]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/decnet/dn_neigh.c
Merge tag 'iommu-updates-v4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/joro...
[mirror_ubuntu-bionic-kernel.git] / net / decnet / dn_neigh.c
1 /*
2 * DECnet An implementation of the DECnet protocol suite for the LINUX
3 * operating system. DECnet is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * DECnet Neighbour Functions (Adjacency Database and
7 * On-Ethernet Cache)
8 *
9 * Author: Steve Whitehouse <SteveW@ACM.org>
10 *
11 *
12 * Changes:
13 * Steve Whitehouse : Fixed router listing routine
14 * Steve Whitehouse : Added error_report functions
15 * Steve Whitehouse : Added default router detection
16 * Steve Whitehouse : Hop counts in outgoing messages
17 * Steve Whitehouse : Fixed src/dst in outgoing messages so
18 * forwarding now stands a good chance of
19 * working.
20 * Steve Whitehouse : Fixed neighbour states (for now anyway).
21 * Steve Whitehouse : Made error_report functions dummies. This
22 * is not the right place to return skbs.
23 * Steve Whitehouse : Convert to seq_file
24 *
25 */
26
27 #include <linux/net.h>
28 #include <linux/module.h>
29 #include <linux/socket.h>
30 #include <linux/if_arp.h>
31 #include <linux/slab.h>
32 #include <linux/if_ether.h>
33 #include <linux/init.h>
34 #include <linux/proc_fs.h>
35 #include <linux/string.h>
36 #include <linux/netfilter_decnet.h>
37 #include <linux/spinlock.h>
38 #include <linux/seq_file.h>
39 #include <linux/rcupdate.h>
40 #include <linux/jhash.h>
41 #include <linux/atomic.h>
42 #include <net/net_namespace.h>
43 #include <net/neighbour.h>
44 #include <net/dst.h>
45 #include <net/flow.h>
46 #include <net/dn.h>
47 #include <net/dn_dev.h>
48 #include <net/dn_neigh.h>
49 #include <net/dn_route.h>
50
51 static int dn_neigh_construct(struct neighbour *);
52 static void dn_neigh_error_report(struct neighbour *, struct sk_buff *);
53 static int dn_neigh_output(struct neighbour *neigh, struct sk_buff *skb);
54
55 /*
56 * Operations for adding the link layer header.
57 */
58 static const struct neigh_ops dn_neigh_ops = {
59 .family = AF_DECnet,
60 .error_report = dn_neigh_error_report,
61 .output = dn_neigh_output,
62 .connected_output = dn_neigh_output,
63 };
64
65 static u32 dn_neigh_hash(const void *pkey,
66 const struct net_device *dev,
67 __u32 *hash_rnd)
68 {
69 return jhash_2words(*(__u16 *)pkey, 0, hash_rnd[0]);
70 }
71
72 static bool dn_key_eq(const struct neighbour *neigh, const void *pkey)
73 {
74 return neigh_key_eq16(neigh, pkey);
75 }
76
77 struct neigh_table dn_neigh_table = {
78 .family = PF_DECnet,
79 .entry_size = NEIGH_ENTRY_SIZE(sizeof(struct dn_neigh)),
80 .key_len = sizeof(__le16),
81 .protocol = cpu_to_be16(ETH_P_DNA_RT),
82 .hash = dn_neigh_hash,
83 .key_eq = dn_key_eq,
84 .constructor = dn_neigh_construct,
85 .id = "dn_neigh_cache",
86 .parms ={
87 .tbl = &dn_neigh_table,
88 .reachable_time = 30 * HZ,
89 .data = {
90 [NEIGH_VAR_MCAST_PROBES] = 0,
91 [NEIGH_VAR_UCAST_PROBES] = 0,
92 [NEIGH_VAR_APP_PROBES] = 0,
93 [NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
94 [NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
95 [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
96 [NEIGH_VAR_GC_STALETIME] = 60 * HZ,
97 [NEIGH_VAR_QUEUE_LEN_BYTES] = 64*1024,
98 [NEIGH_VAR_PROXY_QLEN] = 0,
99 [NEIGH_VAR_ANYCAST_DELAY] = 0,
100 [NEIGH_VAR_PROXY_DELAY] = 0,
101 [NEIGH_VAR_LOCKTIME] = 1 * HZ,
102 },
103 },
104 .gc_interval = 30 * HZ,
105 .gc_thresh1 = 128,
106 .gc_thresh2 = 512,
107 .gc_thresh3 = 1024,
108 };
109
110 static int dn_neigh_construct(struct neighbour *neigh)
111 {
112 struct net_device *dev = neigh->dev;
113 struct dn_neigh *dn = (struct dn_neigh *)neigh;
114 struct dn_dev *dn_db;
115 struct neigh_parms *parms;
116
117 rcu_read_lock();
118 dn_db = rcu_dereference(dev->dn_ptr);
119 if (dn_db == NULL) {
120 rcu_read_unlock();
121 return -EINVAL;
122 }
123
124 parms = dn_db->neigh_parms;
125 if (!parms) {
126 rcu_read_unlock();
127 return -EINVAL;
128 }
129
130 __neigh_parms_put(neigh->parms);
131 neigh->parms = neigh_parms_clone(parms);
132 rcu_read_unlock();
133
134 neigh->ops = &dn_neigh_ops;
135 neigh->nud_state = NUD_NOARP;
136 neigh->output = neigh->ops->connected_output;
137
138 if ((dev->type == ARPHRD_IPGRE) || (dev->flags & IFF_POINTOPOINT))
139 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
140 else if ((dev->type == ARPHRD_ETHER) || (dev->type == ARPHRD_LOOPBACK))
141 dn_dn2eth(neigh->ha, dn->addr);
142 else {
143 net_dbg_ratelimited("Trying to create neigh for hw %d\n",
144 dev->type);
145 return -EINVAL;
146 }
147
148 /*
149 * Make an estimate of the remote block size by assuming that its
150 * two less then the device mtu, which it true for ethernet (and
151 * other things which support long format headers) since there is
152 * an extra length field (of 16 bits) which isn't part of the
153 * ethernet headers and which the DECnet specs won't admit is part
154 * of the DECnet routing headers either.
155 *
156 * If we over estimate here its no big deal, the NSP negotiations
157 * will prevent us from sending packets which are too large for the
158 * remote node to handle. In any case this figure is normally updated
159 * by a hello message in most cases.
160 */
161 dn->blksize = dev->mtu - 2;
162
163 return 0;
164 }
165
166 static void dn_neigh_error_report(struct neighbour *neigh, struct sk_buff *skb)
167 {
168 printk(KERN_DEBUG "dn_neigh_error_report: called\n");
169 kfree_skb(skb);
170 }
171
172 static int dn_neigh_output(struct neighbour *neigh, struct sk_buff *skb)
173 {
174 struct dst_entry *dst = skb_dst(skb);
175 struct dn_route *rt = (struct dn_route *)dst;
176 struct net_device *dev = neigh->dev;
177 char mac_addr[ETH_ALEN];
178 unsigned int seq;
179 int err;
180
181 dn_dn2eth(mac_addr, rt->rt_local_src);
182 do {
183 seq = read_seqbegin(&neigh->ha_lock);
184 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
185 neigh->ha, mac_addr, skb->len);
186 } while (read_seqretry(&neigh->ha_lock, seq));
187
188 if (err >= 0)
189 err = dev_queue_xmit(skb);
190 else {
191 kfree_skb(skb);
192 err = -EINVAL;
193 }
194 return err;
195 }
196
197 static int dn_neigh_output_packet(struct sock *sk, struct sk_buff *skb)
198 {
199 struct dst_entry *dst = skb_dst(skb);
200 struct dn_route *rt = (struct dn_route *)dst;
201 struct neighbour *neigh = rt->n;
202
203 return neigh->output(neigh, skb);
204 }
205
206 /*
207 * For talking to broadcast devices: Ethernet & PPP
208 */
209 static int dn_long_output(struct neighbour *neigh, struct sock *sk,
210 struct sk_buff *skb)
211 {
212 struct net_device *dev = neigh->dev;
213 int headroom = dev->hard_header_len + sizeof(struct dn_long_packet) + 3;
214 unsigned char *data;
215 struct dn_long_packet *lp;
216 struct dn_skb_cb *cb = DN_SKB_CB(skb);
217
218
219 if (skb_headroom(skb) < headroom) {
220 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
221 if (skb2 == NULL) {
222 net_crit_ratelimited("dn_long_output: no memory\n");
223 kfree_skb(skb);
224 return -ENOBUFS;
225 }
226 consume_skb(skb);
227 skb = skb2;
228 net_info_ratelimited("dn_long_output: Increasing headroom\n");
229 }
230
231 data = skb_push(skb, sizeof(struct dn_long_packet) + 3);
232 lp = (struct dn_long_packet *)(data+3);
233
234 *((__le16 *)data) = cpu_to_le16(skb->len - 2);
235 *(data + 2) = 1 | DN_RT_F_PF; /* Padding */
236
237 lp->msgflg = DN_RT_PKT_LONG|(cb->rt_flags&(DN_RT_F_IE|DN_RT_F_RQR|DN_RT_F_RTS));
238 lp->d_area = lp->d_subarea = 0;
239 dn_dn2eth(lp->d_id, cb->dst);
240 lp->s_area = lp->s_subarea = 0;
241 dn_dn2eth(lp->s_id, cb->src);
242 lp->nl2 = 0;
243 lp->visit_ct = cb->hops & 0x3f;
244 lp->s_class = 0;
245 lp->pt = 0;
246
247 skb_reset_network_header(skb);
248
249 return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, sk, skb,
250 NULL, neigh->dev, dn_neigh_output_packet);
251 }
252
253 /*
254 * For talking to pointopoint and multidrop devices: DDCMP and X.25
255 */
256 static int dn_short_output(struct neighbour *neigh, struct sock *sk,
257 struct sk_buff *skb)
258 {
259 struct net_device *dev = neigh->dev;
260 int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
261 struct dn_short_packet *sp;
262 unsigned char *data;
263 struct dn_skb_cb *cb = DN_SKB_CB(skb);
264
265
266 if (skb_headroom(skb) < headroom) {
267 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
268 if (skb2 == NULL) {
269 net_crit_ratelimited("dn_short_output: no memory\n");
270 kfree_skb(skb);
271 return -ENOBUFS;
272 }
273 consume_skb(skb);
274 skb = skb2;
275 net_info_ratelimited("dn_short_output: Increasing headroom\n");
276 }
277
278 data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
279 *((__le16 *)data) = cpu_to_le16(skb->len - 2);
280 sp = (struct dn_short_packet *)(data+2);
281
282 sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
283 sp->dstnode = cb->dst;
284 sp->srcnode = cb->src;
285 sp->forward = cb->hops & 0x3f;
286
287 skb_reset_network_header(skb);
288
289 return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, sk, skb,
290 NULL, neigh->dev, dn_neigh_output_packet);
291 }
292
293 /*
294 * For talking to DECnet phase III nodes
295 * Phase 3 output is the same as short output, execpt that
296 * it clears the area bits before transmission.
297 */
298 static int dn_phase3_output(struct neighbour *neigh, struct sock *sk,
299 struct sk_buff *skb)
300 {
301 struct net_device *dev = neigh->dev;
302 int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
303 struct dn_short_packet *sp;
304 unsigned char *data;
305 struct dn_skb_cb *cb = DN_SKB_CB(skb);
306
307 if (skb_headroom(skb) < headroom) {
308 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
309 if (skb2 == NULL) {
310 net_crit_ratelimited("dn_phase3_output: no memory\n");
311 kfree_skb(skb);
312 return -ENOBUFS;
313 }
314 consume_skb(skb);
315 skb = skb2;
316 net_info_ratelimited("dn_phase3_output: Increasing headroom\n");
317 }
318
319 data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
320 *((__le16 *)data) = cpu_to_le16(skb->len - 2);
321 sp = (struct dn_short_packet *)(data + 2);
322
323 sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
324 sp->dstnode = cb->dst & cpu_to_le16(0x03ff);
325 sp->srcnode = cb->src & cpu_to_le16(0x03ff);
326 sp->forward = cb->hops & 0x3f;
327
328 skb_reset_network_header(skb);
329
330 return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, sk, skb,
331 NULL, neigh->dev, dn_neigh_output_packet);
332 }
333
334 int dn_to_neigh_output(struct sock *sk, struct sk_buff *skb)
335 {
336 struct dst_entry *dst = skb_dst(skb);
337 struct dn_route *rt = (struct dn_route *) dst;
338 struct neighbour *neigh = rt->n;
339 struct dn_neigh *dn = (struct dn_neigh *)neigh;
340 struct dn_dev *dn_db;
341 bool use_long;
342
343 rcu_read_lock();
344 dn_db = rcu_dereference(neigh->dev->dn_ptr);
345 if (dn_db == NULL) {
346 rcu_read_unlock();
347 return -EINVAL;
348 }
349 use_long = dn_db->use_long;
350 rcu_read_unlock();
351
352 if (dn->flags & DN_NDFLAG_P3)
353 return dn_phase3_output(neigh, sk, skb);
354 if (use_long)
355 return dn_long_output(neigh, sk, skb);
356 else
357 return dn_short_output(neigh, sk, skb);
358 }
359
360 /*
361 * Unfortunately, the neighbour code uses the device in its hash
362 * function, so we don't get any advantage from it. This function
363 * basically does a neigh_lookup(), but without comparing the device
364 * field. This is required for the On-Ethernet cache
365 */
366
367 /*
368 * Pointopoint link receives a hello message
369 */
370 void dn_neigh_pointopoint_hello(struct sk_buff *skb)
371 {
372 kfree_skb(skb);
373 }
374
375 /*
376 * Ethernet router hello message received
377 */
378 int dn_neigh_router_hello(struct sock *sk, struct sk_buff *skb)
379 {
380 struct rtnode_hello_message *msg = (struct rtnode_hello_message *)skb->data;
381
382 struct neighbour *neigh;
383 struct dn_neigh *dn;
384 struct dn_dev *dn_db;
385 __le16 src;
386
387 src = dn_eth2dn(msg->id);
388
389 neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
390
391 dn = (struct dn_neigh *)neigh;
392
393 if (neigh) {
394 write_lock(&neigh->lock);
395
396 neigh->used = jiffies;
397 dn_db = rcu_dereference(neigh->dev->dn_ptr);
398
399 if (!(neigh->nud_state & NUD_PERMANENT)) {
400 neigh->updated = jiffies;
401
402 if (neigh->dev->type == ARPHRD_ETHER)
403 memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
404
405 dn->blksize = le16_to_cpu(msg->blksize);
406 dn->priority = msg->priority;
407
408 dn->flags &= ~DN_NDFLAG_P3;
409
410 switch (msg->iinfo & DN_RT_INFO_TYPE) {
411 case DN_RT_INFO_L1RT:
412 dn->flags &=~DN_NDFLAG_R2;
413 dn->flags |= DN_NDFLAG_R1;
414 break;
415 case DN_RT_INFO_L2RT:
416 dn->flags |= DN_NDFLAG_R2;
417 }
418 }
419
420 /* Only use routers in our area */
421 if ((le16_to_cpu(src)>>10) == (le16_to_cpu((decnet_address))>>10)) {
422 if (!dn_db->router) {
423 dn_db->router = neigh_clone(neigh);
424 } else {
425 if (msg->priority > ((struct dn_neigh *)dn_db->router)->priority)
426 neigh_release(xchg(&dn_db->router, neigh_clone(neigh)));
427 }
428 }
429 write_unlock(&neigh->lock);
430 neigh_release(neigh);
431 }
432
433 kfree_skb(skb);
434 return 0;
435 }
436
437 /*
438 * Endnode hello message received
439 */
440 int dn_neigh_endnode_hello(struct sock *sk, struct sk_buff *skb)
441 {
442 struct endnode_hello_message *msg = (struct endnode_hello_message *)skb->data;
443 struct neighbour *neigh;
444 struct dn_neigh *dn;
445 __le16 src;
446
447 src = dn_eth2dn(msg->id);
448
449 neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
450
451 dn = (struct dn_neigh *)neigh;
452
453 if (neigh) {
454 write_lock(&neigh->lock);
455
456 neigh->used = jiffies;
457
458 if (!(neigh->nud_state & NUD_PERMANENT)) {
459 neigh->updated = jiffies;
460
461 if (neigh->dev->type == ARPHRD_ETHER)
462 memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
463 dn->flags &= ~(DN_NDFLAG_R1 | DN_NDFLAG_R2);
464 dn->blksize = le16_to_cpu(msg->blksize);
465 dn->priority = 0;
466 }
467
468 write_unlock(&neigh->lock);
469 neigh_release(neigh);
470 }
471
472 kfree_skb(skb);
473 return 0;
474 }
475
476 static char *dn_find_slot(char *base, int max, int priority)
477 {
478 int i;
479 unsigned char *min = NULL;
480
481 base += 6; /* skip first id */
482
483 for(i = 0; i < max; i++) {
484 if (!min || (*base < *min))
485 min = base;
486 base += 7; /* find next priority */
487 }
488
489 if (!min)
490 return NULL;
491
492 return (*min < priority) ? (min - 6) : NULL;
493 }
494
495 struct elist_cb_state {
496 struct net_device *dev;
497 unsigned char *ptr;
498 unsigned char *rs;
499 int t, n;
500 };
501
502 static void neigh_elist_cb(struct neighbour *neigh, void *_info)
503 {
504 struct elist_cb_state *s = _info;
505 struct dn_neigh *dn;
506
507 if (neigh->dev != s->dev)
508 return;
509
510 dn = (struct dn_neigh *) neigh;
511 if (!(dn->flags & (DN_NDFLAG_R1|DN_NDFLAG_R2)))
512 return;
513
514 if (s->t == s->n)
515 s->rs = dn_find_slot(s->ptr, s->n, dn->priority);
516 else
517 s->t++;
518 if (s->rs == NULL)
519 return;
520
521 dn_dn2eth(s->rs, dn->addr);
522 s->rs += 6;
523 *(s->rs) = neigh->nud_state & NUD_CONNECTED ? 0x80 : 0x0;
524 *(s->rs) |= dn->priority;
525 s->rs++;
526 }
527
528 int dn_neigh_elist(struct net_device *dev, unsigned char *ptr, int n)
529 {
530 struct elist_cb_state state;
531
532 state.dev = dev;
533 state.t = 0;
534 state.n = n;
535 state.ptr = ptr;
536 state.rs = ptr;
537
538 neigh_for_each(&dn_neigh_table, neigh_elist_cb, &state);
539
540 return state.t;
541 }
542
543
544 #ifdef CONFIG_PROC_FS
545
546 static inline void dn_neigh_format_entry(struct seq_file *seq,
547 struct neighbour *n)
548 {
549 struct dn_neigh *dn = (struct dn_neigh *) n;
550 char buf[DN_ASCBUF_LEN];
551
552 read_lock(&n->lock);
553 seq_printf(seq, "%-7s %s%s%s %02x %02d %07ld %-8s\n",
554 dn_addr2asc(le16_to_cpu(dn->addr), buf),
555 (dn->flags&DN_NDFLAG_R1) ? "1" : "-",
556 (dn->flags&DN_NDFLAG_R2) ? "2" : "-",
557 (dn->flags&DN_NDFLAG_P3) ? "3" : "-",
558 dn->n.nud_state,
559 atomic_read(&dn->n.refcnt),
560 dn->blksize,
561 (dn->n.dev) ? dn->n.dev->name : "?");
562 read_unlock(&n->lock);
563 }
564
565 static int dn_neigh_seq_show(struct seq_file *seq, void *v)
566 {
567 if (v == SEQ_START_TOKEN) {
568 seq_puts(seq, "Addr Flags State Use Blksize Dev\n");
569 } else {
570 dn_neigh_format_entry(seq, v);
571 }
572
573 return 0;
574 }
575
576 static void *dn_neigh_seq_start(struct seq_file *seq, loff_t *pos)
577 {
578 return neigh_seq_start(seq, pos, &dn_neigh_table,
579 NEIGH_SEQ_NEIGH_ONLY);
580 }
581
582 static const struct seq_operations dn_neigh_seq_ops = {
583 .start = dn_neigh_seq_start,
584 .next = neigh_seq_next,
585 .stop = neigh_seq_stop,
586 .show = dn_neigh_seq_show,
587 };
588
589 static int dn_neigh_seq_open(struct inode *inode, struct file *file)
590 {
591 return seq_open_net(inode, file, &dn_neigh_seq_ops,
592 sizeof(struct neigh_seq_state));
593 }
594
595 static const struct file_operations dn_neigh_seq_fops = {
596 .owner = THIS_MODULE,
597 .open = dn_neigh_seq_open,
598 .read = seq_read,
599 .llseek = seq_lseek,
600 .release = seq_release_net,
601 };
602
603 #endif
604
605 void __init dn_neigh_init(void)
606 {
607 neigh_table_init(NEIGH_DN_TABLE, &dn_neigh_table);
608 proc_create("decnet_neigh", S_IRUGO, init_net.proc_net,
609 &dn_neigh_seq_fops);
610 }
611
612 void __exit dn_neigh_cleanup(void)
613 {
614 remove_proc_entry("decnet_neigh", init_net.proc_net);
615 neigh_table_clear(NEIGH_DN_TABLE, &dn_neigh_table);
616 }