]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/decnet/dn_neigh.c
[NET]: Make /proc/net per network namespace
[mirror_ubuntu-hirsute-kernel.git] / net / decnet / dn_neigh.c
1 /*
2 * DECnet An implementation of the DECnet protocol suite for the LINUX
3 * operating system. DECnet is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * DECnet Neighbour Functions (Adjacency Database and
7 * On-Ethernet Cache)
8 *
9 * Author: Steve Whitehouse <SteveW@ACM.org>
10 *
11 *
12 * Changes:
13 * Steve Whitehouse : Fixed router listing routine
14 * Steve Whitehouse : Added error_report functions
15 * Steve Whitehouse : Added default router detection
16 * Steve Whitehouse : Hop counts in outgoing messages
17 * Steve Whitehouse : Fixed src/dst in outgoing messages so
18 * forwarding now stands a good chance of
19 * working.
20 * Steve Whitehouse : Fixed neighbour states (for now anyway).
21 * Steve Whitehouse : Made error_report functions dummies. This
22 * is not the right place to return skbs.
23 * Steve Whitehouse : Convert to seq_file
24 *
25 */
26
27 #include <linux/net.h>
28 #include <linux/module.h>
29 #include <linux/socket.h>
30 #include <linux/if_arp.h>
31 #include <linux/if_ether.h>
32 #include <linux/init.h>
33 #include <linux/proc_fs.h>
34 #include <linux/string.h>
35 #include <linux/netfilter_decnet.h>
36 #include <linux/spinlock.h>
37 #include <linux/seq_file.h>
38 #include <linux/rcupdate.h>
39 #include <linux/jhash.h>
40 #include <asm/atomic.h>
41 #include <net/net_namespace.h>
42 #include <net/neighbour.h>
43 #include <net/dst.h>
44 #include <net/flow.h>
45 #include <net/dn.h>
46 #include <net/dn_dev.h>
47 #include <net/dn_neigh.h>
48 #include <net/dn_route.h>
49
50 static u32 dn_neigh_hash(const void *pkey, const struct net_device *dev);
51 static int dn_neigh_construct(struct neighbour *);
52 static void dn_long_error_report(struct neighbour *, struct sk_buff *);
53 static void dn_short_error_report(struct neighbour *, struct sk_buff *);
54 static int dn_long_output(struct sk_buff *);
55 static int dn_short_output(struct sk_buff *);
56 static int dn_phase3_output(struct sk_buff *);
57
58
59 /*
60 * For talking to broadcast devices: Ethernet & PPP
61 */
62 static struct neigh_ops dn_long_ops = {
63 .family = AF_DECnet,
64 .error_report = dn_long_error_report,
65 .output = dn_long_output,
66 .connected_output = dn_long_output,
67 .hh_output = dev_queue_xmit,
68 .queue_xmit = dev_queue_xmit,
69 };
70
71 /*
72 * For talking to pointopoint and multidrop devices: DDCMP and X.25
73 */
74 static struct neigh_ops dn_short_ops = {
75 .family = AF_DECnet,
76 .error_report = dn_short_error_report,
77 .output = dn_short_output,
78 .connected_output = dn_short_output,
79 .hh_output = dev_queue_xmit,
80 .queue_xmit = dev_queue_xmit,
81 };
82
83 /*
84 * For talking to DECnet phase III nodes
85 */
86 static struct neigh_ops dn_phase3_ops = {
87 .family = AF_DECnet,
88 .error_report = dn_short_error_report, /* Can use short version here */
89 .output = dn_phase3_output,
90 .connected_output = dn_phase3_output,
91 .hh_output = dev_queue_xmit,
92 .queue_xmit = dev_queue_xmit
93 };
94
95 struct neigh_table dn_neigh_table = {
96 .family = PF_DECnet,
97 .entry_size = sizeof(struct dn_neigh),
98 .key_len = sizeof(__le16),
99 .hash = dn_neigh_hash,
100 .constructor = dn_neigh_construct,
101 .id = "dn_neigh_cache",
102 .parms ={
103 .tbl = &dn_neigh_table,
104 .base_reachable_time = 30 * HZ,
105 .retrans_time = 1 * HZ,
106 .gc_staletime = 60 * HZ,
107 .reachable_time = 30 * HZ,
108 .delay_probe_time = 5 * HZ,
109 .queue_len = 3,
110 .ucast_probes = 0,
111 .app_probes = 0,
112 .mcast_probes = 0,
113 .anycast_delay = 0,
114 .proxy_delay = 0,
115 .proxy_qlen = 0,
116 .locktime = 1 * HZ,
117 },
118 .gc_interval = 30 * HZ,
119 .gc_thresh1 = 128,
120 .gc_thresh2 = 512,
121 .gc_thresh3 = 1024,
122 };
123
124 static u32 dn_neigh_hash(const void *pkey, const struct net_device *dev)
125 {
126 return jhash_2words(*(__u16 *)pkey, 0, dn_neigh_table.hash_rnd);
127 }
128
129 static int dn_neigh_construct(struct neighbour *neigh)
130 {
131 struct net_device *dev = neigh->dev;
132 struct dn_neigh *dn = (struct dn_neigh *)neigh;
133 struct dn_dev *dn_db;
134 struct neigh_parms *parms;
135
136 rcu_read_lock();
137 dn_db = rcu_dereference(dev->dn_ptr);
138 if (dn_db == NULL) {
139 rcu_read_unlock();
140 return -EINVAL;
141 }
142
143 parms = dn_db->neigh_parms;
144 if (!parms) {
145 rcu_read_unlock();
146 return -EINVAL;
147 }
148
149 __neigh_parms_put(neigh->parms);
150 neigh->parms = neigh_parms_clone(parms);
151
152 if (dn_db->use_long)
153 neigh->ops = &dn_long_ops;
154 else
155 neigh->ops = &dn_short_ops;
156 rcu_read_unlock();
157
158 if (dn->flags & DN_NDFLAG_P3)
159 neigh->ops = &dn_phase3_ops;
160
161 neigh->nud_state = NUD_NOARP;
162 neigh->output = neigh->ops->connected_output;
163
164 if ((dev->type == ARPHRD_IPGRE) || (dev->flags & IFF_POINTOPOINT))
165 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
166 else if ((dev->type == ARPHRD_ETHER) || (dev->type == ARPHRD_LOOPBACK))
167 dn_dn2eth(neigh->ha, dn->addr);
168 else {
169 if (net_ratelimit())
170 printk(KERN_DEBUG "Trying to create neigh for hw %d\n", dev->type);
171 return -EINVAL;
172 }
173
174 /*
175 * Make an estimate of the remote block size by assuming that its
176 * two less then the device mtu, which it true for ethernet (and
177 * other things which support long format headers) since there is
178 * an extra length field (of 16 bits) which isn't part of the
179 * ethernet headers and which the DECnet specs won't admit is part
180 * of the DECnet routing headers either.
181 *
182 * If we over estimate here its no big deal, the NSP negotiations
183 * will prevent us from sending packets which are too large for the
184 * remote node to handle. In any case this figure is normally updated
185 * by a hello message in most cases.
186 */
187 dn->blksize = dev->mtu - 2;
188
189 return 0;
190 }
191
192 static void dn_long_error_report(struct neighbour *neigh, struct sk_buff *skb)
193 {
194 printk(KERN_DEBUG "dn_long_error_report: called\n");
195 kfree_skb(skb);
196 }
197
198
199 static void dn_short_error_report(struct neighbour *neigh, struct sk_buff *skb)
200 {
201 printk(KERN_DEBUG "dn_short_error_report: called\n");
202 kfree_skb(skb);
203 }
204
205 static int dn_neigh_output_packet(struct sk_buff *skb)
206 {
207 struct dst_entry *dst = skb->dst;
208 struct dn_route *rt = (struct dn_route *)dst;
209 struct neighbour *neigh = dst->neighbour;
210 struct net_device *dev = neigh->dev;
211 char mac_addr[ETH_ALEN];
212
213 dn_dn2eth(mac_addr, rt->rt_local_src);
214 if (!dev->hard_header || dev->hard_header(skb, dev, ntohs(skb->protocol), neigh->ha, mac_addr, skb->len) >= 0)
215 return neigh->ops->queue_xmit(skb);
216
217 if (net_ratelimit())
218 printk(KERN_DEBUG "dn_neigh_output_packet: oops, can't send packet\n");
219
220 kfree_skb(skb);
221 return -EINVAL;
222 }
223
224 static int dn_long_output(struct sk_buff *skb)
225 {
226 struct dst_entry *dst = skb->dst;
227 struct neighbour *neigh = dst->neighbour;
228 struct net_device *dev = neigh->dev;
229 int headroom = dev->hard_header_len + sizeof(struct dn_long_packet) + 3;
230 unsigned char *data;
231 struct dn_long_packet *lp;
232 struct dn_skb_cb *cb = DN_SKB_CB(skb);
233
234
235 if (skb_headroom(skb) < headroom) {
236 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
237 if (skb2 == NULL) {
238 if (net_ratelimit())
239 printk(KERN_CRIT "dn_long_output: no memory\n");
240 kfree_skb(skb);
241 return -ENOBUFS;
242 }
243 kfree_skb(skb);
244 skb = skb2;
245 if (net_ratelimit())
246 printk(KERN_INFO "dn_long_output: Increasing headroom\n");
247 }
248
249 data = skb_push(skb, sizeof(struct dn_long_packet) + 3);
250 lp = (struct dn_long_packet *)(data+3);
251
252 *((__le16 *)data) = dn_htons(skb->len - 2);
253 *(data + 2) = 1 | DN_RT_F_PF; /* Padding */
254
255 lp->msgflg = DN_RT_PKT_LONG|(cb->rt_flags&(DN_RT_F_IE|DN_RT_F_RQR|DN_RT_F_RTS));
256 lp->d_area = lp->d_subarea = 0;
257 dn_dn2eth(lp->d_id, cb->dst);
258 lp->s_area = lp->s_subarea = 0;
259 dn_dn2eth(lp->s_id, cb->src);
260 lp->nl2 = 0;
261 lp->visit_ct = cb->hops & 0x3f;
262 lp->s_class = 0;
263 lp->pt = 0;
264
265 skb_reset_network_header(skb);
266
267 return NF_HOOK(PF_DECnet, NF_DN_POST_ROUTING, skb, NULL, neigh->dev, dn_neigh_output_packet);
268 }
269
270 static int dn_short_output(struct sk_buff *skb)
271 {
272 struct dst_entry *dst = skb->dst;
273 struct neighbour *neigh = dst->neighbour;
274 struct net_device *dev = neigh->dev;
275 int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
276 struct dn_short_packet *sp;
277 unsigned char *data;
278 struct dn_skb_cb *cb = DN_SKB_CB(skb);
279
280
281 if (skb_headroom(skb) < headroom) {
282 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
283 if (skb2 == NULL) {
284 if (net_ratelimit())
285 printk(KERN_CRIT "dn_short_output: no memory\n");
286 kfree_skb(skb);
287 return -ENOBUFS;
288 }
289 kfree_skb(skb);
290 skb = skb2;
291 if (net_ratelimit())
292 printk(KERN_INFO "dn_short_output: Increasing headroom\n");
293 }
294
295 data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
296 *((__le16 *)data) = dn_htons(skb->len - 2);
297 sp = (struct dn_short_packet *)(data+2);
298
299 sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
300 sp->dstnode = cb->dst;
301 sp->srcnode = cb->src;
302 sp->forward = cb->hops & 0x3f;
303
304 skb_reset_network_header(skb);
305
306 return NF_HOOK(PF_DECnet, NF_DN_POST_ROUTING, skb, NULL, neigh->dev, dn_neigh_output_packet);
307 }
308
309 /*
310 * Phase 3 output is the same is short output, execpt that
311 * it clears the area bits before transmission.
312 */
313 static int dn_phase3_output(struct sk_buff *skb)
314 {
315 struct dst_entry *dst = skb->dst;
316 struct neighbour *neigh = dst->neighbour;
317 struct net_device *dev = neigh->dev;
318 int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
319 struct dn_short_packet *sp;
320 unsigned char *data;
321 struct dn_skb_cb *cb = DN_SKB_CB(skb);
322
323 if (skb_headroom(skb) < headroom) {
324 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
325 if (skb2 == NULL) {
326 if (net_ratelimit())
327 printk(KERN_CRIT "dn_phase3_output: no memory\n");
328 kfree_skb(skb);
329 return -ENOBUFS;
330 }
331 kfree_skb(skb);
332 skb = skb2;
333 if (net_ratelimit())
334 printk(KERN_INFO "dn_phase3_output: Increasing headroom\n");
335 }
336
337 data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
338 *((__le16 *)data) = dn_htons(skb->len - 2);
339 sp = (struct dn_short_packet *)(data + 2);
340
341 sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
342 sp->dstnode = cb->dst & dn_htons(0x03ff);
343 sp->srcnode = cb->src & dn_htons(0x03ff);
344 sp->forward = cb->hops & 0x3f;
345
346 skb_reset_network_header(skb);
347
348 return NF_HOOK(PF_DECnet, NF_DN_POST_ROUTING, skb, NULL, neigh->dev, dn_neigh_output_packet);
349 }
350
351 /*
352 * Unfortunately, the neighbour code uses the device in its hash
353 * function, so we don't get any advantage from it. This function
354 * basically does a neigh_lookup(), but without comparing the device
355 * field. This is required for the On-Ethernet cache
356 */
357
358 /*
359 * Pointopoint link receives a hello message
360 */
361 void dn_neigh_pointopoint_hello(struct sk_buff *skb)
362 {
363 kfree_skb(skb);
364 }
365
366 /*
367 * Ethernet router hello message received
368 */
369 int dn_neigh_router_hello(struct sk_buff *skb)
370 {
371 struct rtnode_hello_message *msg = (struct rtnode_hello_message *)skb->data;
372
373 struct neighbour *neigh;
374 struct dn_neigh *dn;
375 struct dn_dev *dn_db;
376 __le16 src;
377
378 src = dn_eth2dn(msg->id);
379
380 neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
381
382 dn = (struct dn_neigh *)neigh;
383
384 if (neigh) {
385 write_lock(&neigh->lock);
386
387 neigh->used = jiffies;
388 dn_db = (struct dn_dev *)neigh->dev->dn_ptr;
389
390 if (!(neigh->nud_state & NUD_PERMANENT)) {
391 neigh->updated = jiffies;
392
393 if (neigh->dev->type == ARPHRD_ETHER)
394 memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
395
396 dn->blksize = dn_ntohs(msg->blksize);
397 dn->priority = msg->priority;
398
399 dn->flags &= ~DN_NDFLAG_P3;
400
401 switch(msg->iinfo & DN_RT_INFO_TYPE) {
402 case DN_RT_INFO_L1RT:
403 dn->flags &=~DN_NDFLAG_R2;
404 dn->flags |= DN_NDFLAG_R1;
405 break;
406 case DN_RT_INFO_L2RT:
407 dn->flags |= DN_NDFLAG_R2;
408 }
409 }
410
411 /* Only use routers in our area */
412 if ((dn_ntohs(src)>>10) == (dn_ntohs((decnet_address))>>10)) {
413 if (!dn_db->router) {
414 dn_db->router = neigh_clone(neigh);
415 } else {
416 if (msg->priority > ((struct dn_neigh *)dn_db->router)->priority)
417 neigh_release(xchg(&dn_db->router, neigh_clone(neigh)));
418 }
419 }
420 write_unlock(&neigh->lock);
421 neigh_release(neigh);
422 }
423
424 kfree_skb(skb);
425 return 0;
426 }
427
428 /*
429 * Endnode hello message received
430 */
431 int dn_neigh_endnode_hello(struct sk_buff *skb)
432 {
433 struct endnode_hello_message *msg = (struct endnode_hello_message *)skb->data;
434 struct neighbour *neigh;
435 struct dn_neigh *dn;
436 __le16 src;
437
438 src = dn_eth2dn(msg->id);
439
440 neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
441
442 dn = (struct dn_neigh *)neigh;
443
444 if (neigh) {
445 write_lock(&neigh->lock);
446
447 neigh->used = jiffies;
448
449 if (!(neigh->nud_state & NUD_PERMANENT)) {
450 neigh->updated = jiffies;
451
452 if (neigh->dev->type == ARPHRD_ETHER)
453 memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
454 dn->flags &= ~(DN_NDFLAG_R1 | DN_NDFLAG_R2);
455 dn->blksize = dn_ntohs(msg->blksize);
456 dn->priority = 0;
457 }
458
459 write_unlock(&neigh->lock);
460 neigh_release(neigh);
461 }
462
463 kfree_skb(skb);
464 return 0;
465 }
466
467 static char *dn_find_slot(char *base, int max, int priority)
468 {
469 int i;
470 unsigned char *min = NULL;
471
472 base += 6; /* skip first id */
473
474 for(i = 0; i < max; i++) {
475 if (!min || (*base < *min))
476 min = base;
477 base += 7; /* find next priority */
478 }
479
480 if (!min)
481 return NULL;
482
483 return (*min < priority) ? (min - 6) : NULL;
484 }
485
486 struct elist_cb_state {
487 struct net_device *dev;
488 unsigned char *ptr;
489 unsigned char *rs;
490 int t, n;
491 };
492
493 static void neigh_elist_cb(struct neighbour *neigh, void *_info)
494 {
495 struct elist_cb_state *s = _info;
496 struct dn_neigh *dn;
497
498 if (neigh->dev != s->dev)
499 return;
500
501 dn = (struct dn_neigh *) neigh;
502 if (!(dn->flags & (DN_NDFLAG_R1|DN_NDFLAG_R2)))
503 return;
504
505 if (s->t == s->n)
506 s->rs = dn_find_slot(s->ptr, s->n, dn->priority);
507 else
508 s->t++;
509 if (s->rs == NULL)
510 return;
511
512 dn_dn2eth(s->rs, dn->addr);
513 s->rs += 6;
514 *(s->rs) = neigh->nud_state & NUD_CONNECTED ? 0x80 : 0x0;
515 *(s->rs) |= dn->priority;
516 s->rs++;
517 }
518
519 int dn_neigh_elist(struct net_device *dev, unsigned char *ptr, int n)
520 {
521 struct elist_cb_state state;
522
523 state.dev = dev;
524 state.t = 0;
525 state.n = n;
526 state.ptr = ptr;
527 state.rs = ptr;
528
529 neigh_for_each(&dn_neigh_table, neigh_elist_cb, &state);
530
531 return state.t;
532 }
533
534
535 #ifdef CONFIG_PROC_FS
536
537 static inline void dn_neigh_format_entry(struct seq_file *seq,
538 struct neighbour *n)
539 {
540 struct dn_neigh *dn = (struct dn_neigh *) n;
541 char buf[DN_ASCBUF_LEN];
542
543 read_lock(&n->lock);
544 seq_printf(seq, "%-7s %s%s%s %02x %02d %07ld %-8s\n",
545 dn_addr2asc(dn_ntohs(dn->addr), buf),
546 (dn->flags&DN_NDFLAG_R1) ? "1" : "-",
547 (dn->flags&DN_NDFLAG_R2) ? "2" : "-",
548 (dn->flags&DN_NDFLAG_P3) ? "3" : "-",
549 dn->n.nud_state,
550 atomic_read(&dn->n.refcnt),
551 dn->blksize,
552 (dn->n.dev) ? dn->n.dev->name : "?");
553 read_unlock(&n->lock);
554 }
555
556 static int dn_neigh_seq_show(struct seq_file *seq, void *v)
557 {
558 if (v == SEQ_START_TOKEN) {
559 seq_puts(seq, "Addr Flags State Use Blksize Dev\n");
560 } else {
561 dn_neigh_format_entry(seq, v);
562 }
563
564 return 0;
565 }
566
567 static void *dn_neigh_seq_start(struct seq_file *seq, loff_t *pos)
568 {
569 return neigh_seq_start(seq, pos, &dn_neigh_table,
570 NEIGH_SEQ_NEIGH_ONLY);
571 }
572
573 static const struct seq_operations dn_neigh_seq_ops = {
574 .start = dn_neigh_seq_start,
575 .next = neigh_seq_next,
576 .stop = neigh_seq_stop,
577 .show = dn_neigh_seq_show,
578 };
579
580 static int dn_neigh_seq_open(struct inode *inode, struct file *file)
581 {
582 struct seq_file *seq;
583 int rc = -ENOMEM;
584 struct neigh_seq_state *s = kzalloc(sizeof(*s), GFP_KERNEL);
585
586 if (!s)
587 goto out;
588
589 rc = seq_open(file, &dn_neigh_seq_ops);
590 if (rc)
591 goto out_kfree;
592
593 seq = file->private_data;
594 seq->private = s;
595 out:
596 return rc;
597 out_kfree:
598 kfree(s);
599 goto out;
600 }
601
602 static const struct file_operations dn_neigh_seq_fops = {
603 .owner = THIS_MODULE,
604 .open = dn_neigh_seq_open,
605 .read = seq_read,
606 .llseek = seq_lseek,
607 .release = seq_release_private,
608 };
609
610 #endif
611
612 void __init dn_neigh_init(void)
613 {
614 neigh_table_init(&dn_neigh_table);
615 proc_net_fops_create(&init_net, "decnet_neigh", S_IRUGO, &dn_neigh_seq_fops);
616 }
617
618 void __exit dn_neigh_cleanup(void)
619 {
620 proc_net_remove(&init_net, "decnet_neigh");
621 neigh_table_clear(&dn_neigh_table);
622 }