]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/dsa/dsa2.c
net: dsa: fix dsa_tree_setup error path
[mirror_ubuntu-jammy-kernel.git] / net / dsa / dsa2.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * net/dsa/dsa2.c - Hardware switch handling, binding version 2
4 * Copyright (c) 2008-2009 Marvell Semiconductor
5 * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
6 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
7 */
8
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/list.h>
12 #include <linux/netdevice.h>
13 #include <linux/slab.h>
14 #include <linux/rtnetlink.h>
15 #include <linux/of.h>
16 #include <linux/of_net.h>
17 #include <net/devlink.h>
18
19 #include "dsa_priv.h"
20
21 static DEFINE_MUTEX(dsa2_mutex);
22 LIST_HEAD(dsa_tree_list);
23
24 /* Track the bridges with forwarding offload enabled */
25 static unsigned long dsa_fwd_offloading_bridges;
26
27 /**
28 * dsa_tree_notify - Execute code for all switches in a DSA switch tree.
29 * @dst: collection of struct dsa_switch devices to notify.
30 * @e: event, must be of type DSA_NOTIFIER_*
31 * @v: event-specific value.
32 *
33 * Given a struct dsa_switch_tree, this can be used to run a function once for
34 * each member DSA switch. The other alternative of traversing the tree is only
35 * through its ports list, which does not uniquely list the switches.
36 */
37 int dsa_tree_notify(struct dsa_switch_tree *dst, unsigned long e, void *v)
38 {
39 struct raw_notifier_head *nh = &dst->nh;
40 int err;
41
42 err = raw_notifier_call_chain(nh, e, v);
43
44 return notifier_to_errno(err);
45 }
46
47 /**
48 * dsa_broadcast - Notify all DSA trees in the system.
49 * @e: event, must be of type DSA_NOTIFIER_*
50 * @v: event-specific value.
51 *
52 * Can be used to notify the switching fabric of events such as cross-chip
53 * bridging between disjoint trees (such as islands of tagger-compatible
54 * switches bridged by an incompatible middle switch).
55 *
56 * WARNING: this function is not reliable during probe time, because probing
57 * between trees is asynchronous and not all DSA trees might have probed.
58 */
59 int dsa_broadcast(unsigned long e, void *v)
60 {
61 struct dsa_switch_tree *dst;
62 int err = 0;
63
64 list_for_each_entry(dst, &dsa_tree_list, list) {
65 err = dsa_tree_notify(dst, e, v);
66 if (err)
67 break;
68 }
69
70 return err;
71 }
72
73 /**
74 * dsa_lag_map() - Map LAG netdev to a linear LAG ID
75 * @dst: Tree in which to record the mapping.
76 * @lag: Netdev that is to be mapped to an ID.
77 *
78 * dsa_lag_id/dsa_lag_dev can then be used to translate between the
79 * two spaces. The size of the mapping space is determined by the
80 * driver by setting ds->num_lag_ids. It is perfectly legal to leave
81 * it unset if it is not needed, in which case these functions become
82 * no-ops.
83 */
84 void dsa_lag_map(struct dsa_switch_tree *dst, struct net_device *lag)
85 {
86 unsigned int id;
87
88 if (dsa_lag_id(dst, lag) >= 0)
89 /* Already mapped */
90 return;
91
92 for (id = 0; id < dst->lags_len; id++) {
93 if (!dsa_lag_dev(dst, id)) {
94 dst->lags[id] = lag;
95 return;
96 }
97 }
98
99 /* No IDs left, which is OK. Some drivers do not need it. The
100 * ones that do, e.g. mv88e6xxx, will discover that dsa_lag_id
101 * returns an error for this device when joining the LAG. The
102 * driver can then return -EOPNOTSUPP back to DSA, which will
103 * fall back to a software LAG.
104 */
105 }
106
107 /**
108 * dsa_lag_unmap() - Remove a LAG ID mapping
109 * @dst: Tree in which the mapping is recorded.
110 * @lag: Netdev that was mapped.
111 *
112 * As there may be multiple users of the mapping, it is only removed
113 * if there are no other references to it.
114 */
115 void dsa_lag_unmap(struct dsa_switch_tree *dst, struct net_device *lag)
116 {
117 struct dsa_port *dp;
118 unsigned int id;
119
120 dsa_lag_foreach_port(dp, dst, lag)
121 /* There are remaining users of this mapping */
122 return;
123
124 dsa_lags_foreach_id(id, dst) {
125 if (dsa_lag_dev(dst, id) == lag) {
126 dst->lags[id] = NULL;
127 break;
128 }
129 }
130 }
131
132 static int dsa_bridge_num_find(const struct net_device *bridge_dev)
133 {
134 struct dsa_switch_tree *dst;
135 struct dsa_port *dp;
136
137 /* When preparing the offload for a port, it will have a valid
138 * dp->bridge_dev pointer but a not yet valid dp->bridge_num.
139 * However there might be other ports having the same dp->bridge_dev
140 * and a valid dp->bridge_num, so just ignore this port.
141 */
142 list_for_each_entry(dst, &dsa_tree_list, list)
143 list_for_each_entry(dp, &dst->ports, list)
144 if (dp->bridge_dev == bridge_dev &&
145 dp->bridge_num != -1)
146 return dp->bridge_num;
147
148 return -1;
149 }
150
151 int dsa_bridge_num_get(const struct net_device *bridge_dev, int max)
152 {
153 int bridge_num = dsa_bridge_num_find(bridge_dev);
154
155 if (bridge_num < 0) {
156 /* First port that offloads TX forwarding for this bridge */
157 bridge_num = find_first_zero_bit(&dsa_fwd_offloading_bridges,
158 DSA_MAX_NUM_OFFLOADING_BRIDGES);
159 if (bridge_num >= max)
160 return -1;
161
162 set_bit(bridge_num, &dsa_fwd_offloading_bridges);
163 }
164
165 return bridge_num;
166 }
167
168 void dsa_bridge_num_put(const struct net_device *bridge_dev, int bridge_num)
169 {
170 /* Check if the bridge is still in use, otherwise it is time
171 * to clean it up so we can reuse this bridge_num later.
172 */
173 if (!dsa_bridge_num_find(bridge_dev))
174 clear_bit(bridge_num, &dsa_fwd_offloading_bridges);
175 }
176
177 struct dsa_switch *dsa_switch_find(int tree_index, int sw_index)
178 {
179 struct dsa_switch_tree *dst;
180 struct dsa_port *dp;
181
182 list_for_each_entry(dst, &dsa_tree_list, list) {
183 if (dst->index != tree_index)
184 continue;
185
186 list_for_each_entry(dp, &dst->ports, list) {
187 if (dp->ds->index != sw_index)
188 continue;
189
190 return dp->ds;
191 }
192 }
193
194 return NULL;
195 }
196 EXPORT_SYMBOL_GPL(dsa_switch_find);
197
198 static struct dsa_switch_tree *dsa_tree_find(int index)
199 {
200 struct dsa_switch_tree *dst;
201
202 list_for_each_entry(dst, &dsa_tree_list, list)
203 if (dst->index == index)
204 return dst;
205
206 return NULL;
207 }
208
209 static struct dsa_switch_tree *dsa_tree_alloc(int index)
210 {
211 struct dsa_switch_tree *dst;
212
213 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
214 if (!dst)
215 return NULL;
216
217 dst->index = index;
218
219 INIT_LIST_HEAD(&dst->rtable);
220
221 INIT_LIST_HEAD(&dst->ports);
222
223 INIT_LIST_HEAD(&dst->list);
224 list_add_tail(&dst->list, &dsa_tree_list);
225
226 kref_init(&dst->refcount);
227
228 return dst;
229 }
230
231 static void dsa_tree_free(struct dsa_switch_tree *dst)
232 {
233 if (dst->tag_ops)
234 dsa_tag_driver_put(dst->tag_ops);
235 list_del(&dst->list);
236 kfree(dst);
237 }
238
239 static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst)
240 {
241 if (dst)
242 kref_get(&dst->refcount);
243
244 return dst;
245 }
246
247 static struct dsa_switch_tree *dsa_tree_touch(int index)
248 {
249 struct dsa_switch_tree *dst;
250
251 dst = dsa_tree_find(index);
252 if (dst)
253 return dsa_tree_get(dst);
254 else
255 return dsa_tree_alloc(index);
256 }
257
258 static void dsa_tree_release(struct kref *ref)
259 {
260 struct dsa_switch_tree *dst;
261
262 dst = container_of(ref, struct dsa_switch_tree, refcount);
263
264 dsa_tree_free(dst);
265 }
266
267 static void dsa_tree_put(struct dsa_switch_tree *dst)
268 {
269 if (dst)
270 kref_put(&dst->refcount, dsa_tree_release);
271 }
272
273 static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst,
274 struct device_node *dn)
275 {
276 struct dsa_port *dp;
277
278 list_for_each_entry(dp, &dst->ports, list)
279 if (dp->dn == dn)
280 return dp;
281
282 return NULL;
283 }
284
285 static struct dsa_link *dsa_link_touch(struct dsa_port *dp,
286 struct dsa_port *link_dp)
287 {
288 struct dsa_switch *ds = dp->ds;
289 struct dsa_switch_tree *dst;
290 struct dsa_link *dl;
291
292 dst = ds->dst;
293
294 list_for_each_entry(dl, &dst->rtable, list)
295 if (dl->dp == dp && dl->link_dp == link_dp)
296 return dl;
297
298 dl = kzalloc(sizeof(*dl), GFP_KERNEL);
299 if (!dl)
300 return NULL;
301
302 dl->dp = dp;
303 dl->link_dp = link_dp;
304
305 INIT_LIST_HEAD(&dl->list);
306 list_add_tail(&dl->list, &dst->rtable);
307
308 return dl;
309 }
310
311 static bool dsa_port_setup_routing_table(struct dsa_port *dp)
312 {
313 struct dsa_switch *ds = dp->ds;
314 struct dsa_switch_tree *dst = ds->dst;
315 struct device_node *dn = dp->dn;
316 struct of_phandle_iterator it;
317 struct dsa_port *link_dp;
318 struct dsa_link *dl;
319 int err;
320
321 of_for_each_phandle(&it, err, dn, "link", NULL, 0) {
322 link_dp = dsa_tree_find_port_by_node(dst, it.node);
323 if (!link_dp) {
324 of_node_put(it.node);
325 return false;
326 }
327
328 dl = dsa_link_touch(dp, link_dp);
329 if (!dl) {
330 of_node_put(it.node);
331 return false;
332 }
333 }
334
335 return true;
336 }
337
338 static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst)
339 {
340 bool complete = true;
341 struct dsa_port *dp;
342
343 list_for_each_entry(dp, &dst->ports, list) {
344 if (dsa_port_is_dsa(dp)) {
345 complete = dsa_port_setup_routing_table(dp);
346 if (!complete)
347 break;
348 }
349 }
350
351 return complete;
352 }
353
354 static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst)
355 {
356 struct dsa_port *dp;
357
358 list_for_each_entry(dp, &dst->ports, list)
359 if (dsa_port_is_cpu(dp))
360 return dp;
361
362 return NULL;
363 }
364
365 /* Assign the default CPU port (the first one in the tree) to all ports of the
366 * fabric which don't already have one as part of their own switch.
367 */
368 static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst)
369 {
370 struct dsa_port *cpu_dp, *dp;
371
372 cpu_dp = dsa_tree_find_first_cpu(dst);
373 if (!cpu_dp) {
374 pr_err("DSA: tree %d has no CPU port\n", dst->index);
375 return -EINVAL;
376 }
377
378 list_for_each_entry(dp, &dst->ports, list) {
379 if (dp->cpu_dp)
380 continue;
381
382 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
383 dp->cpu_dp = cpu_dp;
384 }
385
386 return 0;
387 }
388
389 /* Perform initial assignment of CPU ports to user ports and DSA links in the
390 * fabric, giving preference to CPU ports local to each switch. Default to
391 * using the first CPU port in the switch tree if the port does not have a CPU
392 * port local to this switch.
393 */
394 static int dsa_tree_setup_cpu_ports(struct dsa_switch_tree *dst)
395 {
396 struct dsa_port *cpu_dp, *dp;
397
398 list_for_each_entry(cpu_dp, &dst->ports, list) {
399 if (!dsa_port_is_cpu(cpu_dp))
400 continue;
401
402 list_for_each_entry(dp, &dst->ports, list) {
403 /* Prefer a local CPU port */
404 if (dp->ds != cpu_dp->ds)
405 continue;
406
407 /* Prefer the first local CPU port found */
408 if (dp->cpu_dp)
409 continue;
410
411 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
412 dp->cpu_dp = cpu_dp;
413 }
414 }
415
416 return dsa_tree_setup_default_cpu(dst);
417 }
418
419 static void dsa_tree_teardown_cpu_ports(struct dsa_switch_tree *dst)
420 {
421 struct dsa_port *dp;
422
423 list_for_each_entry(dp, &dst->ports, list)
424 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
425 dp->cpu_dp = NULL;
426 }
427
428 static int dsa_port_setup(struct dsa_port *dp)
429 {
430 struct devlink_port *dlp = &dp->devlink_port;
431 bool dsa_port_link_registered = false;
432 struct dsa_switch *ds = dp->ds;
433 bool dsa_port_enabled = false;
434 int err = 0;
435
436 if (dp->setup)
437 return 0;
438
439 INIT_LIST_HEAD(&dp->fdbs);
440 INIT_LIST_HEAD(&dp->mdbs);
441
442 if (ds->ops->port_setup) {
443 err = ds->ops->port_setup(ds, dp->index);
444 if (err)
445 return err;
446 }
447
448 switch (dp->type) {
449 case DSA_PORT_TYPE_UNUSED:
450 dsa_port_disable(dp);
451 break;
452 case DSA_PORT_TYPE_CPU:
453 err = dsa_port_link_register_of(dp);
454 if (err)
455 break;
456 dsa_port_link_registered = true;
457
458 err = dsa_port_enable(dp, NULL);
459 if (err)
460 break;
461 dsa_port_enabled = true;
462
463 break;
464 case DSA_PORT_TYPE_DSA:
465 err = dsa_port_link_register_of(dp);
466 if (err)
467 break;
468 dsa_port_link_registered = true;
469
470 err = dsa_port_enable(dp, NULL);
471 if (err)
472 break;
473 dsa_port_enabled = true;
474
475 break;
476 case DSA_PORT_TYPE_USER:
477 of_get_mac_address(dp->dn, dp->mac);
478 err = dsa_slave_create(dp);
479 if (err)
480 break;
481
482 devlink_port_type_eth_set(dlp, dp->slave);
483 break;
484 }
485
486 if (err && dsa_port_enabled)
487 dsa_port_disable(dp);
488 if (err && dsa_port_link_registered)
489 dsa_port_link_unregister_of(dp);
490 if (err) {
491 if (ds->ops->port_teardown)
492 ds->ops->port_teardown(ds, dp->index);
493 return err;
494 }
495
496 dp->setup = true;
497
498 return 0;
499 }
500
501 static int dsa_port_devlink_setup(struct dsa_port *dp)
502 {
503 struct devlink_port *dlp = &dp->devlink_port;
504 struct dsa_switch_tree *dst = dp->ds->dst;
505 struct devlink_port_attrs attrs = {};
506 struct devlink *dl = dp->ds->devlink;
507 const unsigned char *id;
508 unsigned char len;
509 int err;
510
511 id = (const unsigned char *)&dst->index;
512 len = sizeof(dst->index);
513
514 attrs.phys.port_number = dp->index;
515 memcpy(attrs.switch_id.id, id, len);
516 attrs.switch_id.id_len = len;
517 memset(dlp, 0, sizeof(*dlp));
518
519 switch (dp->type) {
520 case DSA_PORT_TYPE_UNUSED:
521 attrs.flavour = DEVLINK_PORT_FLAVOUR_UNUSED;
522 break;
523 case DSA_PORT_TYPE_CPU:
524 attrs.flavour = DEVLINK_PORT_FLAVOUR_CPU;
525 break;
526 case DSA_PORT_TYPE_DSA:
527 attrs.flavour = DEVLINK_PORT_FLAVOUR_DSA;
528 break;
529 case DSA_PORT_TYPE_USER:
530 attrs.flavour = DEVLINK_PORT_FLAVOUR_PHYSICAL;
531 break;
532 }
533
534 devlink_port_attrs_set(dlp, &attrs);
535 err = devlink_port_register(dl, dlp, dp->index);
536
537 if (!err)
538 dp->devlink_port_setup = true;
539
540 return err;
541 }
542
543 static void dsa_port_teardown(struct dsa_port *dp)
544 {
545 struct devlink_port *dlp = &dp->devlink_port;
546 struct dsa_switch *ds = dp->ds;
547 struct dsa_mac_addr *a, *tmp;
548
549 if (!dp->setup)
550 return;
551
552 if (ds->ops->port_teardown)
553 ds->ops->port_teardown(ds, dp->index);
554
555 devlink_port_type_clear(dlp);
556
557 switch (dp->type) {
558 case DSA_PORT_TYPE_UNUSED:
559 break;
560 case DSA_PORT_TYPE_CPU:
561 dsa_port_disable(dp);
562 dsa_port_link_unregister_of(dp);
563 break;
564 case DSA_PORT_TYPE_DSA:
565 dsa_port_disable(dp);
566 dsa_port_link_unregister_of(dp);
567 break;
568 case DSA_PORT_TYPE_USER:
569 if (dp->slave) {
570 dsa_slave_destroy(dp->slave);
571 dp->slave = NULL;
572 }
573 break;
574 }
575
576 list_for_each_entry_safe(a, tmp, &dp->fdbs, list) {
577 list_del(&a->list);
578 kfree(a);
579 }
580
581 list_for_each_entry_safe(a, tmp, &dp->mdbs, list) {
582 list_del(&a->list);
583 kfree(a);
584 }
585
586 dp->setup = false;
587 }
588
589 static void dsa_port_devlink_teardown(struct dsa_port *dp)
590 {
591 struct devlink_port *dlp = &dp->devlink_port;
592
593 if (dp->devlink_port_setup)
594 devlink_port_unregister(dlp);
595 dp->devlink_port_setup = false;
596 }
597
598 /* Destroy the current devlink port, and create a new one which has the UNUSED
599 * flavour. At this point, any call to ds->ops->port_setup has been already
600 * balanced out by a call to ds->ops->port_teardown, so we know that any
601 * devlink port regions the driver had are now unregistered. We then call its
602 * ds->ops->port_setup again, in order for the driver to re-create them on the
603 * new devlink port.
604 */
605 static int dsa_port_reinit_as_unused(struct dsa_port *dp)
606 {
607 struct dsa_switch *ds = dp->ds;
608 int err;
609
610 dsa_port_devlink_teardown(dp);
611 dp->type = DSA_PORT_TYPE_UNUSED;
612 err = dsa_port_devlink_setup(dp);
613 if (err)
614 return err;
615
616 if (ds->ops->port_setup) {
617 /* On error, leave the devlink port registered,
618 * dsa_switch_teardown will clean it up later.
619 */
620 err = ds->ops->port_setup(ds, dp->index);
621 if (err)
622 return err;
623 }
624
625 return 0;
626 }
627
628 static int dsa_devlink_info_get(struct devlink *dl,
629 struct devlink_info_req *req,
630 struct netlink_ext_ack *extack)
631 {
632 struct dsa_switch *ds = dsa_devlink_to_ds(dl);
633
634 if (ds->ops->devlink_info_get)
635 return ds->ops->devlink_info_get(ds, req, extack);
636
637 return -EOPNOTSUPP;
638 }
639
640 static int dsa_devlink_sb_pool_get(struct devlink *dl,
641 unsigned int sb_index, u16 pool_index,
642 struct devlink_sb_pool_info *pool_info)
643 {
644 struct dsa_switch *ds = dsa_devlink_to_ds(dl);
645
646 if (!ds->ops->devlink_sb_pool_get)
647 return -EOPNOTSUPP;
648
649 return ds->ops->devlink_sb_pool_get(ds, sb_index, pool_index,
650 pool_info);
651 }
652
653 static int dsa_devlink_sb_pool_set(struct devlink *dl, unsigned int sb_index,
654 u16 pool_index, u32 size,
655 enum devlink_sb_threshold_type threshold_type,
656 struct netlink_ext_ack *extack)
657 {
658 struct dsa_switch *ds = dsa_devlink_to_ds(dl);
659
660 if (!ds->ops->devlink_sb_pool_set)
661 return -EOPNOTSUPP;
662
663 return ds->ops->devlink_sb_pool_set(ds, sb_index, pool_index, size,
664 threshold_type, extack);
665 }
666
667 static int dsa_devlink_sb_port_pool_get(struct devlink_port *dlp,
668 unsigned int sb_index, u16 pool_index,
669 u32 *p_threshold)
670 {
671 struct dsa_switch *ds = dsa_devlink_port_to_ds(dlp);
672 int port = dsa_devlink_port_to_port(dlp);
673
674 if (!ds->ops->devlink_sb_port_pool_get)
675 return -EOPNOTSUPP;
676
677 return ds->ops->devlink_sb_port_pool_get(ds, port, sb_index,
678 pool_index, p_threshold);
679 }
680
681 static int dsa_devlink_sb_port_pool_set(struct devlink_port *dlp,
682 unsigned int sb_index, u16 pool_index,
683 u32 threshold,
684 struct netlink_ext_ack *extack)
685 {
686 struct dsa_switch *ds = dsa_devlink_port_to_ds(dlp);
687 int port = dsa_devlink_port_to_port(dlp);
688
689 if (!ds->ops->devlink_sb_port_pool_set)
690 return -EOPNOTSUPP;
691
692 return ds->ops->devlink_sb_port_pool_set(ds, port, sb_index,
693 pool_index, threshold, extack);
694 }
695
696 static int
697 dsa_devlink_sb_tc_pool_bind_get(struct devlink_port *dlp,
698 unsigned int sb_index, u16 tc_index,
699 enum devlink_sb_pool_type pool_type,
700 u16 *p_pool_index, u32 *p_threshold)
701 {
702 struct dsa_switch *ds = dsa_devlink_port_to_ds(dlp);
703 int port = dsa_devlink_port_to_port(dlp);
704
705 if (!ds->ops->devlink_sb_tc_pool_bind_get)
706 return -EOPNOTSUPP;
707
708 return ds->ops->devlink_sb_tc_pool_bind_get(ds, port, sb_index,
709 tc_index, pool_type,
710 p_pool_index, p_threshold);
711 }
712
713 static int
714 dsa_devlink_sb_tc_pool_bind_set(struct devlink_port *dlp,
715 unsigned int sb_index, u16 tc_index,
716 enum devlink_sb_pool_type pool_type,
717 u16 pool_index, u32 threshold,
718 struct netlink_ext_ack *extack)
719 {
720 struct dsa_switch *ds = dsa_devlink_port_to_ds(dlp);
721 int port = dsa_devlink_port_to_port(dlp);
722
723 if (!ds->ops->devlink_sb_tc_pool_bind_set)
724 return -EOPNOTSUPP;
725
726 return ds->ops->devlink_sb_tc_pool_bind_set(ds, port, sb_index,
727 tc_index, pool_type,
728 pool_index, threshold,
729 extack);
730 }
731
732 static int dsa_devlink_sb_occ_snapshot(struct devlink *dl,
733 unsigned int sb_index)
734 {
735 struct dsa_switch *ds = dsa_devlink_to_ds(dl);
736
737 if (!ds->ops->devlink_sb_occ_snapshot)
738 return -EOPNOTSUPP;
739
740 return ds->ops->devlink_sb_occ_snapshot(ds, sb_index);
741 }
742
743 static int dsa_devlink_sb_occ_max_clear(struct devlink *dl,
744 unsigned int sb_index)
745 {
746 struct dsa_switch *ds = dsa_devlink_to_ds(dl);
747
748 if (!ds->ops->devlink_sb_occ_max_clear)
749 return -EOPNOTSUPP;
750
751 return ds->ops->devlink_sb_occ_max_clear(ds, sb_index);
752 }
753
754 static int dsa_devlink_sb_occ_port_pool_get(struct devlink_port *dlp,
755 unsigned int sb_index,
756 u16 pool_index, u32 *p_cur,
757 u32 *p_max)
758 {
759 struct dsa_switch *ds = dsa_devlink_port_to_ds(dlp);
760 int port = dsa_devlink_port_to_port(dlp);
761
762 if (!ds->ops->devlink_sb_occ_port_pool_get)
763 return -EOPNOTSUPP;
764
765 return ds->ops->devlink_sb_occ_port_pool_get(ds, port, sb_index,
766 pool_index, p_cur, p_max);
767 }
768
769 static int
770 dsa_devlink_sb_occ_tc_port_bind_get(struct devlink_port *dlp,
771 unsigned int sb_index, u16 tc_index,
772 enum devlink_sb_pool_type pool_type,
773 u32 *p_cur, u32 *p_max)
774 {
775 struct dsa_switch *ds = dsa_devlink_port_to_ds(dlp);
776 int port = dsa_devlink_port_to_port(dlp);
777
778 if (!ds->ops->devlink_sb_occ_tc_port_bind_get)
779 return -EOPNOTSUPP;
780
781 return ds->ops->devlink_sb_occ_tc_port_bind_get(ds, port,
782 sb_index, tc_index,
783 pool_type, p_cur,
784 p_max);
785 }
786
787 static const struct devlink_ops dsa_devlink_ops = {
788 .info_get = dsa_devlink_info_get,
789 .sb_pool_get = dsa_devlink_sb_pool_get,
790 .sb_pool_set = dsa_devlink_sb_pool_set,
791 .sb_port_pool_get = dsa_devlink_sb_port_pool_get,
792 .sb_port_pool_set = dsa_devlink_sb_port_pool_set,
793 .sb_tc_pool_bind_get = dsa_devlink_sb_tc_pool_bind_get,
794 .sb_tc_pool_bind_set = dsa_devlink_sb_tc_pool_bind_set,
795 .sb_occ_snapshot = dsa_devlink_sb_occ_snapshot,
796 .sb_occ_max_clear = dsa_devlink_sb_occ_max_clear,
797 .sb_occ_port_pool_get = dsa_devlink_sb_occ_port_pool_get,
798 .sb_occ_tc_port_bind_get = dsa_devlink_sb_occ_tc_port_bind_get,
799 };
800
801 static int dsa_switch_setup_tag_protocol(struct dsa_switch *ds)
802 {
803 const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
804 struct dsa_switch_tree *dst = ds->dst;
805 int port, err;
806
807 if (tag_ops->proto == dst->default_proto)
808 return 0;
809
810 for (port = 0; port < ds->num_ports; port++) {
811 if (!dsa_is_cpu_port(ds, port))
812 continue;
813
814 err = ds->ops->change_tag_protocol(ds, port, tag_ops->proto);
815 if (err) {
816 dev_err(ds->dev, "Unable to use tag protocol \"%s\": %pe\n",
817 tag_ops->name, ERR_PTR(err));
818 return err;
819 }
820 }
821
822 return 0;
823 }
824
825 static int dsa_switch_setup(struct dsa_switch *ds)
826 {
827 struct dsa_devlink_priv *dl_priv;
828 struct dsa_port *dp;
829 int err;
830
831 if (ds->setup)
832 return 0;
833
834 /* Initialize ds->phys_mii_mask before registering the slave MDIO bus
835 * driver and before ops->setup() has run, since the switch drivers and
836 * the slave MDIO bus driver rely on these values for probing PHY
837 * devices or not
838 */
839 ds->phys_mii_mask |= dsa_user_ports(ds);
840
841 /* Add the switch to devlink before calling setup, so that setup can
842 * add dpipe tables
843 */
844 ds->devlink =
845 devlink_alloc(&dsa_devlink_ops, sizeof(*dl_priv), ds->dev);
846 if (!ds->devlink)
847 return -ENOMEM;
848 dl_priv = devlink_priv(ds->devlink);
849 dl_priv->ds = ds;
850
851 err = devlink_register(ds->devlink);
852 if (err)
853 goto free_devlink;
854
855 /* Setup devlink port instances now, so that the switch
856 * setup() can register regions etc, against the ports
857 */
858 list_for_each_entry(dp, &ds->dst->ports, list) {
859 if (dp->ds == ds) {
860 err = dsa_port_devlink_setup(dp);
861 if (err)
862 goto unregister_devlink_ports;
863 }
864 }
865
866 err = dsa_switch_register_notifier(ds);
867 if (err)
868 goto unregister_devlink_ports;
869
870 ds->configure_vlan_while_not_filtering = true;
871
872 err = ds->ops->setup(ds);
873 if (err < 0)
874 goto unregister_notifier;
875
876 err = dsa_switch_setup_tag_protocol(ds);
877 if (err)
878 goto teardown;
879
880 devlink_params_publish(ds->devlink);
881
882 if (!ds->slave_mii_bus && ds->ops->phy_read) {
883 ds->slave_mii_bus = devm_mdiobus_alloc(ds->dev);
884 if (!ds->slave_mii_bus) {
885 err = -ENOMEM;
886 goto teardown;
887 }
888
889 dsa_slave_mii_bus_init(ds);
890
891 err = mdiobus_register(ds->slave_mii_bus);
892 if (err < 0)
893 goto teardown;
894 }
895
896 ds->setup = true;
897
898 return 0;
899
900 teardown:
901 if (ds->ops->teardown)
902 ds->ops->teardown(ds);
903 unregister_notifier:
904 dsa_switch_unregister_notifier(ds);
905 unregister_devlink_ports:
906 list_for_each_entry(dp, &ds->dst->ports, list)
907 if (dp->ds == ds)
908 dsa_port_devlink_teardown(dp);
909 devlink_unregister(ds->devlink);
910 free_devlink:
911 devlink_free(ds->devlink);
912 ds->devlink = NULL;
913
914 return err;
915 }
916
917 static void dsa_switch_teardown(struct dsa_switch *ds)
918 {
919 struct dsa_port *dp;
920
921 if (!ds->setup)
922 return;
923
924 if (ds->slave_mii_bus && ds->ops->phy_read)
925 mdiobus_unregister(ds->slave_mii_bus);
926
927 dsa_switch_unregister_notifier(ds);
928
929 if (ds->ops->teardown)
930 ds->ops->teardown(ds);
931
932 if (ds->devlink) {
933 list_for_each_entry(dp, &ds->dst->ports, list)
934 if (dp->ds == ds)
935 dsa_port_devlink_teardown(dp);
936 devlink_unregister(ds->devlink);
937 devlink_free(ds->devlink);
938 ds->devlink = NULL;
939 }
940
941 ds->setup = false;
942 }
943
944 /* First tear down the non-shared, then the shared ports. This ensures that
945 * all work items scheduled by our switchdev handlers for user ports have
946 * completed before we destroy the refcounting kept on the shared ports.
947 */
948 static void dsa_tree_teardown_ports(struct dsa_switch_tree *dst)
949 {
950 struct dsa_port *dp;
951
952 list_for_each_entry(dp, &dst->ports, list)
953 if (dsa_port_is_user(dp) || dsa_port_is_unused(dp))
954 dsa_port_teardown(dp);
955
956 dsa_flush_workqueue();
957
958 list_for_each_entry(dp, &dst->ports, list)
959 if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp))
960 dsa_port_teardown(dp);
961 }
962
963 static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst)
964 {
965 struct dsa_port *dp;
966
967 list_for_each_entry(dp, &dst->ports, list)
968 dsa_switch_teardown(dp->ds);
969 }
970
971 static int dsa_tree_setup_switches(struct dsa_switch_tree *dst)
972 {
973 struct dsa_port *dp;
974 int err;
975
976 list_for_each_entry(dp, &dst->ports, list) {
977 err = dsa_switch_setup(dp->ds);
978 if (err)
979 goto teardown;
980 }
981
982 list_for_each_entry(dp, &dst->ports, list) {
983 err = dsa_port_setup(dp);
984 if (err) {
985 err = dsa_port_reinit_as_unused(dp);
986 if (err)
987 goto teardown;
988 }
989 }
990
991 return 0;
992
993 teardown:
994 dsa_tree_teardown_ports(dst);
995
996 dsa_tree_teardown_switches(dst);
997
998 return err;
999 }
1000
1001 static int dsa_tree_setup_master(struct dsa_switch_tree *dst)
1002 {
1003 struct dsa_port *dp;
1004 int err;
1005
1006 list_for_each_entry(dp, &dst->ports, list) {
1007 if (dsa_port_is_cpu(dp)) {
1008 err = dsa_master_setup(dp->master, dp);
1009 if (err)
1010 return err;
1011 }
1012 }
1013
1014 return 0;
1015 }
1016
1017 static void dsa_tree_teardown_master(struct dsa_switch_tree *dst)
1018 {
1019 struct dsa_port *dp;
1020
1021 list_for_each_entry(dp, &dst->ports, list)
1022 if (dsa_port_is_cpu(dp))
1023 dsa_master_teardown(dp->master);
1024 }
1025
1026 static int dsa_tree_setup_lags(struct dsa_switch_tree *dst)
1027 {
1028 unsigned int len = 0;
1029 struct dsa_port *dp;
1030
1031 list_for_each_entry(dp, &dst->ports, list) {
1032 if (dp->ds->num_lag_ids > len)
1033 len = dp->ds->num_lag_ids;
1034 }
1035
1036 if (!len)
1037 return 0;
1038
1039 dst->lags = kcalloc(len, sizeof(*dst->lags), GFP_KERNEL);
1040 if (!dst->lags)
1041 return -ENOMEM;
1042
1043 dst->lags_len = len;
1044 return 0;
1045 }
1046
1047 static void dsa_tree_teardown_lags(struct dsa_switch_tree *dst)
1048 {
1049 kfree(dst->lags);
1050 }
1051
1052 static int dsa_tree_setup(struct dsa_switch_tree *dst)
1053 {
1054 bool complete;
1055 int err;
1056
1057 if (dst->setup) {
1058 pr_err("DSA: tree %d already setup! Disjoint trees?\n",
1059 dst->index);
1060 return -EEXIST;
1061 }
1062
1063 complete = dsa_tree_setup_routing_table(dst);
1064 if (!complete)
1065 return 0;
1066
1067 err = dsa_tree_setup_cpu_ports(dst);
1068 if (err)
1069 return err;
1070
1071 err = dsa_tree_setup_switches(dst);
1072 if (err)
1073 goto teardown_cpu_ports;
1074
1075 err = dsa_tree_setup_master(dst);
1076 if (err)
1077 goto teardown_switches;
1078
1079 err = dsa_tree_setup_lags(dst);
1080 if (err)
1081 goto teardown_master;
1082
1083 dst->setup = true;
1084
1085 pr_info("DSA: tree %d setup\n", dst->index);
1086
1087 return 0;
1088
1089 teardown_master:
1090 dsa_tree_teardown_master(dst);
1091 teardown_switches:
1092 dsa_tree_teardown_ports(dst);
1093 dsa_tree_teardown_switches(dst);
1094 teardown_cpu_ports:
1095 dsa_tree_teardown_cpu_ports(dst);
1096
1097 return err;
1098 }
1099
1100 static void dsa_tree_teardown(struct dsa_switch_tree *dst)
1101 {
1102 struct dsa_link *dl, *next;
1103
1104 if (!dst->setup)
1105 return;
1106
1107 dsa_tree_teardown_lags(dst);
1108
1109 dsa_tree_teardown_master(dst);
1110
1111 dsa_tree_teardown_ports(dst);
1112
1113 dsa_tree_teardown_switches(dst);
1114
1115 dsa_tree_teardown_cpu_ports(dst);
1116
1117 list_for_each_entry_safe(dl, next, &dst->rtable, list) {
1118 list_del(&dl->list);
1119 kfree(dl);
1120 }
1121
1122 pr_info("DSA: tree %d torn down\n", dst->index);
1123
1124 dst->setup = false;
1125 }
1126
1127 /* Since the dsa/tagging sysfs device attribute is per master, the assumption
1128 * is that all DSA switches within a tree share the same tagger, otherwise
1129 * they would have formed disjoint trees (different "dsa,member" values).
1130 */
1131 int dsa_tree_change_tag_proto(struct dsa_switch_tree *dst,
1132 struct net_device *master,
1133 const struct dsa_device_ops *tag_ops,
1134 const struct dsa_device_ops *old_tag_ops)
1135 {
1136 struct dsa_notifier_tag_proto_info info;
1137 struct dsa_port *dp;
1138 int err = -EBUSY;
1139
1140 if (!rtnl_trylock())
1141 return restart_syscall();
1142
1143 /* At the moment we don't allow changing the tag protocol under
1144 * traffic. The rtnl_mutex also happens to serialize concurrent
1145 * attempts to change the tagging protocol. If we ever lift the IFF_UP
1146 * restriction, there needs to be another mutex which serializes this.
1147 */
1148 if (master->flags & IFF_UP)
1149 goto out_unlock;
1150
1151 list_for_each_entry(dp, &dst->ports, list) {
1152 if (!dsa_is_user_port(dp->ds, dp->index))
1153 continue;
1154
1155 if (dp->slave->flags & IFF_UP)
1156 goto out_unlock;
1157 }
1158
1159 info.tag_ops = tag_ops;
1160 err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
1161 if (err)
1162 goto out_unwind_tagger;
1163
1164 dst->tag_ops = tag_ops;
1165
1166 rtnl_unlock();
1167
1168 return 0;
1169
1170 out_unwind_tagger:
1171 info.tag_ops = old_tag_ops;
1172 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
1173 out_unlock:
1174 rtnl_unlock();
1175 return err;
1176 }
1177
1178 static struct dsa_port *dsa_port_touch(struct dsa_switch *ds, int index)
1179 {
1180 struct dsa_switch_tree *dst = ds->dst;
1181 struct dsa_port *dp;
1182
1183 list_for_each_entry(dp, &dst->ports, list)
1184 if (dp->ds == ds && dp->index == index)
1185 return dp;
1186
1187 dp = kzalloc(sizeof(*dp), GFP_KERNEL);
1188 if (!dp)
1189 return NULL;
1190
1191 dp->ds = ds;
1192 dp->index = index;
1193 dp->bridge_num = -1;
1194
1195 INIT_LIST_HEAD(&dp->list);
1196 list_add_tail(&dp->list, &dst->ports);
1197
1198 return dp;
1199 }
1200
1201 static int dsa_port_parse_user(struct dsa_port *dp, const char *name)
1202 {
1203 if (!name)
1204 name = "eth%d";
1205
1206 dp->type = DSA_PORT_TYPE_USER;
1207 dp->name = name;
1208
1209 return 0;
1210 }
1211
1212 static int dsa_port_parse_dsa(struct dsa_port *dp)
1213 {
1214 dp->type = DSA_PORT_TYPE_DSA;
1215
1216 return 0;
1217 }
1218
1219 static enum dsa_tag_protocol dsa_get_tag_protocol(struct dsa_port *dp,
1220 struct net_device *master)
1221 {
1222 enum dsa_tag_protocol tag_protocol = DSA_TAG_PROTO_NONE;
1223 struct dsa_switch *mds, *ds = dp->ds;
1224 unsigned int mdp_upstream;
1225 struct dsa_port *mdp;
1226
1227 /* It is possible to stack DSA switches onto one another when that
1228 * happens the switch driver may want to know if its tagging protocol
1229 * is going to work in such a configuration.
1230 */
1231 if (dsa_slave_dev_check(master)) {
1232 mdp = dsa_slave_to_port(master);
1233 mds = mdp->ds;
1234 mdp_upstream = dsa_upstream_port(mds, mdp->index);
1235 tag_protocol = mds->ops->get_tag_protocol(mds, mdp_upstream,
1236 DSA_TAG_PROTO_NONE);
1237 }
1238
1239 /* If the master device is not itself a DSA slave in a disjoint DSA
1240 * tree, then return immediately.
1241 */
1242 return ds->ops->get_tag_protocol(ds, dp->index, tag_protocol);
1243 }
1244
1245 static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *master,
1246 const char *user_protocol)
1247 {
1248 struct dsa_switch *ds = dp->ds;
1249 struct dsa_switch_tree *dst = ds->dst;
1250 const struct dsa_device_ops *tag_ops;
1251 enum dsa_tag_protocol default_proto;
1252
1253 /* Find out which protocol the switch would prefer. */
1254 default_proto = dsa_get_tag_protocol(dp, master);
1255 if (dst->default_proto) {
1256 if (dst->default_proto != default_proto) {
1257 dev_err(ds->dev,
1258 "A DSA switch tree can have only one tagging protocol\n");
1259 return -EINVAL;
1260 }
1261 } else {
1262 dst->default_proto = default_proto;
1263 }
1264
1265 /* See if the user wants to override that preference. */
1266 if (user_protocol) {
1267 if (!ds->ops->change_tag_protocol) {
1268 dev_err(ds->dev, "Tag protocol cannot be modified\n");
1269 return -EINVAL;
1270 }
1271
1272 tag_ops = dsa_find_tagger_by_name(user_protocol);
1273 } else {
1274 tag_ops = dsa_tag_driver_get(default_proto);
1275 }
1276
1277 if (IS_ERR(tag_ops)) {
1278 if (PTR_ERR(tag_ops) == -ENOPROTOOPT)
1279 return -EPROBE_DEFER;
1280
1281 dev_warn(ds->dev, "No tagger for this switch\n");
1282 return PTR_ERR(tag_ops);
1283 }
1284
1285 if (dst->tag_ops) {
1286 if (dst->tag_ops != tag_ops) {
1287 dev_err(ds->dev,
1288 "A DSA switch tree can have only one tagging protocol\n");
1289
1290 dsa_tag_driver_put(tag_ops);
1291 return -EINVAL;
1292 }
1293
1294 /* In the case of multiple CPU ports per switch, the tagging
1295 * protocol is still reference-counted only per switch tree.
1296 */
1297 dsa_tag_driver_put(tag_ops);
1298 } else {
1299 dst->tag_ops = tag_ops;
1300 }
1301
1302 dp->master = master;
1303 dp->type = DSA_PORT_TYPE_CPU;
1304 dsa_port_set_tag_protocol(dp, dst->tag_ops);
1305 dp->dst = dst;
1306
1307 /* At this point, the tree may be configured to use a different
1308 * tagger than the one chosen by the switch driver during
1309 * .setup, in the case when a user selects a custom protocol
1310 * through the DT.
1311 *
1312 * This is resolved by syncing the driver with the tree in
1313 * dsa_switch_setup_tag_protocol once .setup has run and the
1314 * driver is ready to accept calls to .change_tag_protocol. If
1315 * the driver does not support the custom protocol at that
1316 * point, the tree is wholly rejected, thereby ensuring that the
1317 * tree and driver are always in agreement on the protocol to
1318 * use.
1319 */
1320 return 0;
1321 }
1322
1323 static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn)
1324 {
1325 struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0);
1326 const char *name = of_get_property(dn, "label", NULL);
1327 bool link = of_property_read_bool(dn, "link");
1328
1329 dp->dn = dn;
1330
1331 if (ethernet) {
1332 struct net_device *master;
1333 const char *user_protocol;
1334
1335 master = of_find_net_device_by_node(ethernet);
1336 if (!master)
1337 return -EPROBE_DEFER;
1338
1339 user_protocol = of_get_property(dn, "dsa-tag-protocol", NULL);
1340 return dsa_port_parse_cpu(dp, master, user_protocol);
1341 }
1342
1343 if (link)
1344 return dsa_port_parse_dsa(dp);
1345
1346 return dsa_port_parse_user(dp, name);
1347 }
1348
1349 static int dsa_switch_parse_ports_of(struct dsa_switch *ds,
1350 struct device_node *dn)
1351 {
1352 struct device_node *ports, *port;
1353 struct dsa_port *dp;
1354 int err = 0;
1355 u32 reg;
1356
1357 ports = of_get_child_by_name(dn, "ports");
1358 if (!ports) {
1359 /* The second possibility is "ethernet-ports" */
1360 ports = of_get_child_by_name(dn, "ethernet-ports");
1361 if (!ports) {
1362 dev_err(ds->dev, "no ports child node found\n");
1363 return -EINVAL;
1364 }
1365 }
1366
1367 for_each_available_child_of_node(ports, port) {
1368 err = of_property_read_u32(port, "reg", &reg);
1369 if (err)
1370 goto out_put_node;
1371
1372 if (reg >= ds->num_ports) {
1373 dev_err(ds->dev, "port %pOF index %u exceeds num_ports (%zu)\n",
1374 port, reg, ds->num_ports);
1375 err = -EINVAL;
1376 goto out_put_node;
1377 }
1378
1379 dp = dsa_to_port(ds, reg);
1380
1381 err = dsa_port_parse_of(dp, port);
1382 if (err)
1383 goto out_put_node;
1384 }
1385
1386 out_put_node:
1387 of_node_put(ports);
1388 return err;
1389 }
1390
1391 static int dsa_switch_parse_member_of(struct dsa_switch *ds,
1392 struct device_node *dn)
1393 {
1394 u32 m[2] = { 0, 0 };
1395 int sz;
1396
1397 /* Don't error out if this optional property isn't found */
1398 sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2);
1399 if (sz < 0 && sz != -EINVAL)
1400 return sz;
1401
1402 ds->index = m[1];
1403
1404 ds->dst = dsa_tree_touch(m[0]);
1405 if (!ds->dst)
1406 return -ENOMEM;
1407
1408 if (dsa_switch_find(ds->dst->index, ds->index)) {
1409 dev_err(ds->dev,
1410 "A DSA switch with index %d already exists in tree %d\n",
1411 ds->index, ds->dst->index);
1412 return -EEXIST;
1413 }
1414
1415 if (ds->dst->last_switch < ds->index)
1416 ds->dst->last_switch = ds->index;
1417
1418 return 0;
1419 }
1420
1421 static int dsa_switch_touch_ports(struct dsa_switch *ds)
1422 {
1423 struct dsa_port *dp;
1424 int port;
1425
1426 for (port = 0; port < ds->num_ports; port++) {
1427 dp = dsa_port_touch(ds, port);
1428 if (!dp)
1429 return -ENOMEM;
1430 }
1431
1432 return 0;
1433 }
1434
1435 static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn)
1436 {
1437 int err;
1438
1439 err = dsa_switch_parse_member_of(ds, dn);
1440 if (err)
1441 return err;
1442
1443 err = dsa_switch_touch_ports(ds);
1444 if (err)
1445 return err;
1446
1447 return dsa_switch_parse_ports_of(ds, dn);
1448 }
1449
1450 static int dsa_port_parse(struct dsa_port *dp, const char *name,
1451 struct device *dev)
1452 {
1453 if (!strcmp(name, "cpu")) {
1454 struct net_device *master;
1455
1456 master = dsa_dev_to_net_device(dev);
1457 if (!master)
1458 return -EPROBE_DEFER;
1459
1460 dev_put(master);
1461
1462 return dsa_port_parse_cpu(dp, master, NULL);
1463 }
1464
1465 if (!strcmp(name, "dsa"))
1466 return dsa_port_parse_dsa(dp);
1467
1468 return dsa_port_parse_user(dp, name);
1469 }
1470
1471 static int dsa_switch_parse_ports(struct dsa_switch *ds,
1472 struct dsa_chip_data *cd)
1473 {
1474 bool valid_name_found = false;
1475 struct dsa_port *dp;
1476 struct device *dev;
1477 const char *name;
1478 unsigned int i;
1479 int err;
1480
1481 for (i = 0; i < DSA_MAX_PORTS; i++) {
1482 name = cd->port_names[i];
1483 dev = cd->netdev[i];
1484 dp = dsa_to_port(ds, i);
1485
1486 if (!name)
1487 continue;
1488
1489 err = dsa_port_parse(dp, name, dev);
1490 if (err)
1491 return err;
1492
1493 valid_name_found = true;
1494 }
1495
1496 if (!valid_name_found && i == DSA_MAX_PORTS)
1497 return -EINVAL;
1498
1499 return 0;
1500 }
1501
1502 static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd)
1503 {
1504 int err;
1505
1506 ds->cd = cd;
1507
1508 /* We don't support interconnected switches nor multiple trees via
1509 * platform data, so this is the unique switch of the tree.
1510 */
1511 ds->index = 0;
1512 ds->dst = dsa_tree_touch(0);
1513 if (!ds->dst)
1514 return -ENOMEM;
1515
1516 err = dsa_switch_touch_ports(ds);
1517 if (err)
1518 return err;
1519
1520 return dsa_switch_parse_ports(ds, cd);
1521 }
1522
1523 static void dsa_switch_release_ports(struct dsa_switch *ds)
1524 {
1525 struct dsa_switch_tree *dst = ds->dst;
1526 struct dsa_port *dp, *next;
1527
1528 list_for_each_entry_safe(dp, next, &dst->ports, list) {
1529 if (dp->ds != ds)
1530 continue;
1531 list_del(&dp->list);
1532 kfree(dp);
1533 }
1534 }
1535
1536 static int dsa_switch_probe(struct dsa_switch *ds)
1537 {
1538 struct dsa_switch_tree *dst;
1539 struct dsa_chip_data *pdata;
1540 struct device_node *np;
1541 int err;
1542
1543 if (!ds->dev)
1544 return -ENODEV;
1545
1546 pdata = ds->dev->platform_data;
1547 np = ds->dev->of_node;
1548
1549 if (!ds->num_ports)
1550 return -EINVAL;
1551
1552 if (np) {
1553 err = dsa_switch_parse_of(ds, np);
1554 if (err)
1555 dsa_switch_release_ports(ds);
1556 } else if (pdata) {
1557 err = dsa_switch_parse(ds, pdata);
1558 if (err)
1559 dsa_switch_release_ports(ds);
1560 } else {
1561 err = -ENODEV;
1562 }
1563
1564 if (err)
1565 return err;
1566
1567 dst = ds->dst;
1568 dsa_tree_get(dst);
1569 err = dsa_tree_setup(dst);
1570 if (err) {
1571 dsa_switch_release_ports(ds);
1572 dsa_tree_put(dst);
1573 }
1574
1575 return err;
1576 }
1577
1578 int dsa_register_switch(struct dsa_switch *ds)
1579 {
1580 int err;
1581
1582 mutex_lock(&dsa2_mutex);
1583 err = dsa_switch_probe(ds);
1584 dsa_tree_put(ds->dst);
1585 mutex_unlock(&dsa2_mutex);
1586
1587 return err;
1588 }
1589 EXPORT_SYMBOL_GPL(dsa_register_switch);
1590
1591 static void dsa_switch_remove(struct dsa_switch *ds)
1592 {
1593 struct dsa_switch_tree *dst = ds->dst;
1594
1595 dsa_tree_teardown(dst);
1596 dsa_switch_release_ports(ds);
1597 dsa_tree_put(dst);
1598 }
1599
1600 void dsa_unregister_switch(struct dsa_switch *ds)
1601 {
1602 mutex_lock(&dsa2_mutex);
1603 dsa_switch_remove(ds);
1604 mutex_unlock(&dsa2_mutex);
1605 }
1606 EXPORT_SYMBOL_GPL(dsa_unregister_switch);
1607
1608 /* If the DSA master chooses to unregister its net_device on .shutdown, DSA is
1609 * blocking that operation from completion, due to the dev_hold taken inside
1610 * netdev_upper_dev_link. Unlink the DSA slave interfaces from being uppers of
1611 * the DSA master, so that the system can reboot successfully.
1612 */
1613 void dsa_switch_shutdown(struct dsa_switch *ds)
1614 {
1615 struct net_device *master, *slave_dev;
1616 LIST_HEAD(unregister_list);
1617 struct dsa_port *dp;
1618
1619 mutex_lock(&dsa2_mutex);
1620 rtnl_lock();
1621
1622 list_for_each_entry(dp, &ds->dst->ports, list) {
1623 if (dp->ds != ds)
1624 continue;
1625
1626 if (!dsa_port_is_user(dp))
1627 continue;
1628
1629 master = dp->cpu_dp->master;
1630 slave_dev = dp->slave;
1631
1632 netdev_upper_dev_unlink(master, slave_dev);
1633 /* Just unlinking ourselves as uppers of the master is not
1634 * sufficient. When the master net device unregisters, that will
1635 * also call dev_close, which we will catch as NETDEV_GOING_DOWN
1636 * and trigger a dev_close on our own devices (dsa_slave_close).
1637 * In turn, that will call dev_mc_unsync on the master's net
1638 * device. If the master is also a DSA switch port, this will
1639 * trigger dsa_slave_set_rx_mode which will call dev_mc_sync on
1640 * its own master. Lockdep will complain about the fact that
1641 * all cascaded masters have the same dsa_master_addr_list_lock_key,
1642 * which it normally would not do if the cascaded masters would
1643 * be in a proper upper/lower relationship, which we've just
1644 * destroyed.
1645 * To suppress the lockdep warnings, let's actually unregister
1646 * the DSA slave interfaces too, to avoid the nonsensical
1647 * multicast address list synchronization on shutdown.
1648 */
1649 unregister_netdevice_queue(slave_dev, &unregister_list);
1650 }
1651 unregister_netdevice_many(&unregister_list);
1652
1653 rtnl_unlock();
1654 mutex_unlock(&dsa2_mutex);
1655 }
1656 EXPORT_SYMBOL_GPL(dsa_switch_shutdown);