]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ieee80211/ieee80211_tx.c
0949803b9c7dd60f8d4b5a4b4aad38c54e47e7c7
[mirror_ubuntu-artful-kernel.git] / net / ieee80211 / ieee80211_tx.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 ******************************************************************************/
26 #include <linux/compiler.h>
27 #include <linux/config.h>
28 #include <linux/errno.h>
29 #include <linux/if_arp.h>
30 #include <linux/in6.h>
31 #include <linux/in.h>
32 #include <linux/ip.h>
33 #include <linux/kernel.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <linux/proc_fs.h>
37 #include <linux/skbuff.h>
38 #include <linux/slab.h>
39 #include <linux/tcp.h>
40 #include <linux/types.h>
41 #include <linux/wireless.h>
42 #include <linux/etherdevice.h>
43 #include <asm/uaccess.h>
44
45 #include <net/ieee80211.h>
46
47 /*
48
49 802.11 Data Frame
50
51 ,-------------------------------------------------------------------.
52 Bytes | 2 | 2 | 6 | 6 | 6 | 2 | 0..2312 | 4 |
53 |------|------|---------|---------|---------|------|---------|------|
54 Desc. | ctrl | dura | DA/RA | TA | SA | Sequ | Frame | fcs |
55 | | tion | (BSSID) | | | ence | data | |
56 `--------------------------------------------------| |------'
57 Total: 28 non-data bytes `----.----'
58 |
59 .- 'Frame data' expands, if WEP enabled, to <----------'
60 |
61 V
62 ,-----------------------.
63 Bytes | 4 | 0-2296 | 4 |
64 |-----|-----------|-----|
65 Desc. | IV | Encrypted | ICV |
66 | | Packet | |
67 `-----| |-----'
68 `-----.-----'
69 |
70 .- 'Encrypted Packet' expands to
71 |
72 V
73 ,---------------------------------------------------.
74 Bytes | 1 | 1 | 1 | 3 | 2 | 0-2304 |
75 |------|------|---------|----------|------|---------|
76 Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP |
77 | DSAP | SSAP | | | | Packet |
78 | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8| | |
79 `----------------------------------------------------
80 Total: 8 non-data bytes
81
82 802.3 Ethernet Data Frame
83
84 ,-----------------------------------------.
85 Bytes | 6 | 6 | 2 | Variable | 4 |
86 |-------|-------|------|-----------|------|
87 Desc. | Dest. | Source| Type | IP Packet | fcs |
88 | MAC | MAC | | | |
89 `-----------------------------------------'
90 Total: 18 non-data bytes
91
92 In the event that fragmentation is required, the incoming payload is split into
93 N parts of size ieee->fts. The first fragment contains the SNAP header and the
94 remaining packets are just data.
95
96 If encryption is enabled, each fragment payload size is reduced by enough space
97 to add the prefix and postfix (IV and ICV totalling 8 bytes in the case of WEP)
98 So if you have 1500 bytes of payload with ieee->fts set to 500 without
99 encryption it will take 3 frames. With WEP it will take 4 frames as the
100 payload of each frame is reduced to 492 bytes.
101
102 * SKB visualization
103 *
104 * ,- skb->data
105 * |
106 * | ETHERNET HEADER ,-<-- PAYLOAD
107 * | | 14 bytes from skb->data
108 * | 2 bytes for Type --> ,T. | (sizeof ethhdr)
109 * | | | |
110 * |,-Dest.--. ,--Src.---. | | |
111 * | 6 bytes| | 6 bytes | | | |
112 * v | | | | | |
113 * 0 | v 1 | v | v 2
114 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
115 * ^ | ^ | ^ |
116 * | | | | | |
117 * | | | | `T' <---- 2 bytes for Type
118 * | | | |
119 * | | '---SNAP--' <-------- 6 bytes for SNAP
120 * | |
121 * `-IV--' <-------------------- 4 bytes for IV (WEP)
122 *
123 * SNAP HEADER
124 *
125 */
126
127 static u8 P802_1H_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0xf8 };
128 static u8 RFC1042_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0x00 };
129
130 static int ieee80211_copy_snap(u8 * data, u16 h_proto)
131 {
132 struct ieee80211_snap_hdr *snap;
133 u8 *oui;
134
135 snap = (struct ieee80211_snap_hdr *)data;
136 snap->dsap = 0xaa;
137 snap->ssap = 0xaa;
138 snap->ctrl = 0x03;
139
140 if (h_proto == 0x8137 || h_proto == 0x80f3)
141 oui = P802_1H_OUI;
142 else
143 oui = RFC1042_OUI;
144 snap->oui[0] = oui[0];
145 snap->oui[1] = oui[1];
146 snap->oui[2] = oui[2];
147
148 *(u16 *) (data + SNAP_SIZE) = htons(h_proto);
149
150 return SNAP_SIZE + sizeof(u16);
151 }
152
153 static int ieee80211_encrypt_fragment(struct ieee80211_device *ieee,
154 struct sk_buff *frag, int hdr_len)
155 {
156 struct ieee80211_crypt_data *crypt = ieee->crypt[ieee->tx_keyidx];
157 int res;
158
159 if (crypt == NULL)
160 return -1;
161
162 /* To encrypt, frame format is:
163 * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes) */
164 atomic_inc(&crypt->refcnt);
165 res = 0;
166 if (crypt->ops && crypt->ops->encrypt_mpdu)
167 res = crypt->ops->encrypt_mpdu(frag, hdr_len, crypt->priv);
168
169 atomic_dec(&crypt->refcnt);
170 if (res < 0) {
171 printk(KERN_INFO "%s: Encryption failed: len=%d.\n",
172 ieee->dev->name, frag->len);
173 ieee->ieee_stats.tx_discards++;
174 return -1;
175 }
176
177 return 0;
178 }
179
180 void ieee80211_txb_free(struct ieee80211_txb *txb)
181 {
182 int i;
183 if (unlikely(!txb))
184 return;
185 for (i = 0; i < txb->nr_frags; i++)
186 if (txb->fragments[i])
187 dev_kfree_skb_any(txb->fragments[i]);
188 kfree(txb);
189 }
190
191 static struct ieee80211_txb *ieee80211_alloc_txb(int nr_frags, int txb_size,
192 int headroom, gfp_t gfp_mask)
193 {
194 struct ieee80211_txb *txb;
195 int i;
196 txb = kmalloc(sizeof(struct ieee80211_txb) + (sizeof(u8 *) * nr_frags),
197 gfp_mask);
198 if (!txb)
199 return NULL;
200
201 memset(txb, 0, sizeof(struct ieee80211_txb));
202 txb->nr_frags = nr_frags;
203 txb->frag_size = txb_size;
204
205 for (i = 0; i < nr_frags; i++) {
206 txb->fragments[i] = __dev_alloc_skb(txb_size + headroom,
207 gfp_mask);
208 if (unlikely(!txb->fragments[i])) {
209 i--;
210 break;
211 }
212 skb_reserve(txb->fragments[i], headroom);
213 }
214 if (unlikely(i != nr_frags)) {
215 while (i >= 0)
216 dev_kfree_skb_any(txb->fragments[i--]);
217 kfree(txb);
218 return NULL;
219 }
220 return txb;
221 }
222
223 /* Incoming skb is converted to a txb which consists of
224 * a block of 802.11 fragment packets (stored as skbs) */
225 int ieee80211_xmit(struct sk_buff *skb, struct net_device *dev)
226 {
227 struct ieee80211_device *ieee = netdev_priv(dev);
228 struct ieee80211_txb *txb = NULL;
229 struct ieee80211_hdr_3addr *frag_hdr;
230 int i, bytes_per_frag, nr_frags, bytes_last_frag, frag_size,
231 rts_required;
232 unsigned long flags;
233 struct net_device_stats *stats = &ieee->stats;
234 int ether_type, encrypt, host_encrypt, host_encrypt_msdu, host_build_iv;
235 int bytes, fc, hdr_len;
236 struct sk_buff *skb_frag;
237 struct ieee80211_hdr_3addr header = { /* Ensure zero initialized */
238 .duration_id = 0,
239 .seq_ctl = 0
240 };
241 u8 dest[ETH_ALEN], src[ETH_ALEN];
242 struct ieee80211_crypt_data *crypt;
243 int priority = skb->priority;
244 int snapped = 0;
245
246 if (ieee->is_queue_full && (*ieee->is_queue_full) (dev, priority))
247 return NETDEV_TX_BUSY;
248
249 spin_lock_irqsave(&ieee->lock, flags);
250
251 /* If there is no driver handler to take the TXB, dont' bother
252 * creating it... */
253 if (!ieee->hard_start_xmit) {
254 printk(KERN_WARNING "%s: No xmit handler.\n", ieee->dev->name);
255 goto success;
256 }
257
258 if (unlikely(skb->len < SNAP_SIZE + sizeof(u16))) {
259 printk(KERN_WARNING "%s: skb too small (%d).\n",
260 ieee->dev->name, skb->len);
261 goto success;
262 }
263
264 ether_type = ntohs(((struct ethhdr *)skb->data)->h_proto);
265
266 crypt = ieee->crypt[ieee->tx_keyidx];
267
268 encrypt = !(ether_type == ETH_P_PAE && ieee->ieee802_1x) &&
269 ieee->sec.encrypt;
270
271 host_encrypt = ieee->host_encrypt && encrypt && crypt;
272 host_encrypt_msdu = ieee->host_encrypt_msdu && encrypt && crypt;
273 host_build_iv = ieee->host_build_iv && encrypt && crypt;
274
275 if (!encrypt && ieee->ieee802_1x &&
276 ieee->drop_unencrypted && ether_type != ETH_P_PAE) {
277 stats->tx_dropped++;
278 goto success;
279 }
280
281 /* Save source and destination addresses */
282 memcpy(dest, skb->data, ETH_ALEN);
283 memcpy(src, skb->data + ETH_ALEN, ETH_ALEN);
284
285 /* Advance the SKB to the start of the payload */
286 skb_pull(skb, sizeof(struct ethhdr));
287
288 /* Determine total amount of storage required for TXB packets */
289 bytes = skb->len + SNAP_SIZE + sizeof(u16);
290
291 if (host_encrypt || host_build_iv)
292 fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA |
293 IEEE80211_FCTL_PROTECTED;
294 else
295 fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA;
296
297 if (ieee->iw_mode == IW_MODE_INFRA) {
298 fc |= IEEE80211_FCTL_TODS;
299 /* To DS: Addr1 = BSSID, Addr2 = SA, Addr3 = DA */
300 memcpy(header.addr1, ieee->bssid, ETH_ALEN);
301 memcpy(header.addr2, src, ETH_ALEN);
302 memcpy(header.addr3, dest, ETH_ALEN);
303 } else if (ieee->iw_mode == IW_MODE_ADHOC) {
304 /* not From/To DS: Addr1 = DA, Addr2 = SA, Addr3 = BSSID */
305 memcpy(header.addr1, dest, ETH_ALEN);
306 memcpy(header.addr2, src, ETH_ALEN);
307 memcpy(header.addr3, ieee->bssid, ETH_ALEN);
308 }
309 header.frame_ctl = cpu_to_le16(fc);
310 hdr_len = IEEE80211_3ADDR_LEN;
311
312 /* Encrypt msdu first on the whole data packet. */
313 if ((host_encrypt || host_encrypt_msdu) &&
314 crypt && crypt->ops && crypt->ops->encrypt_msdu) {
315 int res = 0;
316 int len = bytes + hdr_len + crypt->ops->extra_msdu_prefix_len +
317 crypt->ops->extra_msdu_postfix_len;
318 struct sk_buff *skb_new = dev_alloc_skb(len);
319
320 if (unlikely(!skb_new))
321 goto failed;
322
323 skb_reserve(skb_new, crypt->ops->extra_msdu_prefix_len);
324 memcpy(skb_put(skb_new, hdr_len), &header, hdr_len);
325 snapped = 1;
326 ieee80211_copy_snap(skb_put(skb_new, SNAP_SIZE + sizeof(u16)),
327 ether_type);
328 memcpy(skb_put(skb_new, skb->len), skb->data, skb->len);
329 res = crypt->ops->encrypt_msdu(skb_new, hdr_len, crypt->priv);
330 if (res < 0) {
331 IEEE80211_ERROR("msdu encryption failed\n");
332 dev_kfree_skb_any(skb_new);
333 goto failed;
334 }
335 dev_kfree_skb_any(skb);
336 skb = skb_new;
337 bytes += crypt->ops->extra_msdu_prefix_len +
338 crypt->ops->extra_msdu_postfix_len;
339 skb_pull(skb, hdr_len);
340 }
341
342 if (host_encrypt || ieee->host_open_frag) {
343 /* Determine fragmentation size based on destination (multicast
344 * and broadcast are not fragmented) */
345 if (is_multicast_ether_addr(dest) ||
346 is_broadcast_ether_addr(dest))
347 frag_size = MAX_FRAG_THRESHOLD;
348 else
349 frag_size = ieee->fts;
350
351 /* Determine amount of payload per fragment. Regardless of if
352 * this stack is providing the full 802.11 header, one will
353 * eventually be affixed to this fragment -- so we must account
354 * for it when determining the amount of payload space. */
355 bytes_per_frag = frag_size - IEEE80211_3ADDR_LEN;
356 if (ieee->config &
357 (CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
358 bytes_per_frag -= IEEE80211_FCS_LEN;
359
360 /* Each fragment may need to have room for encryptiong
361 * pre/postfix */
362 if (host_encrypt)
363 bytes_per_frag -= crypt->ops->extra_mpdu_prefix_len +
364 crypt->ops->extra_mpdu_postfix_len;
365
366 /* Number of fragments is the total
367 * bytes_per_frag / payload_per_fragment */
368 nr_frags = bytes / bytes_per_frag;
369 bytes_last_frag = bytes % bytes_per_frag;
370 if (bytes_last_frag)
371 nr_frags++;
372 else
373 bytes_last_frag = bytes_per_frag;
374 } else {
375 nr_frags = 1;
376 bytes_per_frag = bytes_last_frag = bytes;
377 frag_size = bytes + IEEE80211_3ADDR_LEN;
378 }
379
380 rts_required = (frag_size > ieee->rts
381 && ieee->config & CFG_IEEE80211_RTS);
382 if (rts_required)
383 nr_frags++;
384
385 /* When we allocate the TXB we allocate enough space for the reserve
386 * and full fragment bytes (bytes_per_frag doesn't include prefix,
387 * postfix, header, FCS, etc.) */
388 txb = ieee80211_alloc_txb(nr_frags, frag_size,
389 ieee->tx_headroom, GFP_ATOMIC);
390 if (unlikely(!txb)) {
391 printk(KERN_WARNING "%s: Could not allocate TXB\n",
392 ieee->dev->name);
393 goto failed;
394 }
395 txb->encrypted = encrypt;
396 if (host_encrypt)
397 txb->payload_size = frag_size * (nr_frags - 1) +
398 bytes_last_frag;
399 else
400 txb->payload_size = bytes;
401
402 if (rts_required) {
403 skb_frag = txb->fragments[0];
404 frag_hdr =
405 (struct ieee80211_hdr_3addr *)skb_put(skb_frag, hdr_len);
406
407 /*
408 * Set header frame_ctl to the RTS.
409 */
410 header.frame_ctl =
411 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
412 memcpy(frag_hdr, &header, hdr_len);
413
414 /*
415 * Restore header frame_ctl to the original data setting.
416 */
417 header.frame_ctl = cpu_to_le16(fc);
418
419 if (ieee->config &
420 (CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
421 skb_put(skb_frag, 4);
422
423 txb->rts_included = 1;
424 i = 1;
425 } else
426 i = 0;
427
428 for (; i < nr_frags; i++) {
429 skb_frag = txb->fragments[i];
430
431 if (host_encrypt || host_build_iv)
432 skb_reserve(skb_frag,
433 crypt->ops->extra_mpdu_prefix_len);
434
435 frag_hdr =
436 (struct ieee80211_hdr_3addr *)skb_put(skb_frag, hdr_len);
437 memcpy(frag_hdr, &header, hdr_len);
438
439 /* If this is not the last fragment, then add the MOREFRAGS
440 * bit to the frame control */
441 if (i != nr_frags - 1) {
442 frag_hdr->frame_ctl =
443 cpu_to_le16(fc | IEEE80211_FCTL_MOREFRAGS);
444 bytes = bytes_per_frag;
445 } else {
446 /* The last fragment takes the remaining length */
447 bytes = bytes_last_frag;
448 }
449
450 if (i == 0 && !snapped) {
451 ieee80211_copy_snap(skb_put
452 (skb_frag, SNAP_SIZE + sizeof(u16)),
453 ether_type);
454 bytes -= SNAP_SIZE + sizeof(u16);
455 }
456
457 memcpy(skb_put(skb_frag, bytes), skb->data, bytes);
458
459 /* Advance the SKB... */
460 skb_pull(skb, bytes);
461
462 /* Encryption routine will move the header forward in order
463 * to insert the IV between the header and the payload */
464 if (host_encrypt)
465 ieee80211_encrypt_fragment(ieee, skb_frag, hdr_len);
466 else if (host_build_iv) {
467 struct ieee80211_crypt_data *crypt;
468
469 crypt = ieee->crypt[ieee->tx_keyidx];
470 atomic_inc(&crypt->refcnt);
471 if (crypt->ops->build_iv)
472 crypt->ops->build_iv(skb_frag, hdr_len,
473 crypt->priv);
474 atomic_dec(&crypt->refcnt);
475 }
476
477 if (ieee->config &
478 (CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
479 skb_put(skb_frag, 4);
480 }
481
482 success:
483 spin_unlock_irqrestore(&ieee->lock, flags);
484
485 dev_kfree_skb_any(skb);
486
487 if (txb) {
488 int ret = (*ieee->hard_start_xmit) (txb, dev, priority);
489 if (ret == 0) {
490 stats->tx_packets++;
491 stats->tx_bytes += txb->payload_size;
492 return 0;
493 }
494
495 if (ret == NETDEV_TX_BUSY) {
496 printk(KERN_ERR "%s: NETDEV_TX_BUSY returned; "
497 "driver should report queue full via "
498 "ieee_device->is_queue_full.\n",
499 ieee->dev->name);
500 }
501
502 ieee80211_txb_free(txb);
503 }
504
505 return 0;
506
507 failed:
508 spin_unlock_irqrestore(&ieee->lock, flags);
509 netif_stop_queue(dev);
510 stats->tx_errors++;
511 return 1;
512 }
513
514 /* Incoming 802.11 strucure is converted to a TXB
515 * a block of 802.11 fragment packets (stored as skbs) */
516 int ieee80211_tx_frame(struct ieee80211_device *ieee,
517 struct ieee80211_hdr *frame, int len)
518 {
519 struct ieee80211_txb *txb = NULL;
520 unsigned long flags;
521 struct net_device_stats *stats = &ieee->stats;
522 struct sk_buff *skb_frag;
523 int priority = -1;
524
525 spin_lock_irqsave(&ieee->lock, flags);
526
527 /* If there is no driver handler to take the TXB, dont' bother
528 * creating it... */
529 if (!ieee->hard_start_xmit) {
530 printk(KERN_WARNING "%s: No xmit handler.\n", ieee->dev->name);
531 goto success;
532 }
533
534 if (unlikely(len < 24)) {
535 printk(KERN_WARNING "%s: skb too small (%d).\n",
536 ieee->dev->name, len);
537 goto success;
538 }
539
540 /* When we allocate the TXB we allocate enough space for the reserve
541 * and full fragment bytes (bytes_per_frag doesn't include prefix,
542 * postfix, header, FCS, etc.) */
543 txb = ieee80211_alloc_txb(1, len, ieee->tx_headroom, GFP_ATOMIC);
544 if (unlikely(!txb)) {
545 printk(KERN_WARNING "%s: Could not allocate TXB\n",
546 ieee->dev->name);
547 goto failed;
548 }
549 txb->encrypted = 0;
550 txb->payload_size = len;
551
552 skb_frag = txb->fragments[0];
553
554 memcpy(skb_put(skb_frag, len), frame, len);
555
556 if (ieee->config &
557 (CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
558 skb_put(skb_frag, 4);
559
560 success:
561 spin_unlock_irqrestore(&ieee->lock, flags);
562
563 if (txb) {
564 if ((*ieee->hard_start_xmit) (txb, ieee->dev, priority) == 0) {
565 stats->tx_packets++;
566 stats->tx_bytes += txb->payload_size;
567 return 0;
568 }
569 ieee80211_txb_free(txb);
570 }
571 return 0;
572
573 failed:
574 spin_unlock_irqrestore(&ieee->lock, flags);
575 stats->tx_errors++;
576 return 1;
577 }
578
579 EXPORT_SYMBOL(ieee80211_tx_frame);
580 EXPORT_SYMBOL(ieee80211_txb_free);