]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/sock.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-artful-kernel.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
116
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <linux/net_tstamp.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
126
127 #include <linux/filter.h>
128
129 #ifdef CONFIG_INET
130 #include <net/tcp.h>
131 #endif
132
133 /*
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
136 */
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
139
140 /*
141 * Make lock validator output more readable. (we pre-construct these
142 * strings build-time, so that runtime initialization of socket
143 * locks is fast):
144 */
145 static const char *af_family_key_strings[AF_MAX+1] = {
146 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
147 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
148 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
149 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
150 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
151 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
152 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
153 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
154 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
155 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
156 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
157 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
158 "sk_lock-AF_MAX"
159 };
160 static const char *af_family_slock_key_strings[AF_MAX+1] = {
161 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
162 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
163 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
164 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
165 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
166 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
167 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
168 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
169 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
170 "slock-27" , "slock-28" , "slock-AF_CAN" ,
171 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
172 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
173 "slock-AF_MAX"
174 };
175 static const char *af_family_clock_key_strings[AF_MAX+1] = {
176 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
177 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
178 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
179 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
180 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
181 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
182 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
183 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
184 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
185 "clock-27" , "clock-28" , "clock-AF_CAN" ,
186 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
187 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
188 "clock-AF_MAX"
189 };
190
191 /*
192 * sk_callback_lock locking rules are per-address-family,
193 * so split the lock classes by using a per-AF key:
194 */
195 static struct lock_class_key af_callback_keys[AF_MAX];
196
197 /* Take into consideration the size of the struct sk_buff overhead in the
198 * determination of these values, since that is non-constant across
199 * platforms. This makes socket queueing behavior and performance
200 * not depend upon such differences.
201 */
202 #define _SK_MEM_PACKETS 256
203 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
204 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206
207 /* Run time adjustable parameters. */
208 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
212
213 /* Maximal space eaten by iovec or ancilliary data plus some space */
214 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
215
216 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
217 {
218 struct timeval tv;
219
220 if (optlen < sizeof(tv))
221 return -EINVAL;
222 if (copy_from_user(&tv, optval, sizeof(tv)))
223 return -EFAULT;
224 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225 return -EDOM;
226
227 if (tv.tv_sec < 0) {
228 static int warned __read_mostly;
229
230 *timeo_p = 0;
231 if (warned < 10 && net_ratelimit()) {
232 warned++;
233 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234 "tries to set negative timeout\n",
235 current->comm, task_pid_nr(current));
236 }
237 return 0;
238 }
239 *timeo_p = MAX_SCHEDULE_TIMEOUT;
240 if (tv.tv_sec == 0 && tv.tv_usec == 0)
241 return 0;
242 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
243 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
244 return 0;
245 }
246
247 static void sock_warn_obsolete_bsdism(const char *name)
248 {
249 static int warned;
250 static char warncomm[TASK_COMM_LEN];
251 if (strcmp(warncomm, current->comm) && warned < 5) {
252 strcpy(warncomm, current->comm);
253 printk(KERN_WARNING "process `%s' is using obsolete "
254 "%s SO_BSDCOMPAT\n", warncomm, name);
255 warned++;
256 }
257 }
258
259 static void sock_disable_timestamp(struct sock *sk, int flag)
260 {
261 if (sock_flag(sk, flag)) {
262 sock_reset_flag(sk, flag);
263 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
264 !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
265 net_disable_timestamp();
266 }
267 }
268 }
269
270
271 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
272 {
273 int err = 0;
274 int skb_len;
275
276 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
277 number of warnings when compiling with -W --ANK
278 */
279 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
280 (unsigned)sk->sk_rcvbuf) {
281 err = -ENOMEM;
282 goto out;
283 }
284
285 err = sk_filter(sk, skb);
286 if (err)
287 goto out;
288
289 if (!sk_rmem_schedule(sk, skb->truesize)) {
290 err = -ENOBUFS;
291 goto out;
292 }
293
294 skb->dev = NULL;
295 skb_set_owner_r(skb, sk);
296
297 /* Cache the SKB length before we tack it onto the receive
298 * queue. Once it is added it no longer belongs to us and
299 * may be freed by other threads of control pulling packets
300 * from the queue.
301 */
302 skb_len = skb->len;
303
304 skb_queue_tail(&sk->sk_receive_queue, skb);
305
306 if (!sock_flag(sk, SOCK_DEAD))
307 sk->sk_data_ready(sk, skb_len);
308 out:
309 return err;
310 }
311 EXPORT_SYMBOL(sock_queue_rcv_skb);
312
313 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
314 {
315 int rc = NET_RX_SUCCESS;
316
317 if (sk_filter(sk, skb))
318 goto discard_and_relse;
319
320 skb->dev = NULL;
321
322 if (nested)
323 bh_lock_sock_nested(sk);
324 else
325 bh_lock_sock(sk);
326 if (!sock_owned_by_user(sk)) {
327 /*
328 * trylock + unlock semantics:
329 */
330 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
331
332 rc = sk_backlog_rcv(sk, skb);
333
334 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
335 } else
336 sk_add_backlog(sk, skb);
337 bh_unlock_sock(sk);
338 out:
339 sock_put(sk);
340 return rc;
341 discard_and_relse:
342 kfree_skb(skb);
343 goto out;
344 }
345 EXPORT_SYMBOL(sk_receive_skb);
346
347 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
348 {
349 struct dst_entry *dst = sk->sk_dst_cache;
350
351 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
352 sk->sk_dst_cache = NULL;
353 dst_release(dst);
354 return NULL;
355 }
356
357 return dst;
358 }
359 EXPORT_SYMBOL(__sk_dst_check);
360
361 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
362 {
363 struct dst_entry *dst = sk_dst_get(sk);
364
365 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
366 sk_dst_reset(sk);
367 dst_release(dst);
368 return NULL;
369 }
370
371 return dst;
372 }
373 EXPORT_SYMBOL(sk_dst_check);
374
375 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
376 {
377 int ret = -ENOPROTOOPT;
378 #ifdef CONFIG_NETDEVICES
379 struct net *net = sock_net(sk);
380 char devname[IFNAMSIZ];
381 int index;
382
383 /* Sorry... */
384 ret = -EPERM;
385 if (!capable(CAP_NET_RAW))
386 goto out;
387
388 ret = -EINVAL;
389 if (optlen < 0)
390 goto out;
391
392 /* Bind this socket to a particular device like "eth0",
393 * as specified in the passed interface name. If the
394 * name is "" or the option length is zero the socket
395 * is not bound.
396 */
397 if (optlen > IFNAMSIZ - 1)
398 optlen = IFNAMSIZ - 1;
399 memset(devname, 0, sizeof(devname));
400
401 ret = -EFAULT;
402 if (copy_from_user(devname, optval, optlen))
403 goto out;
404
405 if (devname[0] == '\0') {
406 index = 0;
407 } else {
408 struct net_device *dev = dev_get_by_name(net, devname);
409
410 ret = -ENODEV;
411 if (!dev)
412 goto out;
413
414 index = dev->ifindex;
415 dev_put(dev);
416 }
417
418 lock_sock(sk);
419 sk->sk_bound_dev_if = index;
420 sk_dst_reset(sk);
421 release_sock(sk);
422
423 ret = 0;
424
425 out:
426 #endif
427
428 return ret;
429 }
430
431 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
432 {
433 if (valbool)
434 sock_set_flag(sk, bit);
435 else
436 sock_reset_flag(sk, bit);
437 }
438
439 /*
440 * This is meant for all protocols to use and covers goings on
441 * at the socket level. Everything here is generic.
442 */
443
444 int sock_setsockopt(struct socket *sock, int level, int optname,
445 char __user *optval, int optlen)
446 {
447 struct sock *sk=sock->sk;
448 int val;
449 int valbool;
450 struct linger ling;
451 int ret = 0;
452
453 /*
454 * Options without arguments
455 */
456
457 if (optname == SO_BINDTODEVICE)
458 return sock_bindtodevice(sk, optval, optlen);
459
460 if (optlen < sizeof(int))
461 return -EINVAL;
462
463 if (get_user(val, (int __user *)optval))
464 return -EFAULT;
465
466 valbool = val?1:0;
467
468 lock_sock(sk);
469
470 switch(optname) {
471 case SO_DEBUG:
472 if (val && !capable(CAP_NET_ADMIN)) {
473 ret = -EACCES;
474 } else
475 sock_valbool_flag(sk, SOCK_DBG, valbool);
476 break;
477 case SO_REUSEADDR:
478 sk->sk_reuse = valbool;
479 break;
480 case SO_TYPE:
481 case SO_ERROR:
482 ret = -ENOPROTOOPT;
483 break;
484 case SO_DONTROUTE:
485 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
486 break;
487 case SO_BROADCAST:
488 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
489 break;
490 case SO_SNDBUF:
491 /* Don't error on this BSD doesn't and if you think
492 about it this is right. Otherwise apps have to
493 play 'guess the biggest size' games. RCVBUF/SNDBUF
494 are treated in BSD as hints */
495
496 if (val > sysctl_wmem_max)
497 val = sysctl_wmem_max;
498 set_sndbuf:
499 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
500 if ((val * 2) < SOCK_MIN_SNDBUF)
501 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
502 else
503 sk->sk_sndbuf = val * 2;
504
505 /*
506 * Wake up sending tasks if we
507 * upped the value.
508 */
509 sk->sk_write_space(sk);
510 break;
511
512 case SO_SNDBUFFORCE:
513 if (!capable(CAP_NET_ADMIN)) {
514 ret = -EPERM;
515 break;
516 }
517 goto set_sndbuf;
518
519 case SO_RCVBUF:
520 /* Don't error on this BSD doesn't and if you think
521 about it this is right. Otherwise apps have to
522 play 'guess the biggest size' games. RCVBUF/SNDBUF
523 are treated in BSD as hints */
524
525 if (val > sysctl_rmem_max)
526 val = sysctl_rmem_max;
527 set_rcvbuf:
528 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
529 /*
530 * We double it on the way in to account for
531 * "struct sk_buff" etc. overhead. Applications
532 * assume that the SO_RCVBUF setting they make will
533 * allow that much actual data to be received on that
534 * socket.
535 *
536 * Applications are unaware that "struct sk_buff" and
537 * other overheads allocate from the receive buffer
538 * during socket buffer allocation.
539 *
540 * And after considering the possible alternatives,
541 * returning the value we actually used in getsockopt
542 * is the most desirable behavior.
543 */
544 if ((val * 2) < SOCK_MIN_RCVBUF)
545 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
546 else
547 sk->sk_rcvbuf = val * 2;
548 break;
549
550 case SO_RCVBUFFORCE:
551 if (!capable(CAP_NET_ADMIN)) {
552 ret = -EPERM;
553 break;
554 }
555 goto set_rcvbuf;
556
557 case SO_KEEPALIVE:
558 #ifdef CONFIG_INET
559 if (sk->sk_protocol == IPPROTO_TCP)
560 tcp_set_keepalive(sk, valbool);
561 #endif
562 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
563 break;
564
565 case SO_OOBINLINE:
566 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
567 break;
568
569 case SO_NO_CHECK:
570 sk->sk_no_check = valbool;
571 break;
572
573 case SO_PRIORITY:
574 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
575 sk->sk_priority = val;
576 else
577 ret = -EPERM;
578 break;
579
580 case SO_LINGER:
581 if (optlen < sizeof(ling)) {
582 ret = -EINVAL; /* 1003.1g */
583 break;
584 }
585 if (copy_from_user(&ling,optval,sizeof(ling))) {
586 ret = -EFAULT;
587 break;
588 }
589 if (!ling.l_onoff)
590 sock_reset_flag(sk, SOCK_LINGER);
591 else {
592 #if (BITS_PER_LONG == 32)
593 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
594 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
595 else
596 #endif
597 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
598 sock_set_flag(sk, SOCK_LINGER);
599 }
600 break;
601
602 case SO_BSDCOMPAT:
603 sock_warn_obsolete_bsdism("setsockopt");
604 break;
605
606 case SO_PASSCRED:
607 if (valbool)
608 set_bit(SOCK_PASSCRED, &sock->flags);
609 else
610 clear_bit(SOCK_PASSCRED, &sock->flags);
611 break;
612
613 case SO_TIMESTAMP:
614 case SO_TIMESTAMPNS:
615 if (valbool) {
616 if (optname == SO_TIMESTAMP)
617 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
618 else
619 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
620 sock_set_flag(sk, SOCK_RCVTSTAMP);
621 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
622 } else {
623 sock_reset_flag(sk, SOCK_RCVTSTAMP);
624 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
625 }
626 break;
627
628 case SO_TIMESTAMPING:
629 if (val & ~SOF_TIMESTAMPING_MASK) {
630 ret = EINVAL;
631 break;
632 }
633 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
634 val & SOF_TIMESTAMPING_TX_HARDWARE);
635 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
636 val & SOF_TIMESTAMPING_TX_SOFTWARE);
637 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
638 val & SOF_TIMESTAMPING_RX_HARDWARE);
639 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
640 sock_enable_timestamp(sk,
641 SOCK_TIMESTAMPING_RX_SOFTWARE);
642 else
643 sock_disable_timestamp(sk,
644 SOCK_TIMESTAMPING_RX_SOFTWARE);
645 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
646 val & SOF_TIMESTAMPING_SOFTWARE);
647 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
648 val & SOF_TIMESTAMPING_SYS_HARDWARE);
649 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
650 val & SOF_TIMESTAMPING_RAW_HARDWARE);
651 break;
652
653 case SO_RCVLOWAT:
654 if (val < 0)
655 val = INT_MAX;
656 sk->sk_rcvlowat = val ? : 1;
657 break;
658
659 case SO_RCVTIMEO:
660 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
661 break;
662
663 case SO_SNDTIMEO:
664 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
665 break;
666
667 case SO_ATTACH_FILTER:
668 ret = -EINVAL;
669 if (optlen == sizeof(struct sock_fprog)) {
670 struct sock_fprog fprog;
671
672 ret = -EFAULT;
673 if (copy_from_user(&fprog, optval, sizeof(fprog)))
674 break;
675
676 ret = sk_attach_filter(&fprog, sk);
677 }
678 break;
679
680 case SO_DETACH_FILTER:
681 ret = sk_detach_filter(sk);
682 break;
683
684 case SO_PASSSEC:
685 if (valbool)
686 set_bit(SOCK_PASSSEC, &sock->flags);
687 else
688 clear_bit(SOCK_PASSSEC, &sock->flags);
689 break;
690 case SO_MARK:
691 if (!capable(CAP_NET_ADMIN))
692 ret = -EPERM;
693 else {
694 sk->sk_mark = val;
695 }
696 break;
697
698 /* We implement the SO_SNDLOWAT etc to
699 not be settable (1003.1g 5.3) */
700 default:
701 ret = -ENOPROTOOPT;
702 break;
703 }
704 release_sock(sk);
705 return ret;
706 }
707
708
709 int sock_getsockopt(struct socket *sock, int level, int optname,
710 char __user *optval, int __user *optlen)
711 {
712 struct sock *sk = sock->sk;
713
714 union {
715 int val;
716 struct linger ling;
717 struct timeval tm;
718 } v;
719
720 unsigned int lv = sizeof(int);
721 int len;
722
723 if (get_user(len, optlen))
724 return -EFAULT;
725 if (len < 0)
726 return -EINVAL;
727
728 memset(&v, 0, sizeof(v));
729
730 switch(optname) {
731 case SO_DEBUG:
732 v.val = sock_flag(sk, SOCK_DBG);
733 break;
734
735 case SO_DONTROUTE:
736 v.val = sock_flag(sk, SOCK_LOCALROUTE);
737 break;
738
739 case SO_BROADCAST:
740 v.val = !!sock_flag(sk, SOCK_BROADCAST);
741 break;
742
743 case SO_SNDBUF:
744 v.val = sk->sk_sndbuf;
745 break;
746
747 case SO_RCVBUF:
748 v.val = sk->sk_rcvbuf;
749 break;
750
751 case SO_REUSEADDR:
752 v.val = sk->sk_reuse;
753 break;
754
755 case SO_KEEPALIVE:
756 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
757 break;
758
759 case SO_TYPE:
760 v.val = sk->sk_type;
761 break;
762
763 case SO_ERROR:
764 v.val = -sock_error(sk);
765 if (v.val==0)
766 v.val = xchg(&sk->sk_err_soft, 0);
767 break;
768
769 case SO_OOBINLINE:
770 v.val = !!sock_flag(sk, SOCK_URGINLINE);
771 break;
772
773 case SO_NO_CHECK:
774 v.val = sk->sk_no_check;
775 break;
776
777 case SO_PRIORITY:
778 v.val = sk->sk_priority;
779 break;
780
781 case SO_LINGER:
782 lv = sizeof(v.ling);
783 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
784 v.ling.l_linger = sk->sk_lingertime / HZ;
785 break;
786
787 case SO_BSDCOMPAT:
788 sock_warn_obsolete_bsdism("getsockopt");
789 break;
790
791 case SO_TIMESTAMP:
792 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
793 !sock_flag(sk, SOCK_RCVTSTAMPNS);
794 break;
795
796 case SO_TIMESTAMPNS:
797 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
798 break;
799
800 case SO_TIMESTAMPING:
801 v.val = 0;
802 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
803 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
804 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
805 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
806 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
807 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
808 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
809 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
810 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
811 v.val |= SOF_TIMESTAMPING_SOFTWARE;
812 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
813 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
814 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
815 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
816 break;
817
818 case SO_RCVTIMEO:
819 lv=sizeof(struct timeval);
820 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
821 v.tm.tv_sec = 0;
822 v.tm.tv_usec = 0;
823 } else {
824 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
825 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
826 }
827 break;
828
829 case SO_SNDTIMEO:
830 lv=sizeof(struct timeval);
831 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
832 v.tm.tv_sec = 0;
833 v.tm.tv_usec = 0;
834 } else {
835 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
836 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
837 }
838 break;
839
840 case SO_RCVLOWAT:
841 v.val = sk->sk_rcvlowat;
842 break;
843
844 case SO_SNDLOWAT:
845 v.val=1;
846 break;
847
848 case SO_PASSCRED:
849 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
850 break;
851
852 case SO_PEERCRED:
853 if (len > sizeof(sk->sk_peercred))
854 len = sizeof(sk->sk_peercred);
855 if (copy_to_user(optval, &sk->sk_peercred, len))
856 return -EFAULT;
857 goto lenout;
858
859 case SO_PEERNAME:
860 {
861 char address[128];
862
863 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
864 return -ENOTCONN;
865 if (lv < len)
866 return -EINVAL;
867 if (copy_to_user(optval, address, len))
868 return -EFAULT;
869 goto lenout;
870 }
871
872 /* Dubious BSD thing... Probably nobody even uses it, but
873 * the UNIX standard wants it for whatever reason... -DaveM
874 */
875 case SO_ACCEPTCONN:
876 v.val = sk->sk_state == TCP_LISTEN;
877 break;
878
879 case SO_PASSSEC:
880 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
881 break;
882
883 case SO_PEERSEC:
884 return security_socket_getpeersec_stream(sock, optval, optlen, len);
885
886 case SO_MARK:
887 v.val = sk->sk_mark;
888 break;
889
890 default:
891 return -ENOPROTOOPT;
892 }
893
894 if (len > lv)
895 len = lv;
896 if (copy_to_user(optval, &v, len))
897 return -EFAULT;
898 lenout:
899 if (put_user(len, optlen))
900 return -EFAULT;
901 return 0;
902 }
903
904 /*
905 * Initialize an sk_lock.
906 *
907 * (We also register the sk_lock with the lock validator.)
908 */
909 static inline void sock_lock_init(struct sock *sk)
910 {
911 sock_lock_init_class_and_name(sk,
912 af_family_slock_key_strings[sk->sk_family],
913 af_family_slock_keys + sk->sk_family,
914 af_family_key_strings[sk->sk_family],
915 af_family_keys + sk->sk_family);
916 }
917
918 static void sock_copy(struct sock *nsk, const struct sock *osk)
919 {
920 #ifdef CONFIG_SECURITY_NETWORK
921 void *sptr = nsk->sk_security;
922 #endif
923
924 memcpy(nsk, osk, osk->sk_prot->obj_size);
925 #ifdef CONFIG_SECURITY_NETWORK
926 nsk->sk_security = sptr;
927 security_sk_clone(osk, nsk);
928 #endif
929 }
930
931 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
932 int family)
933 {
934 struct sock *sk;
935 struct kmem_cache *slab;
936
937 slab = prot->slab;
938 if (slab != NULL)
939 sk = kmem_cache_alloc(slab, priority);
940 else
941 sk = kmalloc(prot->obj_size, priority);
942
943 if (sk != NULL) {
944 if (security_sk_alloc(sk, family, priority))
945 goto out_free;
946
947 if (!try_module_get(prot->owner))
948 goto out_free_sec;
949 }
950
951 return sk;
952
953 out_free_sec:
954 security_sk_free(sk);
955 out_free:
956 if (slab != NULL)
957 kmem_cache_free(slab, sk);
958 else
959 kfree(sk);
960 return NULL;
961 }
962
963 static void sk_prot_free(struct proto *prot, struct sock *sk)
964 {
965 struct kmem_cache *slab;
966 struct module *owner;
967
968 owner = prot->owner;
969 slab = prot->slab;
970
971 security_sk_free(sk);
972 if (slab != NULL)
973 kmem_cache_free(slab, sk);
974 else
975 kfree(sk);
976 module_put(owner);
977 }
978
979 /**
980 * sk_alloc - All socket objects are allocated here
981 * @net: the applicable net namespace
982 * @family: protocol family
983 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
984 * @prot: struct proto associated with this new sock instance
985 */
986 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
987 struct proto *prot)
988 {
989 struct sock *sk;
990
991 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
992 if (sk) {
993 sk->sk_family = family;
994 /*
995 * See comment in struct sock definition to understand
996 * why we need sk_prot_creator -acme
997 */
998 sk->sk_prot = sk->sk_prot_creator = prot;
999 sock_lock_init(sk);
1000 sock_net_set(sk, get_net(net));
1001 }
1002
1003 return sk;
1004 }
1005
1006 void sk_free(struct sock *sk)
1007 {
1008 struct sk_filter *filter;
1009
1010 if (sk->sk_destruct)
1011 sk->sk_destruct(sk);
1012
1013 filter = rcu_dereference(sk->sk_filter);
1014 if (filter) {
1015 sk_filter_uncharge(sk, filter);
1016 rcu_assign_pointer(sk->sk_filter, NULL);
1017 }
1018
1019 sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1020 sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1021
1022 if (atomic_read(&sk->sk_omem_alloc))
1023 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1024 __func__, atomic_read(&sk->sk_omem_alloc));
1025
1026 put_net(sock_net(sk));
1027 sk_prot_free(sk->sk_prot_creator, sk);
1028 }
1029
1030 /*
1031 * Last sock_put should drop referrence to sk->sk_net. It has already
1032 * been dropped in sk_change_net. Taking referrence to stopping namespace
1033 * is not an option.
1034 * Take referrence to a socket to remove it from hash _alive_ and after that
1035 * destroy it in the context of init_net.
1036 */
1037 void sk_release_kernel(struct sock *sk)
1038 {
1039 if (sk == NULL || sk->sk_socket == NULL)
1040 return;
1041
1042 sock_hold(sk);
1043 sock_release(sk->sk_socket);
1044 release_net(sock_net(sk));
1045 sock_net_set(sk, get_net(&init_net));
1046 sock_put(sk);
1047 }
1048 EXPORT_SYMBOL(sk_release_kernel);
1049
1050 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1051 {
1052 struct sock *newsk;
1053
1054 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1055 if (newsk != NULL) {
1056 struct sk_filter *filter;
1057
1058 sock_copy(newsk, sk);
1059
1060 /* SANITY */
1061 get_net(sock_net(newsk));
1062 sk_node_init(&newsk->sk_node);
1063 sock_lock_init(newsk);
1064 bh_lock_sock(newsk);
1065 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1066
1067 atomic_set(&newsk->sk_rmem_alloc, 0);
1068 atomic_set(&newsk->sk_wmem_alloc, 0);
1069 atomic_set(&newsk->sk_omem_alloc, 0);
1070 skb_queue_head_init(&newsk->sk_receive_queue);
1071 skb_queue_head_init(&newsk->sk_write_queue);
1072 #ifdef CONFIG_NET_DMA
1073 skb_queue_head_init(&newsk->sk_async_wait_queue);
1074 #endif
1075
1076 rwlock_init(&newsk->sk_dst_lock);
1077 rwlock_init(&newsk->sk_callback_lock);
1078 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1079 af_callback_keys + newsk->sk_family,
1080 af_family_clock_key_strings[newsk->sk_family]);
1081
1082 newsk->sk_dst_cache = NULL;
1083 newsk->sk_wmem_queued = 0;
1084 newsk->sk_forward_alloc = 0;
1085 newsk->sk_send_head = NULL;
1086 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1087
1088 sock_reset_flag(newsk, SOCK_DONE);
1089 skb_queue_head_init(&newsk->sk_error_queue);
1090
1091 filter = newsk->sk_filter;
1092 if (filter != NULL)
1093 sk_filter_charge(newsk, filter);
1094
1095 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1096 /* It is still raw copy of parent, so invalidate
1097 * destructor and make plain sk_free() */
1098 newsk->sk_destruct = NULL;
1099 sk_free(newsk);
1100 newsk = NULL;
1101 goto out;
1102 }
1103
1104 newsk->sk_err = 0;
1105 newsk->sk_priority = 0;
1106 atomic_set(&newsk->sk_refcnt, 2);
1107
1108 /*
1109 * Increment the counter in the same struct proto as the master
1110 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1111 * is the same as sk->sk_prot->socks, as this field was copied
1112 * with memcpy).
1113 *
1114 * This _changes_ the previous behaviour, where
1115 * tcp_create_openreq_child always was incrementing the
1116 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1117 * to be taken into account in all callers. -acme
1118 */
1119 sk_refcnt_debug_inc(newsk);
1120 sk_set_socket(newsk, NULL);
1121 newsk->sk_sleep = NULL;
1122
1123 if (newsk->sk_prot->sockets_allocated)
1124 percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1125 }
1126 out:
1127 return newsk;
1128 }
1129
1130 EXPORT_SYMBOL_GPL(sk_clone);
1131
1132 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1133 {
1134 __sk_dst_set(sk, dst);
1135 sk->sk_route_caps = dst->dev->features;
1136 if (sk->sk_route_caps & NETIF_F_GSO)
1137 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1138 if (sk_can_gso(sk)) {
1139 if (dst->header_len) {
1140 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1141 } else {
1142 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1143 sk->sk_gso_max_size = dst->dev->gso_max_size;
1144 }
1145 }
1146 }
1147 EXPORT_SYMBOL_GPL(sk_setup_caps);
1148
1149 void __init sk_init(void)
1150 {
1151 if (num_physpages <= 4096) {
1152 sysctl_wmem_max = 32767;
1153 sysctl_rmem_max = 32767;
1154 sysctl_wmem_default = 32767;
1155 sysctl_rmem_default = 32767;
1156 } else if (num_physpages >= 131072) {
1157 sysctl_wmem_max = 131071;
1158 sysctl_rmem_max = 131071;
1159 }
1160 }
1161
1162 /*
1163 * Simple resource managers for sockets.
1164 */
1165
1166
1167 /*
1168 * Write buffer destructor automatically called from kfree_skb.
1169 */
1170 void sock_wfree(struct sk_buff *skb)
1171 {
1172 struct sock *sk = skb->sk;
1173
1174 /* In case it might be waiting for more memory. */
1175 atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1176 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1177 sk->sk_write_space(sk);
1178 sock_put(sk);
1179 }
1180
1181 /*
1182 * Read buffer destructor automatically called from kfree_skb.
1183 */
1184 void sock_rfree(struct sk_buff *skb)
1185 {
1186 struct sock *sk = skb->sk;
1187
1188 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1189 sk_mem_uncharge(skb->sk, skb->truesize);
1190 }
1191
1192
1193 int sock_i_uid(struct sock *sk)
1194 {
1195 int uid;
1196
1197 read_lock(&sk->sk_callback_lock);
1198 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1199 read_unlock(&sk->sk_callback_lock);
1200 return uid;
1201 }
1202
1203 unsigned long sock_i_ino(struct sock *sk)
1204 {
1205 unsigned long ino;
1206
1207 read_lock(&sk->sk_callback_lock);
1208 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1209 read_unlock(&sk->sk_callback_lock);
1210 return ino;
1211 }
1212
1213 /*
1214 * Allocate a skb from the socket's send buffer.
1215 */
1216 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1217 gfp_t priority)
1218 {
1219 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1220 struct sk_buff * skb = alloc_skb(size, priority);
1221 if (skb) {
1222 skb_set_owner_w(skb, sk);
1223 return skb;
1224 }
1225 }
1226 return NULL;
1227 }
1228
1229 /*
1230 * Allocate a skb from the socket's receive buffer.
1231 */
1232 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1233 gfp_t priority)
1234 {
1235 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1236 struct sk_buff *skb = alloc_skb(size, priority);
1237 if (skb) {
1238 skb_set_owner_r(skb, sk);
1239 return skb;
1240 }
1241 }
1242 return NULL;
1243 }
1244
1245 /*
1246 * Allocate a memory block from the socket's option memory buffer.
1247 */
1248 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1249 {
1250 if ((unsigned)size <= sysctl_optmem_max &&
1251 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1252 void *mem;
1253 /* First do the add, to avoid the race if kmalloc
1254 * might sleep.
1255 */
1256 atomic_add(size, &sk->sk_omem_alloc);
1257 mem = kmalloc(size, priority);
1258 if (mem)
1259 return mem;
1260 atomic_sub(size, &sk->sk_omem_alloc);
1261 }
1262 return NULL;
1263 }
1264
1265 /*
1266 * Free an option memory block.
1267 */
1268 void sock_kfree_s(struct sock *sk, void *mem, int size)
1269 {
1270 kfree(mem);
1271 atomic_sub(size, &sk->sk_omem_alloc);
1272 }
1273
1274 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1275 I think, these locks should be removed for datagram sockets.
1276 */
1277 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1278 {
1279 DEFINE_WAIT(wait);
1280
1281 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1282 for (;;) {
1283 if (!timeo)
1284 break;
1285 if (signal_pending(current))
1286 break;
1287 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1288 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1289 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1290 break;
1291 if (sk->sk_shutdown & SEND_SHUTDOWN)
1292 break;
1293 if (sk->sk_err)
1294 break;
1295 timeo = schedule_timeout(timeo);
1296 }
1297 finish_wait(sk->sk_sleep, &wait);
1298 return timeo;
1299 }
1300
1301
1302 /*
1303 * Generic send/receive buffer handlers
1304 */
1305
1306 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1307 unsigned long data_len, int noblock,
1308 int *errcode)
1309 {
1310 struct sk_buff *skb;
1311 gfp_t gfp_mask;
1312 long timeo;
1313 int err;
1314
1315 gfp_mask = sk->sk_allocation;
1316 if (gfp_mask & __GFP_WAIT)
1317 gfp_mask |= __GFP_REPEAT;
1318
1319 timeo = sock_sndtimeo(sk, noblock);
1320 while (1) {
1321 err = sock_error(sk);
1322 if (err != 0)
1323 goto failure;
1324
1325 err = -EPIPE;
1326 if (sk->sk_shutdown & SEND_SHUTDOWN)
1327 goto failure;
1328
1329 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1330 skb = alloc_skb(header_len, gfp_mask);
1331 if (skb) {
1332 int npages;
1333 int i;
1334
1335 /* No pages, we're done... */
1336 if (!data_len)
1337 break;
1338
1339 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1340 skb->truesize += data_len;
1341 skb_shinfo(skb)->nr_frags = npages;
1342 for (i = 0; i < npages; i++) {
1343 struct page *page;
1344 skb_frag_t *frag;
1345
1346 page = alloc_pages(sk->sk_allocation, 0);
1347 if (!page) {
1348 err = -ENOBUFS;
1349 skb_shinfo(skb)->nr_frags = i;
1350 kfree_skb(skb);
1351 goto failure;
1352 }
1353
1354 frag = &skb_shinfo(skb)->frags[i];
1355 frag->page = page;
1356 frag->page_offset = 0;
1357 frag->size = (data_len >= PAGE_SIZE ?
1358 PAGE_SIZE :
1359 data_len);
1360 data_len -= PAGE_SIZE;
1361 }
1362
1363 /* Full success... */
1364 break;
1365 }
1366 err = -ENOBUFS;
1367 goto failure;
1368 }
1369 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1370 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1371 err = -EAGAIN;
1372 if (!timeo)
1373 goto failure;
1374 if (signal_pending(current))
1375 goto interrupted;
1376 timeo = sock_wait_for_wmem(sk, timeo);
1377 }
1378
1379 skb_set_owner_w(skb, sk);
1380 return skb;
1381
1382 interrupted:
1383 err = sock_intr_errno(timeo);
1384 failure:
1385 *errcode = err;
1386 return NULL;
1387 }
1388 EXPORT_SYMBOL(sock_alloc_send_pskb);
1389
1390 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1391 int noblock, int *errcode)
1392 {
1393 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1394 }
1395
1396 static void __lock_sock(struct sock *sk)
1397 {
1398 DEFINE_WAIT(wait);
1399
1400 for (;;) {
1401 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1402 TASK_UNINTERRUPTIBLE);
1403 spin_unlock_bh(&sk->sk_lock.slock);
1404 schedule();
1405 spin_lock_bh(&sk->sk_lock.slock);
1406 if (!sock_owned_by_user(sk))
1407 break;
1408 }
1409 finish_wait(&sk->sk_lock.wq, &wait);
1410 }
1411
1412 static void __release_sock(struct sock *sk)
1413 {
1414 struct sk_buff *skb = sk->sk_backlog.head;
1415
1416 do {
1417 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1418 bh_unlock_sock(sk);
1419
1420 do {
1421 struct sk_buff *next = skb->next;
1422
1423 skb->next = NULL;
1424 sk_backlog_rcv(sk, skb);
1425
1426 /*
1427 * We are in process context here with softirqs
1428 * disabled, use cond_resched_softirq() to preempt.
1429 * This is safe to do because we've taken the backlog
1430 * queue private:
1431 */
1432 cond_resched_softirq();
1433
1434 skb = next;
1435 } while (skb != NULL);
1436
1437 bh_lock_sock(sk);
1438 } while ((skb = sk->sk_backlog.head) != NULL);
1439 }
1440
1441 /**
1442 * sk_wait_data - wait for data to arrive at sk_receive_queue
1443 * @sk: sock to wait on
1444 * @timeo: for how long
1445 *
1446 * Now socket state including sk->sk_err is changed only under lock,
1447 * hence we may omit checks after joining wait queue.
1448 * We check receive queue before schedule() only as optimization;
1449 * it is very likely that release_sock() added new data.
1450 */
1451 int sk_wait_data(struct sock *sk, long *timeo)
1452 {
1453 int rc;
1454 DEFINE_WAIT(wait);
1455
1456 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1457 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1458 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1459 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1460 finish_wait(sk->sk_sleep, &wait);
1461 return rc;
1462 }
1463
1464 EXPORT_SYMBOL(sk_wait_data);
1465
1466 /**
1467 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1468 * @sk: socket
1469 * @size: memory size to allocate
1470 * @kind: allocation type
1471 *
1472 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1473 * rmem allocation. This function assumes that protocols which have
1474 * memory_pressure use sk_wmem_queued as write buffer accounting.
1475 */
1476 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1477 {
1478 struct proto *prot = sk->sk_prot;
1479 int amt = sk_mem_pages(size);
1480 int allocated;
1481
1482 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1483 allocated = atomic_add_return(amt, prot->memory_allocated);
1484
1485 /* Under limit. */
1486 if (allocated <= prot->sysctl_mem[0]) {
1487 if (prot->memory_pressure && *prot->memory_pressure)
1488 *prot->memory_pressure = 0;
1489 return 1;
1490 }
1491
1492 /* Under pressure. */
1493 if (allocated > prot->sysctl_mem[1])
1494 if (prot->enter_memory_pressure)
1495 prot->enter_memory_pressure(sk);
1496
1497 /* Over hard limit. */
1498 if (allocated > prot->sysctl_mem[2])
1499 goto suppress_allocation;
1500
1501 /* guarantee minimum buffer size under pressure */
1502 if (kind == SK_MEM_RECV) {
1503 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1504 return 1;
1505 } else { /* SK_MEM_SEND */
1506 if (sk->sk_type == SOCK_STREAM) {
1507 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1508 return 1;
1509 } else if (atomic_read(&sk->sk_wmem_alloc) <
1510 prot->sysctl_wmem[0])
1511 return 1;
1512 }
1513
1514 if (prot->memory_pressure) {
1515 int alloc;
1516
1517 if (!*prot->memory_pressure)
1518 return 1;
1519 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1520 if (prot->sysctl_mem[2] > alloc *
1521 sk_mem_pages(sk->sk_wmem_queued +
1522 atomic_read(&sk->sk_rmem_alloc) +
1523 sk->sk_forward_alloc))
1524 return 1;
1525 }
1526
1527 suppress_allocation:
1528
1529 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1530 sk_stream_moderate_sndbuf(sk);
1531
1532 /* Fail only if socket is _under_ its sndbuf.
1533 * In this case we cannot block, so that we have to fail.
1534 */
1535 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1536 return 1;
1537 }
1538
1539 /* Alas. Undo changes. */
1540 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1541 atomic_sub(amt, prot->memory_allocated);
1542 return 0;
1543 }
1544
1545 EXPORT_SYMBOL(__sk_mem_schedule);
1546
1547 /**
1548 * __sk_reclaim - reclaim memory_allocated
1549 * @sk: socket
1550 */
1551 void __sk_mem_reclaim(struct sock *sk)
1552 {
1553 struct proto *prot = sk->sk_prot;
1554
1555 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1556 prot->memory_allocated);
1557 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1558
1559 if (prot->memory_pressure && *prot->memory_pressure &&
1560 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1561 *prot->memory_pressure = 0;
1562 }
1563
1564 EXPORT_SYMBOL(__sk_mem_reclaim);
1565
1566
1567 /*
1568 * Set of default routines for initialising struct proto_ops when
1569 * the protocol does not support a particular function. In certain
1570 * cases where it makes no sense for a protocol to have a "do nothing"
1571 * function, some default processing is provided.
1572 */
1573
1574 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1575 {
1576 return -EOPNOTSUPP;
1577 }
1578
1579 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1580 int len, int flags)
1581 {
1582 return -EOPNOTSUPP;
1583 }
1584
1585 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1586 {
1587 return -EOPNOTSUPP;
1588 }
1589
1590 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1591 {
1592 return -EOPNOTSUPP;
1593 }
1594
1595 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1596 int *len, int peer)
1597 {
1598 return -EOPNOTSUPP;
1599 }
1600
1601 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1602 {
1603 return 0;
1604 }
1605
1606 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1607 {
1608 return -EOPNOTSUPP;
1609 }
1610
1611 int sock_no_listen(struct socket *sock, int backlog)
1612 {
1613 return -EOPNOTSUPP;
1614 }
1615
1616 int sock_no_shutdown(struct socket *sock, int how)
1617 {
1618 return -EOPNOTSUPP;
1619 }
1620
1621 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1622 char __user *optval, int optlen)
1623 {
1624 return -EOPNOTSUPP;
1625 }
1626
1627 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1628 char __user *optval, int __user *optlen)
1629 {
1630 return -EOPNOTSUPP;
1631 }
1632
1633 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1634 size_t len)
1635 {
1636 return -EOPNOTSUPP;
1637 }
1638
1639 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1640 size_t len, int flags)
1641 {
1642 return -EOPNOTSUPP;
1643 }
1644
1645 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1646 {
1647 /* Mirror missing mmap method error code */
1648 return -ENODEV;
1649 }
1650
1651 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1652 {
1653 ssize_t res;
1654 struct msghdr msg = {.msg_flags = flags};
1655 struct kvec iov;
1656 char *kaddr = kmap(page);
1657 iov.iov_base = kaddr + offset;
1658 iov.iov_len = size;
1659 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1660 kunmap(page);
1661 return res;
1662 }
1663
1664 /*
1665 * Default Socket Callbacks
1666 */
1667
1668 static void sock_def_wakeup(struct sock *sk)
1669 {
1670 read_lock(&sk->sk_callback_lock);
1671 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1672 wake_up_interruptible_all(sk->sk_sleep);
1673 read_unlock(&sk->sk_callback_lock);
1674 }
1675
1676 static void sock_def_error_report(struct sock *sk)
1677 {
1678 read_lock(&sk->sk_callback_lock);
1679 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1680 wake_up_interruptible_poll(sk->sk_sleep, POLLERR);
1681 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1682 read_unlock(&sk->sk_callback_lock);
1683 }
1684
1685 static void sock_def_readable(struct sock *sk, int len)
1686 {
1687 read_lock(&sk->sk_callback_lock);
1688 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1689 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN |
1690 POLLRDNORM | POLLRDBAND);
1691 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1692 read_unlock(&sk->sk_callback_lock);
1693 }
1694
1695 static void sock_def_write_space(struct sock *sk)
1696 {
1697 read_lock(&sk->sk_callback_lock);
1698
1699 /* Do not wake up a writer until he can make "significant"
1700 * progress. --DaveM
1701 */
1702 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1703 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1704 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT |
1705 POLLWRNORM | POLLWRBAND);
1706
1707 /* Should agree with poll, otherwise some programs break */
1708 if (sock_writeable(sk))
1709 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1710 }
1711
1712 read_unlock(&sk->sk_callback_lock);
1713 }
1714
1715 static void sock_def_destruct(struct sock *sk)
1716 {
1717 kfree(sk->sk_protinfo);
1718 }
1719
1720 void sk_send_sigurg(struct sock *sk)
1721 {
1722 if (sk->sk_socket && sk->sk_socket->file)
1723 if (send_sigurg(&sk->sk_socket->file->f_owner))
1724 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1725 }
1726
1727 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1728 unsigned long expires)
1729 {
1730 if (!mod_timer(timer, expires))
1731 sock_hold(sk);
1732 }
1733
1734 EXPORT_SYMBOL(sk_reset_timer);
1735
1736 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1737 {
1738 if (timer_pending(timer) && del_timer(timer))
1739 __sock_put(sk);
1740 }
1741
1742 EXPORT_SYMBOL(sk_stop_timer);
1743
1744 void sock_init_data(struct socket *sock, struct sock *sk)
1745 {
1746 skb_queue_head_init(&sk->sk_receive_queue);
1747 skb_queue_head_init(&sk->sk_write_queue);
1748 skb_queue_head_init(&sk->sk_error_queue);
1749 #ifdef CONFIG_NET_DMA
1750 skb_queue_head_init(&sk->sk_async_wait_queue);
1751 #endif
1752
1753 sk->sk_send_head = NULL;
1754
1755 init_timer(&sk->sk_timer);
1756
1757 sk->sk_allocation = GFP_KERNEL;
1758 sk->sk_rcvbuf = sysctl_rmem_default;
1759 sk->sk_sndbuf = sysctl_wmem_default;
1760 sk->sk_state = TCP_CLOSE;
1761 sk_set_socket(sk, sock);
1762
1763 sock_set_flag(sk, SOCK_ZAPPED);
1764
1765 if (sock) {
1766 sk->sk_type = sock->type;
1767 sk->sk_sleep = &sock->wait;
1768 sock->sk = sk;
1769 } else
1770 sk->sk_sleep = NULL;
1771
1772 rwlock_init(&sk->sk_dst_lock);
1773 rwlock_init(&sk->sk_callback_lock);
1774 lockdep_set_class_and_name(&sk->sk_callback_lock,
1775 af_callback_keys + sk->sk_family,
1776 af_family_clock_key_strings[sk->sk_family]);
1777
1778 sk->sk_state_change = sock_def_wakeup;
1779 sk->sk_data_ready = sock_def_readable;
1780 sk->sk_write_space = sock_def_write_space;
1781 sk->sk_error_report = sock_def_error_report;
1782 sk->sk_destruct = sock_def_destruct;
1783
1784 sk->sk_sndmsg_page = NULL;
1785 sk->sk_sndmsg_off = 0;
1786
1787 sk->sk_peercred.pid = 0;
1788 sk->sk_peercred.uid = -1;
1789 sk->sk_peercred.gid = -1;
1790 sk->sk_write_pending = 0;
1791 sk->sk_rcvlowat = 1;
1792 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1793 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1794
1795 sk->sk_stamp = ktime_set(-1L, 0);
1796
1797 atomic_set(&sk->sk_refcnt, 1);
1798 atomic_set(&sk->sk_drops, 0);
1799 }
1800
1801 void lock_sock_nested(struct sock *sk, int subclass)
1802 {
1803 might_sleep();
1804 spin_lock_bh(&sk->sk_lock.slock);
1805 if (sk->sk_lock.owned)
1806 __lock_sock(sk);
1807 sk->sk_lock.owned = 1;
1808 spin_unlock(&sk->sk_lock.slock);
1809 /*
1810 * The sk_lock has mutex_lock() semantics here:
1811 */
1812 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1813 local_bh_enable();
1814 }
1815
1816 EXPORT_SYMBOL(lock_sock_nested);
1817
1818 void release_sock(struct sock *sk)
1819 {
1820 /*
1821 * The sk_lock has mutex_unlock() semantics:
1822 */
1823 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1824
1825 spin_lock_bh(&sk->sk_lock.slock);
1826 if (sk->sk_backlog.tail)
1827 __release_sock(sk);
1828 sk->sk_lock.owned = 0;
1829 if (waitqueue_active(&sk->sk_lock.wq))
1830 wake_up(&sk->sk_lock.wq);
1831 spin_unlock_bh(&sk->sk_lock.slock);
1832 }
1833 EXPORT_SYMBOL(release_sock);
1834
1835 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1836 {
1837 struct timeval tv;
1838 if (!sock_flag(sk, SOCK_TIMESTAMP))
1839 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1840 tv = ktime_to_timeval(sk->sk_stamp);
1841 if (tv.tv_sec == -1)
1842 return -ENOENT;
1843 if (tv.tv_sec == 0) {
1844 sk->sk_stamp = ktime_get_real();
1845 tv = ktime_to_timeval(sk->sk_stamp);
1846 }
1847 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1848 }
1849 EXPORT_SYMBOL(sock_get_timestamp);
1850
1851 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1852 {
1853 struct timespec ts;
1854 if (!sock_flag(sk, SOCK_TIMESTAMP))
1855 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1856 ts = ktime_to_timespec(sk->sk_stamp);
1857 if (ts.tv_sec == -1)
1858 return -ENOENT;
1859 if (ts.tv_sec == 0) {
1860 sk->sk_stamp = ktime_get_real();
1861 ts = ktime_to_timespec(sk->sk_stamp);
1862 }
1863 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1864 }
1865 EXPORT_SYMBOL(sock_get_timestampns);
1866
1867 void sock_enable_timestamp(struct sock *sk, int flag)
1868 {
1869 if (!sock_flag(sk, flag)) {
1870 sock_set_flag(sk, flag);
1871 /*
1872 * we just set one of the two flags which require net
1873 * time stamping, but time stamping might have been on
1874 * already because of the other one
1875 */
1876 if (!sock_flag(sk,
1877 flag == SOCK_TIMESTAMP ?
1878 SOCK_TIMESTAMPING_RX_SOFTWARE :
1879 SOCK_TIMESTAMP))
1880 net_enable_timestamp();
1881 }
1882 }
1883
1884 /*
1885 * Get a socket option on an socket.
1886 *
1887 * FIX: POSIX 1003.1g is very ambiguous here. It states that
1888 * asynchronous errors should be reported by getsockopt. We assume
1889 * this means if you specify SO_ERROR (otherwise whats the point of it).
1890 */
1891 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1892 char __user *optval, int __user *optlen)
1893 {
1894 struct sock *sk = sock->sk;
1895
1896 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1897 }
1898
1899 EXPORT_SYMBOL(sock_common_getsockopt);
1900
1901 #ifdef CONFIG_COMPAT
1902 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1903 char __user *optval, int __user *optlen)
1904 {
1905 struct sock *sk = sock->sk;
1906
1907 if (sk->sk_prot->compat_getsockopt != NULL)
1908 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1909 optval, optlen);
1910 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1911 }
1912 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1913 #endif
1914
1915 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1916 struct msghdr *msg, size_t size, int flags)
1917 {
1918 struct sock *sk = sock->sk;
1919 int addr_len = 0;
1920 int err;
1921
1922 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1923 flags & ~MSG_DONTWAIT, &addr_len);
1924 if (err >= 0)
1925 msg->msg_namelen = addr_len;
1926 return err;
1927 }
1928
1929 EXPORT_SYMBOL(sock_common_recvmsg);
1930
1931 /*
1932 * Set socket options on an inet socket.
1933 */
1934 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1935 char __user *optval, int optlen)
1936 {
1937 struct sock *sk = sock->sk;
1938
1939 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1940 }
1941
1942 EXPORT_SYMBOL(sock_common_setsockopt);
1943
1944 #ifdef CONFIG_COMPAT
1945 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1946 char __user *optval, int optlen)
1947 {
1948 struct sock *sk = sock->sk;
1949
1950 if (sk->sk_prot->compat_setsockopt != NULL)
1951 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1952 optval, optlen);
1953 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1954 }
1955 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1956 #endif
1957
1958 void sk_common_release(struct sock *sk)
1959 {
1960 if (sk->sk_prot->destroy)
1961 sk->sk_prot->destroy(sk);
1962
1963 /*
1964 * Observation: when sock_common_release is called, processes have
1965 * no access to socket. But net still has.
1966 * Step one, detach it from networking:
1967 *
1968 * A. Remove from hash tables.
1969 */
1970
1971 sk->sk_prot->unhash(sk);
1972
1973 /*
1974 * In this point socket cannot receive new packets, but it is possible
1975 * that some packets are in flight because some CPU runs receiver and
1976 * did hash table lookup before we unhashed socket. They will achieve
1977 * receive queue and will be purged by socket destructor.
1978 *
1979 * Also we still have packets pending on receive queue and probably,
1980 * our own packets waiting in device queues. sock_destroy will drain
1981 * receive queue, but transmitted packets will delay socket destruction
1982 * until the last reference will be released.
1983 */
1984
1985 sock_orphan(sk);
1986
1987 xfrm_sk_free_policy(sk);
1988
1989 sk_refcnt_debug_release(sk);
1990 sock_put(sk);
1991 }
1992
1993 EXPORT_SYMBOL(sk_common_release);
1994
1995 static DEFINE_RWLOCK(proto_list_lock);
1996 static LIST_HEAD(proto_list);
1997
1998 #ifdef CONFIG_PROC_FS
1999 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2000 struct prot_inuse {
2001 int val[PROTO_INUSE_NR];
2002 };
2003
2004 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2005
2006 #ifdef CONFIG_NET_NS
2007 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2008 {
2009 int cpu = smp_processor_id();
2010 per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2011 }
2012 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2013
2014 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2015 {
2016 int cpu, idx = prot->inuse_idx;
2017 int res = 0;
2018
2019 for_each_possible_cpu(cpu)
2020 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2021
2022 return res >= 0 ? res : 0;
2023 }
2024 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2025
2026 static int sock_inuse_init_net(struct net *net)
2027 {
2028 net->core.inuse = alloc_percpu(struct prot_inuse);
2029 return net->core.inuse ? 0 : -ENOMEM;
2030 }
2031
2032 static void sock_inuse_exit_net(struct net *net)
2033 {
2034 free_percpu(net->core.inuse);
2035 }
2036
2037 static struct pernet_operations net_inuse_ops = {
2038 .init = sock_inuse_init_net,
2039 .exit = sock_inuse_exit_net,
2040 };
2041
2042 static __init int net_inuse_init(void)
2043 {
2044 if (register_pernet_subsys(&net_inuse_ops))
2045 panic("Cannot initialize net inuse counters");
2046
2047 return 0;
2048 }
2049
2050 core_initcall(net_inuse_init);
2051 #else
2052 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2053
2054 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2055 {
2056 __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2057 }
2058 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2059
2060 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2061 {
2062 int cpu, idx = prot->inuse_idx;
2063 int res = 0;
2064
2065 for_each_possible_cpu(cpu)
2066 res += per_cpu(prot_inuse, cpu).val[idx];
2067
2068 return res >= 0 ? res : 0;
2069 }
2070 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2071 #endif
2072
2073 static void assign_proto_idx(struct proto *prot)
2074 {
2075 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2076
2077 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2078 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2079 return;
2080 }
2081
2082 set_bit(prot->inuse_idx, proto_inuse_idx);
2083 }
2084
2085 static void release_proto_idx(struct proto *prot)
2086 {
2087 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2088 clear_bit(prot->inuse_idx, proto_inuse_idx);
2089 }
2090 #else
2091 static inline void assign_proto_idx(struct proto *prot)
2092 {
2093 }
2094
2095 static inline void release_proto_idx(struct proto *prot)
2096 {
2097 }
2098 #endif
2099
2100 int proto_register(struct proto *prot, int alloc_slab)
2101 {
2102 if (alloc_slab) {
2103 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2104 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2105 NULL);
2106
2107 if (prot->slab == NULL) {
2108 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2109 prot->name);
2110 goto out;
2111 }
2112
2113 if (prot->rsk_prot != NULL) {
2114 static const char mask[] = "request_sock_%s";
2115
2116 prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2117 if (prot->rsk_prot->slab_name == NULL)
2118 goto out_free_sock_slab;
2119
2120 sprintf(prot->rsk_prot->slab_name, mask, prot->name);
2121 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2122 prot->rsk_prot->obj_size, 0,
2123 SLAB_HWCACHE_ALIGN, NULL);
2124
2125 if (prot->rsk_prot->slab == NULL) {
2126 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2127 prot->name);
2128 goto out_free_request_sock_slab_name;
2129 }
2130 }
2131
2132 if (prot->twsk_prot != NULL) {
2133 static const char mask[] = "tw_sock_%s";
2134
2135 prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2136
2137 if (prot->twsk_prot->twsk_slab_name == NULL)
2138 goto out_free_request_sock_slab;
2139
2140 sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name);
2141 prot->twsk_prot->twsk_slab =
2142 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2143 prot->twsk_prot->twsk_obj_size,
2144 0,
2145 SLAB_HWCACHE_ALIGN |
2146 prot->slab_flags,
2147 NULL);
2148 if (prot->twsk_prot->twsk_slab == NULL)
2149 goto out_free_timewait_sock_slab_name;
2150 }
2151 }
2152
2153 write_lock(&proto_list_lock);
2154 list_add(&prot->node, &proto_list);
2155 assign_proto_idx(prot);
2156 write_unlock(&proto_list_lock);
2157 return 0;
2158
2159 out_free_timewait_sock_slab_name:
2160 kfree(prot->twsk_prot->twsk_slab_name);
2161 out_free_request_sock_slab:
2162 if (prot->rsk_prot && prot->rsk_prot->slab) {
2163 kmem_cache_destroy(prot->rsk_prot->slab);
2164 prot->rsk_prot->slab = NULL;
2165 }
2166 out_free_request_sock_slab_name:
2167 kfree(prot->rsk_prot->slab_name);
2168 out_free_sock_slab:
2169 kmem_cache_destroy(prot->slab);
2170 prot->slab = NULL;
2171 out:
2172 return -ENOBUFS;
2173 }
2174
2175 EXPORT_SYMBOL(proto_register);
2176
2177 void proto_unregister(struct proto *prot)
2178 {
2179 write_lock(&proto_list_lock);
2180 release_proto_idx(prot);
2181 list_del(&prot->node);
2182 write_unlock(&proto_list_lock);
2183
2184 if (prot->slab != NULL) {
2185 kmem_cache_destroy(prot->slab);
2186 prot->slab = NULL;
2187 }
2188
2189 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2190 kmem_cache_destroy(prot->rsk_prot->slab);
2191 kfree(prot->rsk_prot->slab_name);
2192 prot->rsk_prot->slab = NULL;
2193 }
2194
2195 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2196 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2197 kfree(prot->twsk_prot->twsk_slab_name);
2198 prot->twsk_prot->twsk_slab = NULL;
2199 }
2200 }
2201
2202 EXPORT_SYMBOL(proto_unregister);
2203
2204 #ifdef CONFIG_PROC_FS
2205 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2206 __acquires(proto_list_lock)
2207 {
2208 read_lock(&proto_list_lock);
2209 return seq_list_start_head(&proto_list, *pos);
2210 }
2211
2212 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2213 {
2214 return seq_list_next(v, &proto_list, pos);
2215 }
2216
2217 static void proto_seq_stop(struct seq_file *seq, void *v)
2218 __releases(proto_list_lock)
2219 {
2220 read_unlock(&proto_list_lock);
2221 }
2222
2223 static char proto_method_implemented(const void *method)
2224 {
2225 return method == NULL ? 'n' : 'y';
2226 }
2227
2228 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2229 {
2230 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2231 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2232 proto->name,
2233 proto->obj_size,
2234 sock_prot_inuse_get(seq_file_net(seq), proto),
2235 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2236 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2237 proto->max_header,
2238 proto->slab == NULL ? "no" : "yes",
2239 module_name(proto->owner),
2240 proto_method_implemented(proto->close),
2241 proto_method_implemented(proto->connect),
2242 proto_method_implemented(proto->disconnect),
2243 proto_method_implemented(proto->accept),
2244 proto_method_implemented(proto->ioctl),
2245 proto_method_implemented(proto->init),
2246 proto_method_implemented(proto->destroy),
2247 proto_method_implemented(proto->shutdown),
2248 proto_method_implemented(proto->setsockopt),
2249 proto_method_implemented(proto->getsockopt),
2250 proto_method_implemented(proto->sendmsg),
2251 proto_method_implemented(proto->recvmsg),
2252 proto_method_implemented(proto->sendpage),
2253 proto_method_implemented(proto->bind),
2254 proto_method_implemented(proto->backlog_rcv),
2255 proto_method_implemented(proto->hash),
2256 proto_method_implemented(proto->unhash),
2257 proto_method_implemented(proto->get_port),
2258 proto_method_implemented(proto->enter_memory_pressure));
2259 }
2260
2261 static int proto_seq_show(struct seq_file *seq, void *v)
2262 {
2263 if (v == &proto_list)
2264 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2265 "protocol",
2266 "size",
2267 "sockets",
2268 "memory",
2269 "press",
2270 "maxhdr",
2271 "slab",
2272 "module",
2273 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2274 else
2275 proto_seq_printf(seq, list_entry(v, struct proto, node));
2276 return 0;
2277 }
2278
2279 static const struct seq_operations proto_seq_ops = {
2280 .start = proto_seq_start,
2281 .next = proto_seq_next,
2282 .stop = proto_seq_stop,
2283 .show = proto_seq_show,
2284 };
2285
2286 static int proto_seq_open(struct inode *inode, struct file *file)
2287 {
2288 return seq_open_net(inode, file, &proto_seq_ops,
2289 sizeof(struct seq_net_private));
2290 }
2291
2292 static const struct file_operations proto_seq_fops = {
2293 .owner = THIS_MODULE,
2294 .open = proto_seq_open,
2295 .read = seq_read,
2296 .llseek = seq_lseek,
2297 .release = seq_release_net,
2298 };
2299
2300 static __net_init int proto_init_net(struct net *net)
2301 {
2302 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2303 return -ENOMEM;
2304
2305 return 0;
2306 }
2307
2308 static __net_exit void proto_exit_net(struct net *net)
2309 {
2310 proc_net_remove(net, "protocols");
2311 }
2312
2313
2314 static __net_initdata struct pernet_operations proto_net_ops = {
2315 .init = proto_init_net,
2316 .exit = proto_exit_net,
2317 };
2318
2319 static int __init proto_init(void)
2320 {
2321 return register_pernet_subsys(&proto_net_ops);
2322 }
2323
2324 subsys_initcall(proto_init);
2325
2326 #endif /* PROC_FS */
2327
2328 EXPORT_SYMBOL(sk_alloc);
2329 EXPORT_SYMBOL(sk_free);
2330 EXPORT_SYMBOL(sk_send_sigurg);
2331 EXPORT_SYMBOL(sock_alloc_send_skb);
2332 EXPORT_SYMBOL(sock_init_data);
2333 EXPORT_SYMBOL(sock_kfree_s);
2334 EXPORT_SYMBOL(sock_kmalloc);
2335 EXPORT_SYMBOL(sock_no_accept);
2336 EXPORT_SYMBOL(sock_no_bind);
2337 EXPORT_SYMBOL(sock_no_connect);
2338 EXPORT_SYMBOL(sock_no_getname);
2339 EXPORT_SYMBOL(sock_no_getsockopt);
2340 EXPORT_SYMBOL(sock_no_ioctl);
2341 EXPORT_SYMBOL(sock_no_listen);
2342 EXPORT_SYMBOL(sock_no_mmap);
2343 EXPORT_SYMBOL(sock_no_poll);
2344 EXPORT_SYMBOL(sock_no_recvmsg);
2345 EXPORT_SYMBOL(sock_no_sendmsg);
2346 EXPORT_SYMBOL(sock_no_sendpage);
2347 EXPORT_SYMBOL(sock_no_setsockopt);
2348 EXPORT_SYMBOL(sock_no_shutdown);
2349 EXPORT_SYMBOL(sock_no_socketpair);
2350 EXPORT_SYMBOL(sock_rfree);
2351 EXPORT_SYMBOL(sock_setsockopt);
2352 EXPORT_SYMBOL(sock_wfree);
2353 EXPORT_SYMBOL(sock_wmalloc);
2354 EXPORT_SYMBOL(sock_i_uid);
2355 EXPORT_SYMBOL(sock_i_ino);
2356 EXPORT_SYMBOL(sysctl_optmem_max);