]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/core/sock.c
Merge branch 'next-merged' of git://aeryn.fluff.org.uk/bjdooks/linux into devel
[mirror_ubuntu-zesty-kernel.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
116
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <net/xfrm.h>
124 #include <linux/ipsec.h>
125
126 #include <linux/filter.h>
127
128 #ifdef CONFIG_INET
129 #include <net/tcp.h>
130 #endif
131
132 /*
133 * Each address family might have different locking rules, so we have
134 * one slock key per address family:
135 */
136 static struct lock_class_key af_family_keys[AF_MAX];
137 static struct lock_class_key af_family_slock_keys[AF_MAX];
138
139 /*
140 * Make lock validator output more readable. (we pre-construct these
141 * strings build-time, so that runtime initialization of socket
142 * locks is fast):
143 */
144 static const char *af_family_key_strings[AF_MAX+1] = {
145 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
146 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
147 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
148 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
149 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
150 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
151 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
152 "sk_lock-21" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
153 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
154 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
155 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
156 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
157 "sk_lock-AF_MAX"
158 };
159 static const char *af_family_slock_key_strings[AF_MAX+1] = {
160 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
161 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
162 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
163 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
164 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
165 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
166 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
167 "slock-21" , "slock-AF_SNA" , "slock-AF_IRDA" ,
168 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
169 "slock-27" , "slock-28" , "slock-AF_CAN" ,
170 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
171 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
172 "slock-AF_MAX"
173 };
174 static const char *af_family_clock_key_strings[AF_MAX+1] = {
175 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
176 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
177 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
178 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
179 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
180 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
181 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
182 "clock-21" , "clock-AF_SNA" , "clock-AF_IRDA" ,
183 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
184 "clock-27" , "clock-28" , "clock-AF_CAN" ,
185 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
186 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
187 "clock-AF_MAX"
188 };
189
190 /*
191 * sk_callback_lock locking rules are per-address-family,
192 * so split the lock classes by using a per-AF key:
193 */
194 static struct lock_class_key af_callback_keys[AF_MAX];
195
196 /* Take into consideration the size of the struct sk_buff overhead in the
197 * determination of these values, since that is non-constant across
198 * platforms. This makes socket queueing behavior and performance
199 * not depend upon such differences.
200 */
201 #define _SK_MEM_PACKETS 256
202 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
203 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
204 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205
206 /* Run time adjustable parameters. */
207 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
208 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
209 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
210 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
211
212 /* Maximal space eaten by iovec or ancilliary data plus some space */
213 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
214
215 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
216 {
217 struct timeval tv;
218
219 if (optlen < sizeof(tv))
220 return -EINVAL;
221 if (copy_from_user(&tv, optval, sizeof(tv)))
222 return -EFAULT;
223 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
224 return -EDOM;
225
226 if (tv.tv_sec < 0) {
227 static int warned __read_mostly;
228
229 *timeo_p = 0;
230 if (warned < 10 && net_ratelimit()) {
231 warned++;
232 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
233 "tries to set negative timeout\n",
234 current->comm, task_pid_nr(current));
235 }
236 return 0;
237 }
238 *timeo_p = MAX_SCHEDULE_TIMEOUT;
239 if (tv.tv_sec == 0 && tv.tv_usec == 0)
240 return 0;
241 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243 return 0;
244 }
245
246 static void sock_warn_obsolete_bsdism(const char *name)
247 {
248 static int warned;
249 static char warncomm[TASK_COMM_LEN];
250 if (strcmp(warncomm, current->comm) && warned < 5) {
251 strcpy(warncomm, current->comm);
252 printk(KERN_WARNING "process `%s' is using obsolete "
253 "%s SO_BSDCOMPAT\n", warncomm, name);
254 warned++;
255 }
256 }
257
258 static void sock_disable_timestamp(struct sock *sk)
259 {
260 if (sock_flag(sk, SOCK_TIMESTAMP)) {
261 sock_reset_flag(sk, SOCK_TIMESTAMP);
262 net_disable_timestamp();
263 }
264 }
265
266
267 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
268 {
269 int err = 0;
270 int skb_len;
271
272 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
273 number of warnings when compiling with -W --ANK
274 */
275 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276 (unsigned)sk->sk_rcvbuf) {
277 err = -ENOMEM;
278 goto out;
279 }
280
281 err = sk_filter(sk, skb);
282 if (err)
283 goto out;
284
285 if (!sk_rmem_schedule(sk, skb->truesize)) {
286 err = -ENOBUFS;
287 goto out;
288 }
289
290 skb->dev = NULL;
291 skb_set_owner_r(skb, sk);
292
293 /* Cache the SKB length before we tack it onto the receive
294 * queue. Once it is added it no longer belongs to us and
295 * may be freed by other threads of control pulling packets
296 * from the queue.
297 */
298 skb_len = skb->len;
299
300 skb_queue_tail(&sk->sk_receive_queue, skb);
301
302 if (!sock_flag(sk, SOCK_DEAD))
303 sk->sk_data_ready(sk, skb_len);
304 out:
305 return err;
306 }
307 EXPORT_SYMBOL(sock_queue_rcv_skb);
308
309 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
310 {
311 int rc = NET_RX_SUCCESS;
312
313 if (sk_filter(sk, skb))
314 goto discard_and_relse;
315
316 skb->dev = NULL;
317
318 if (nested)
319 bh_lock_sock_nested(sk);
320 else
321 bh_lock_sock(sk);
322 if (!sock_owned_by_user(sk)) {
323 /*
324 * trylock + unlock semantics:
325 */
326 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
327
328 rc = sk_backlog_rcv(sk, skb);
329
330 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
331 } else
332 sk_add_backlog(sk, skb);
333 bh_unlock_sock(sk);
334 out:
335 sock_put(sk);
336 return rc;
337 discard_and_relse:
338 kfree_skb(skb);
339 goto out;
340 }
341 EXPORT_SYMBOL(sk_receive_skb);
342
343 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
344 {
345 struct dst_entry *dst = sk->sk_dst_cache;
346
347 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
348 sk->sk_dst_cache = NULL;
349 dst_release(dst);
350 return NULL;
351 }
352
353 return dst;
354 }
355 EXPORT_SYMBOL(__sk_dst_check);
356
357 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
358 {
359 struct dst_entry *dst = sk_dst_get(sk);
360
361 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
362 sk_dst_reset(sk);
363 dst_release(dst);
364 return NULL;
365 }
366
367 return dst;
368 }
369 EXPORT_SYMBOL(sk_dst_check);
370
371 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
372 {
373 int ret = -ENOPROTOOPT;
374 #ifdef CONFIG_NETDEVICES
375 struct net *net = sock_net(sk);
376 char devname[IFNAMSIZ];
377 int index;
378
379 /* Sorry... */
380 ret = -EPERM;
381 if (!capable(CAP_NET_RAW))
382 goto out;
383
384 ret = -EINVAL;
385 if (optlen < 0)
386 goto out;
387
388 /* Bind this socket to a particular device like "eth0",
389 * as specified in the passed interface name. If the
390 * name is "" or the option length is zero the socket
391 * is not bound.
392 */
393 if (optlen > IFNAMSIZ - 1)
394 optlen = IFNAMSIZ - 1;
395 memset(devname, 0, sizeof(devname));
396
397 ret = -EFAULT;
398 if (copy_from_user(devname, optval, optlen))
399 goto out;
400
401 if (devname[0] == '\0') {
402 index = 0;
403 } else {
404 struct net_device *dev = dev_get_by_name(net, devname);
405
406 ret = -ENODEV;
407 if (!dev)
408 goto out;
409
410 index = dev->ifindex;
411 dev_put(dev);
412 }
413
414 lock_sock(sk);
415 sk->sk_bound_dev_if = index;
416 sk_dst_reset(sk);
417 release_sock(sk);
418
419 ret = 0;
420
421 out:
422 #endif
423
424 return ret;
425 }
426
427 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
428 {
429 if (valbool)
430 sock_set_flag(sk, bit);
431 else
432 sock_reset_flag(sk, bit);
433 }
434
435 /*
436 * This is meant for all protocols to use and covers goings on
437 * at the socket level. Everything here is generic.
438 */
439
440 int sock_setsockopt(struct socket *sock, int level, int optname,
441 char __user *optval, int optlen)
442 {
443 struct sock *sk=sock->sk;
444 int val;
445 int valbool;
446 struct linger ling;
447 int ret = 0;
448
449 /*
450 * Options without arguments
451 */
452
453 if (optname == SO_BINDTODEVICE)
454 return sock_bindtodevice(sk, optval, optlen);
455
456 if (optlen < sizeof(int))
457 return -EINVAL;
458
459 if (get_user(val, (int __user *)optval))
460 return -EFAULT;
461
462 valbool = val?1:0;
463
464 lock_sock(sk);
465
466 switch(optname) {
467 case SO_DEBUG:
468 if (val && !capable(CAP_NET_ADMIN)) {
469 ret = -EACCES;
470 } else
471 sock_valbool_flag(sk, SOCK_DBG, valbool);
472 break;
473 case SO_REUSEADDR:
474 sk->sk_reuse = valbool;
475 break;
476 case SO_TYPE:
477 case SO_ERROR:
478 ret = -ENOPROTOOPT;
479 break;
480 case SO_DONTROUTE:
481 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
482 break;
483 case SO_BROADCAST:
484 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
485 break;
486 case SO_SNDBUF:
487 /* Don't error on this BSD doesn't and if you think
488 about it this is right. Otherwise apps have to
489 play 'guess the biggest size' games. RCVBUF/SNDBUF
490 are treated in BSD as hints */
491
492 if (val > sysctl_wmem_max)
493 val = sysctl_wmem_max;
494 set_sndbuf:
495 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
496 if ((val * 2) < SOCK_MIN_SNDBUF)
497 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
498 else
499 sk->sk_sndbuf = val * 2;
500
501 /*
502 * Wake up sending tasks if we
503 * upped the value.
504 */
505 sk->sk_write_space(sk);
506 break;
507
508 case SO_SNDBUFFORCE:
509 if (!capable(CAP_NET_ADMIN)) {
510 ret = -EPERM;
511 break;
512 }
513 goto set_sndbuf;
514
515 case SO_RCVBUF:
516 /* Don't error on this BSD doesn't and if you think
517 about it this is right. Otherwise apps have to
518 play 'guess the biggest size' games. RCVBUF/SNDBUF
519 are treated in BSD as hints */
520
521 if (val > sysctl_rmem_max)
522 val = sysctl_rmem_max;
523 set_rcvbuf:
524 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
525 /*
526 * We double it on the way in to account for
527 * "struct sk_buff" etc. overhead. Applications
528 * assume that the SO_RCVBUF setting they make will
529 * allow that much actual data to be received on that
530 * socket.
531 *
532 * Applications are unaware that "struct sk_buff" and
533 * other overheads allocate from the receive buffer
534 * during socket buffer allocation.
535 *
536 * And after considering the possible alternatives,
537 * returning the value we actually used in getsockopt
538 * is the most desirable behavior.
539 */
540 if ((val * 2) < SOCK_MIN_RCVBUF)
541 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
542 else
543 sk->sk_rcvbuf = val * 2;
544 break;
545
546 case SO_RCVBUFFORCE:
547 if (!capable(CAP_NET_ADMIN)) {
548 ret = -EPERM;
549 break;
550 }
551 goto set_rcvbuf;
552
553 case SO_KEEPALIVE:
554 #ifdef CONFIG_INET
555 if (sk->sk_protocol == IPPROTO_TCP)
556 tcp_set_keepalive(sk, valbool);
557 #endif
558 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
559 break;
560
561 case SO_OOBINLINE:
562 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
563 break;
564
565 case SO_NO_CHECK:
566 sk->sk_no_check = valbool;
567 break;
568
569 case SO_PRIORITY:
570 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
571 sk->sk_priority = val;
572 else
573 ret = -EPERM;
574 break;
575
576 case SO_LINGER:
577 if (optlen < sizeof(ling)) {
578 ret = -EINVAL; /* 1003.1g */
579 break;
580 }
581 if (copy_from_user(&ling,optval,sizeof(ling))) {
582 ret = -EFAULT;
583 break;
584 }
585 if (!ling.l_onoff)
586 sock_reset_flag(sk, SOCK_LINGER);
587 else {
588 #if (BITS_PER_LONG == 32)
589 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
590 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
591 else
592 #endif
593 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
594 sock_set_flag(sk, SOCK_LINGER);
595 }
596 break;
597
598 case SO_BSDCOMPAT:
599 sock_warn_obsolete_bsdism("setsockopt");
600 break;
601
602 case SO_PASSCRED:
603 if (valbool)
604 set_bit(SOCK_PASSCRED, &sock->flags);
605 else
606 clear_bit(SOCK_PASSCRED, &sock->flags);
607 break;
608
609 case SO_TIMESTAMP:
610 case SO_TIMESTAMPNS:
611 if (valbool) {
612 if (optname == SO_TIMESTAMP)
613 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
614 else
615 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
616 sock_set_flag(sk, SOCK_RCVTSTAMP);
617 sock_enable_timestamp(sk);
618 } else {
619 sock_reset_flag(sk, SOCK_RCVTSTAMP);
620 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
621 }
622 break;
623
624 case SO_RCVLOWAT:
625 if (val < 0)
626 val = INT_MAX;
627 sk->sk_rcvlowat = val ? : 1;
628 break;
629
630 case SO_RCVTIMEO:
631 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
632 break;
633
634 case SO_SNDTIMEO:
635 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
636 break;
637
638 case SO_ATTACH_FILTER:
639 ret = -EINVAL;
640 if (optlen == sizeof(struct sock_fprog)) {
641 struct sock_fprog fprog;
642
643 ret = -EFAULT;
644 if (copy_from_user(&fprog, optval, sizeof(fprog)))
645 break;
646
647 ret = sk_attach_filter(&fprog, sk);
648 }
649 break;
650
651 case SO_DETACH_FILTER:
652 ret = sk_detach_filter(sk);
653 break;
654
655 case SO_PASSSEC:
656 if (valbool)
657 set_bit(SOCK_PASSSEC, &sock->flags);
658 else
659 clear_bit(SOCK_PASSSEC, &sock->flags);
660 break;
661 case SO_MARK:
662 if (!capable(CAP_NET_ADMIN))
663 ret = -EPERM;
664 else {
665 sk->sk_mark = val;
666 }
667 break;
668
669 /* We implement the SO_SNDLOWAT etc to
670 not be settable (1003.1g 5.3) */
671 default:
672 ret = -ENOPROTOOPT;
673 break;
674 }
675 release_sock(sk);
676 return ret;
677 }
678
679
680 int sock_getsockopt(struct socket *sock, int level, int optname,
681 char __user *optval, int __user *optlen)
682 {
683 struct sock *sk = sock->sk;
684
685 union {
686 int val;
687 struct linger ling;
688 struct timeval tm;
689 } v;
690
691 unsigned int lv = sizeof(int);
692 int len;
693
694 if (get_user(len, optlen))
695 return -EFAULT;
696 if (len < 0)
697 return -EINVAL;
698
699 switch(optname) {
700 case SO_DEBUG:
701 v.val = sock_flag(sk, SOCK_DBG);
702 break;
703
704 case SO_DONTROUTE:
705 v.val = sock_flag(sk, SOCK_LOCALROUTE);
706 break;
707
708 case SO_BROADCAST:
709 v.val = !!sock_flag(sk, SOCK_BROADCAST);
710 break;
711
712 case SO_SNDBUF:
713 v.val = sk->sk_sndbuf;
714 break;
715
716 case SO_RCVBUF:
717 v.val = sk->sk_rcvbuf;
718 break;
719
720 case SO_REUSEADDR:
721 v.val = sk->sk_reuse;
722 break;
723
724 case SO_KEEPALIVE:
725 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
726 break;
727
728 case SO_TYPE:
729 v.val = sk->sk_type;
730 break;
731
732 case SO_ERROR:
733 v.val = -sock_error(sk);
734 if (v.val==0)
735 v.val = xchg(&sk->sk_err_soft, 0);
736 break;
737
738 case SO_OOBINLINE:
739 v.val = !!sock_flag(sk, SOCK_URGINLINE);
740 break;
741
742 case SO_NO_CHECK:
743 v.val = sk->sk_no_check;
744 break;
745
746 case SO_PRIORITY:
747 v.val = sk->sk_priority;
748 break;
749
750 case SO_LINGER:
751 lv = sizeof(v.ling);
752 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
753 v.ling.l_linger = sk->sk_lingertime / HZ;
754 break;
755
756 case SO_BSDCOMPAT:
757 sock_warn_obsolete_bsdism("getsockopt");
758 break;
759
760 case SO_TIMESTAMP:
761 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
762 !sock_flag(sk, SOCK_RCVTSTAMPNS);
763 break;
764
765 case SO_TIMESTAMPNS:
766 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
767 break;
768
769 case SO_RCVTIMEO:
770 lv=sizeof(struct timeval);
771 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
772 v.tm.tv_sec = 0;
773 v.tm.tv_usec = 0;
774 } else {
775 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
776 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
777 }
778 break;
779
780 case SO_SNDTIMEO:
781 lv=sizeof(struct timeval);
782 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
783 v.tm.tv_sec = 0;
784 v.tm.tv_usec = 0;
785 } else {
786 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
787 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
788 }
789 break;
790
791 case SO_RCVLOWAT:
792 v.val = sk->sk_rcvlowat;
793 break;
794
795 case SO_SNDLOWAT:
796 v.val=1;
797 break;
798
799 case SO_PASSCRED:
800 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
801 break;
802
803 case SO_PEERCRED:
804 if (len > sizeof(sk->sk_peercred))
805 len = sizeof(sk->sk_peercred);
806 if (copy_to_user(optval, &sk->sk_peercred, len))
807 return -EFAULT;
808 goto lenout;
809
810 case SO_PEERNAME:
811 {
812 char address[128];
813
814 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
815 return -ENOTCONN;
816 if (lv < len)
817 return -EINVAL;
818 if (copy_to_user(optval, address, len))
819 return -EFAULT;
820 goto lenout;
821 }
822
823 /* Dubious BSD thing... Probably nobody even uses it, but
824 * the UNIX standard wants it for whatever reason... -DaveM
825 */
826 case SO_ACCEPTCONN:
827 v.val = sk->sk_state == TCP_LISTEN;
828 break;
829
830 case SO_PASSSEC:
831 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
832 break;
833
834 case SO_PEERSEC:
835 return security_socket_getpeersec_stream(sock, optval, optlen, len);
836
837 case SO_MARK:
838 v.val = sk->sk_mark;
839 break;
840
841 default:
842 return -ENOPROTOOPT;
843 }
844
845 if (len > lv)
846 len = lv;
847 if (copy_to_user(optval, &v, len))
848 return -EFAULT;
849 lenout:
850 if (put_user(len, optlen))
851 return -EFAULT;
852 return 0;
853 }
854
855 /*
856 * Initialize an sk_lock.
857 *
858 * (We also register the sk_lock with the lock validator.)
859 */
860 static inline void sock_lock_init(struct sock *sk)
861 {
862 sock_lock_init_class_and_name(sk,
863 af_family_slock_key_strings[sk->sk_family],
864 af_family_slock_keys + sk->sk_family,
865 af_family_key_strings[sk->sk_family],
866 af_family_keys + sk->sk_family);
867 }
868
869 static void sock_copy(struct sock *nsk, const struct sock *osk)
870 {
871 #ifdef CONFIG_SECURITY_NETWORK
872 void *sptr = nsk->sk_security;
873 #endif
874
875 memcpy(nsk, osk, osk->sk_prot->obj_size);
876 #ifdef CONFIG_SECURITY_NETWORK
877 nsk->sk_security = sptr;
878 security_sk_clone(osk, nsk);
879 #endif
880 }
881
882 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
883 int family)
884 {
885 struct sock *sk;
886 struct kmem_cache *slab;
887
888 slab = prot->slab;
889 if (slab != NULL)
890 sk = kmem_cache_alloc(slab, priority);
891 else
892 sk = kmalloc(prot->obj_size, priority);
893
894 if (sk != NULL) {
895 if (security_sk_alloc(sk, family, priority))
896 goto out_free;
897
898 if (!try_module_get(prot->owner))
899 goto out_free_sec;
900 }
901
902 return sk;
903
904 out_free_sec:
905 security_sk_free(sk);
906 out_free:
907 if (slab != NULL)
908 kmem_cache_free(slab, sk);
909 else
910 kfree(sk);
911 return NULL;
912 }
913
914 static void sk_prot_free(struct proto *prot, struct sock *sk)
915 {
916 struct kmem_cache *slab;
917 struct module *owner;
918
919 owner = prot->owner;
920 slab = prot->slab;
921
922 security_sk_free(sk);
923 if (slab != NULL)
924 kmem_cache_free(slab, sk);
925 else
926 kfree(sk);
927 module_put(owner);
928 }
929
930 /**
931 * sk_alloc - All socket objects are allocated here
932 * @net: the applicable net namespace
933 * @family: protocol family
934 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
935 * @prot: struct proto associated with this new sock instance
936 */
937 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
938 struct proto *prot)
939 {
940 struct sock *sk;
941
942 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
943 if (sk) {
944 sk->sk_family = family;
945 /*
946 * See comment in struct sock definition to understand
947 * why we need sk_prot_creator -acme
948 */
949 sk->sk_prot = sk->sk_prot_creator = prot;
950 sock_lock_init(sk);
951 sock_net_set(sk, get_net(net));
952 }
953
954 return sk;
955 }
956
957 void sk_free(struct sock *sk)
958 {
959 struct sk_filter *filter;
960
961 if (sk->sk_destruct)
962 sk->sk_destruct(sk);
963
964 filter = rcu_dereference(sk->sk_filter);
965 if (filter) {
966 sk_filter_uncharge(sk, filter);
967 rcu_assign_pointer(sk->sk_filter, NULL);
968 }
969
970 sock_disable_timestamp(sk);
971
972 if (atomic_read(&sk->sk_omem_alloc))
973 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
974 __func__, atomic_read(&sk->sk_omem_alloc));
975
976 put_net(sock_net(sk));
977 sk_prot_free(sk->sk_prot_creator, sk);
978 }
979
980 /*
981 * Last sock_put should drop referrence to sk->sk_net. It has already
982 * been dropped in sk_change_net. Taking referrence to stopping namespace
983 * is not an option.
984 * Take referrence to a socket to remove it from hash _alive_ and after that
985 * destroy it in the context of init_net.
986 */
987 void sk_release_kernel(struct sock *sk)
988 {
989 if (sk == NULL || sk->sk_socket == NULL)
990 return;
991
992 sock_hold(sk);
993 sock_release(sk->sk_socket);
994 release_net(sock_net(sk));
995 sock_net_set(sk, get_net(&init_net));
996 sock_put(sk);
997 }
998 EXPORT_SYMBOL(sk_release_kernel);
999
1000 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1001 {
1002 struct sock *newsk;
1003
1004 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1005 if (newsk != NULL) {
1006 struct sk_filter *filter;
1007
1008 sock_copy(newsk, sk);
1009
1010 /* SANITY */
1011 get_net(sock_net(newsk));
1012 sk_node_init(&newsk->sk_node);
1013 sock_lock_init(newsk);
1014 bh_lock_sock(newsk);
1015 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1016
1017 atomic_set(&newsk->sk_rmem_alloc, 0);
1018 atomic_set(&newsk->sk_wmem_alloc, 0);
1019 atomic_set(&newsk->sk_omem_alloc, 0);
1020 skb_queue_head_init(&newsk->sk_receive_queue);
1021 skb_queue_head_init(&newsk->sk_write_queue);
1022 #ifdef CONFIG_NET_DMA
1023 skb_queue_head_init(&newsk->sk_async_wait_queue);
1024 #endif
1025
1026 rwlock_init(&newsk->sk_dst_lock);
1027 rwlock_init(&newsk->sk_callback_lock);
1028 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1029 af_callback_keys + newsk->sk_family,
1030 af_family_clock_key_strings[newsk->sk_family]);
1031
1032 newsk->sk_dst_cache = NULL;
1033 newsk->sk_wmem_queued = 0;
1034 newsk->sk_forward_alloc = 0;
1035 newsk->sk_send_head = NULL;
1036 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1037
1038 sock_reset_flag(newsk, SOCK_DONE);
1039 skb_queue_head_init(&newsk->sk_error_queue);
1040
1041 filter = newsk->sk_filter;
1042 if (filter != NULL)
1043 sk_filter_charge(newsk, filter);
1044
1045 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1046 /* It is still raw copy of parent, so invalidate
1047 * destructor and make plain sk_free() */
1048 newsk->sk_destruct = NULL;
1049 sk_free(newsk);
1050 newsk = NULL;
1051 goto out;
1052 }
1053
1054 newsk->sk_err = 0;
1055 newsk->sk_priority = 0;
1056 atomic_set(&newsk->sk_refcnt, 2);
1057
1058 /*
1059 * Increment the counter in the same struct proto as the master
1060 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1061 * is the same as sk->sk_prot->socks, as this field was copied
1062 * with memcpy).
1063 *
1064 * This _changes_ the previous behaviour, where
1065 * tcp_create_openreq_child always was incrementing the
1066 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1067 * to be taken into account in all callers. -acme
1068 */
1069 sk_refcnt_debug_inc(newsk);
1070 sk_set_socket(newsk, NULL);
1071 newsk->sk_sleep = NULL;
1072
1073 if (newsk->sk_prot->sockets_allocated)
1074 atomic_inc(newsk->sk_prot->sockets_allocated);
1075 }
1076 out:
1077 return newsk;
1078 }
1079
1080 EXPORT_SYMBOL_GPL(sk_clone);
1081
1082 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1083 {
1084 __sk_dst_set(sk, dst);
1085 sk->sk_route_caps = dst->dev->features;
1086 if (sk->sk_route_caps & NETIF_F_GSO)
1087 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1088 if (sk_can_gso(sk)) {
1089 if (dst->header_len) {
1090 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1091 } else {
1092 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1093 sk->sk_gso_max_size = dst->dev->gso_max_size;
1094 }
1095 }
1096 }
1097 EXPORT_SYMBOL_GPL(sk_setup_caps);
1098
1099 void __init sk_init(void)
1100 {
1101 if (num_physpages <= 4096) {
1102 sysctl_wmem_max = 32767;
1103 sysctl_rmem_max = 32767;
1104 sysctl_wmem_default = 32767;
1105 sysctl_rmem_default = 32767;
1106 } else if (num_physpages >= 131072) {
1107 sysctl_wmem_max = 131071;
1108 sysctl_rmem_max = 131071;
1109 }
1110 }
1111
1112 /*
1113 * Simple resource managers for sockets.
1114 */
1115
1116
1117 /*
1118 * Write buffer destructor automatically called from kfree_skb.
1119 */
1120 void sock_wfree(struct sk_buff *skb)
1121 {
1122 struct sock *sk = skb->sk;
1123
1124 /* In case it might be waiting for more memory. */
1125 atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1126 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1127 sk->sk_write_space(sk);
1128 sock_put(sk);
1129 }
1130
1131 /*
1132 * Read buffer destructor automatically called from kfree_skb.
1133 */
1134 void sock_rfree(struct sk_buff *skb)
1135 {
1136 struct sock *sk = skb->sk;
1137
1138 skb_truesize_check(skb);
1139 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1140 sk_mem_uncharge(skb->sk, skb->truesize);
1141 }
1142
1143
1144 int sock_i_uid(struct sock *sk)
1145 {
1146 int uid;
1147
1148 read_lock(&sk->sk_callback_lock);
1149 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1150 read_unlock(&sk->sk_callback_lock);
1151 return uid;
1152 }
1153
1154 unsigned long sock_i_ino(struct sock *sk)
1155 {
1156 unsigned long ino;
1157
1158 read_lock(&sk->sk_callback_lock);
1159 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1160 read_unlock(&sk->sk_callback_lock);
1161 return ino;
1162 }
1163
1164 /*
1165 * Allocate a skb from the socket's send buffer.
1166 */
1167 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1168 gfp_t priority)
1169 {
1170 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1171 struct sk_buff * skb = alloc_skb(size, priority);
1172 if (skb) {
1173 skb_set_owner_w(skb, sk);
1174 return skb;
1175 }
1176 }
1177 return NULL;
1178 }
1179
1180 /*
1181 * Allocate a skb from the socket's receive buffer.
1182 */
1183 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1184 gfp_t priority)
1185 {
1186 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1187 struct sk_buff *skb = alloc_skb(size, priority);
1188 if (skb) {
1189 skb_set_owner_r(skb, sk);
1190 return skb;
1191 }
1192 }
1193 return NULL;
1194 }
1195
1196 /*
1197 * Allocate a memory block from the socket's option memory buffer.
1198 */
1199 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1200 {
1201 if ((unsigned)size <= sysctl_optmem_max &&
1202 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1203 void *mem;
1204 /* First do the add, to avoid the race if kmalloc
1205 * might sleep.
1206 */
1207 atomic_add(size, &sk->sk_omem_alloc);
1208 mem = kmalloc(size, priority);
1209 if (mem)
1210 return mem;
1211 atomic_sub(size, &sk->sk_omem_alloc);
1212 }
1213 return NULL;
1214 }
1215
1216 /*
1217 * Free an option memory block.
1218 */
1219 void sock_kfree_s(struct sock *sk, void *mem, int size)
1220 {
1221 kfree(mem);
1222 atomic_sub(size, &sk->sk_omem_alloc);
1223 }
1224
1225 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1226 I think, these locks should be removed for datagram sockets.
1227 */
1228 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1229 {
1230 DEFINE_WAIT(wait);
1231
1232 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1233 for (;;) {
1234 if (!timeo)
1235 break;
1236 if (signal_pending(current))
1237 break;
1238 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1239 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1240 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1241 break;
1242 if (sk->sk_shutdown & SEND_SHUTDOWN)
1243 break;
1244 if (sk->sk_err)
1245 break;
1246 timeo = schedule_timeout(timeo);
1247 }
1248 finish_wait(sk->sk_sleep, &wait);
1249 return timeo;
1250 }
1251
1252
1253 /*
1254 * Generic send/receive buffer handlers
1255 */
1256
1257 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1258 unsigned long header_len,
1259 unsigned long data_len,
1260 int noblock, int *errcode)
1261 {
1262 struct sk_buff *skb;
1263 gfp_t gfp_mask;
1264 long timeo;
1265 int err;
1266
1267 gfp_mask = sk->sk_allocation;
1268 if (gfp_mask & __GFP_WAIT)
1269 gfp_mask |= __GFP_REPEAT;
1270
1271 timeo = sock_sndtimeo(sk, noblock);
1272 while (1) {
1273 err = sock_error(sk);
1274 if (err != 0)
1275 goto failure;
1276
1277 err = -EPIPE;
1278 if (sk->sk_shutdown & SEND_SHUTDOWN)
1279 goto failure;
1280
1281 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1282 skb = alloc_skb(header_len, gfp_mask);
1283 if (skb) {
1284 int npages;
1285 int i;
1286
1287 /* No pages, we're done... */
1288 if (!data_len)
1289 break;
1290
1291 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1292 skb->truesize += data_len;
1293 skb_shinfo(skb)->nr_frags = npages;
1294 for (i = 0; i < npages; i++) {
1295 struct page *page;
1296 skb_frag_t *frag;
1297
1298 page = alloc_pages(sk->sk_allocation, 0);
1299 if (!page) {
1300 err = -ENOBUFS;
1301 skb_shinfo(skb)->nr_frags = i;
1302 kfree_skb(skb);
1303 goto failure;
1304 }
1305
1306 frag = &skb_shinfo(skb)->frags[i];
1307 frag->page = page;
1308 frag->page_offset = 0;
1309 frag->size = (data_len >= PAGE_SIZE ?
1310 PAGE_SIZE :
1311 data_len);
1312 data_len -= PAGE_SIZE;
1313 }
1314
1315 /* Full success... */
1316 break;
1317 }
1318 err = -ENOBUFS;
1319 goto failure;
1320 }
1321 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1322 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1323 err = -EAGAIN;
1324 if (!timeo)
1325 goto failure;
1326 if (signal_pending(current))
1327 goto interrupted;
1328 timeo = sock_wait_for_wmem(sk, timeo);
1329 }
1330
1331 skb_set_owner_w(skb, sk);
1332 return skb;
1333
1334 interrupted:
1335 err = sock_intr_errno(timeo);
1336 failure:
1337 *errcode = err;
1338 return NULL;
1339 }
1340
1341 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1342 int noblock, int *errcode)
1343 {
1344 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1345 }
1346
1347 static void __lock_sock(struct sock *sk)
1348 {
1349 DEFINE_WAIT(wait);
1350
1351 for (;;) {
1352 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1353 TASK_UNINTERRUPTIBLE);
1354 spin_unlock_bh(&sk->sk_lock.slock);
1355 schedule();
1356 spin_lock_bh(&sk->sk_lock.slock);
1357 if (!sock_owned_by_user(sk))
1358 break;
1359 }
1360 finish_wait(&sk->sk_lock.wq, &wait);
1361 }
1362
1363 static void __release_sock(struct sock *sk)
1364 {
1365 struct sk_buff *skb = sk->sk_backlog.head;
1366
1367 do {
1368 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1369 bh_unlock_sock(sk);
1370
1371 do {
1372 struct sk_buff *next = skb->next;
1373
1374 skb->next = NULL;
1375 sk_backlog_rcv(sk, skb);
1376
1377 /*
1378 * We are in process context here with softirqs
1379 * disabled, use cond_resched_softirq() to preempt.
1380 * This is safe to do because we've taken the backlog
1381 * queue private:
1382 */
1383 cond_resched_softirq();
1384
1385 skb = next;
1386 } while (skb != NULL);
1387
1388 bh_lock_sock(sk);
1389 } while ((skb = sk->sk_backlog.head) != NULL);
1390 }
1391
1392 /**
1393 * sk_wait_data - wait for data to arrive at sk_receive_queue
1394 * @sk: sock to wait on
1395 * @timeo: for how long
1396 *
1397 * Now socket state including sk->sk_err is changed only under lock,
1398 * hence we may omit checks after joining wait queue.
1399 * We check receive queue before schedule() only as optimization;
1400 * it is very likely that release_sock() added new data.
1401 */
1402 int sk_wait_data(struct sock *sk, long *timeo)
1403 {
1404 int rc;
1405 DEFINE_WAIT(wait);
1406
1407 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1408 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1409 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1410 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1411 finish_wait(sk->sk_sleep, &wait);
1412 return rc;
1413 }
1414
1415 EXPORT_SYMBOL(sk_wait_data);
1416
1417 /**
1418 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1419 * @sk: socket
1420 * @size: memory size to allocate
1421 * @kind: allocation type
1422 *
1423 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1424 * rmem allocation. This function assumes that protocols which have
1425 * memory_pressure use sk_wmem_queued as write buffer accounting.
1426 */
1427 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1428 {
1429 struct proto *prot = sk->sk_prot;
1430 int amt = sk_mem_pages(size);
1431 int allocated;
1432
1433 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1434 allocated = atomic_add_return(amt, prot->memory_allocated);
1435
1436 /* Under limit. */
1437 if (allocated <= prot->sysctl_mem[0]) {
1438 if (prot->memory_pressure && *prot->memory_pressure)
1439 *prot->memory_pressure = 0;
1440 return 1;
1441 }
1442
1443 /* Under pressure. */
1444 if (allocated > prot->sysctl_mem[1])
1445 if (prot->enter_memory_pressure)
1446 prot->enter_memory_pressure(sk);
1447
1448 /* Over hard limit. */
1449 if (allocated > prot->sysctl_mem[2])
1450 goto suppress_allocation;
1451
1452 /* guarantee minimum buffer size under pressure */
1453 if (kind == SK_MEM_RECV) {
1454 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1455 return 1;
1456 } else { /* SK_MEM_SEND */
1457 if (sk->sk_type == SOCK_STREAM) {
1458 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1459 return 1;
1460 } else if (atomic_read(&sk->sk_wmem_alloc) <
1461 prot->sysctl_wmem[0])
1462 return 1;
1463 }
1464
1465 if (prot->memory_pressure) {
1466 if (!*prot->memory_pressure ||
1467 prot->sysctl_mem[2] > atomic_read(prot->sockets_allocated) *
1468 sk_mem_pages(sk->sk_wmem_queued +
1469 atomic_read(&sk->sk_rmem_alloc) +
1470 sk->sk_forward_alloc))
1471 return 1;
1472 }
1473
1474 suppress_allocation:
1475
1476 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1477 sk_stream_moderate_sndbuf(sk);
1478
1479 /* Fail only if socket is _under_ its sndbuf.
1480 * In this case we cannot block, so that we have to fail.
1481 */
1482 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1483 return 1;
1484 }
1485
1486 /* Alas. Undo changes. */
1487 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1488 atomic_sub(amt, prot->memory_allocated);
1489 return 0;
1490 }
1491
1492 EXPORT_SYMBOL(__sk_mem_schedule);
1493
1494 /**
1495 * __sk_reclaim - reclaim memory_allocated
1496 * @sk: socket
1497 */
1498 void __sk_mem_reclaim(struct sock *sk)
1499 {
1500 struct proto *prot = sk->sk_prot;
1501
1502 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1503 prot->memory_allocated);
1504 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1505
1506 if (prot->memory_pressure && *prot->memory_pressure &&
1507 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1508 *prot->memory_pressure = 0;
1509 }
1510
1511 EXPORT_SYMBOL(__sk_mem_reclaim);
1512
1513
1514 /*
1515 * Set of default routines for initialising struct proto_ops when
1516 * the protocol does not support a particular function. In certain
1517 * cases where it makes no sense for a protocol to have a "do nothing"
1518 * function, some default processing is provided.
1519 */
1520
1521 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1522 {
1523 return -EOPNOTSUPP;
1524 }
1525
1526 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1527 int len, int flags)
1528 {
1529 return -EOPNOTSUPP;
1530 }
1531
1532 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1533 {
1534 return -EOPNOTSUPP;
1535 }
1536
1537 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1538 {
1539 return -EOPNOTSUPP;
1540 }
1541
1542 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1543 int *len, int peer)
1544 {
1545 return -EOPNOTSUPP;
1546 }
1547
1548 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1549 {
1550 return 0;
1551 }
1552
1553 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1554 {
1555 return -EOPNOTSUPP;
1556 }
1557
1558 int sock_no_listen(struct socket *sock, int backlog)
1559 {
1560 return -EOPNOTSUPP;
1561 }
1562
1563 int sock_no_shutdown(struct socket *sock, int how)
1564 {
1565 return -EOPNOTSUPP;
1566 }
1567
1568 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1569 char __user *optval, int optlen)
1570 {
1571 return -EOPNOTSUPP;
1572 }
1573
1574 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1575 char __user *optval, int __user *optlen)
1576 {
1577 return -EOPNOTSUPP;
1578 }
1579
1580 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1581 size_t len)
1582 {
1583 return -EOPNOTSUPP;
1584 }
1585
1586 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1587 size_t len, int flags)
1588 {
1589 return -EOPNOTSUPP;
1590 }
1591
1592 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1593 {
1594 /* Mirror missing mmap method error code */
1595 return -ENODEV;
1596 }
1597
1598 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1599 {
1600 ssize_t res;
1601 struct msghdr msg = {.msg_flags = flags};
1602 struct kvec iov;
1603 char *kaddr = kmap(page);
1604 iov.iov_base = kaddr + offset;
1605 iov.iov_len = size;
1606 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1607 kunmap(page);
1608 return res;
1609 }
1610
1611 /*
1612 * Default Socket Callbacks
1613 */
1614
1615 static void sock_def_wakeup(struct sock *sk)
1616 {
1617 read_lock(&sk->sk_callback_lock);
1618 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1619 wake_up_interruptible_all(sk->sk_sleep);
1620 read_unlock(&sk->sk_callback_lock);
1621 }
1622
1623 static void sock_def_error_report(struct sock *sk)
1624 {
1625 read_lock(&sk->sk_callback_lock);
1626 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1627 wake_up_interruptible(sk->sk_sleep);
1628 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1629 read_unlock(&sk->sk_callback_lock);
1630 }
1631
1632 static void sock_def_readable(struct sock *sk, int len)
1633 {
1634 read_lock(&sk->sk_callback_lock);
1635 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1636 wake_up_interruptible_sync(sk->sk_sleep);
1637 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1638 read_unlock(&sk->sk_callback_lock);
1639 }
1640
1641 static void sock_def_write_space(struct sock *sk)
1642 {
1643 read_lock(&sk->sk_callback_lock);
1644
1645 /* Do not wake up a writer until he can make "significant"
1646 * progress. --DaveM
1647 */
1648 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1649 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1650 wake_up_interruptible_sync(sk->sk_sleep);
1651
1652 /* Should agree with poll, otherwise some programs break */
1653 if (sock_writeable(sk))
1654 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1655 }
1656
1657 read_unlock(&sk->sk_callback_lock);
1658 }
1659
1660 static void sock_def_destruct(struct sock *sk)
1661 {
1662 kfree(sk->sk_protinfo);
1663 }
1664
1665 void sk_send_sigurg(struct sock *sk)
1666 {
1667 if (sk->sk_socket && sk->sk_socket->file)
1668 if (send_sigurg(&sk->sk_socket->file->f_owner))
1669 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1670 }
1671
1672 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1673 unsigned long expires)
1674 {
1675 if (!mod_timer(timer, expires))
1676 sock_hold(sk);
1677 }
1678
1679 EXPORT_SYMBOL(sk_reset_timer);
1680
1681 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1682 {
1683 if (timer_pending(timer) && del_timer(timer))
1684 __sock_put(sk);
1685 }
1686
1687 EXPORT_SYMBOL(sk_stop_timer);
1688
1689 void sock_init_data(struct socket *sock, struct sock *sk)
1690 {
1691 skb_queue_head_init(&sk->sk_receive_queue);
1692 skb_queue_head_init(&sk->sk_write_queue);
1693 skb_queue_head_init(&sk->sk_error_queue);
1694 #ifdef CONFIG_NET_DMA
1695 skb_queue_head_init(&sk->sk_async_wait_queue);
1696 #endif
1697
1698 sk->sk_send_head = NULL;
1699
1700 init_timer(&sk->sk_timer);
1701
1702 sk->sk_allocation = GFP_KERNEL;
1703 sk->sk_rcvbuf = sysctl_rmem_default;
1704 sk->sk_sndbuf = sysctl_wmem_default;
1705 sk->sk_state = TCP_CLOSE;
1706 sk_set_socket(sk, sock);
1707
1708 sock_set_flag(sk, SOCK_ZAPPED);
1709
1710 if (sock) {
1711 sk->sk_type = sock->type;
1712 sk->sk_sleep = &sock->wait;
1713 sock->sk = sk;
1714 } else
1715 sk->sk_sleep = NULL;
1716
1717 rwlock_init(&sk->sk_dst_lock);
1718 rwlock_init(&sk->sk_callback_lock);
1719 lockdep_set_class_and_name(&sk->sk_callback_lock,
1720 af_callback_keys + sk->sk_family,
1721 af_family_clock_key_strings[sk->sk_family]);
1722
1723 sk->sk_state_change = sock_def_wakeup;
1724 sk->sk_data_ready = sock_def_readable;
1725 sk->sk_write_space = sock_def_write_space;
1726 sk->sk_error_report = sock_def_error_report;
1727 sk->sk_destruct = sock_def_destruct;
1728
1729 sk->sk_sndmsg_page = NULL;
1730 sk->sk_sndmsg_off = 0;
1731
1732 sk->sk_peercred.pid = 0;
1733 sk->sk_peercred.uid = -1;
1734 sk->sk_peercred.gid = -1;
1735 sk->sk_write_pending = 0;
1736 sk->sk_rcvlowat = 1;
1737 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1738 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1739
1740 sk->sk_stamp = ktime_set(-1L, 0);
1741
1742 atomic_set(&sk->sk_refcnt, 1);
1743 atomic_set(&sk->sk_drops, 0);
1744 }
1745
1746 void lock_sock_nested(struct sock *sk, int subclass)
1747 {
1748 might_sleep();
1749 spin_lock_bh(&sk->sk_lock.slock);
1750 if (sk->sk_lock.owned)
1751 __lock_sock(sk);
1752 sk->sk_lock.owned = 1;
1753 spin_unlock(&sk->sk_lock.slock);
1754 /*
1755 * The sk_lock has mutex_lock() semantics here:
1756 */
1757 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1758 local_bh_enable();
1759 }
1760
1761 EXPORT_SYMBOL(lock_sock_nested);
1762
1763 void release_sock(struct sock *sk)
1764 {
1765 /*
1766 * The sk_lock has mutex_unlock() semantics:
1767 */
1768 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1769
1770 spin_lock_bh(&sk->sk_lock.slock);
1771 if (sk->sk_backlog.tail)
1772 __release_sock(sk);
1773 sk->sk_lock.owned = 0;
1774 if (waitqueue_active(&sk->sk_lock.wq))
1775 wake_up(&sk->sk_lock.wq);
1776 spin_unlock_bh(&sk->sk_lock.slock);
1777 }
1778 EXPORT_SYMBOL(release_sock);
1779
1780 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1781 {
1782 struct timeval tv;
1783 if (!sock_flag(sk, SOCK_TIMESTAMP))
1784 sock_enable_timestamp(sk);
1785 tv = ktime_to_timeval(sk->sk_stamp);
1786 if (tv.tv_sec == -1)
1787 return -ENOENT;
1788 if (tv.tv_sec == 0) {
1789 sk->sk_stamp = ktime_get_real();
1790 tv = ktime_to_timeval(sk->sk_stamp);
1791 }
1792 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1793 }
1794 EXPORT_SYMBOL(sock_get_timestamp);
1795
1796 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1797 {
1798 struct timespec ts;
1799 if (!sock_flag(sk, SOCK_TIMESTAMP))
1800 sock_enable_timestamp(sk);
1801 ts = ktime_to_timespec(sk->sk_stamp);
1802 if (ts.tv_sec == -1)
1803 return -ENOENT;
1804 if (ts.tv_sec == 0) {
1805 sk->sk_stamp = ktime_get_real();
1806 ts = ktime_to_timespec(sk->sk_stamp);
1807 }
1808 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1809 }
1810 EXPORT_SYMBOL(sock_get_timestampns);
1811
1812 void sock_enable_timestamp(struct sock *sk)
1813 {
1814 if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1815 sock_set_flag(sk, SOCK_TIMESTAMP);
1816 net_enable_timestamp();
1817 }
1818 }
1819
1820 /*
1821 * Get a socket option on an socket.
1822 *
1823 * FIX: POSIX 1003.1g is very ambiguous here. It states that
1824 * asynchronous errors should be reported by getsockopt. We assume
1825 * this means if you specify SO_ERROR (otherwise whats the point of it).
1826 */
1827 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1828 char __user *optval, int __user *optlen)
1829 {
1830 struct sock *sk = sock->sk;
1831
1832 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1833 }
1834
1835 EXPORT_SYMBOL(sock_common_getsockopt);
1836
1837 #ifdef CONFIG_COMPAT
1838 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1839 char __user *optval, int __user *optlen)
1840 {
1841 struct sock *sk = sock->sk;
1842
1843 if (sk->sk_prot->compat_getsockopt != NULL)
1844 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1845 optval, optlen);
1846 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1847 }
1848 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1849 #endif
1850
1851 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1852 struct msghdr *msg, size_t size, int flags)
1853 {
1854 struct sock *sk = sock->sk;
1855 int addr_len = 0;
1856 int err;
1857
1858 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1859 flags & ~MSG_DONTWAIT, &addr_len);
1860 if (err >= 0)
1861 msg->msg_namelen = addr_len;
1862 return err;
1863 }
1864
1865 EXPORT_SYMBOL(sock_common_recvmsg);
1866
1867 /*
1868 * Set socket options on an inet socket.
1869 */
1870 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1871 char __user *optval, int optlen)
1872 {
1873 struct sock *sk = sock->sk;
1874
1875 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1876 }
1877
1878 EXPORT_SYMBOL(sock_common_setsockopt);
1879
1880 #ifdef CONFIG_COMPAT
1881 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1882 char __user *optval, int optlen)
1883 {
1884 struct sock *sk = sock->sk;
1885
1886 if (sk->sk_prot->compat_setsockopt != NULL)
1887 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1888 optval, optlen);
1889 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1890 }
1891 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1892 #endif
1893
1894 void sk_common_release(struct sock *sk)
1895 {
1896 if (sk->sk_prot->destroy)
1897 sk->sk_prot->destroy(sk);
1898
1899 /*
1900 * Observation: when sock_common_release is called, processes have
1901 * no access to socket. But net still has.
1902 * Step one, detach it from networking:
1903 *
1904 * A. Remove from hash tables.
1905 */
1906
1907 sk->sk_prot->unhash(sk);
1908
1909 /*
1910 * In this point socket cannot receive new packets, but it is possible
1911 * that some packets are in flight because some CPU runs receiver and
1912 * did hash table lookup before we unhashed socket. They will achieve
1913 * receive queue and will be purged by socket destructor.
1914 *
1915 * Also we still have packets pending on receive queue and probably,
1916 * our own packets waiting in device queues. sock_destroy will drain
1917 * receive queue, but transmitted packets will delay socket destruction
1918 * until the last reference will be released.
1919 */
1920
1921 sock_orphan(sk);
1922
1923 xfrm_sk_free_policy(sk);
1924
1925 sk_refcnt_debug_release(sk);
1926 sock_put(sk);
1927 }
1928
1929 EXPORT_SYMBOL(sk_common_release);
1930
1931 static DEFINE_RWLOCK(proto_list_lock);
1932 static LIST_HEAD(proto_list);
1933
1934 #ifdef CONFIG_PROC_FS
1935 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
1936 struct prot_inuse {
1937 int val[PROTO_INUSE_NR];
1938 };
1939
1940 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
1941
1942 #ifdef CONFIG_NET_NS
1943 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
1944 {
1945 int cpu = smp_processor_id();
1946 per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
1947 }
1948 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
1949
1950 int sock_prot_inuse_get(struct net *net, struct proto *prot)
1951 {
1952 int cpu, idx = prot->inuse_idx;
1953 int res = 0;
1954
1955 for_each_possible_cpu(cpu)
1956 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
1957
1958 return res >= 0 ? res : 0;
1959 }
1960 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
1961
1962 static int sock_inuse_init_net(struct net *net)
1963 {
1964 net->core.inuse = alloc_percpu(struct prot_inuse);
1965 return net->core.inuse ? 0 : -ENOMEM;
1966 }
1967
1968 static void sock_inuse_exit_net(struct net *net)
1969 {
1970 free_percpu(net->core.inuse);
1971 }
1972
1973 static struct pernet_operations net_inuse_ops = {
1974 .init = sock_inuse_init_net,
1975 .exit = sock_inuse_exit_net,
1976 };
1977
1978 static __init int net_inuse_init(void)
1979 {
1980 if (register_pernet_subsys(&net_inuse_ops))
1981 panic("Cannot initialize net inuse counters");
1982
1983 return 0;
1984 }
1985
1986 core_initcall(net_inuse_init);
1987 #else
1988 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
1989
1990 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
1991 {
1992 __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
1993 }
1994 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
1995
1996 int sock_prot_inuse_get(struct net *net, struct proto *prot)
1997 {
1998 int cpu, idx = prot->inuse_idx;
1999 int res = 0;
2000
2001 for_each_possible_cpu(cpu)
2002 res += per_cpu(prot_inuse, cpu).val[idx];
2003
2004 return res >= 0 ? res : 0;
2005 }
2006 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2007 #endif
2008
2009 static void assign_proto_idx(struct proto *prot)
2010 {
2011 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2012
2013 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2014 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2015 return;
2016 }
2017
2018 set_bit(prot->inuse_idx, proto_inuse_idx);
2019 }
2020
2021 static void release_proto_idx(struct proto *prot)
2022 {
2023 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2024 clear_bit(prot->inuse_idx, proto_inuse_idx);
2025 }
2026 #else
2027 static inline void assign_proto_idx(struct proto *prot)
2028 {
2029 }
2030
2031 static inline void release_proto_idx(struct proto *prot)
2032 {
2033 }
2034 #endif
2035
2036 int proto_register(struct proto *prot, int alloc_slab)
2037 {
2038 if (alloc_slab) {
2039 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2040 SLAB_HWCACHE_ALIGN, NULL);
2041
2042 if (prot->slab == NULL) {
2043 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2044 prot->name);
2045 goto out;
2046 }
2047
2048 if (prot->rsk_prot != NULL) {
2049 static const char mask[] = "request_sock_%s";
2050
2051 prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2052 if (prot->rsk_prot->slab_name == NULL)
2053 goto out_free_sock_slab;
2054
2055 sprintf(prot->rsk_prot->slab_name, mask, prot->name);
2056 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2057 prot->rsk_prot->obj_size, 0,
2058 SLAB_HWCACHE_ALIGN, NULL);
2059
2060 if (prot->rsk_prot->slab == NULL) {
2061 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2062 prot->name);
2063 goto out_free_request_sock_slab_name;
2064 }
2065 }
2066
2067 if (prot->twsk_prot != NULL) {
2068 static const char mask[] = "tw_sock_%s";
2069
2070 prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2071
2072 if (prot->twsk_prot->twsk_slab_name == NULL)
2073 goto out_free_request_sock_slab;
2074
2075 sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name);
2076 prot->twsk_prot->twsk_slab =
2077 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2078 prot->twsk_prot->twsk_obj_size,
2079 0, SLAB_HWCACHE_ALIGN,
2080 NULL);
2081 if (prot->twsk_prot->twsk_slab == NULL)
2082 goto out_free_timewait_sock_slab_name;
2083 }
2084 }
2085
2086 write_lock(&proto_list_lock);
2087 list_add(&prot->node, &proto_list);
2088 assign_proto_idx(prot);
2089 write_unlock(&proto_list_lock);
2090 return 0;
2091
2092 out_free_timewait_sock_slab_name:
2093 kfree(prot->twsk_prot->twsk_slab_name);
2094 out_free_request_sock_slab:
2095 if (prot->rsk_prot && prot->rsk_prot->slab) {
2096 kmem_cache_destroy(prot->rsk_prot->slab);
2097 prot->rsk_prot->slab = NULL;
2098 }
2099 out_free_request_sock_slab_name:
2100 kfree(prot->rsk_prot->slab_name);
2101 out_free_sock_slab:
2102 kmem_cache_destroy(prot->slab);
2103 prot->slab = NULL;
2104 out:
2105 return -ENOBUFS;
2106 }
2107
2108 EXPORT_SYMBOL(proto_register);
2109
2110 void proto_unregister(struct proto *prot)
2111 {
2112 write_lock(&proto_list_lock);
2113 release_proto_idx(prot);
2114 list_del(&prot->node);
2115 write_unlock(&proto_list_lock);
2116
2117 if (prot->slab != NULL) {
2118 kmem_cache_destroy(prot->slab);
2119 prot->slab = NULL;
2120 }
2121
2122 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2123 kmem_cache_destroy(prot->rsk_prot->slab);
2124 kfree(prot->rsk_prot->slab_name);
2125 prot->rsk_prot->slab = NULL;
2126 }
2127
2128 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2129 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2130 kfree(prot->twsk_prot->twsk_slab_name);
2131 prot->twsk_prot->twsk_slab = NULL;
2132 }
2133 }
2134
2135 EXPORT_SYMBOL(proto_unregister);
2136
2137 #ifdef CONFIG_PROC_FS
2138 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2139 __acquires(proto_list_lock)
2140 {
2141 read_lock(&proto_list_lock);
2142 return seq_list_start_head(&proto_list, *pos);
2143 }
2144
2145 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2146 {
2147 return seq_list_next(v, &proto_list, pos);
2148 }
2149
2150 static void proto_seq_stop(struct seq_file *seq, void *v)
2151 __releases(proto_list_lock)
2152 {
2153 read_unlock(&proto_list_lock);
2154 }
2155
2156 static char proto_method_implemented(const void *method)
2157 {
2158 return method == NULL ? 'n' : 'y';
2159 }
2160
2161 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2162 {
2163 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2164 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2165 proto->name,
2166 proto->obj_size,
2167 proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
2168 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2169 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2170 proto->max_header,
2171 proto->slab == NULL ? "no" : "yes",
2172 module_name(proto->owner),
2173 proto_method_implemented(proto->close),
2174 proto_method_implemented(proto->connect),
2175 proto_method_implemented(proto->disconnect),
2176 proto_method_implemented(proto->accept),
2177 proto_method_implemented(proto->ioctl),
2178 proto_method_implemented(proto->init),
2179 proto_method_implemented(proto->destroy),
2180 proto_method_implemented(proto->shutdown),
2181 proto_method_implemented(proto->setsockopt),
2182 proto_method_implemented(proto->getsockopt),
2183 proto_method_implemented(proto->sendmsg),
2184 proto_method_implemented(proto->recvmsg),
2185 proto_method_implemented(proto->sendpage),
2186 proto_method_implemented(proto->bind),
2187 proto_method_implemented(proto->backlog_rcv),
2188 proto_method_implemented(proto->hash),
2189 proto_method_implemented(proto->unhash),
2190 proto_method_implemented(proto->get_port),
2191 proto_method_implemented(proto->enter_memory_pressure));
2192 }
2193
2194 static int proto_seq_show(struct seq_file *seq, void *v)
2195 {
2196 if (v == &proto_list)
2197 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2198 "protocol",
2199 "size",
2200 "sockets",
2201 "memory",
2202 "press",
2203 "maxhdr",
2204 "slab",
2205 "module",
2206 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2207 else
2208 proto_seq_printf(seq, list_entry(v, struct proto, node));
2209 return 0;
2210 }
2211
2212 static const struct seq_operations proto_seq_ops = {
2213 .start = proto_seq_start,
2214 .next = proto_seq_next,
2215 .stop = proto_seq_stop,
2216 .show = proto_seq_show,
2217 };
2218
2219 static int proto_seq_open(struct inode *inode, struct file *file)
2220 {
2221 return seq_open(file, &proto_seq_ops);
2222 }
2223
2224 static const struct file_operations proto_seq_fops = {
2225 .owner = THIS_MODULE,
2226 .open = proto_seq_open,
2227 .read = seq_read,
2228 .llseek = seq_lseek,
2229 .release = seq_release,
2230 };
2231
2232 static int __init proto_init(void)
2233 {
2234 /* register /proc/net/protocols */
2235 return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
2236 }
2237
2238 subsys_initcall(proto_init);
2239
2240 #endif /* PROC_FS */
2241
2242 EXPORT_SYMBOL(sk_alloc);
2243 EXPORT_SYMBOL(sk_free);
2244 EXPORT_SYMBOL(sk_send_sigurg);
2245 EXPORT_SYMBOL(sock_alloc_send_skb);
2246 EXPORT_SYMBOL(sock_init_data);
2247 EXPORT_SYMBOL(sock_kfree_s);
2248 EXPORT_SYMBOL(sock_kmalloc);
2249 EXPORT_SYMBOL(sock_no_accept);
2250 EXPORT_SYMBOL(sock_no_bind);
2251 EXPORT_SYMBOL(sock_no_connect);
2252 EXPORT_SYMBOL(sock_no_getname);
2253 EXPORT_SYMBOL(sock_no_getsockopt);
2254 EXPORT_SYMBOL(sock_no_ioctl);
2255 EXPORT_SYMBOL(sock_no_listen);
2256 EXPORT_SYMBOL(sock_no_mmap);
2257 EXPORT_SYMBOL(sock_no_poll);
2258 EXPORT_SYMBOL(sock_no_recvmsg);
2259 EXPORT_SYMBOL(sock_no_sendmsg);
2260 EXPORT_SYMBOL(sock_no_sendpage);
2261 EXPORT_SYMBOL(sock_no_setsockopt);
2262 EXPORT_SYMBOL(sock_no_shutdown);
2263 EXPORT_SYMBOL(sock_no_socketpair);
2264 EXPORT_SYMBOL(sock_rfree);
2265 EXPORT_SYMBOL(sock_setsockopt);
2266 EXPORT_SYMBOL(sock_wfree);
2267 EXPORT_SYMBOL(sock_wmalloc);
2268 EXPORT_SYMBOL(sock_i_uid);
2269 EXPORT_SYMBOL(sock_i_ino);
2270 EXPORT_SYMBOL(sysctl_optmem_max);