address[128];
866
867 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
868 return -ENOTCONN;
869 if (lv < len)
870 return -EINVAL;
871 if (copy_to_user(optval, address, len))
872 return -EFAULT;
873 goto lenout;
874 }
875
876 /* Dubious BSD thing... Probably nobody even uses it, but
877 * the UNIX standard wants it for whatever reason... -DaveM
878 */
879 case SO_ACCEPTCONN:
880 v.val = sk->sk_state == TCP_LISTEN;
881 break;
882
883 case SO_PASSSEC:
884 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
885 break;
886
887 case SO_PEERSEC:
888 return security_socket_getpeersec_stream(sock, optval, optlen, len);
889
890 case SO_MARK:
891 v.val = sk->sk_mark;
892 break;
893
894 default:
895 return -ENOPROTOOPT;
896 }
897
898 if (len > lv)
899 len = lv;
900 if (copy_to_user(optval, &v, len))
901 return -EFAULT;
902 lenout:
903 if (put_user(len, optlen))
904 return -EFAULT;
905 return 0;
906 }
907
908 /*
909 * Initialize an sk_lock.
910 *
911 * (We also register the sk_lock with the lock validator.)
912 */
913 static inline void sock_lock_init(struct sock *sk)
914 {
915 sock_lock_init_class_and_name(sk,
916 af_family_slock_key_strings[sk->sk_family],
917 af_family_slock_keys + sk->sk_family,
918 af_family_key_strings[sk->sk_family],
919 af_family_keys + sk->sk_family);
920 }
921
922 static void sock_copy(struct sock *nsk, const struct sock *osk)
923 {
924 #ifdef CONFIG_SECURITY_NETWORK
925 void *sptr = nsk->sk_security;
926 #endif
927
928 memcpy(nsk, osk, osk->sk_prot->obj_size);
929 #ifdef CONFIG_SECURITY_NETWORK
930 nsk->sk_security = sptr;
931 security_sk_clone(osk, nsk);
932 #endif
933 }
934
935 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
936 int family)
937 {
938 struct sock *sk;
939 struct kmem_cache *slab;
940
941 slab = prot->slab;
942 if (slab != NULL)
943 sk = kmem_cache_alloc(slab, priority);
944 else
945 sk = kmalloc(prot->obj_size, priority);
946
947 if (sk != NULL) {
948 kmemcheck_annotate_bitfield(sk, flags);
949
950 if (security_sk_alloc(sk, family, priority))
951 goto out_free;
952
953 if (!try_module_get(prot->owner))
954 goto out_free_sec;
955 }
956
957 return sk;
958
959 out_free_sec:
960 security_sk_free(sk);
961 out_free:
962 if (slab != NULL)
963 kmem_cache_free(slab, sk);
964 else
965 kfree(sk);
966 return NULL;
967 }
968
969 static void sk_prot_free(struct proto *prot, struct sock *sk)
970 {
971 struct kmem_cache *slab;
972 struct module *owner;
973
974 owner = prot->owner;
975 slab = prot->slab;
976
977 security_sk_free(sk);
978 if (slab != NULL)
979 kmem_cache_free(slab, sk);
980 else
981 kfree(sk);
982 module_put(owner);
983 }
984
985 /**
986 * sk_alloc - All socket objects are allocated here
987 * @net: the applicable net namespace
988 * @family: protocol family
989 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
990 * @prot: struct proto associated with this new sock instance
991 */
992 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
993 struct proto *prot)
994 {
995 struct sock *sk;
996
997 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
998 if (sk) {
999 sk->sk_family = family;
1000 /*
1001 * See comment in struct sock definition to understand
1002 * why we need sk_prot_creator -acme
1003 */
1004 sk->sk_prot = sk->sk_prot_creator = prot;
1005 sock_lock_init(sk);
1006 sock_net_set(sk, get_net(net));
1007 }
1008
1009 return sk;
1010 }
1011 EXPORT_SYMBOL(sk_alloc);
1012
1013 static void __sk_free(struct sock *sk)
1014 {
1015 struct sk_filter *filter;
1016
1017 if (sk->sk_destruct)
1018 sk->sk_destruct(sk);
1019
1020 filter = rcu_dereference(sk->sk_filter);
1021 if (filter) {
1022 sk_filter_uncharge(sk, filter);
1023 rcu_assign_pointer(sk->sk_filter, NULL);
1024 }
1025
1026 sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1027 sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1028
1029 if (atomic_read(&sk->sk_omem_alloc))
1030 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1031 __func__, atomic_read(&sk->sk_omem_alloc));
1032
1033 put_net(sock_net(sk));
1034 sk_prot_free(sk->sk_prot_creator, sk);
1035 }
1036
1037 void sk_free(struct sock *sk)
1038 {
1039 /*
1040 * We substract one from sk_wmem_alloc and can know if
1041 * some packets are still in some tx queue.
1042 * If not null, sock_wfree() will call __sk_free(sk) later
1043 */
1044 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1045 __sk_free(sk);
1046 }
1047 EXPORT_SYMBOL(sk_free);
1048
1049 /*
1050 * Last sock_put should drop referrence to sk->sk_net. It has already
1051 * been dropped in sk_change_net. Taking referrence to stopping namespace
1052 * is not an option.
1053 * Take referrence to a socket to remove it from hash _alive_ and after that
1054 * destroy it in the context of init_net.
1055 */
1056 void sk_release_kernel(struct sock *sk)
1057 {
1058 if (sk == NULL || sk->sk_socket == NULL)
1059 return;
1060
1061 sock_hold(sk);
1062 sock_release(sk->sk_socket);
1063 release_net(sock_net(sk));
1064 sock_net_set(sk, get_net(&init_net));
1065 sock_put(sk);
1066 }
1067 EXPORT_SYMBOL(sk_release_kernel);
1068
1069 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1070 {
1071 struct sock *newsk;
1072
1073 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1074 if (newsk != NULL) {
1075 struct sk_filter *filter;
1076
1077 sock_copy(newsk, sk);
1078
1079 /* SANITY */
1080 get_net(sock_net(newsk));
1081 sk_node_init(&newsk->sk_node);
1082 sock_lock_init(newsk);
1083 bh_lock_sock(newsk);
1084 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1085
1086 atomic_set(&newsk->sk_rmem_alloc, 0);
1087 /*
1088 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1089 */
1090 atomic_set(&newsk->sk_wmem_alloc, 1);
1091 atomic_set(&newsk->sk_omem_alloc, 0);
1092 skb_queue_head_init(&newsk->sk_receive_queue);
1093 skb_queue_head_init(&newsk->sk_write_queue);
1094 #ifdef CONFIG_NET_DMA
1095 skb_queue_head_init(&newsk->sk_async_wait_queue);
1096 #endif
1097
1098 rwlock_init(&newsk->sk_dst_lock);
1099 rwlock_init(&newsk->sk_callback_lock);
1100 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1101 af_callback_keys + newsk->sk_family,
1102 af_family_clock_key_strings[newsk->sk_family]);
1103
1104 newsk->sk_dst_cache = NULL;
1105 newsk->sk_wmem_queued = 0;
1106 newsk->sk_forward_alloc = 0;
1107 newsk->sk_send_head = NULL;
1108 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1109
1110 sock_reset_flag(newsk, SOCK_DONE);
1111 skb_queue_head_init(&newsk->sk_error_queue);
1112
1113 filter = newsk->sk_filter;
1114 if (filter != NULL)
1115 sk_filter_charge(newsk, filter);
1116
1117 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1118 /* It is still raw copy of parent, so invalidate
1119 * destructor and make plain sk_free() */
1120 newsk->sk_destruct = NULL;
1121 sk_free(newsk);
1122 newsk = NULL;
1123 goto out;
1124 }
1125
1126 newsk->sk_err = 0;
1127 newsk->sk_priority = 0;
1128 atomic_set(&newsk->sk_refcnt, 2);
1129
1130 /*
1131 * Increment the counter in the same struct proto as the master
1132 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1133 * is the same as sk->sk_prot->socks, as this field was copied
1134 * with memcpy).
1135 *
1136 * This _changes_ the previous behaviour, where
1137 * tcp_create_openreq_child always was incrementing the
1138 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1139 * to be taken into account in all callers. -acme
1140 */
1141 sk_refcnt_debug_inc(newsk);
1142 sk_set_socket(newsk, NULL);
1143 newsk->sk_sleep = NULL;
1144
1145 if (newsk->sk_prot->sockets_allocated)
1146 percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1147 }
1148 out:
1149 return newsk;
1150 }
1151 EXPORT_SYMBOL_GPL(sk_clone);
1152
1153 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1154 {
1155 __sk_dst_set(sk, dst);
1156 sk->sk_route_caps = dst->dev->features;
1157 if (sk->sk_route_caps & NETIF_F_GSO)
1158 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1159 if (sk_can_gso(sk)) {
1160 if (dst->header_len) {
1161 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1162 } else {
1163 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1164 sk->sk_gso_max_size = dst->dev->gso_max_size;
1165 }
1166 }
1167 }
1168 EXPORT_SYMBOL_GPL(sk_setup_caps);
1169
1170 void __init sk_init(void)
1171 {
1172 if (num_physpages <= 4096) {
1173 sysctl_wmem_max = 32767;
1174 sysctl_rmem_max = 32767;
1175 sysctl_wmem_default = 32767;
1176 sysctl_rmem_default = 32767;
1177 } else if (num_physpages >= 131072) {
1178 sysctl_wmem_max = 131071;
1179 sysctl_rmem_max = 131071;
1180 }
1181 }
1182
1183 /*
1184 * Simple resource managers for sockets.
1185 */
1186
1187
1188 /*
1189 * Write buffer destructor automatically called from kfree_skb.
1190 */
1191 void sock_wfree(struct sk_buff *skb)
1192 {
1193 struct sock *sk = skb->sk;
1194 int res;
1195
1196 /* In case it might be waiting for more memory. */
1197 res = atomic_sub_return(skb->truesize, &sk->sk_wmem_alloc);
1198 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1199 sk->sk_write_space(sk);
1200 /*
1201 * if sk_wmem_alloc reached 0, we are last user and should
1202 * free this sock, as sk_free() call could not do it.
1203 */
1204 if (res == 0)
1205 __sk_free(sk);
1206 }
1207 EXPORT_SYMBOL(sock_wfree);
1208
1209 /*
1210 * Read buffer destructor automatically called from kfree_skb.
1211 */
1212 void sock_rfree(struct sk_buff *skb)
1213 {
1214 struct sock *sk = skb->sk;
1215
1216 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1217 sk_mem_uncharge(skb->sk, skb->truesize);
1218 }
1219 EXPORT_SYMBOL(sock_rfree);
1220
1221
1222 int sock_i_uid(struct sock *sk)
1223 {
1224 int uid;
1225
1226 read_lock(&sk->sk_callback_lock);
1227 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1228 read_unlock(&sk->sk_callback_lock);
1229 return uid;
1230 }
1231 EXPORT_SYMBOL(sock_i_uid);
1232
1233 unsigned long sock_i_ino(struct sock *sk)
1234 {
1235 unsigned long ino;
1236
1237 read_lock(&sk->sk_callback_lock);
1238 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1239 read_unlock(&sk->sk_callback_lock);
1240 return ino;
1241 }
1242 EXPORT_SYMBOL(sock_i_ino);
1243
1244 /*
1245 * Allocate a skb from the socket's send buffer.
1246 */
1247 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1248 gfp_t priority)
1249 {
1250 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1251 struct sk_buff *skb = alloc_skb(size, priority);
1252 if (skb) {
1253 skb_set_owner_w(skb, sk);
1254 return skb;
1255 }
1256 }
1257 return NULL;
1258 }
1259 EXPORT_SYMBOL(sock_wmalloc);
1260
1261 /*
1262 * Allocate a skb from the socket's receive buffer.
1263 */
1264 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1265 gfp_t priority)
1266 {
1267 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1268 struct sk_buff *skb = alloc_skb(size, priority);
1269 if (skb) {
1270 skb_set_owner_r(skb, sk);
1271 return skb;
1272 }
1273 }
1274 return NULL;
1275 }
1276
1277 /*
1278 * Allocate a memory block from the socket's option memory buffer.
1279 */
1280 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1281 {
1282 if ((unsigned)size <= sysctl_optmem_max &&
1283 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1284 void *mem;
1285 /* First do the add, to avoid the race if kmalloc
1286 * might sleep.
1287 */
1288 atomic_add(size, &sk->sk_omem_alloc);
1289 mem = kmalloc(size, priority);
1290 if (mem)
1291 return mem;
1292 atomic_sub(size, &sk->sk_omem_alloc);
1293 }
1294 return NULL;
1295 }
1296 EXPORT_SYMBOL(sock_kmalloc);
1297
1298 /*
1299 * Free an option memory block.
1300 */
1301 void sock_kfree_s(struct sock *sk, void *mem, int size)
1302 {
1303 kfree(mem);
1304 atomic_sub(size, &sk->sk_omem_alloc);
1305 }
1306 EXPORT_SYMBOL(sock_kfree_s);
1307
1308 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1309 I think, these locks should be removed for datagram sockets.
1310 */
1311 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1312 {
1313 DEFINE_WAIT(wait);
1314
1315 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1316 for (;;) {
1317 if (!timeo)
1318 break;
1319 if (signal_pending(current))
1320 break;
1321 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1322 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1323 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1324 break;
1325 if (sk->sk_shutdown & SEND_SHUTDOWN)
1326 break;
1327 if (sk->sk_err)
1328 break;
1329 timeo = schedule_timeout(timeo);
1330 }
1331 finish_wait(sk->sk_sleep, &wait);
1332 return timeo;
1333 }
1334
1335
1336 /*
1337 * Generic send/receive buffer handlers
1338 */
1339
1340 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1341 unsigned long data_len, int noblock,
1342 int *errcode)
1343 {
1344 struct sk_buff *skb;
1345 gfp_t gfp_mask;
1346 long timeo;
1347 int err;
1348
1349 gfp_mask = sk->sk_allocation;
1350 if (gfp_mask & __GFP_WAIT)
1351 gfp_mask |= __GFP_REPEAT;
1352
1353 timeo = sock_sndtimeo(sk, noblock);
1354 while (1) {
1355 err = sock_error(sk);
1356 if (err != 0)
1357 goto failure;
1358
1359 err = -EPIPE;
1360 if (sk->sk_shutdown & SEND_SHUTDOWN)
1361 goto failure;
1362
1363 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1364 skb = alloc_skb(header_len, gfp_mask);
1365 if (skb) {
1366 int npages;
1367 int i;
1368
1369 /* No pages, we're done... */
1370 if (!data_len)
1371 break;
1372
1373 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1374 skb->truesize += data_len;
1375 skb_shinfo(skb)->nr_frags = npages;
1376 for (i = 0; i < npages; i++) {
1377 struct page *page;
1378 skb_frag_t *frag;
1379
1380 page = alloc_pages(sk->sk_allocation, 0);
1381 if (!page) {
1382 err = -ENOBUFS;
1383 skb_shinfo(skb)->nr_frags = i;
1384 kfree_skb(skb);
1385 goto failure;
1386 }
1387
1388 frag = &skb_shinfo(skb)->frags[i];
1389 frag->page = page;
1390 frag->page_offset = 0;
1391 frag->size = (data_len >= PAGE_SIZE ?
1392 PAGE_SIZE :
1393 data_len);
1394 data_len -= PAGE_SIZE;
1395 }
1396
1397 /* Full success... */
1398 break;
1399 }
1400 err = -ENOBUFS;
1401 goto failure;
1402 }
1403 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1404 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1405 err = -EAGAIN;
1406 if (!timeo)
1407 goto failure;
1408 if (signal_pending(current))
1409 goto interrupted;
1410 timeo = sock_wait_for_wmem(sk, timeo);
1411 }
1412
1413 skb_set_owner_w(skb, sk);
1414 return skb;
1415
1416 interrupted:
1417 err = sock_intr_errno(timeo);
1418 failure:
1419 *errcode = err;
1420 return NULL;
1421 }
1422 EXPORT_SYMBOL(sock_alloc_send_pskb);
1423
1424 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1425 int noblock, int *errcode)
1426 {
1427 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1428 }
1429 EXPORT_SYMBOL(sock_alloc_send_skb);
1430
1431 static void __lock_sock(struct sock *sk)
1432 {
1433 DEFINE_WAIT(wait);
1434
1435 for (;;) {
1436 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1437 TASK_UNINTERRUPTIBLE);
1438 spin_unlock_bh(&sk->sk_lock.slock);
1439 schedule();
1440 spin_lock_bh(&sk->sk_lock.slock);
1441 if (!sock_owned_by_user(sk))
1442 break;
1443 }
1444 finish_wait(&sk->sk_lock.wq, &wait);
1445 }
1446
1447 static void __release_sock(struct sock *sk)
1448 {
1449 struct sk_buff *skb = sk->sk_backlog.head;
1450
1451 do {
1452 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1453 bh_unlock_sock(sk);
1454
1455 do {
1456 struct sk_buff *next = skb->next;
1457
1458 skb->next = NULL;
1459 sk_backlog_rcv(sk, skb);
1460
1461 /*
1462 * We are in process context here with softirqs
1463 * disabled, use cond_resched_softirq() to preempt.
1464 * This is safe to do because we've taken the backlog
1465 * queue private:
1466 */
1467 cond_resched_softirq();
1468
1469 skb = next;
1470 } while (skb != NULL);
1471
1472 bh_lock_sock(sk);
1473 } while ((skb = sk->sk_backlog.head) != NULL);
1474 }
1475
1476 /**
1477 * sk_wait_data - wait for data to arrive at sk_receive_queue
1478 * @sk: sock to wait on
1479 * @timeo: for how long
1480 *
1481 * Now socket state including sk->sk_err is changed only under lock,
1482 * hence we may omit checks after joining wait queue.
1483 * We check receive queue before schedule() only as optimization;
1484 * it is very likely that release_sock() added new data.
1485 */
1486 int sk_wait_data(struct sock *sk, long *timeo)
1487 {
1488 int rc;
1489 DEFINE_WAIT(wait);
1490
1491 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1492 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1493 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1494 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1495 finish_wait(sk->sk_sleep, &wait);
1496 return rc;
1497 }
1498 EXPORT_SYMBOL(sk_wait_data);
1499
1500 /**
1501 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1502 * @sk: socket
1503 * @size: memory size to allocate
1504 * @kind: allocation type
1505 *
1506 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1507 * rmem allocation. This function assumes that protocols which have
1508 * memory_pressure use sk_wmem_queued as write buffer accounting.
1509 */
1510 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1511 {
1512 struct proto *prot = sk->sk_prot;
1513 int amt = sk_mem_pages(size);
1514 int allocated;
1515
1516 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1517 allocated = atomic_add_return(amt, prot->memory_allocated);
1518
1519 /* Under limit. */
1520 if (allocated <= prot->sysctl_mem[0]) {
1521 if (prot->memory_pressure && *prot->memory_pressure)
1522 *prot->memory_pressure = 0;
1523 return 1;
1524 }
1525
1526 /* Under pressure. */
1527 if (allocated > prot->sysctl_mem[1])
1528 if (prot->enter_memory_pressure)
1529 prot->enter_memory_pressure(sk);
1530
1531 /* Over hard limit. */
1532 if (allocated > prot->sysctl_mem[2])
1533 goto suppress_allocation;
1534
1535 /* guarantee minimum buffer size under pressure */
1536 if (kind == SK_MEM_RECV) {
1537 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1538 return 1;
1539 } else { /* SK_MEM_SEND */
1540 if (sk->sk_type == SOCK_STREAM) {
1541 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1542 return 1;
1543 } else if (atomic_read(&sk->sk_wmem_alloc) <
1544 prot->sysctl_wmem[0])
1545 return 1;
1546 }
1547
1548 if (prot->memory_pressure) {
1549 int alloc;
1550
1551 if (!*prot->memory_pressure)
1552 return 1;
1553 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1554 if (prot->sysctl_mem[2] > alloc *
1555 sk_mem_pages(sk->sk_wmem_queued +
1556 atomic_read(&sk->sk_rmem_alloc) +
1557 sk->sk_forward_alloc))
1558 return 1;
1559 }
1560
1561 suppress_allocation:
1562
1563 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1564 sk_stream_moderate_sndbuf(sk);
1565
1566 /* Fail only if socket is _under_ its sndbuf.
1567 * In this case we cannot block, so that we have to fail.
1568 */
1569 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1570 return 1;
1571 }
1572
1573 /* Alas. Undo changes. */
1574 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1575 atomic_sub(amt, prot->memory_allocated);
1576 return 0;
1577 }
1578 EXPORT_SYMBOL(__sk_mem_schedule);
1579
1580 /**
1581 * __sk_reclaim - reclaim memory_allocated
1582 * @sk: socket
1583 */
1584 void __sk_mem_reclaim(struct sock *sk)
1585 {
1586 struct proto *prot = sk->sk_prot;
1587
1588 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1589 prot->memory_allocated);
1590 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1591
1592 if (prot->memory_pressure && *prot->memory_pressure &&
1593 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1594 *prot->memory_pressure = 0;
1595 }
1596 EXPORT_SYMBOL(__sk_mem_reclaim);
1597
1598
1599 /*
1600 * Set of default routines for initialising struct proto_ops when
1601 * the protocol does not support a particular function. In certain
1602 * cases where it makes no sense for a protocol to have a "do nothing"
1603 * function, some default processing is provided.
1604 */
1605
1606 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1607 {
1608 return -EOPNOTSUPP;
1609 }
1610 EXPORT_SYMBOL(sock_no_bind);
1611
1612 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1613 int len, int flags)
1614 {
1615 return -EOPNOTSUPP;
1616 }
1617 EXPORT_SYMBOL(sock_no_connect);
1618
1619 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1620 {
1621 return -EOPNOTSUPP;
1622 }
1623 EXPORT_SYMBOL(sock_no_socketpair);
1624
1625 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1626 {
1627 return -EOPNOTSUPP;
1628 }
1629 EXPORT_SYMBOL(sock_no_accept);
1630
1631 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1632 int *len, int peer)
1633 {
1634 return -EOPNOTSUPP;
1635 }
1636 EXPORT_SYMBOL(sock_no_getname);
1637
1638 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1639 {
1640 return 0;
1641 }
1642 EXPORT_SYMBOL(sock_no_poll);
1643
1644 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1645 {
1646 return -EOPNOTSUPP;
1647 }
1648 EXPORT_SYMBOL(sock_no_ioctl);
1649
1650 int sock_no_listen(struct socket *sock, int backlog)
1651 {
1652 return -EOPNOTSUPP;
1653 }
1654 EXPORT_SYMBOL(sock_no_listen);
1655
1656 int sock_no_shutdown(struct socket *sock, int how)
1657 {
1658 return -EOPNOTSUPP;
1659 }
1660 EXPORT_SYMBOL(sock_no_shutdown);
1661
1662 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1663 char __user *optval, int optlen)
1664 {
1665 return -EOPNOTSUPP;
1666 }
1667 EXPORT_SYMBOL(sock_no_setsockopt);
1668
1669 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1670 char __user *optval, int __user *optlen)
1671 {
1672 return -EOPNOTSUPP;
1673 }
1674 EXPORT_SYMBOL(sock_no_getsockopt);
1675
1676 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1677 size_t len)
1678 {
1679 return -EOPNOTSUPP;
1680 }
1681 EXPORT_SYMBOL(sock_no_sendmsg);
1682
1683 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1684 size_t len, int flags)
1685 {
1686 return -EOPNOTSUPP;
1687 }
1688 EXPORT_SYMBOL(sock_no_recvmsg);
1689
1690 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1691 {
1692 /* Mirror missing mmap method error code */
1693 return -ENODEV;
1694 }
1695 EXPORT_SYMBOL(sock_no_mmap);
1696
1697 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1698 {
1699 ssize_t res;
1700 struct msghdr msg = {.msg_flags = flags};
1701 struct kvec iov;
1702 char *kaddr = kmap(page);
1703 iov.iov_base = kaddr + offset;
1704 iov.iov_len = size;
1705 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1706 kunmap(page);
1707 return res;
1708 }
1709 EXPORT_SYMBOL(sock_no_sendpage);
1710
1711 /*
1712 * Default Socket Callbacks
1713 */
1714
1715 static void sock_def_wakeup(struct sock *sk)
1716 {
1717 read_lock(&sk->sk_callback_lock);
1718 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1719 wake_up_interruptible_all(sk->sk_sleep);
1720 read_unlock(&sk->sk_callback_lock);
1721 }
1722
1723 static void sock_def_error_report(struct sock *sk)
1724 {
1725 read_lock(&sk->sk_callback_lock);
1726 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1727 wake_up_interruptible_poll(sk->sk_sleep, POLLERR);
1728 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1729 read_unlock(&sk->sk_callback_lock);
1730 }
1731
1732 static void sock_def_readable(struct sock *sk, int len)
1733 {
1734 read_lock(&sk->sk_callback_lock);
1735 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1736 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN |
1737 POLLRDNORM | POLLRDBAND);
1738 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1739 read_unlock(&sk->sk_callback_lock);
1740 }
1741
1742 static void sock_def_write_space(struct sock *sk)
1743 {
1744 read_lock(&sk->sk_callback_lock);
1745
1746 /* Do not wake up a writer until he can make "significant"
1747 * progress. --DaveM
1748 */
1749 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1750 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1751 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT |
1752 POLLWRNORM | POLLWRBAND);
1753
1754 /* Should agree with poll, otherwise some programs break */
1755 if (sock_writeable(sk))
1756 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1757 }
1758
1759 read_unlock(&sk->sk_callback_lock);
1760 }
1761
1762 static void sock_def_destruct(struct sock *sk)
1763 {
1764 kfree(sk->sk_protinfo);
1765 }
1766
1767 void sk_send_sigurg(struct sock *sk)
1768 {
1769 if (sk->sk_socket && sk->sk_socket->file)
1770 if (send_sigurg(&sk->sk_socket->file->f_owner))
1771 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1772 }
1773 EXPORT_SYMBOL(sk_send_sigurg);
1774
1775 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1776 unsigned long expires)
1777 {
1778 if (!mod_timer(timer, expires))
1779 sock_hold(sk);
1780 }
1781 EXPORT_SYMBOL(sk_reset_timer);
1782
1783 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1784 {
1785 if (timer_pending(timer) && del_timer(timer))
1786 __sock_put(sk);
1787 }
1788 EXPORT_SYMBOL(sk_stop_timer);
1789
1790 void sock_init_data(struct socket *sock, struct sock *sk)
1791 {
1792 skb_queue_head_init(&sk->sk_receive_queue);
1793 skb_queue_head_init(&sk->sk_write_queue);
1794 skb_queue_head_init(&sk->sk_error_queue);
1795 #ifdef CONFIG_NET_DMA
1796 skb_queue_head_init(&sk->sk_async_wait_queue);
1797 #endif
1798
1799 sk->sk_send_head = NULL;
1800
1801 init_timer(&sk->sk_timer);
1802
1803 sk->sk_allocation = GFP_KERNEL;
1804 sk->sk_rcvbuf = sysctl_rmem_default;
1805 sk->sk_sndbuf = sysctl_wmem_default;
1806 sk->sk_state = TCP_CLOSE;
1807 sk_set_socket(sk, sock);
1808
1809 sock_set_flag(sk, SOCK_ZAPPED);
1810
1811 if (sock) {
1812 sk->sk_type = sock->type;
1813 sk->sk_sleep = &sock->wait;
1814 sock->sk = sk;
1815 } else
1816 sk->sk_sleep = NULL;
1817
1818 rwlock_init(&sk->sk_dst_lock);
1819 rwlock_init(&sk->sk_callback_lock);
1820 lockdep_set_class_and_name(&sk->sk_callback_lock,
1821 af_callback_keys + sk->sk_family,
1822 af_family_clock_key_strings[sk->sk_family]);
1823
1824 sk->sk_state_change = sock_def_wakeup;
1825 sk->sk_data_ready = sock_def_readable;
1826 sk->sk_write_space = sock_def_write_space;
1827 sk->sk_error_report = sock_def_error_report;
1828 sk->sk_destruct = sock_def_destruct;
1829
1830 sk->sk_sndmsg_page = NULL;
1831 sk->sk_sndmsg_off = 0;
1832
1833 sk->sk_peercred.pid = 0;
1834 sk->sk_peercred.uid = -1;
1835 sk->sk_peercred.gid = -1;
1836 sk->sk_write_pending = 0;
1837 sk->sk_rcvlowat = 1;
1838 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1839 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1840
1841 sk->sk_stamp = ktime_set(-1L, 0);
1842
1843 atomic_set(&sk->sk_refcnt, 1);
1844 atomic_set(&sk->sk_wmem_alloc, 1);
1845 atomic_set(&sk->sk_drops, 0);
1846 }
1847 EXPORT_SYMBOL(sock_init_data);
1848
1849 void lock_sock_nested(struct sock *sk, int subclass)
1850 {
1851 might_sleep();
1852 spin_lock_bh(&sk->sk_lock.slock);
1853 if (sk->sk_lock.owned)
1854 __lock_sock(sk);
1855 sk->sk_lock.owned = 1;
1856 spin_unlock(&sk->sk_lock.slock);
1857 /*
1858 * The sk_lock has mutex_lock() semantics here:
1859 */
1860 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1861 local_bh_enable();
1862 }
1863 EXPORT_SYMBOL(lock_sock_nested);
1864
1865 void release_sock(struct sock *sk)
1866 {
1867 /*
1868 * The sk_lock has mutex_unlock() semantics:
1869 */
1870 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1871
1872 spin_lock_bh(&sk->sk_lock.slock);
1873 if (sk->sk_backlog.tail)
1874 __release_sock(sk);
1875 sk->sk_lock.owned = 0;
1876 if (waitqueue_active(&sk->sk_lock.wq))
1877 wake_up(&sk->sk_lock.wq);
1878 spin_unlock_bh(&sk->sk_lock.slock);
1879 }
1880 EXPORT_SYMBOL(release_sock);
1881
1882 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1883 {
1884 struct timeval tv;
1885 if (!sock_flag(sk, SOCK_TIMESTAMP))
1886 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1887 tv = ktime_to_timeval(sk->sk_stamp);
1888 if (tv.tv_sec == -1)
1889 return -ENOENT;
1890 if (tv.tv_sec == 0) {
1891 sk->sk_stamp = ktime_get_real();
1892 tv = ktime_to_timeval(sk->sk_stamp);
1893 }
1894 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1895 }
1896 EXPORT_SYMBOL(sock_get_timestamp);
1897
1898 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1899 {
1900 struct timespec ts;
1901 if (!sock_flag(sk, SOCK_TIMESTAMP))
1902 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1903 ts = ktime_to_timespec(sk->sk_stamp);
1904 if (ts.tv_sec == -1)
1905 return -ENOENT;
1906 if (ts.tv_sec == 0) {
1907 sk->sk_stamp = ktime_get_real();
1908 ts = ktime_to_timespec(sk->sk_stamp);
1909 }
1910 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1911 }
1912 EXPORT_SYMBOL(sock_get_timestampns);
1913
1914 void sock_enable_timestamp(struct sock *sk, int flag)
1915 {
1916 if (!sock_flag(sk, flag)) {
1917 sock_set_flag(sk, flag);
1918 /*
1919 * we just set one of the two flags which require net
1920 * time stamping, but time stamping might have been on
1921 * already because of the other one
1922 */
1923 if (!sock_flag(sk,
1924 flag == SOCK_TIMESTAMP ?
1925 SOCK_TIMESTAMPING_RX_SOFTWARE :
1926 SOCK_TIMESTAMP))
1927 net_enable_timestamp();
1928 }
1929 }
1930
1931 /*
1932 * Get a socket option on an socket.
1933 *
1934 * FIX: POSIX 1003.1g is very ambiguous here. It states that
1935 * asynchronous errors should be reported by getsockopt. We assume
1936 * this means if you specify SO_ERROR (otherwise whats the point of it).
1937 */
1938 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1939 char __user *optval, int __user *optlen)
1940 {
1941 struct sock *sk = sock->sk;
1942
1943 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1944 }
1945 EXPORT_SYMBOL(sock_common_getsockopt);
1946
1947 #ifdef CONFIG_COMPAT
1948 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1949 char __user *optval, int __user *optlen)
1950 {
1951 struct sock *sk = sock->sk;
1952
1953 if (sk->sk_prot->compat_getsockopt != NULL)
1954 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1955 optval, optlen);
1956 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1957 }
1958 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1959 #endif
1960
1961 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1962 struct msghdr *msg, size_t size, int flags)
1963 {
1964 struct sock *sk = sock->sk;
1965 int addr_len = 0;
1966 int err;
1967
1968 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1969 flags & ~MSG_DONTWAIT, &addr_len);
1970 if (err >= 0)
1971 msg->msg_namelen = addr_len;
1972 return err;
1973 }
1974 EXPORT_SYMBOL(sock_common_recvmsg);
1975
1976 /*
1977 * Set socket options on an inet socket.
1978 */
1979 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1980 char __user *optval, int optlen)
1981 {
1982 struct sock *sk = sock->sk;
1983
1984 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1985 }
1986 EXPORT_SYMBOL(sock_common_setsockopt);
1987
1988 #ifdef CONFIG_COMPAT
1989 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1990 char __user *optval, int optlen)
1991 {
1992 struct sock *sk = sock->sk;
1993
1994 if (sk->sk_prot->compat_setsockopt != NULL)
1995 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1996 optval, optlen);
1997 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1998 }
1999 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2000 #endif
2001
2002 void sk_common_release(struct sock *sk)
2003 {
2004 if (sk->sk_prot->destroy)
2005 sk->sk_prot->destroy(sk);
2006
2007 /*
2008 * Observation: when sock_common_release is called, processes have
2009 * no access to socket. But net still has.
2010 * Step one, detach it from networking:
2011 *
2012 * A. Remove from hash tables.
2013 */
2014
2015 sk->sk_prot->unhash(sk);
2016
2017 /*
2018 * In this point socket cannot receive new packets, but it is possible
2019 * that some packets are in flight because some CPU runs receiver and
2020 * did hash table lookup before we unhashed socket. They will achieve
2021 * receive queue and will be purged by socket destructor.
2022 *
2023 * Also we still have packets pending on receive queue and probably,
2024 * our own packets waiting in device queues. sock_destroy will drain
2025 * receive queue, but transmitted packets will delay socket destruction
2026 * until the last reference will be released.
2027 */
2028
2029 sock_orphan(sk);
2030
2031 xfrm_sk_free_policy(sk);
2032
2033 sk_refcnt_debug_release(sk);
2034 sock_put(sk);
2035 }
2036 EXPORT_SYMBOL(sk_common_release);
2037
2038 static DEFINE_RWLOCK(proto_list_lock);
2039 static LIST_HEAD(proto_list);
2040
2041 #ifdef CONFIG_PROC_FS
2042 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2043 struct prot_inuse {
2044 int val[PROTO_INUSE_NR];
2045 };
2046
2047 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2048
2049 #ifdef CONFIG_NET_NS
2050 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2051 {
2052 int cpu = smp_processor_id();
2053 per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2054 }
2055 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2056
2057 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2058 {
2059 int cpu, idx = prot->inuse_idx;
2060 int res = 0;
2061
2062 for_each_possible_cpu(cpu)
2063 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2064
2065 return res >= 0 ? res : 0;
2066 }
2067 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2068
2069 static int sock_inuse_init_net(struct net *net)
2070 {
2071 net->core.inuse = alloc_percpu(struct prot_inuse);
2072 return net->core.inuse ? 0 : -ENOMEM;
2073 }
2074
2075 static void sock_inuse_exit_net(struct net *net)
2076 {
2077 free_percpu(net->core.inuse);
2078 }
2079
2080 static struct pernet_operations net_inuse_ops = {
2081 .init = sock_inuse_init_net,
2082 .exit = sock_inuse_exit_net,
2083 };
2084
2085 static __init int net_inuse_init(void)
2086 {
2087 if (register_pernet_subsys(&net_inuse_ops))
2088 panic("Cannot initialize net inuse counters");
2089
2090 return 0;
2091 }
2092
2093 core_initcall(net_inuse_init);
2094 #else
2095 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2096
2097 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2098 {
2099 __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2100 }
2101 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2102
2103 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2104 {
2105 int cpu, idx = prot->inuse_idx;
2106 int res = 0;
2107
2108 for_each_possible_cpu(cpu)
2109 res += per_cpu(prot_inuse, cpu).val[idx];
2110
2111 return res >= 0 ? res : 0;
2112 }
2113 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2114 #endif
2115
2116 static void assign_proto_idx(struct proto *prot)
2117 {
2118 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2119
2120 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2121 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2122 return;
2123 }
2124
2125 set_bit(prot->inuse_idx, proto_inuse_idx);
2126 }
2127
2128 static void release_proto_idx(struct proto *prot)
2129 {
2130 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2131 clear_bit(prot->inuse_idx, proto_inuse_idx);
2132 }
2133 #else
2134 static inline void assign_proto_idx(struct proto *prot)
2135 {
2136 }
2137
2138 static inline void release_proto_idx(struct proto *prot)
2139 {
2140 }
2141 #endif
2142
2143 int proto_register(struct proto *prot, int alloc_slab)
2144 {
2145 if (alloc_slab) {
2146 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2147 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2148 NULL);
2149
2150 if (prot->slab == NULL) {
2151 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2152 prot->name);
2153 goto out;
2154 }
2155
2156 if (prot->rsk_prot != NULL) {
2157 static const char mask[] = "request_sock_%s";
2158
2159 prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2160 if (prot->rsk_prot->slab_name == NULL)
2161 goto out_free_sock_slab;
2162
2163 sprintf(prot->rsk_prot->slab_name, mask, prot->name);
2164 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2165 prot->rsk_prot->obj_size, 0,
2166 SLAB_HWCACHE_ALIGN, NULL);
2167
2168 if (prot->rsk_prot->slab == NULL) {
2169 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2170 prot->name);
2171 goto out_free_request_sock_slab_name;
2172 }
2173 }
2174
2175 if (prot->twsk_prot != NULL) {
2176 static const char mask[] = "tw_sock_%s";
2177
2178 prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2179
2180 if (prot->twsk_prot->twsk_slab_name == NULL)
2181 goto out_free_request_sock_slab;
2182
2183 sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name);
2184 prot->twsk_prot->twsk_slab =
2185 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2186 prot->twsk_prot->twsk_obj_size,
2187 0,
2188 SLAB_HWCACHE_ALIGN |
2189 prot->slab_flags,
2190 NULL);
2191 if (prot->twsk_prot->twsk_slab == NULL)
2192 goto out_free_timewait_sock_slab_name;
2193 }
2194 }
2195
2196 write_lock(&proto_list_lock);
2197 list_add(&prot->node, &proto_list);
2198 assign_proto_idx(prot);
2199 write_unlock(&proto_list_lock);
2200 return 0;
2201
2202 out_free_timewait_sock_slab_name:
2203 kfree(prot->twsk_prot->twsk_slab_name);
2204 out_free_request_sock_slab:
2205 if (prot->rsk_prot && prot->rsk_prot->slab) {
2206 kmem_cache_destroy(prot->rsk_prot->slab);
2207 prot->rsk_prot->slab = NULL;
2208 }
2209 out_free_request_sock_slab_name:
2210 kfree(prot->rsk_prot->slab_name);
2211 out_free_sock_slab:
2212 kmem_cache_destroy(prot->slab);
2213 prot->slab = NULL;
2214 out:
2215 return -ENOBUFS;
2216 }
2217 EXPORT_SYMBOL(proto_register);
2218
2219 void proto_unregister(struct proto *prot)
2220 {
2221 write_lock(&proto_list_lock);
2222 release_proto_idx(prot);
2223 list_del(&prot->node);
2224 write_unlock(&proto_list_lock);
2225
2226 if (prot->slab != NULL) {
2227 kmem_cache_destroy(prot->slab);
2228 prot->slab = NULL;
2229 }
2230
2231 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2232 kmem_cache_destroy(prot->rsk_prot->slab);
2233 kfree(prot->rsk_prot->slab_name);
2234 prot->rsk_prot->slab = NULL;
2235 }
2236
2237 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2238 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2239 kfree(prot->twsk_prot->twsk_slab_name);
2240 prot->twsk_prot->twsk_slab = NULL;
2241 }
2242 }
2243 EXPORT_SYMBOL(proto_unregister);
2244
2245 #ifdef CONFIG_PROC_FS
2246 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2247 __acquires(proto_list_lock)
2248 {
2249 read_lock(&proto_list_lock);
2250 return seq_list_start_head(&proto_list, *pos);
2251 }
2252
2253 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2254 {
2255 return seq_list_next(v, &proto_list, pos);
2256 }
2257
2258 static void proto_seq_stop(struct seq_file *seq, void *v)
2259 __releases(proto_list_lock)
2260 {
2261 read_unlock(&proto_list_lock);
2262 }
2263
2264 static char proto_method_implemented(const void *method)
2265 {
2266 return method == NULL ? 'n' : 'y';
2267 }
2268
2269 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2270 {
2271 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2272 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2273 proto->name,
2274 proto->obj_size,
2275 sock_prot_inuse_get(seq_file_net(seq), proto),
2276 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2277 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2278 proto->max_header,
2279 proto->slab == NULL ? "no" : "yes",
2280 module_name(proto->owner),
2281 proto_method_implemented(proto->close),
2282 proto_method_implemented(proto->connect),
2283 proto_method_implemented(proto->disconnect),
2284 proto_method_implemented(proto->accept),
2285 proto_method_implemented(proto->ioctl),
2286 proto_method_implemented(proto->init),
2287 proto_method_implemented(proto->destroy),
2288 proto_method_implemented(proto->shutdown),
2289 proto_method_implemented(proto->setsockopt),
2290 proto_method_implemented(proto->getsockopt),
2291 proto_method_implemented(proto->sendmsg),
2292 proto_method_implemented(proto->recvmsg),
2293 proto_method_implemented(proto->sendpage),
2294 proto_method_implemented(proto->bind),
2295 proto_method_implemented(proto->backlog_rcv),
2296 proto_method_implemented(proto->hash),
2297 proto_method_implemented(proto->unhash),
2298 proto_method_implemented(proto->get_port),
2299 proto_method_implemented(proto->enter_memory_pressure));
2300 }
2301
2302 static int proto_seq_show(struct seq_file *seq, void *v)
2303 {
2304 if (v == &proto_list)
2305 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2306 "protocol",
2307 "size",
2308 "sockets",
2309 "memory",
2310 "press",
2311 "maxhdr",
2312 "slab",
2313 "module",
2314 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2315 else
2316 proto_seq_printf(seq, list_entry(v, struct proto, node));
2317 return 0;
2318 }
2319
2320 static const struct seq_operations proto_seq_ops = {
2321 .start = proto_seq_start,
2322 .next = proto_seq_next,
2323 .stop = proto_seq_stop,
2324 .show = proto_seq_show,
2325 };
2326
2327 static int proto_seq_open(struct inode *inode, struct file *file)
2328 {
2329 return seq_open_net(inode, file, &proto_seq_ops,
2330 sizeof(struct seq_net_private));
2331 }
2332
2333 static const struct file_operations proto_seq_fops = {
2334 .owner = THIS_MODULE,
2335 .open = proto_seq_open,
2336 .read = seq_read,
2337 .llseek = seq_lseek,
2338 .release = seq_release_net,
2339 };
2340
2341 static __net_init int proto_init_net(struct net *net)
2342 {
2343 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2344 return -ENOMEM;
2345
2346 return 0;
2347 }
2348
2349 static __net_exit void proto_exit_net(struct net *net)
2350 {
2351 proc_net_remove(net, "protocols");
2352 }
2353
2354
2355 static __net_initdata struct pernet_operations proto_net_ops = {
2356 .init = proto_init_net,
2357 .exit = proto_exit_net,
2358 };
2359
2360 static int __init proto_init(void)
2361 {
2362 return register_pernet_subsys(&proto_net_ops);
2363 }
2364
2365 subsys_initcall(proto_init);
2366
2367 #endif /* PROC_FS */