]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/core/sock.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-edac
[mirror_ubuntu-jammy-kernel.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115 #include <linux/user_namespace.h>
116 #include <linux/static_key.h>
117 #include <linux/memcontrol.h>
118 #include <linux/prefetch.h>
119
120 #include <asm/uaccess.h>
121
122 #include <linux/netdevice.h>
123 #include <net/protocol.h>
124 #include <linux/skbuff.h>
125 #include <net/net_namespace.h>
126 #include <net/request_sock.h>
127 #include <net/sock.h>
128 #include <linux/net_tstamp.h>
129 #include <net/xfrm.h>
130 #include <linux/ipsec.h>
131 #include <net/cls_cgroup.h>
132 #include <net/netprio_cgroup.h>
133
134 #include <linux/filter.h>
135
136 #include <trace/events/sock.h>
137
138 #ifdef CONFIG_INET
139 #include <net/tcp.h>
140 #endif
141
142 static DEFINE_MUTEX(proto_list_mutex);
143 static LIST_HEAD(proto_list);
144
145 #ifdef CONFIG_MEMCG_KMEM
146 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
147 {
148 struct proto *proto;
149 int ret = 0;
150
151 mutex_lock(&proto_list_mutex);
152 list_for_each_entry(proto, &proto_list, node) {
153 if (proto->init_cgroup) {
154 ret = proto->init_cgroup(memcg, ss);
155 if (ret)
156 goto out;
157 }
158 }
159
160 mutex_unlock(&proto_list_mutex);
161 return ret;
162 out:
163 list_for_each_entry_continue_reverse(proto, &proto_list, node)
164 if (proto->destroy_cgroup)
165 proto->destroy_cgroup(memcg);
166 mutex_unlock(&proto_list_mutex);
167 return ret;
168 }
169
170 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
171 {
172 struct proto *proto;
173
174 mutex_lock(&proto_list_mutex);
175 list_for_each_entry_reverse(proto, &proto_list, node)
176 if (proto->destroy_cgroup)
177 proto->destroy_cgroup(memcg);
178 mutex_unlock(&proto_list_mutex);
179 }
180 #endif
181
182 /*
183 * Each address family might have different locking rules, so we have
184 * one slock key per address family:
185 */
186 static struct lock_class_key af_family_keys[AF_MAX];
187 static struct lock_class_key af_family_slock_keys[AF_MAX];
188
189 struct static_key memcg_socket_limit_enabled;
190 EXPORT_SYMBOL(memcg_socket_limit_enabled);
191
192 /*
193 * Make lock validator output more readable. (we pre-construct these
194 * strings build-time, so that runtime initialization of socket
195 * locks is fast):
196 */
197 static const char *const af_family_key_strings[AF_MAX+1] = {
198 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
199 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
200 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
201 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
202 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
203 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
204 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
205 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
206 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
207 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
208 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
209 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
210 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
211 "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
212 };
213 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
214 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
215 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
216 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
217 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
218 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
219 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
220 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
221 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
222 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
223 "slock-27" , "slock-28" , "slock-AF_CAN" ,
224 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
225 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
226 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
227 "slock-AF_NFC" , "slock-AF_MAX"
228 };
229 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
230 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
231 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
232 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
233 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
234 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
235 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
236 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
237 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
238 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
239 "clock-27" , "clock-28" , "clock-AF_CAN" ,
240 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
241 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
242 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
243 "clock-AF_NFC" , "clock-AF_MAX"
244 };
245
246 /*
247 * sk_callback_lock locking rules are per-address-family,
248 * so split the lock classes by using a per-AF key:
249 */
250 static struct lock_class_key af_callback_keys[AF_MAX];
251
252 /* Take into consideration the size of the struct sk_buff overhead in the
253 * determination of these values, since that is non-constant across
254 * platforms. This makes socket queueing behavior and performance
255 * not depend upon such differences.
256 */
257 #define _SK_MEM_PACKETS 256
258 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
259 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
260 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
261
262 /* Run time adjustable parameters. */
263 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
264 EXPORT_SYMBOL(sysctl_wmem_max);
265 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
266 EXPORT_SYMBOL(sysctl_rmem_max);
267 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
268 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
269
270 /* Maximal space eaten by iovec or ancillary data plus some space */
271 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
272 EXPORT_SYMBOL(sysctl_optmem_max);
273
274 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
275 EXPORT_SYMBOL_GPL(memalloc_socks);
276
277 /**
278 * sk_set_memalloc - sets %SOCK_MEMALLOC
279 * @sk: socket to set it on
280 *
281 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
282 * It's the responsibility of the admin to adjust min_free_kbytes
283 * to meet the requirements
284 */
285 void sk_set_memalloc(struct sock *sk)
286 {
287 sock_set_flag(sk, SOCK_MEMALLOC);
288 sk->sk_allocation |= __GFP_MEMALLOC;
289 static_key_slow_inc(&memalloc_socks);
290 }
291 EXPORT_SYMBOL_GPL(sk_set_memalloc);
292
293 void sk_clear_memalloc(struct sock *sk)
294 {
295 sock_reset_flag(sk, SOCK_MEMALLOC);
296 sk->sk_allocation &= ~__GFP_MEMALLOC;
297 static_key_slow_dec(&memalloc_socks);
298
299 /*
300 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
301 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
302 * it has rmem allocations there is a risk that the user of the
303 * socket cannot make forward progress due to exceeding the rmem
304 * limits. By rights, sk_clear_memalloc() should only be called
305 * on sockets being torn down but warn and reset the accounting if
306 * that assumption breaks.
307 */
308 if (WARN_ON(sk->sk_forward_alloc))
309 sk_mem_reclaim(sk);
310 }
311 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
312
313 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
314 {
315 int ret;
316 unsigned long pflags = current->flags;
317
318 /* these should have been dropped before queueing */
319 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
320
321 current->flags |= PF_MEMALLOC;
322 ret = sk->sk_backlog_rcv(sk, skb);
323 tsk_restore_flags(current, pflags, PF_MEMALLOC);
324
325 return ret;
326 }
327 EXPORT_SYMBOL(__sk_backlog_rcv);
328
329 #if defined(CONFIG_CGROUPS)
330 #if !defined(CONFIG_NET_CLS_CGROUP)
331 int net_cls_subsys_id = -1;
332 EXPORT_SYMBOL_GPL(net_cls_subsys_id);
333 #endif
334 #if !defined(CONFIG_NETPRIO_CGROUP)
335 int net_prio_subsys_id = -1;
336 EXPORT_SYMBOL_GPL(net_prio_subsys_id);
337 #endif
338 #endif
339
340 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
341 {
342 struct timeval tv;
343
344 if (optlen < sizeof(tv))
345 return -EINVAL;
346 if (copy_from_user(&tv, optval, sizeof(tv)))
347 return -EFAULT;
348 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
349 return -EDOM;
350
351 if (tv.tv_sec < 0) {
352 static int warned __read_mostly;
353
354 *timeo_p = 0;
355 if (warned < 10 && net_ratelimit()) {
356 warned++;
357 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
358 __func__, current->comm, task_pid_nr(current));
359 }
360 return 0;
361 }
362 *timeo_p = MAX_SCHEDULE_TIMEOUT;
363 if (tv.tv_sec == 0 && tv.tv_usec == 0)
364 return 0;
365 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
366 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
367 return 0;
368 }
369
370 static void sock_warn_obsolete_bsdism(const char *name)
371 {
372 static int warned;
373 static char warncomm[TASK_COMM_LEN];
374 if (strcmp(warncomm, current->comm) && warned < 5) {
375 strcpy(warncomm, current->comm);
376 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
377 warncomm, name);
378 warned++;
379 }
380 }
381
382 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
383
384 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
385 {
386 if (sk->sk_flags & flags) {
387 sk->sk_flags &= ~flags;
388 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
389 net_disable_timestamp();
390 }
391 }
392
393
394 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
395 {
396 int err;
397 int skb_len;
398 unsigned long flags;
399 struct sk_buff_head *list = &sk->sk_receive_queue;
400
401 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
402 atomic_inc(&sk->sk_drops);
403 trace_sock_rcvqueue_full(sk, skb);
404 return -ENOMEM;
405 }
406
407 err = sk_filter(sk, skb);
408 if (err)
409 return err;
410
411 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
412 atomic_inc(&sk->sk_drops);
413 return -ENOBUFS;
414 }
415
416 skb->dev = NULL;
417 skb_set_owner_r(skb, sk);
418
419 /* Cache the SKB length before we tack it onto the receive
420 * queue. Once it is added it no longer belongs to us and
421 * may be freed by other threads of control pulling packets
422 * from the queue.
423 */
424 skb_len = skb->len;
425
426 /* we escape from rcu protected region, make sure we dont leak
427 * a norefcounted dst
428 */
429 skb_dst_force(skb);
430
431 spin_lock_irqsave(&list->lock, flags);
432 skb->dropcount = atomic_read(&sk->sk_drops);
433 __skb_queue_tail(list, skb);
434 spin_unlock_irqrestore(&list->lock, flags);
435
436 if (!sock_flag(sk, SOCK_DEAD))
437 sk->sk_data_ready(sk, skb_len);
438 return 0;
439 }
440 EXPORT_SYMBOL(sock_queue_rcv_skb);
441
442 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
443 {
444 int rc = NET_RX_SUCCESS;
445
446 if (sk_filter(sk, skb))
447 goto discard_and_relse;
448
449 skb->dev = NULL;
450
451 if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
452 atomic_inc(&sk->sk_drops);
453 goto discard_and_relse;
454 }
455 if (nested)
456 bh_lock_sock_nested(sk);
457 else
458 bh_lock_sock(sk);
459 if (!sock_owned_by_user(sk)) {
460 /*
461 * trylock + unlock semantics:
462 */
463 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
464
465 rc = sk_backlog_rcv(sk, skb);
466
467 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
468 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
469 bh_unlock_sock(sk);
470 atomic_inc(&sk->sk_drops);
471 goto discard_and_relse;
472 }
473
474 bh_unlock_sock(sk);
475 out:
476 sock_put(sk);
477 return rc;
478 discard_and_relse:
479 kfree_skb(skb);
480 goto out;
481 }
482 EXPORT_SYMBOL(sk_receive_skb);
483
484 void sk_reset_txq(struct sock *sk)
485 {
486 sk_tx_queue_clear(sk);
487 }
488 EXPORT_SYMBOL(sk_reset_txq);
489
490 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
491 {
492 struct dst_entry *dst = __sk_dst_get(sk);
493
494 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
495 sk_tx_queue_clear(sk);
496 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
497 dst_release(dst);
498 return NULL;
499 }
500
501 return dst;
502 }
503 EXPORT_SYMBOL(__sk_dst_check);
504
505 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
506 {
507 struct dst_entry *dst = sk_dst_get(sk);
508
509 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
510 sk_dst_reset(sk);
511 dst_release(dst);
512 return NULL;
513 }
514
515 return dst;
516 }
517 EXPORT_SYMBOL(sk_dst_check);
518
519 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
520 {
521 int ret = -ENOPROTOOPT;
522 #ifdef CONFIG_NETDEVICES
523 struct net *net = sock_net(sk);
524 char devname[IFNAMSIZ];
525 int index;
526
527 /* Sorry... */
528 ret = -EPERM;
529 if (!capable(CAP_NET_RAW))
530 goto out;
531
532 ret = -EINVAL;
533 if (optlen < 0)
534 goto out;
535
536 /* Bind this socket to a particular device like "eth0",
537 * as specified in the passed interface name. If the
538 * name is "" or the option length is zero the socket
539 * is not bound.
540 */
541 if (optlen > IFNAMSIZ - 1)
542 optlen = IFNAMSIZ - 1;
543 memset(devname, 0, sizeof(devname));
544
545 ret = -EFAULT;
546 if (copy_from_user(devname, optval, optlen))
547 goto out;
548
549 index = 0;
550 if (devname[0] != '\0') {
551 struct net_device *dev;
552
553 rcu_read_lock();
554 dev = dev_get_by_name_rcu(net, devname);
555 if (dev)
556 index = dev->ifindex;
557 rcu_read_unlock();
558 ret = -ENODEV;
559 if (!dev)
560 goto out;
561 }
562
563 lock_sock(sk);
564 sk->sk_bound_dev_if = index;
565 sk_dst_reset(sk);
566 release_sock(sk);
567
568 ret = 0;
569
570 out:
571 #endif
572
573 return ret;
574 }
575
576 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
577 {
578 if (valbool)
579 sock_set_flag(sk, bit);
580 else
581 sock_reset_flag(sk, bit);
582 }
583
584 /*
585 * This is meant for all protocols to use and covers goings on
586 * at the socket level. Everything here is generic.
587 */
588
589 int sock_setsockopt(struct socket *sock, int level, int optname,
590 char __user *optval, unsigned int optlen)
591 {
592 struct sock *sk = sock->sk;
593 int val;
594 int valbool;
595 struct linger ling;
596 int ret = 0;
597
598 /*
599 * Options without arguments
600 */
601
602 if (optname == SO_BINDTODEVICE)
603 return sock_bindtodevice(sk, optval, optlen);
604
605 if (optlen < sizeof(int))
606 return -EINVAL;
607
608 if (get_user(val, (int __user *)optval))
609 return -EFAULT;
610
611 valbool = val ? 1 : 0;
612
613 lock_sock(sk);
614
615 switch (optname) {
616 case SO_DEBUG:
617 if (val && !capable(CAP_NET_ADMIN))
618 ret = -EACCES;
619 else
620 sock_valbool_flag(sk, SOCK_DBG, valbool);
621 break;
622 case SO_REUSEADDR:
623 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
624 break;
625 case SO_TYPE:
626 case SO_PROTOCOL:
627 case SO_DOMAIN:
628 case SO_ERROR:
629 ret = -ENOPROTOOPT;
630 break;
631 case SO_DONTROUTE:
632 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
633 break;
634 case SO_BROADCAST:
635 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
636 break;
637 case SO_SNDBUF:
638 /* Don't error on this BSD doesn't and if you think
639 * about it this is right. Otherwise apps have to
640 * play 'guess the biggest size' games. RCVBUF/SNDBUF
641 * are treated in BSD as hints
642 */
643 val = min_t(u32, val, sysctl_wmem_max);
644 set_sndbuf:
645 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
646 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
647 /* Wake up sending tasks if we upped the value. */
648 sk->sk_write_space(sk);
649 break;
650
651 case SO_SNDBUFFORCE:
652 if (!capable(CAP_NET_ADMIN)) {
653 ret = -EPERM;
654 break;
655 }
656 goto set_sndbuf;
657
658 case SO_RCVBUF:
659 /* Don't error on this BSD doesn't and if you think
660 * about it this is right. Otherwise apps have to
661 * play 'guess the biggest size' games. RCVBUF/SNDBUF
662 * are treated in BSD as hints
663 */
664 val = min_t(u32, val, sysctl_rmem_max);
665 set_rcvbuf:
666 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
667 /*
668 * We double it on the way in to account for
669 * "struct sk_buff" etc. overhead. Applications
670 * assume that the SO_RCVBUF setting they make will
671 * allow that much actual data to be received on that
672 * socket.
673 *
674 * Applications are unaware that "struct sk_buff" and
675 * other overheads allocate from the receive buffer
676 * during socket buffer allocation.
677 *
678 * And after considering the possible alternatives,
679 * returning the value we actually used in getsockopt
680 * is the most desirable behavior.
681 */
682 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
683 break;
684
685 case SO_RCVBUFFORCE:
686 if (!capable(CAP_NET_ADMIN)) {
687 ret = -EPERM;
688 break;
689 }
690 goto set_rcvbuf;
691
692 case SO_KEEPALIVE:
693 #ifdef CONFIG_INET
694 if (sk->sk_protocol == IPPROTO_TCP &&
695 sk->sk_type == SOCK_STREAM)
696 tcp_set_keepalive(sk, valbool);
697 #endif
698 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
699 break;
700
701 case SO_OOBINLINE:
702 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
703 break;
704
705 case SO_NO_CHECK:
706 sk->sk_no_check = valbool;
707 break;
708
709 case SO_PRIORITY:
710 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
711 sk->sk_priority = val;
712 else
713 ret = -EPERM;
714 break;
715
716 case SO_LINGER:
717 if (optlen < sizeof(ling)) {
718 ret = -EINVAL; /* 1003.1g */
719 break;
720 }
721 if (copy_from_user(&ling, optval, sizeof(ling))) {
722 ret = -EFAULT;
723 break;
724 }
725 if (!ling.l_onoff)
726 sock_reset_flag(sk, SOCK_LINGER);
727 else {
728 #if (BITS_PER_LONG == 32)
729 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
730 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
731 else
732 #endif
733 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
734 sock_set_flag(sk, SOCK_LINGER);
735 }
736 break;
737
738 case SO_BSDCOMPAT:
739 sock_warn_obsolete_bsdism("setsockopt");
740 break;
741
742 case SO_PASSCRED:
743 if (valbool)
744 set_bit(SOCK_PASSCRED, &sock->flags);
745 else
746 clear_bit(SOCK_PASSCRED, &sock->flags);
747 break;
748
749 case SO_TIMESTAMP:
750 case SO_TIMESTAMPNS:
751 if (valbool) {
752 if (optname == SO_TIMESTAMP)
753 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
754 else
755 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
756 sock_set_flag(sk, SOCK_RCVTSTAMP);
757 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
758 } else {
759 sock_reset_flag(sk, SOCK_RCVTSTAMP);
760 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
761 }
762 break;
763
764 case SO_TIMESTAMPING:
765 if (val & ~SOF_TIMESTAMPING_MASK) {
766 ret = -EINVAL;
767 break;
768 }
769 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
770 val & SOF_TIMESTAMPING_TX_HARDWARE);
771 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
772 val & SOF_TIMESTAMPING_TX_SOFTWARE);
773 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
774 val & SOF_TIMESTAMPING_RX_HARDWARE);
775 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
776 sock_enable_timestamp(sk,
777 SOCK_TIMESTAMPING_RX_SOFTWARE);
778 else
779 sock_disable_timestamp(sk,
780 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
781 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
782 val & SOF_TIMESTAMPING_SOFTWARE);
783 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
784 val & SOF_TIMESTAMPING_SYS_HARDWARE);
785 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
786 val & SOF_TIMESTAMPING_RAW_HARDWARE);
787 break;
788
789 case SO_RCVLOWAT:
790 if (val < 0)
791 val = INT_MAX;
792 sk->sk_rcvlowat = val ? : 1;
793 break;
794
795 case SO_RCVTIMEO:
796 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
797 break;
798
799 case SO_SNDTIMEO:
800 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
801 break;
802
803 case SO_ATTACH_FILTER:
804 ret = -EINVAL;
805 if (optlen == sizeof(struct sock_fprog)) {
806 struct sock_fprog fprog;
807
808 ret = -EFAULT;
809 if (copy_from_user(&fprog, optval, sizeof(fprog)))
810 break;
811
812 ret = sk_attach_filter(&fprog, sk);
813 }
814 break;
815
816 case SO_DETACH_FILTER:
817 ret = sk_detach_filter(sk);
818 break;
819
820 case SO_PASSSEC:
821 if (valbool)
822 set_bit(SOCK_PASSSEC, &sock->flags);
823 else
824 clear_bit(SOCK_PASSSEC, &sock->flags);
825 break;
826 case SO_MARK:
827 if (!capable(CAP_NET_ADMIN))
828 ret = -EPERM;
829 else
830 sk->sk_mark = val;
831 break;
832
833 /* We implement the SO_SNDLOWAT etc to
834 not be settable (1003.1g 5.3) */
835 case SO_RXQ_OVFL:
836 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
837 break;
838
839 case SO_WIFI_STATUS:
840 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
841 break;
842
843 case SO_PEEK_OFF:
844 if (sock->ops->set_peek_off)
845 sock->ops->set_peek_off(sk, val);
846 else
847 ret = -EOPNOTSUPP;
848 break;
849
850 case SO_NOFCS:
851 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
852 break;
853
854 default:
855 ret = -ENOPROTOOPT;
856 break;
857 }
858 release_sock(sk);
859 return ret;
860 }
861 EXPORT_SYMBOL(sock_setsockopt);
862
863
864 void cred_to_ucred(struct pid *pid, const struct cred *cred,
865 struct ucred *ucred)
866 {
867 ucred->pid = pid_vnr(pid);
868 ucred->uid = ucred->gid = -1;
869 if (cred) {
870 struct user_namespace *current_ns = current_user_ns();
871
872 ucred->uid = from_kuid(current_ns, cred->euid);
873 ucred->gid = from_kgid(current_ns, cred->egid);
874 }
875 }
876 EXPORT_SYMBOL_GPL(cred_to_ucred);
877
878 int sock_getsockopt(struct socket *sock, int level, int optname,
879 char __user *optval, int __user *optlen)
880 {
881 struct sock *sk = sock->sk;
882
883 union {
884 int val;
885 struct linger ling;
886 struct timeval tm;
887 } v;
888
889 int lv = sizeof(int);
890 int len;
891
892 if (get_user(len, optlen))
893 return -EFAULT;
894 if (len < 0)
895 return -EINVAL;
896
897 memset(&v, 0, sizeof(v));
898
899 switch (optname) {
900 case SO_DEBUG:
901 v.val = sock_flag(sk, SOCK_DBG);
902 break;
903
904 case SO_DONTROUTE:
905 v.val = sock_flag(sk, SOCK_LOCALROUTE);
906 break;
907
908 case SO_BROADCAST:
909 v.val = sock_flag(sk, SOCK_BROADCAST);
910 break;
911
912 case SO_SNDBUF:
913 v.val = sk->sk_sndbuf;
914 break;
915
916 case SO_RCVBUF:
917 v.val = sk->sk_rcvbuf;
918 break;
919
920 case SO_REUSEADDR:
921 v.val = sk->sk_reuse;
922 break;
923
924 case SO_KEEPALIVE:
925 v.val = sock_flag(sk, SOCK_KEEPOPEN);
926 break;
927
928 case SO_TYPE:
929 v.val = sk->sk_type;
930 break;
931
932 case SO_PROTOCOL:
933 v.val = sk->sk_protocol;
934 break;
935
936 case SO_DOMAIN:
937 v.val = sk->sk_family;
938 break;
939
940 case SO_ERROR:
941 v.val = -sock_error(sk);
942 if (v.val == 0)
943 v.val = xchg(&sk->sk_err_soft, 0);
944 break;
945
946 case SO_OOBINLINE:
947 v.val = sock_flag(sk, SOCK_URGINLINE);
948 break;
949
950 case SO_NO_CHECK:
951 v.val = sk->sk_no_check;
952 break;
953
954 case SO_PRIORITY:
955 v.val = sk->sk_priority;
956 break;
957
958 case SO_LINGER:
959 lv = sizeof(v.ling);
960 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
961 v.ling.l_linger = sk->sk_lingertime / HZ;
962 break;
963
964 case SO_BSDCOMPAT:
965 sock_warn_obsolete_bsdism("getsockopt");
966 break;
967
968 case SO_TIMESTAMP:
969 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
970 !sock_flag(sk, SOCK_RCVTSTAMPNS);
971 break;
972
973 case SO_TIMESTAMPNS:
974 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
975 break;
976
977 case SO_TIMESTAMPING:
978 v.val = 0;
979 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
980 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
981 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
982 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
983 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
984 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
985 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
986 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
987 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
988 v.val |= SOF_TIMESTAMPING_SOFTWARE;
989 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
990 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
991 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
992 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
993 break;
994
995 case SO_RCVTIMEO:
996 lv = sizeof(struct timeval);
997 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
998 v.tm.tv_sec = 0;
999 v.tm.tv_usec = 0;
1000 } else {
1001 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1002 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1003 }
1004 break;
1005
1006 case SO_SNDTIMEO:
1007 lv = sizeof(struct timeval);
1008 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1009 v.tm.tv_sec = 0;
1010 v.tm.tv_usec = 0;
1011 } else {
1012 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1013 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1014 }
1015 break;
1016
1017 case SO_RCVLOWAT:
1018 v.val = sk->sk_rcvlowat;
1019 break;
1020
1021 case SO_SNDLOWAT:
1022 v.val = 1;
1023 break;
1024
1025 case SO_PASSCRED:
1026 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1027 break;
1028
1029 case SO_PEERCRED:
1030 {
1031 struct ucred peercred;
1032 if (len > sizeof(peercred))
1033 len = sizeof(peercred);
1034 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1035 if (copy_to_user(optval, &peercred, len))
1036 return -EFAULT;
1037 goto lenout;
1038 }
1039
1040 case SO_PEERNAME:
1041 {
1042 char address[128];
1043
1044 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1045 return -ENOTCONN;
1046 if (lv < len)
1047 return -EINVAL;
1048 if (copy_to_user(optval, address, len))
1049 return -EFAULT;
1050 goto lenout;
1051 }
1052
1053 /* Dubious BSD thing... Probably nobody even uses it, but
1054 * the UNIX standard wants it for whatever reason... -DaveM
1055 */
1056 case SO_ACCEPTCONN:
1057 v.val = sk->sk_state == TCP_LISTEN;
1058 break;
1059
1060 case SO_PASSSEC:
1061 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1062 break;
1063
1064 case SO_PEERSEC:
1065 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1066
1067 case SO_MARK:
1068 v.val = sk->sk_mark;
1069 break;
1070
1071 case SO_RXQ_OVFL:
1072 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1073 break;
1074
1075 case SO_WIFI_STATUS:
1076 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1077 break;
1078
1079 case SO_PEEK_OFF:
1080 if (!sock->ops->set_peek_off)
1081 return -EOPNOTSUPP;
1082
1083 v.val = sk->sk_peek_off;
1084 break;
1085 case SO_NOFCS:
1086 v.val = sock_flag(sk, SOCK_NOFCS);
1087 break;
1088 default:
1089 return -ENOPROTOOPT;
1090 }
1091
1092 if (len > lv)
1093 len = lv;
1094 if (copy_to_user(optval, &v, len))
1095 return -EFAULT;
1096 lenout:
1097 if (put_user(len, optlen))
1098 return -EFAULT;
1099 return 0;
1100 }
1101
1102 /*
1103 * Initialize an sk_lock.
1104 *
1105 * (We also register the sk_lock with the lock validator.)
1106 */
1107 static inline void sock_lock_init(struct sock *sk)
1108 {
1109 sock_lock_init_class_and_name(sk,
1110 af_family_slock_key_strings[sk->sk_family],
1111 af_family_slock_keys + sk->sk_family,
1112 af_family_key_strings[sk->sk_family],
1113 af_family_keys + sk->sk_family);
1114 }
1115
1116 /*
1117 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1118 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1119 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1120 */
1121 static void sock_copy(struct sock *nsk, const struct sock *osk)
1122 {
1123 #ifdef CONFIG_SECURITY_NETWORK
1124 void *sptr = nsk->sk_security;
1125 #endif
1126 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1127
1128 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1129 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1130
1131 #ifdef CONFIG_SECURITY_NETWORK
1132 nsk->sk_security = sptr;
1133 security_sk_clone(osk, nsk);
1134 #endif
1135 }
1136
1137 /*
1138 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1139 * un-modified. Special care is taken when initializing object to zero.
1140 */
1141 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1142 {
1143 if (offsetof(struct sock, sk_node.next) != 0)
1144 memset(sk, 0, offsetof(struct sock, sk_node.next));
1145 memset(&sk->sk_node.pprev, 0,
1146 size - offsetof(struct sock, sk_node.pprev));
1147 }
1148
1149 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1150 {
1151 unsigned long nulls1, nulls2;
1152
1153 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1154 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1155 if (nulls1 > nulls2)
1156 swap(nulls1, nulls2);
1157
1158 if (nulls1 != 0)
1159 memset((char *)sk, 0, nulls1);
1160 memset((char *)sk + nulls1 + sizeof(void *), 0,
1161 nulls2 - nulls1 - sizeof(void *));
1162 memset((char *)sk + nulls2 + sizeof(void *), 0,
1163 size - nulls2 - sizeof(void *));
1164 }
1165 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1166
1167 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1168 int family)
1169 {
1170 struct sock *sk;
1171 struct kmem_cache *slab;
1172
1173 slab = prot->slab;
1174 if (slab != NULL) {
1175 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1176 if (!sk)
1177 return sk;
1178 if (priority & __GFP_ZERO) {
1179 if (prot->clear_sk)
1180 prot->clear_sk(sk, prot->obj_size);
1181 else
1182 sk_prot_clear_nulls(sk, prot->obj_size);
1183 }
1184 } else
1185 sk = kmalloc(prot->obj_size, priority);
1186
1187 if (sk != NULL) {
1188 kmemcheck_annotate_bitfield(sk, flags);
1189
1190 if (security_sk_alloc(sk, family, priority))
1191 goto out_free;
1192
1193 if (!try_module_get(prot->owner))
1194 goto out_free_sec;
1195 sk_tx_queue_clear(sk);
1196 }
1197
1198 return sk;
1199
1200 out_free_sec:
1201 security_sk_free(sk);
1202 out_free:
1203 if (slab != NULL)
1204 kmem_cache_free(slab, sk);
1205 else
1206 kfree(sk);
1207 return NULL;
1208 }
1209
1210 static void sk_prot_free(struct proto *prot, struct sock *sk)
1211 {
1212 struct kmem_cache *slab;
1213 struct module *owner;
1214
1215 owner = prot->owner;
1216 slab = prot->slab;
1217
1218 security_sk_free(sk);
1219 if (slab != NULL)
1220 kmem_cache_free(slab, sk);
1221 else
1222 kfree(sk);
1223 module_put(owner);
1224 }
1225
1226 #ifdef CONFIG_CGROUPS
1227 void sock_update_classid(struct sock *sk)
1228 {
1229 u32 classid;
1230
1231 rcu_read_lock(); /* doing current task, which cannot vanish. */
1232 classid = task_cls_classid(current);
1233 rcu_read_unlock();
1234 if (classid && classid != sk->sk_classid)
1235 sk->sk_classid = classid;
1236 }
1237 EXPORT_SYMBOL(sock_update_classid);
1238
1239 void sock_update_netprioidx(struct sock *sk, struct task_struct *task)
1240 {
1241 if (in_interrupt())
1242 return;
1243
1244 sk->sk_cgrp_prioidx = task_netprioidx(task);
1245 }
1246 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1247 #endif
1248
1249 /**
1250 * sk_alloc - All socket objects are allocated here
1251 * @net: the applicable net namespace
1252 * @family: protocol family
1253 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1254 * @prot: struct proto associated with this new sock instance
1255 */
1256 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1257 struct proto *prot)
1258 {
1259 struct sock *sk;
1260
1261 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1262 if (sk) {
1263 sk->sk_family = family;
1264 /*
1265 * See comment in struct sock definition to understand
1266 * why we need sk_prot_creator -acme
1267 */
1268 sk->sk_prot = sk->sk_prot_creator = prot;
1269 sock_lock_init(sk);
1270 sock_net_set(sk, get_net(net));
1271 atomic_set(&sk->sk_wmem_alloc, 1);
1272
1273 sock_update_classid(sk);
1274 sock_update_netprioidx(sk, current);
1275 }
1276
1277 return sk;
1278 }
1279 EXPORT_SYMBOL(sk_alloc);
1280
1281 static void __sk_free(struct sock *sk)
1282 {
1283 struct sk_filter *filter;
1284
1285 if (sk->sk_destruct)
1286 sk->sk_destruct(sk);
1287
1288 filter = rcu_dereference_check(sk->sk_filter,
1289 atomic_read(&sk->sk_wmem_alloc) == 0);
1290 if (filter) {
1291 sk_filter_uncharge(sk, filter);
1292 RCU_INIT_POINTER(sk->sk_filter, NULL);
1293 }
1294
1295 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1296
1297 if (atomic_read(&sk->sk_omem_alloc))
1298 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1299 __func__, atomic_read(&sk->sk_omem_alloc));
1300
1301 if (sk->sk_peer_cred)
1302 put_cred(sk->sk_peer_cred);
1303 put_pid(sk->sk_peer_pid);
1304 put_net(sock_net(sk));
1305 sk_prot_free(sk->sk_prot_creator, sk);
1306 }
1307
1308 void sk_free(struct sock *sk)
1309 {
1310 /*
1311 * We subtract one from sk_wmem_alloc and can know if
1312 * some packets are still in some tx queue.
1313 * If not null, sock_wfree() will call __sk_free(sk) later
1314 */
1315 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1316 __sk_free(sk);
1317 }
1318 EXPORT_SYMBOL(sk_free);
1319
1320 /*
1321 * Last sock_put should drop reference to sk->sk_net. It has already
1322 * been dropped in sk_change_net. Taking reference to stopping namespace
1323 * is not an option.
1324 * Take reference to a socket to remove it from hash _alive_ and after that
1325 * destroy it in the context of init_net.
1326 */
1327 void sk_release_kernel(struct sock *sk)
1328 {
1329 if (sk == NULL || sk->sk_socket == NULL)
1330 return;
1331
1332 sock_hold(sk);
1333 sock_release(sk->sk_socket);
1334 release_net(sock_net(sk));
1335 sock_net_set(sk, get_net(&init_net));
1336 sock_put(sk);
1337 }
1338 EXPORT_SYMBOL(sk_release_kernel);
1339
1340 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1341 {
1342 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1343 sock_update_memcg(newsk);
1344 }
1345
1346 /**
1347 * sk_clone_lock - clone a socket, and lock its clone
1348 * @sk: the socket to clone
1349 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1350 *
1351 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1352 */
1353 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1354 {
1355 struct sock *newsk;
1356
1357 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1358 if (newsk != NULL) {
1359 struct sk_filter *filter;
1360
1361 sock_copy(newsk, sk);
1362
1363 /* SANITY */
1364 get_net(sock_net(newsk));
1365 sk_node_init(&newsk->sk_node);
1366 sock_lock_init(newsk);
1367 bh_lock_sock(newsk);
1368 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1369 newsk->sk_backlog.len = 0;
1370
1371 atomic_set(&newsk->sk_rmem_alloc, 0);
1372 /*
1373 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1374 */
1375 atomic_set(&newsk->sk_wmem_alloc, 1);
1376 atomic_set(&newsk->sk_omem_alloc, 0);
1377 skb_queue_head_init(&newsk->sk_receive_queue);
1378 skb_queue_head_init(&newsk->sk_write_queue);
1379 #ifdef CONFIG_NET_DMA
1380 skb_queue_head_init(&newsk->sk_async_wait_queue);
1381 #endif
1382
1383 spin_lock_init(&newsk->sk_dst_lock);
1384 rwlock_init(&newsk->sk_callback_lock);
1385 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1386 af_callback_keys + newsk->sk_family,
1387 af_family_clock_key_strings[newsk->sk_family]);
1388
1389 newsk->sk_dst_cache = NULL;
1390 newsk->sk_wmem_queued = 0;
1391 newsk->sk_forward_alloc = 0;
1392 newsk->sk_send_head = NULL;
1393 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1394
1395 sock_reset_flag(newsk, SOCK_DONE);
1396 skb_queue_head_init(&newsk->sk_error_queue);
1397
1398 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1399 if (filter != NULL)
1400 sk_filter_charge(newsk, filter);
1401
1402 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1403 /* It is still raw copy of parent, so invalidate
1404 * destructor and make plain sk_free() */
1405 newsk->sk_destruct = NULL;
1406 bh_unlock_sock(newsk);
1407 sk_free(newsk);
1408 newsk = NULL;
1409 goto out;
1410 }
1411
1412 newsk->sk_err = 0;
1413 newsk->sk_priority = 0;
1414 /*
1415 * Before updating sk_refcnt, we must commit prior changes to memory
1416 * (Documentation/RCU/rculist_nulls.txt for details)
1417 */
1418 smp_wmb();
1419 atomic_set(&newsk->sk_refcnt, 2);
1420
1421 /*
1422 * Increment the counter in the same struct proto as the master
1423 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1424 * is the same as sk->sk_prot->socks, as this field was copied
1425 * with memcpy).
1426 *
1427 * This _changes_ the previous behaviour, where
1428 * tcp_create_openreq_child always was incrementing the
1429 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1430 * to be taken into account in all callers. -acme
1431 */
1432 sk_refcnt_debug_inc(newsk);
1433 sk_set_socket(newsk, NULL);
1434 newsk->sk_wq = NULL;
1435
1436 sk_update_clone(sk, newsk);
1437
1438 if (newsk->sk_prot->sockets_allocated)
1439 sk_sockets_allocated_inc(newsk);
1440
1441 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1442 net_enable_timestamp();
1443 }
1444 out:
1445 return newsk;
1446 }
1447 EXPORT_SYMBOL_GPL(sk_clone_lock);
1448
1449 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1450 {
1451 __sk_dst_set(sk, dst);
1452 sk->sk_route_caps = dst->dev->features;
1453 if (sk->sk_route_caps & NETIF_F_GSO)
1454 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1455 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1456 if (sk_can_gso(sk)) {
1457 if (dst->header_len) {
1458 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1459 } else {
1460 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1461 sk->sk_gso_max_size = dst->dev->gso_max_size;
1462 sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1463 }
1464 }
1465 }
1466 EXPORT_SYMBOL_GPL(sk_setup_caps);
1467
1468 void __init sk_init(void)
1469 {
1470 if (totalram_pages <= 4096) {
1471 sysctl_wmem_max = 32767;
1472 sysctl_rmem_max = 32767;
1473 sysctl_wmem_default = 32767;
1474 sysctl_rmem_default = 32767;
1475 } else if (totalram_pages >= 131072) {
1476 sysctl_wmem_max = 131071;
1477 sysctl_rmem_max = 131071;
1478 }
1479 }
1480
1481 /*
1482 * Simple resource managers for sockets.
1483 */
1484
1485
1486 /*
1487 * Write buffer destructor automatically called from kfree_skb.
1488 */
1489 void sock_wfree(struct sk_buff *skb)
1490 {
1491 struct sock *sk = skb->sk;
1492 unsigned int len = skb->truesize;
1493
1494 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1495 /*
1496 * Keep a reference on sk_wmem_alloc, this will be released
1497 * after sk_write_space() call
1498 */
1499 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1500 sk->sk_write_space(sk);
1501 len = 1;
1502 }
1503 /*
1504 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1505 * could not do because of in-flight packets
1506 */
1507 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1508 __sk_free(sk);
1509 }
1510 EXPORT_SYMBOL(sock_wfree);
1511
1512 /*
1513 * Read buffer destructor automatically called from kfree_skb.
1514 */
1515 void sock_rfree(struct sk_buff *skb)
1516 {
1517 struct sock *sk = skb->sk;
1518 unsigned int len = skb->truesize;
1519
1520 atomic_sub(len, &sk->sk_rmem_alloc);
1521 sk_mem_uncharge(sk, len);
1522 }
1523 EXPORT_SYMBOL(sock_rfree);
1524
1525 void sock_edemux(struct sk_buff *skb)
1526 {
1527 struct sock *sk = skb->sk;
1528
1529 #ifdef CONFIG_INET
1530 if (sk->sk_state == TCP_TIME_WAIT)
1531 inet_twsk_put(inet_twsk(sk));
1532 else
1533 #endif
1534 sock_put(sk);
1535 }
1536 EXPORT_SYMBOL(sock_edemux);
1537
1538 int sock_i_uid(struct sock *sk)
1539 {
1540 int uid;
1541
1542 read_lock_bh(&sk->sk_callback_lock);
1543 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1544 read_unlock_bh(&sk->sk_callback_lock);
1545 return uid;
1546 }
1547 EXPORT_SYMBOL(sock_i_uid);
1548
1549 unsigned long sock_i_ino(struct sock *sk)
1550 {
1551 unsigned long ino;
1552
1553 read_lock_bh(&sk->sk_callback_lock);
1554 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1555 read_unlock_bh(&sk->sk_callback_lock);
1556 return ino;
1557 }
1558 EXPORT_SYMBOL(sock_i_ino);
1559
1560 /*
1561 * Allocate a skb from the socket's send buffer.
1562 */
1563 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1564 gfp_t priority)
1565 {
1566 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1567 struct sk_buff *skb = alloc_skb(size, priority);
1568 if (skb) {
1569 skb_set_owner_w(skb, sk);
1570 return skb;
1571 }
1572 }
1573 return NULL;
1574 }
1575 EXPORT_SYMBOL(sock_wmalloc);
1576
1577 /*
1578 * Allocate a skb from the socket's receive buffer.
1579 */
1580 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1581 gfp_t priority)
1582 {
1583 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1584 struct sk_buff *skb = alloc_skb(size, priority);
1585 if (skb) {
1586 skb_set_owner_r(skb, sk);
1587 return skb;
1588 }
1589 }
1590 return NULL;
1591 }
1592
1593 /*
1594 * Allocate a memory block from the socket's option memory buffer.
1595 */
1596 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1597 {
1598 if ((unsigned int)size <= sysctl_optmem_max &&
1599 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1600 void *mem;
1601 /* First do the add, to avoid the race if kmalloc
1602 * might sleep.
1603 */
1604 atomic_add(size, &sk->sk_omem_alloc);
1605 mem = kmalloc(size, priority);
1606 if (mem)
1607 return mem;
1608 atomic_sub(size, &sk->sk_omem_alloc);
1609 }
1610 return NULL;
1611 }
1612 EXPORT_SYMBOL(sock_kmalloc);
1613
1614 /*
1615 * Free an option memory block.
1616 */
1617 void sock_kfree_s(struct sock *sk, void *mem, int size)
1618 {
1619 kfree(mem);
1620 atomic_sub(size, &sk->sk_omem_alloc);
1621 }
1622 EXPORT_SYMBOL(sock_kfree_s);
1623
1624 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1625 I think, these locks should be removed for datagram sockets.
1626 */
1627 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1628 {
1629 DEFINE_WAIT(wait);
1630
1631 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1632 for (;;) {
1633 if (!timeo)
1634 break;
1635 if (signal_pending(current))
1636 break;
1637 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1638 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1639 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1640 break;
1641 if (sk->sk_shutdown & SEND_SHUTDOWN)
1642 break;
1643 if (sk->sk_err)
1644 break;
1645 timeo = schedule_timeout(timeo);
1646 }
1647 finish_wait(sk_sleep(sk), &wait);
1648 return timeo;
1649 }
1650
1651
1652 /*
1653 * Generic send/receive buffer handlers
1654 */
1655
1656 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1657 unsigned long data_len, int noblock,
1658 int *errcode)
1659 {
1660 struct sk_buff *skb;
1661 gfp_t gfp_mask;
1662 long timeo;
1663 int err;
1664 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1665
1666 err = -EMSGSIZE;
1667 if (npages > MAX_SKB_FRAGS)
1668 goto failure;
1669
1670 gfp_mask = sk->sk_allocation;
1671 if (gfp_mask & __GFP_WAIT)
1672 gfp_mask |= __GFP_REPEAT;
1673
1674 timeo = sock_sndtimeo(sk, noblock);
1675 while (1) {
1676 err = sock_error(sk);
1677 if (err != 0)
1678 goto failure;
1679
1680 err = -EPIPE;
1681 if (sk->sk_shutdown & SEND_SHUTDOWN)
1682 goto failure;
1683
1684 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1685 skb = alloc_skb(header_len, gfp_mask);
1686 if (skb) {
1687 int i;
1688
1689 /* No pages, we're done... */
1690 if (!data_len)
1691 break;
1692
1693 skb->truesize += data_len;
1694 skb_shinfo(skb)->nr_frags = npages;
1695 for (i = 0; i < npages; i++) {
1696 struct page *page;
1697
1698 page = alloc_pages(sk->sk_allocation, 0);
1699 if (!page) {
1700 err = -ENOBUFS;
1701 skb_shinfo(skb)->nr_frags = i;
1702 kfree_skb(skb);
1703 goto failure;
1704 }
1705
1706 __skb_fill_page_desc(skb, i,
1707 page, 0,
1708 (data_len >= PAGE_SIZE ?
1709 PAGE_SIZE :
1710 data_len));
1711 data_len -= PAGE_SIZE;
1712 }
1713
1714 /* Full success... */
1715 break;
1716 }
1717 err = -ENOBUFS;
1718 goto failure;
1719 }
1720 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1721 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1722 err = -EAGAIN;
1723 if (!timeo)
1724 goto failure;
1725 if (signal_pending(current))
1726 goto interrupted;
1727 timeo = sock_wait_for_wmem(sk, timeo);
1728 }
1729
1730 skb_set_owner_w(skb, sk);
1731 return skb;
1732
1733 interrupted:
1734 err = sock_intr_errno(timeo);
1735 failure:
1736 *errcode = err;
1737 return NULL;
1738 }
1739 EXPORT_SYMBOL(sock_alloc_send_pskb);
1740
1741 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1742 int noblock, int *errcode)
1743 {
1744 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1745 }
1746 EXPORT_SYMBOL(sock_alloc_send_skb);
1747
1748 static void __lock_sock(struct sock *sk)
1749 __releases(&sk->sk_lock.slock)
1750 __acquires(&sk->sk_lock.slock)
1751 {
1752 DEFINE_WAIT(wait);
1753
1754 for (;;) {
1755 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1756 TASK_UNINTERRUPTIBLE);
1757 spin_unlock_bh(&sk->sk_lock.slock);
1758 schedule();
1759 spin_lock_bh(&sk->sk_lock.slock);
1760 if (!sock_owned_by_user(sk))
1761 break;
1762 }
1763 finish_wait(&sk->sk_lock.wq, &wait);
1764 }
1765
1766 static void __release_sock(struct sock *sk)
1767 __releases(&sk->sk_lock.slock)
1768 __acquires(&sk->sk_lock.slock)
1769 {
1770 struct sk_buff *skb = sk->sk_backlog.head;
1771
1772 do {
1773 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1774 bh_unlock_sock(sk);
1775
1776 do {
1777 struct sk_buff *next = skb->next;
1778
1779 prefetch(next);
1780 WARN_ON_ONCE(skb_dst_is_noref(skb));
1781 skb->next = NULL;
1782 sk_backlog_rcv(sk, skb);
1783
1784 /*
1785 * We are in process context here with softirqs
1786 * disabled, use cond_resched_softirq() to preempt.
1787 * This is safe to do because we've taken the backlog
1788 * queue private:
1789 */
1790 cond_resched_softirq();
1791
1792 skb = next;
1793 } while (skb != NULL);
1794
1795 bh_lock_sock(sk);
1796 } while ((skb = sk->sk_backlog.head) != NULL);
1797
1798 /*
1799 * Doing the zeroing here guarantee we can not loop forever
1800 * while a wild producer attempts to flood us.
1801 */
1802 sk->sk_backlog.len = 0;
1803 }
1804
1805 /**
1806 * sk_wait_data - wait for data to arrive at sk_receive_queue
1807 * @sk: sock to wait on
1808 * @timeo: for how long
1809 *
1810 * Now socket state including sk->sk_err is changed only under lock,
1811 * hence we may omit checks after joining wait queue.
1812 * We check receive queue before schedule() only as optimization;
1813 * it is very likely that release_sock() added new data.
1814 */
1815 int sk_wait_data(struct sock *sk, long *timeo)
1816 {
1817 int rc;
1818 DEFINE_WAIT(wait);
1819
1820 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1821 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1822 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1823 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1824 finish_wait(sk_sleep(sk), &wait);
1825 return rc;
1826 }
1827 EXPORT_SYMBOL(sk_wait_data);
1828
1829 /**
1830 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1831 * @sk: socket
1832 * @size: memory size to allocate
1833 * @kind: allocation type
1834 *
1835 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1836 * rmem allocation. This function assumes that protocols which have
1837 * memory_pressure use sk_wmem_queued as write buffer accounting.
1838 */
1839 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1840 {
1841 struct proto *prot = sk->sk_prot;
1842 int amt = sk_mem_pages(size);
1843 long allocated;
1844 int parent_status = UNDER_LIMIT;
1845
1846 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1847
1848 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1849
1850 /* Under limit. */
1851 if (parent_status == UNDER_LIMIT &&
1852 allocated <= sk_prot_mem_limits(sk, 0)) {
1853 sk_leave_memory_pressure(sk);
1854 return 1;
1855 }
1856
1857 /* Under pressure. (we or our parents) */
1858 if ((parent_status > SOFT_LIMIT) ||
1859 allocated > sk_prot_mem_limits(sk, 1))
1860 sk_enter_memory_pressure(sk);
1861
1862 /* Over hard limit (we or our parents) */
1863 if ((parent_status == OVER_LIMIT) ||
1864 (allocated > sk_prot_mem_limits(sk, 2)))
1865 goto suppress_allocation;
1866
1867 /* guarantee minimum buffer size under pressure */
1868 if (kind == SK_MEM_RECV) {
1869 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1870 return 1;
1871
1872 } else { /* SK_MEM_SEND */
1873 if (sk->sk_type == SOCK_STREAM) {
1874 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1875 return 1;
1876 } else if (atomic_read(&sk->sk_wmem_alloc) <
1877 prot->sysctl_wmem[0])
1878 return 1;
1879 }
1880
1881 if (sk_has_memory_pressure(sk)) {
1882 int alloc;
1883
1884 if (!sk_under_memory_pressure(sk))
1885 return 1;
1886 alloc = sk_sockets_allocated_read_positive(sk);
1887 if (sk_prot_mem_limits(sk, 2) > alloc *
1888 sk_mem_pages(sk->sk_wmem_queued +
1889 atomic_read(&sk->sk_rmem_alloc) +
1890 sk->sk_forward_alloc))
1891 return 1;
1892 }
1893
1894 suppress_allocation:
1895
1896 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1897 sk_stream_moderate_sndbuf(sk);
1898
1899 /* Fail only if socket is _under_ its sndbuf.
1900 * In this case we cannot block, so that we have to fail.
1901 */
1902 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1903 return 1;
1904 }
1905
1906 trace_sock_exceed_buf_limit(sk, prot, allocated);
1907
1908 /* Alas. Undo changes. */
1909 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1910
1911 sk_memory_allocated_sub(sk, amt);
1912
1913 return 0;
1914 }
1915 EXPORT_SYMBOL(__sk_mem_schedule);
1916
1917 /**
1918 * __sk_reclaim - reclaim memory_allocated
1919 * @sk: socket
1920 */
1921 void __sk_mem_reclaim(struct sock *sk)
1922 {
1923 sk_memory_allocated_sub(sk,
1924 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
1925 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1926
1927 if (sk_under_memory_pressure(sk) &&
1928 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1929 sk_leave_memory_pressure(sk);
1930 }
1931 EXPORT_SYMBOL(__sk_mem_reclaim);
1932
1933
1934 /*
1935 * Set of default routines for initialising struct proto_ops when
1936 * the protocol does not support a particular function. In certain
1937 * cases where it makes no sense for a protocol to have a "do nothing"
1938 * function, some default processing is provided.
1939 */
1940
1941 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1942 {
1943 return -EOPNOTSUPP;
1944 }
1945 EXPORT_SYMBOL(sock_no_bind);
1946
1947 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1948 int len, int flags)
1949 {
1950 return -EOPNOTSUPP;
1951 }
1952 EXPORT_SYMBOL(sock_no_connect);
1953
1954 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1955 {
1956 return -EOPNOTSUPP;
1957 }
1958 EXPORT_SYMBOL(sock_no_socketpair);
1959
1960 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1961 {
1962 return -EOPNOTSUPP;
1963 }
1964 EXPORT_SYMBOL(sock_no_accept);
1965
1966 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1967 int *len, int peer)
1968 {
1969 return -EOPNOTSUPP;
1970 }
1971 EXPORT_SYMBOL(sock_no_getname);
1972
1973 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1974 {
1975 return 0;
1976 }
1977 EXPORT_SYMBOL(sock_no_poll);
1978
1979 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1980 {
1981 return -EOPNOTSUPP;
1982 }
1983 EXPORT_SYMBOL(sock_no_ioctl);
1984
1985 int sock_no_listen(struct socket *sock, int backlog)
1986 {
1987 return -EOPNOTSUPP;
1988 }
1989 EXPORT_SYMBOL(sock_no_listen);
1990
1991 int sock_no_shutdown(struct socket *sock, int how)
1992 {
1993 return -EOPNOTSUPP;
1994 }
1995 EXPORT_SYMBOL(sock_no_shutdown);
1996
1997 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1998 char __user *optval, unsigned int optlen)
1999 {
2000 return -EOPNOTSUPP;
2001 }
2002 EXPORT_SYMBOL(sock_no_setsockopt);
2003
2004 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2005 char __user *optval, int __user *optlen)
2006 {
2007 return -EOPNOTSUPP;
2008 }
2009 EXPORT_SYMBOL(sock_no_getsockopt);
2010
2011 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2012 size_t len)
2013 {
2014 return -EOPNOTSUPP;
2015 }
2016 EXPORT_SYMBOL(sock_no_sendmsg);
2017
2018 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2019 size_t len, int flags)
2020 {
2021 return -EOPNOTSUPP;
2022 }
2023 EXPORT_SYMBOL(sock_no_recvmsg);
2024
2025 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2026 {
2027 /* Mirror missing mmap method error code */
2028 return -ENODEV;
2029 }
2030 EXPORT_SYMBOL(sock_no_mmap);
2031
2032 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2033 {
2034 ssize_t res;
2035 struct msghdr msg = {.msg_flags = flags};
2036 struct kvec iov;
2037 char *kaddr = kmap(page);
2038 iov.iov_base = kaddr + offset;
2039 iov.iov_len = size;
2040 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2041 kunmap(page);
2042 return res;
2043 }
2044 EXPORT_SYMBOL(sock_no_sendpage);
2045
2046 /*
2047 * Default Socket Callbacks
2048 */
2049
2050 static void sock_def_wakeup(struct sock *sk)
2051 {
2052 struct socket_wq *wq;
2053
2054 rcu_read_lock();
2055 wq = rcu_dereference(sk->sk_wq);
2056 if (wq_has_sleeper(wq))
2057 wake_up_interruptible_all(&wq->wait);
2058 rcu_read_unlock();
2059 }
2060
2061 static void sock_def_error_report(struct sock *sk)
2062 {
2063 struct socket_wq *wq;
2064
2065 rcu_read_lock();
2066 wq = rcu_dereference(sk->sk_wq);
2067 if (wq_has_sleeper(wq))
2068 wake_up_interruptible_poll(&wq->wait, POLLERR);
2069 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2070 rcu_read_unlock();
2071 }
2072
2073 static void sock_def_readable(struct sock *sk, int len)
2074 {
2075 struct socket_wq *wq;
2076
2077 rcu_read_lock();
2078 wq = rcu_dereference(sk->sk_wq);
2079 if (wq_has_sleeper(wq))
2080 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2081 POLLRDNORM | POLLRDBAND);
2082 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2083 rcu_read_unlock();
2084 }
2085
2086 static void sock_def_write_space(struct sock *sk)
2087 {
2088 struct socket_wq *wq;
2089
2090 rcu_read_lock();
2091
2092 /* Do not wake up a writer until he can make "significant"
2093 * progress. --DaveM
2094 */
2095 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2096 wq = rcu_dereference(sk->sk_wq);
2097 if (wq_has_sleeper(wq))
2098 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2099 POLLWRNORM | POLLWRBAND);
2100
2101 /* Should agree with poll, otherwise some programs break */
2102 if (sock_writeable(sk))
2103 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2104 }
2105
2106 rcu_read_unlock();
2107 }
2108
2109 static void sock_def_destruct(struct sock *sk)
2110 {
2111 kfree(sk->sk_protinfo);
2112 }
2113
2114 void sk_send_sigurg(struct sock *sk)
2115 {
2116 if (sk->sk_socket && sk->sk_socket->file)
2117 if (send_sigurg(&sk->sk_socket->file->f_owner))
2118 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2119 }
2120 EXPORT_SYMBOL(sk_send_sigurg);
2121
2122 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2123 unsigned long expires)
2124 {
2125 if (!mod_timer(timer, expires))
2126 sock_hold(sk);
2127 }
2128 EXPORT_SYMBOL(sk_reset_timer);
2129
2130 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2131 {
2132 if (timer_pending(timer) && del_timer(timer))
2133 __sock_put(sk);
2134 }
2135 EXPORT_SYMBOL(sk_stop_timer);
2136
2137 void sock_init_data(struct socket *sock, struct sock *sk)
2138 {
2139 skb_queue_head_init(&sk->sk_receive_queue);
2140 skb_queue_head_init(&sk->sk_write_queue);
2141 skb_queue_head_init(&sk->sk_error_queue);
2142 #ifdef CONFIG_NET_DMA
2143 skb_queue_head_init(&sk->sk_async_wait_queue);
2144 #endif
2145
2146 sk->sk_send_head = NULL;
2147
2148 init_timer(&sk->sk_timer);
2149
2150 sk->sk_allocation = GFP_KERNEL;
2151 sk->sk_rcvbuf = sysctl_rmem_default;
2152 sk->sk_sndbuf = sysctl_wmem_default;
2153 sk->sk_state = TCP_CLOSE;
2154 sk_set_socket(sk, sock);
2155
2156 sock_set_flag(sk, SOCK_ZAPPED);
2157
2158 if (sock) {
2159 sk->sk_type = sock->type;
2160 sk->sk_wq = sock->wq;
2161 sock->sk = sk;
2162 } else
2163 sk->sk_wq = NULL;
2164
2165 spin_lock_init(&sk->sk_dst_lock);
2166 rwlock_init(&sk->sk_callback_lock);
2167 lockdep_set_class_and_name(&sk->sk_callback_lock,
2168 af_callback_keys + sk->sk_family,
2169 af_family_clock_key_strings[sk->sk_family]);
2170
2171 sk->sk_state_change = sock_def_wakeup;
2172 sk->sk_data_ready = sock_def_readable;
2173 sk->sk_write_space = sock_def_write_space;
2174 sk->sk_error_report = sock_def_error_report;
2175 sk->sk_destruct = sock_def_destruct;
2176
2177 sk->sk_sndmsg_page = NULL;
2178 sk->sk_sndmsg_off = 0;
2179 sk->sk_peek_off = -1;
2180
2181 sk->sk_peer_pid = NULL;
2182 sk->sk_peer_cred = NULL;
2183 sk->sk_write_pending = 0;
2184 sk->sk_rcvlowat = 1;
2185 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2186 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2187
2188 sk->sk_stamp = ktime_set(-1L, 0);
2189
2190 /*
2191 * Before updating sk_refcnt, we must commit prior changes to memory
2192 * (Documentation/RCU/rculist_nulls.txt for details)
2193 */
2194 smp_wmb();
2195 atomic_set(&sk->sk_refcnt, 1);
2196 atomic_set(&sk->sk_drops, 0);
2197 }
2198 EXPORT_SYMBOL(sock_init_data);
2199
2200 void lock_sock_nested(struct sock *sk, int subclass)
2201 {
2202 might_sleep();
2203 spin_lock_bh(&sk->sk_lock.slock);
2204 if (sk->sk_lock.owned)
2205 __lock_sock(sk);
2206 sk->sk_lock.owned = 1;
2207 spin_unlock(&sk->sk_lock.slock);
2208 /*
2209 * The sk_lock has mutex_lock() semantics here:
2210 */
2211 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2212 local_bh_enable();
2213 }
2214 EXPORT_SYMBOL(lock_sock_nested);
2215
2216 void release_sock(struct sock *sk)
2217 {
2218 /*
2219 * The sk_lock has mutex_unlock() semantics:
2220 */
2221 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2222
2223 spin_lock_bh(&sk->sk_lock.slock);
2224 if (sk->sk_backlog.tail)
2225 __release_sock(sk);
2226
2227 if (sk->sk_prot->release_cb)
2228 sk->sk_prot->release_cb(sk);
2229
2230 sk->sk_lock.owned = 0;
2231 if (waitqueue_active(&sk->sk_lock.wq))
2232 wake_up(&sk->sk_lock.wq);
2233 spin_unlock_bh(&sk->sk_lock.slock);
2234 }
2235 EXPORT_SYMBOL(release_sock);
2236
2237 /**
2238 * lock_sock_fast - fast version of lock_sock
2239 * @sk: socket
2240 *
2241 * This version should be used for very small section, where process wont block
2242 * return false if fast path is taken
2243 * sk_lock.slock locked, owned = 0, BH disabled
2244 * return true if slow path is taken
2245 * sk_lock.slock unlocked, owned = 1, BH enabled
2246 */
2247 bool lock_sock_fast(struct sock *sk)
2248 {
2249 might_sleep();
2250 spin_lock_bh(&sk->sk_lock.slock);
2251
2252 if (!sk->sk_lock.owned)
2253 /*
2254 * Note : We must disable BH
2255 */
2256 return false;
2257
2258 __lock_sock(sk);
2259 sk->sk_lock.owned = 1;
2260 spin_unlock(&sk->sk_lock.slock);
2261 /*
2262 * The sk_lock has mutex_lock() semantics here:
2263 */
2264 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2265 local_bh_enable();
2266 return true;
2267 }
2268 EXPORT_SYMBOL(lock_sock_fast);
2269
2270 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2271 {
2272 struct timeval tv;
2273 if (!sock_flag(sk, SOCK_TIMESTAMP))
2274 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2275 tv = ktime_to_timeval(sk->sk_stamp);
2276 if (tv.tv_sec == -1)
2277 return -ENOENT;
2278 if (tv.tv_sec == 0) {
2279 sk->sk_stamp = ktime_get_real();
2280 tv = ktime_to_timeval(sk->sk_stamp);
2281 }
2282 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2283 }
2284 EXPORT_SYMBOL(sock_get_timestamp);
2285
2286 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2287 {
2288 struct timespec ts;
2289 if (!sock_flag(sk, SOCK_TIMESTAMP))
2290 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2291 ts = ktime_to_timespec(sk->sk_stamp);
2292 if (ts.tv_sec == -1)
2293 return -ENOENT;
2294 if (ts.tv_sec == 0) {
2295 sk->sk_stamp = ktime_get_real();
2296 ts = ktime_to_timespec(sk->sk_stamp);
2297 }
2298 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2299 }
2300 EXPORT_SYMBOL(sock_get_timestampns);
2301
2302 void sock_enable_timestamp(struct sock *sk, int flag)
2303 {
2304 if (!sock_flag(sk, flag)) {
2305 unsigned long previous_flags = sk->sk_flags;
2306
2307 sock_set_flag(sk, flag);
2308 /*
2309 * we just set one of the two flags which require net
2310 * time stamping, but time stamping might have been on
2311 * already because of the other one
2312 */
2313 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2314 net_enable_timestamp();
2315 }
2316 }
2317
2318 /*
2319 * Get a socket option on an socket.
2320 *
2321 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2322 * asynchronous errors should be reported by getsockopt. We assume
2323 * this means if you specify SO_ERROR (otherwise whats the point of it).
2324 */
2325 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2326 char __user *optval, int __user *optlen)
2327 {
2328 struct sock *sk = sock->sk;
2329
2330 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2331 }
2332 EXPORT_SYMBOL(sock_common_getsockopt);
2333
2334 #ifdef CONFIG_COMPAT
2335 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2336 char __user *optval, int __user *optlen)
2337 {
2338 struct sock *sk = sock->sk;
2339
2340 if (sk->sk_prot->compat_getsockopt != NULL)
2341 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2342 optval, optlen);
2343 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2344 }
2345 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2346 #endif
2347
2348 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2349 struct msghdr *msg, size_t size, int flags)
2350 {
2351 struct sock *sk = sock->sk;
2352 int addr_len = 0;
2353 int err;
2354
2355 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2356 flags & ~MSG_DONTWAIT, &addr_len);
2357 if (err >= 0)
2358 msg->msg_namelen = addr_len;
2359 return err;
2360 }
2361 EXPORT_SYMBOL(sock_common_recvmsg);
2362
2363 /*
2364 * Set socket options on an inet socket.
2365 */
2366 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2367 char __user *optval, unsigned int optlen)
2368 {
2369 struct sock *sk = sock->sk;
2370
2371 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2372 }
2373 EXPORT_SYMBOL(sock_common_setsockopt);
2374
2375 #ifdef CONFIG_COMPAT
2376 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2377 char __user *optval, unsigned int optlen)
2378 {
2379 struct sock *sk = sock->sk;
2380
2381 if (sk->sk_prot->compat_setsockopt != NULL)
2382 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2383 optval, optlen);
2384 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2385 }
2386 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2387 #endif
2388
2389 void sk_common_release(struct sock *sk)
2390 {
2391 if (sk->sk_prot->destroy)
2392 sk->sk_prot->destroy(sk);
2393
2394 /*
2395 * Observation: when sock_common_release is called, processes have
2396 * no access to socket. But net still has.
2397 * Step one, detach it from networking:
2398 *
2399 * A. Remove from hash tables.
2400 */
2401
2402 sk->sk_prot->unhash(sk);
2403
2404 /*
2405 * In this point socket cannot receive new packets, but it is possible
2406 * that some packets are in flight because some CPU runs receiver and
2407 * did hash table lookup before we unhashed socket. They will achieve
2408 * receive queue and will be purged by socket destructor.
2409 *
2410 * Also we still have packets pending on receive queue and probably,
2411 * our own packets waiting in device queues. sock_destroy will drain
2412 * receive queue, but transmitted packets will delay socket destruction
2413 * until the last reference will be released.
2414 */
2415
2416 sock_orphan(sk);
2417
2418 xfrm_sk_free_policy(sk);
2419
2420 sk_refcnt_debug_release(sk);
2421 sock_put(sk);
2422 }
2423 EXPORT_SYMBOL(sk_common_release);
2424
2425 #ifdef CONFIG_PROC_FS
2426 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2427 struct prot_inuse {
2428 int val[PROTO_INUSE_NR];
2429 };
2430
2431 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2432
2433 #ifdef CONFIG_NET_NS
2434 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2435 {
2436 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2437 }
2438 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2439
2440 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2441 {
2442 int cpu, idx = prot->inuse_idx;
2443 int res = 0;
2444
2445 for_each_possible_cpu(cpu)
2446 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2447
2448 return res >= 0 ? res : 0;
2449 }
2450 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2451
2452 static int __net_init sock_inuse_init_net(struct net *net)
2453 {
2454 net->core.inuse = alloc_percpu(struct prot_inuse);
2455 return net->core.inuse ? 0 : -ENOMEM;
2456 }
2457
2458 static void __net_exit sock_inuse_exit_net(struct net *net)
2459 {
2460 free_percpu(net->core.inuse);
2461 }
2462
2463 static struct pernet_operations net_inuse_ops = {
2464 .init = sock_inuse_init_net,
2465 .exit = sock_inuse_exit_net,
2466 };
2467
2468 static __init int net_inuse_init(void)
2469 {
2470 if (register_pernet_subsys(&net_inuse_ops))
2471 panic("Cannot initialize net inuse counters");
2472
2473 return 0;
2474 }
2475
2476 core_initcall(net_inuse_init);
2477 #else
2478 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2479
2480 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2481 {
2482 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2483 }
2484 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2485
2486 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2487 {
2488 int cpu, idx = prot->inuse_idx;
2489 int res = 0;
2490
2491 for_each_possible_cpu(cpu)
2492 res += per_cpu(prot_inuse, cpu).val[idx];
2493
2494 return res >= 0 ? res : 0;
2495 }
2496 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2497 #endif
2498
2499 static void assign_proto_idx(struct proto *prot)
2500 {
2501 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2502
2503 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2504 pr_err("PROTO_INUSE_NR exhausted\n");
2505 return;
2506 }
2507
2508 set_bit(prot->inuse_idx, proto_inuse_idx);
2509 }
2510
2511 static void release_proto_idx(struct proto *prot)
2512 {
2513 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2514 clear_bit(prot->inuse_idx, proto_inuse_idx);
2515 }
2516 #else
2517 static inline void assign_proto_idx(struct proto *prot)
2518 {
2519 }
2520
2521 static inline void release_proto_idx(struct proto *prot)
2522 {
2523 }
2524 #endif
2525
2526 int proto_register(struct proto *prot, int alloc_slab)
2527 {
2528 if (alloc_slab) {
2529 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2530 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2531 NULL);
2532
2533 if (prot->slab == NULL) {
2534 pr_crit("%s: Can't create sock SLAB cache!\n",
2535 prot->name);
2536 goto out;
2537 }
2538
2539 if (prot->rsk_prot != NULL) {
2540 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2541 if (prot->rsk_prot->slab_name == NULL)
2542 goto out_free_sock_slab;
2543
2544 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2545 prot->rsk_prot->obj_size, 0,
2546 SLAB_HWCACHE_ALIGN, NULL);
2547
2548 if (prot->rsk_prot->slab == NULL) {
2549 pr_crit("%s: Can't create request sock SLAB cache!\n",
2550 prot->name);
2551 goto out_free_request_sock_slab_name;
2552 }
2553 }
2554
2555 if (prot->twsk_prot != NULL) {
2556 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2557
2558 if (prot->twsk_prot->twsk_slab_name == NULL)
2559 goto out_free_request_sock_slab;
2560
2561 prot->twsk_prot->twsk_slab =
2562 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2563 prot->twsk_prot->twsk_obj_size,
2564 0,
2565 SLAB_HWCACHE_ALIGN |
2566 prot->slab_flags,
2567 NULL);
2568 if (prot->twsk_prot->twsk_slab == NULL)
2569 goto out_free_timewait_sock_slab_name;
2570 }
2571 }
2572
2573 mutex_lock(&proto_list_mutex);
2574 list_add(&prot->node, &proto_list);
2575 assign_proto_idx(prot);
2576 mutex_unlock(&proto_list_mutex);
2577 return 0;
2578
2579 out_free_timewait_sock_slab_name:
2580 kfree(prot->twsk_prot->twsk_slab_name);
2581 out_free_request_sock_slab:
2582 if (prot->rsk_prot && prot->rsk_prot->slab) {
2583 kmem_cache_destroy(prot->rsk_prot->slab);
2584 prot->rsk_prot->slab = NULL;
2585 }
2586 out_free_request_sock_slab_name:
2587 if (prot->rsk_prot)
2588 kfree(prot->rsk_prot->slab_name);
2589 out_free_sock_slab:
2590 kmem_cache_destroy(prot->slab);
2591 prot->slab = NULL;
2592 out:
2593 return -ENOBUFS;
2594 }
2595 EXPORT_SYMBOL(proto_register);
2596
2597 void proto_unregister(struct proto *prot)
2598 {
2599 mutex_lock(&proto_list_mutex);
2600 release_proto_idx(prot);
2601 list_del(&prot->node);
2602 mutex_unlock(&proto_list_mutex);
2603
2604 if (prot->slab != NULL) {
2605 kmem_cache_destroy(prot->slab);
2606 prot->slab = NULL;
2607 }
2608
2609 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2610 kmem_cache_destroy(prot->rsk_prot->slab);
2611 kfree(prot->rsk_prot->slab_name);
2612 prot->rsk_prot->slab = NULL;
2613 }
2614
2615 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2616 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2617 kfree(prot->twsk_prot->twsk_slab_name);
2618 prot->twsk_prot->twsk_slab = NULL;
2619 }
2620 }
2621 EXPORT_SYMBOL(proto_unregister);
2622
2623 #ifdef CONFIG_PROC_FS
2624 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2625 __acquires(proto_list_mutex)
2626 {
2627 mutex_lock(&proto_list_mutex);
2628 return seq_list_start_head(&proto_list, *pos);
2629 }
2630
2631 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2632 {
2633 return seq_list_next(v, &proto_list, pos);
2634 }
2635
2636 static void proto_seq_stop(struct seq_file *seq, void *v)
2637 __releases(proto_list_mutex)
2638 {
2639 mutex_unlock(&proto_list_mutex);
2640 }
2641
2642 static char proto_method_implemented(const void *method)
2643 {
2644 return method == NULL ? 'n' : 'y';
2645 }
2646 static long sock_prot_memory_allocated(struct proto *proto)
2647 {
2648 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2649 }
2650
2651 static char *sock_prot_memory_pressure(struct proto *proto)
2652 {
2653 return proto->memory_pressure != NULL ?
2654 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2655 }
2656
2657 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2658 {
2659
2660 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2661 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2662 proto->name,
2663 proto->obj_size,
2664 sock_prot_inuse_get(seq_file_net(seq), proto),
2665 sock_prot_memory_allocated(proto),
2666 sock_prot_memory_pressure(proto),
2667 proto->max_header,
2668 proto->slab == NULL ? "no" : "yes",
2669 module_name(proto->owner),
2670 proto_method_implemented(proto->close),
2671 proto_method_implemented(proto->connect),
2672 proto_method_implemented(proto->disconnect),
2673 proto_method_implemented(proto->accept),
2674 proto_method_implemented(proto->ioctl),
2675 proto_method_implemented(proto->init),
2676 proto_method_implemented(proto->destroy),
2677 proto_method_implemented(proto->shutdown),
2678 proto_method_implemented(proto->setsockopt),
2679 proto_method_implemented(proto->getsockopt),
2680 proto_method_implemented(proto->sendmsg),
2681 proto_method_implemented(proto->recvmsg),
2682 proto_method_implemented(proto->sendpage),
2683 proto_method_implemented(proto->bind),
2684 proto_method_implemented(proto->backlog_rcv),
2685 proto_method_implemented(proto->hash),
2686 proto_method_implemented(proto->unhash),
2687 proto_method_implemented(proto->get_port),
2688 proto_method_implemented(proto->enter_memory_pressure));
2689 }
2690
2691 static int proto_seq_show(struct seq_file *seq, void *v)
2692 {
2693 if (v == &proto_list)
2694 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2695 "protocol",
2696 "size",
2697 "sockets",
2698 "memory",
2699 "press",
2700 "maxhdr",
2701 "slab",
2702 "module",
2703 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2704 else
2705 proto_seq_printf(seq, list_entry(v, struct proto, node));
2706 return 0;
2707 }
2708
2709 static const struct seq_operations proto_seq_ops = {
2710 .start = proto_seq_start,
2711 .next = proto_seq_next,
2712 .stop = proto_seq_stop,
2713 .show = proto_seq_show,
2714 };
2715
2716 static int proto_seq_open(struct inode *inode, struct file *file)
2717 {
2718 return seq_open_net(inode, file, &proto_seq_ops,
2719 sizeof(struct seq_net_private));
2720 }
2721
2722 static const struct file_operations proto_seq_fops = {
2723 .owner = THIS_MODULE,
2724 .open = proto_seq_open,
2725 .read = seq_read,
2726 .llseek = seq_lseek,
2727 .release = seq_release_net,
2728 };
2729
2730 static __net_init int proto_init_net(struct net *net)
2731 {
2732 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2733 return -ENOMEM;
2734
2735 return 0;
2736 }
2737
2738 static __net_exit void proto_exit_net(struct net *net)
2739 {
2740 proc_net_remove(net, "protocols");
2741 }
2742
2743
2744 static __net_initdata struct pernet_operations proto_net_ops = {
2745 .init = proto_init_net,
2746 .exit = proto_exit_net,
2747 };
2748
2749 static int __init proto_init(void)
2750 {
2751 return register_pernet_subsys(&proto_net_ops);
2752 }
2753
2754 subsys_initcall(proto_init);
2755
2756 #endif /* PROC_FS */