]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv4/arp.c
batman-adv: Prefix packet structs with batadv_
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / arp.c
1 /* linux/net/ipv4/arp.c
2 *
3 * Copyright (C) 1994 by Florian La Roche
4 *
5 * This module implements the Address Resolution Protocol ARP (RFC 826),
6 * which is used to convert IP addresses (or in the future maybe other
7 * high-level addresses) into a low-level hardware address (like an Ethernet
8 * address).
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * Fixes:
16 * Alan Cox : Removed the Ethernet assumptions in
17 * Florian's code
18 * Alan Cox : Fixed some small errors in the ARP
19 * logic
20 * Alan Cox : Allow >4K in /proc
21 * Alan Cox : Make ARP add its own protocol entry
22 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
23 * Stephen Henson : Add AX25 support to arp_get_info()
24 * Alan Cox : Drop data when a device is downed.
25 * Alan Cox : Use init_timer().
26 * Alan Cox : Double lock fixes.
27 * Martin Seine : Move the arphdr structure
28 * to if_arp.h for compatibility.
29 * with BSD based programs.
30 * Andrew Tridgell : Added ARP netmask code and
31 * re-arranged proxy handling.
32 * Alan Cox : Changed to use notifiers.
33 * Niibe Yutaka : Reply for this device or proxies only.
34 * Alan Cox : Don't proxy across hardware types!
35 * Jonathan Naylor : Added support for NET/ROM.
36 * Mike Shaver : RFC1122 checks.
37 * Jonathan Naylor : Only lookup the hardware address for
38 * the correct hardware type.
39 * Germano Caronni : Assorted subtle races.
40 * Craig Schlenter : Don't modify permanent entry
41 * during arp_rcv.
42 * Russ Nelson : Tidied up a few bits.
43 * Alexey Kuznetsov: Major changes to caching and behaviour,
44 * eg intelligent arp probing and
45 * generation
46 * of host down events.
47 * Alan Cox : Missing unlock in device events.
48 * Eckes : ARP ioctl control errors.
49 * Alexey Kuznetsov: Arp free fix.
50 * Manuel Rodriguez: Gratuitous ARP.
51 * Jonathan Layes : Added arpd support through kerneld
52 * message queue (960314)
53 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
54 * Mike McLagan : Routing by source
55 * Stuart Cheshire : Metricom and grat arp fixes
56 * *** FOR 2.1 clean this up ***
57 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
58 * Alan Cox : Took the AP1000 nasty FDDI hack and
59 * folded into the mainstream FDDI code.
60 * Ack spit, Linus how did you allow that
61 * one in...
62 * Jes Sorensen : Make FDDI work again in 2.1.x and
63 * clean up the APFDDI & gen. FDDI bits.
64 * Alexey Kuznetsov: new arp state machine;
65 * now it is in net/core/neighbour.c.
66 * Krzysztof Halasa: Added Frame Relay ARP support.
67 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
68 * Shmulik Hen: Split arp_send to arp_create and
69 * arp_xmit so intermediate drivers like
70 * bonding can change the skb before
71 * sending (e.g. insert 8021q tag).
72 * Harald Welte : convert to make use of jenkins hash
73 * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
74 */
75
76 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
77
78 #include <linux/module.h>
79 #include <linux/types.h>
80 #include <linux/string.h>
81 #include <linux/kernel.h>
82 #include <linux/capability.h>
83 #include <linux/socket.h>
84 #include <linux/sockios.h>
85 #include <linux/errno.h>
86 #include <linux/in.h>
87 #include <linux/mm.h>
88 #include <linux/inet.h>
89 #include <linux/inetdevice.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/fddidevice.h>
93 #include <linux/if_arp.h>
94 #include <linux/skbuff.h>
95 #include <linux/proc_fs.h>
96 #include <linux/seq_file.h>
97 #include <linux/stat.h>
98 #include <linux/init.h>
99 #include <linux/net.h>
100 #include <linux/rcupdate.h>
101 #include <linux/slab.h>
102 #ifdef CONFIG_SYSCTL
103 #include <linux/sysctl.h>
104 #endif
105
106 #include <net/net_namespace.h>
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116
117 #include <linux/uaccess.h>
118
119 #include <linux/netfilter_arp.h>
120
121 /*
122 * Interface to generic neighbour cache.
123 */
124 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
125 static int arp_constructor(struct neighbour *neigh);
126 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
127 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
128 static void parp_redo(struct sk_buff *skb);
129
130 static const struct neigh_ops arp_generic_ops = {
131 .family = AF_INET,
132 .solicit = arp_solicit,
133 .error_report = arp_error_report,
134 .output = neigh_resolve_output,
135 .connected_output = neigh_connected_output,
136 };
137
138 static const struct neigh_ops arp_hh_ops = {
139 .family = AF_INET,
140 .solicit = arp_solicit,
141 .error_report = arp_error_report,
142 .output = neigh_resolve_output,
143 .connected_output = neigh_resolve_output,
144 };
145
146 static const struct neigh_ops arp_direct_ops = {
147 .family = AF_INET,
148 .output = neigh_direct_output,
149 .connected_output = neigh_direct_output,
150 };
151
152 static const struct neigh_ops arp_broken_ops = {
153 .family = AF_INET,
154 .solicit = arp_solicit,
155 .error_report = arp_error_report,
156 .output = neigh_compat_output,
157 .connected_output = neigh_compat_output,
158 };
159
160 struct neigh_table arp_tbl = {
161 .family = AF_INET,
162 .key_len = 4,
163 .hash = arp_hash,
164 .constructor = arp_constructor,
165 .proxy_redo = parp_redo,
166 .id = "arp_cache",
167 .parms = {
168 .tbl = &arp_tbl,
169 .base_reachable_time = 30 * HZ,
170 .retrans_time = 1 * HZ,
171 .gc_staletime = 60 * HZ,
172 .reachable_time = 30 * HZ,
173 .delay_probe_time = 5 * HZ,
174 .queue_len_bytes = 64*1024,
175 .ucast_probes = 3,
176 .mcast_probes = 3,
177 .anycast_delay = 1 * HZ,
178 .proxy_delay = (8 * HZ) / 10,
179 .proxy_qlen = 64,
180 .locktime = 1 * HZ,
181 },
182 .gc_interval = 30 * HZ,
183 .gc_thresh1 = 128,
184 .gc_thresh2 = 512,
185 .gc_thresh3 = 1024,
186 };
187 EXPORT_SYMBOL(arp_tbl);
188
189 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
190 {
191 switch (dev->type) {
192 case ARPHRD_ETHER:
193 case ARPHRD_FDDI:
194 case ARPHRD_IEEE802:
195 ip_eth_mc_map(addr, haddr);
196 return 0;
197 case ARPHRD_INFINIBAND:
198 ip_ib_mc_map(addr, dev->broadcast, haddr);
199 return 0;
200 case ARPHRD_IPGRE:
201 ip_ipgre_mc_map(addr, dev->broadcast, haddr);
202 return 0;
203 default:
204 if (dir) {
205 memcpy(haddr, dev->broadcast, dev->addr_len);
206 return 0;
207 }
208 }
209 return -EINVAL;
210 }
211
212
213 static u32 arp_hash(const void *pkey,
214 const struct net_device *dev,
215 __u32 *hash_rnd)
216 {
217 return arp_hashfn(*(u32 *)pkey, dev, *hash_rnd);
218 }
219
220 static int arp_constructor(struct neighbour *neigh)
221 {
222 __be32 addr = *(__be32 *)neigh->primary_key;
223 struct net_device *dev = neigh->dev;
224 struct in_device *in_dev;
225 struct neigh_parms *parms;
226
227 rcu_read_lock();
228 in_dev = __in_dev_get_rcu(dev);
229 if (in_dev == NULL) {
230 rcu_read_unlock();
231 return -EINVAL;
232 }
233
234 neigh->type = inet_addr_type(dev_net(dev), addr);
235
236 parms = in_dev->arp_parms;
237 __neigh_parms_put(neigh->parms);
238 neigh->parms = neigh_parms_clone(parms);
239 rcu_read_unlock();
240
241 if (!dev->header_ops) {
242 neigh->nud_state = NUD_NOARP;
243 neigh->ops = &arp_direct_ops;
244 neigh->output = neigh_direct_output;
245 } else {
246 /* Good devices (checked by reading texts, but only Ethernet is
247 tested)
248
249 ARPHRD_ETHER: (ethernet, apfddi)
250 ARPHRD_FDDI: (fddi)
251 ARPHRD_IEEE802: (tr)
252 ARPHRD_METRICOM: (strip)
253 ARPHRD_ARCNET:
254 etc. etc. etc.
255
256 ARPHRD_IPDDP will also work, if author repairs it.
257 I did not it, because this driver does not work even
258 in old paradigm.
259 */
260
261 #if 1
262 /* So... these "amateur" devices are hopeless.
263 The only thing, that I can say now:
264 It is very sad that we need to keep ugly obsolete
265 code to make them happy.
266
267 They should be moved to more reasonable state, now
268 they use rebuild_header INSTEAD OF hard_start_xmit!!!
269 Besides that, they are sort of out of date
270 (a lot of redundant clones/copies, useless in 2.1),
271 I wonder why people believe that they work.
272 */
273 switch (dev->type) {
274 default:
275 break;
276 case ARPHRD_ROSE:
277 #if IS_ENABLED(CONFIG_AX25)
278 case ARPHRD_AX25:
279 #if IS_ENABLED(CONFIG_NETROM)
280 case ARPHRD_NETROM:
281 #endif
282 neigh->ops = &arp_broken_ops;
283 neigh->output = neigh->ops->output;
284 return 0;
285 #else
286 break;
287 #endif
288 }
289 #endif
290 if (neigh->type == RTN_MULTICAST) {
291 neigh->nud_state = NUD_NOARP;
292 arp_mc_map(addr, neigh->ha, dev, 1);
293 } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
294 neigh->nud_state = NUD_NOARP;
295 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
296 } else if (neigh->type == RTN_BROADCAST ||
297 (dev->flags & IFF_POINTOPOINT)) {
298 neigh->nud_state = NUD_NOARP;
299 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
300 }
301
302 if (dev->header_ops->cache)
303 neigh->ops = &arp_hh_ops;
304 else
305 neigh->ops = &arp_generic_ops;
306
307 if (neigh->nud_state & NUD_VALID)
308 neigh->output = neigh->ops->connected_output;
309 else
310 neigh->output = neigh->ops->output;
311 }
312 return 0;
313 }
314
315 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
316 {
317 dst_link_failure(skb);
318 kfree_skb(skb);
319 }
320
321 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
322 {
323 __be32 saddr = 0;
324 u8 *dst_ha = NULL;
325 struct net_device *dev = neigh->dev;
326 __be32 target = *(__be32 *)neigh->primary_key;
327 int probes = atomic_read(&neigh->probes);
328 struct in_device *in_dev;
329
330 rcu_read_lock();
331 in_dev = __in_dev_get_rcu(dev);
332 if (!in_dev) {
333 rcu_read_unlock();
334 return;
335 }
336 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
337 default:
338 case 0: /* By default announce any local IP */
339 if (skb && inet_addr_type(dev_net(dev),
340 ip_hdr(skb)->saddr) == RTN_LOCAL)
341 saddr = ip_hdr(skb)->saddr;
342 break;
343 case 1: /* Restrict announcements of saddr in same subnet */
344 if (!skb)
345 break;
346 saddr = ip_hdr(skb)->saddr;
347 if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
348 /* saddr should be known to target */
349 if (inet_addr_onlink(in_dev, target, saddr))
350 break;
351 }
352 saddr = 0;
353 break;
354 case 2: /* Avoid secondary IPs, get a primary/preferred one */
355 break;
356 }
357 rcu_read_unlock();
358
359 if (!saddr)
360 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
361
362 probes -= neigh->parms->ucast_probes;
363 if (probes < 0) {
364 if (!(neigh->nud_state & NUD_VALID))
365 pr_debug("trying to ucast probe in NUD_INVALID\n");
366 dst_ha = neigh->ha;
367 read_lock_bh(&neigh->lock);
368 } else {
369 probes -= neigh->parms->app_probes;
370 if (probes < 0) {
371 #ifdef CONFIG_ARPD
372 neigh_app_ns(neigh);
373 #endif
374 return;
375 }
376 }
377
378 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
379 dst_ha, dev->dev_addr, NULL);
380 if (dst_ha)
381 read_unlock_bh(&neigh->lock);
382 }
383
384 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
385 {
386 int scope;
387
388 switch (IN_DEV_ARP_IGNORE(in_dev)) {
389 case 0: /* Reply, the tip is already validated */
390 return 0;
391 case 1: /* Reply only if tip is configured on the incoming interface */
392 sip = 0;
393 scope = RT_SCOPE_HOST;
394 break;
395 case 2: /*
396 * Reply only if tip is configured on the incoming interface
397 * and is in same subnet as sip
398 */
399 scope = RT_SCOPE_HOST;
400 break;
401 case 3: /* Do not reply for scope host addresses */
402 sip = 0;
403 scope = RT_SCOPE_LINK;
404 break;
405 case 4: /* Reserved */
406 case 5:
407 case 6:
408 case 7:
409 return 0;
410 case 8: /* Do not reply */
411 return 1;
412 default:
413 return 0;
414 }
415 return !inet_confirm_addr(in_dev, sip, tip, scope);
416 }
417
418 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
419 {
420 struct rtable *rt;
421 int flag = 0;
422 /*unsigned long now; */
423 struct net *net = dev_net(dev);
424
425 rt = ip_route_output(net, sip, tip, 0, 0);
426 if (IS_ERR(rt))
427 return 1;
428 if (rt->dst.dev != dev) {
429 NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
430 flag = 1;
431 }
432 ip_rt_put(rt);
433 return flag;
434 }
435
436 /* OBSOLETE FUNCTIONS */
437
438 /*
439 * Find an arp mapping in the cache. If not found, post a request.
440 *
441 * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
442 * even if it exists. It is supposed that skb->dev was mangled
443 * by a virtual device (eql, shaper). Nobody but broken devices
444 * is allowed to use this function, it is scheduled to be removed. --ANK
445 */
446
447 static int arp_set_predefined(int addr_hint, unsigned char *haddr,
448 __be32 paddr, struct net_device *dev)
449 {
450 switch (addr_hint) {
451 case RTN_LOCAL:
452 pr_debug("arp called for own IP address\n");
453 memcpy(haddr, dev->dev_addr, dev->addr_len);
454 return 1;
455 case RTN_MULTICAST:
456 arp_mc_map(paddr, haddr, dev, 1);
457 return 1;
458 case RTN_BROADCAST:
459 memcpy(haddr, dev->broadcast, dev->addr_len);
460 return 1;
461 }
462 return 0;
463 }
464
465
466 int arp_find(unsigned char *haddr, struct sk_buff *skb)
467 {
468 struct net_device *dev = skb->dev;
469 __be32 paddr;
470 struct neighbour *n;
471
472 if (!skb_dst(skb)) {
473 pr_debug("arp_find is called with dst==NULL\n");
474 kfree_skb(skb);
475 return 1;
476 }
477
478 paddr = skb_rtable(skb)->rt_gateway;
479
480 if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
481 paddr, dev))
482 return 0;
483
484 n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
485
486 if (n) {
487 n->used = jiffies;
488 if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
489 neigh_ha_snapshot(haddr, n, dev);
490 neigh_release(n);
491 return 0;
492 }
493 neigh_release(n);
494 } else
495 kfree_skb(skb);
496 return 1;
497 }
498 EXPORT_SYMBOL(arp_find);
499
500 /* END OF OBSOLETE FUNCTIONS */
501
502 /*
503 * Check if we can use proxy ARP for this path
504 */
505 static inline int arp_fwd_proxy(struct in_device *in_dev,
506 struct net_device *dev, struct rtable *rt)
507 {
508 struct in_device *out_dev;
509 int imi, omi = -1;
510
511 if (rt->dst.dev == dev)
512 return 0;
513
514 if (!IN_DEV_PROXY_ARP(in_dev))
515 return 0;
516 imi = IN_DEV_MEDIUM_ID(in_dev);
517 if (imi == 0)
518 return 1;
519 if (imi == -1)
520 return 0;
521
522 /* place to check for proxy_arp for routes */
523
524 out_dev = __in_dev_get_rcu(rt->dst.dev);
525 if (out_dev)
526 omi = IN_DEV_MEDIUM_ID(out_dev);
527
528 return omi != imi && omi != -1;
529 }
530
531 /*
532 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
533 *
534 * RFC3069 supports proxy arp replies back to the same interface. This
535 * is done to support (ethernet) switch features, like RFC 3069, where
536 * the individual ports are not allowed to communicate with each
537 * other, BUT they are allowed to talk to the upstream router. As
538 * described in RFC 3069, it is possible to allow these hosts to
539 * communicate through the upstream router, by proxy_arp'ing.
540 *
541 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
542 *
543 * This technology is known by different names:
544 * In RFC 3069 it is called VLAN Aggregation.
545 * Cisco and Allied Telesyn call it Private VLAN.
546 * Hewlett-Packard call it Source-Port filtering or port-isolation.
547 * Ericsson call it MAC-Forced Forwarding (RFC Draft).
548 *
549 */
550 static inline int arp_fwd_pvlan(struct in_device *in_dev,
551 struct net_device *dev, struct rtable *rt,
552 __be32 sip, __be32 tip)
553 {
554 /* Private VLAN is only concerned about the same ethernet segment */
555 if (rt->dst.dev != dev)
556 return 0;
557
558 /* Don't reply on self probes (often done by windowz boxes)*/
559 if (sip == tip)
560 return 0;
561
562 if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
563 return 1;
564 else
565 return 0;
566 }
567
568 /*
569 * Interface to link layer: send routine and receive handler.
570 */
571
572 /*
573 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
574 * message.
575 */
576 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
577 struct net_device *dev, __be32 src_ip,
578 const unsigned char *dest_hw,
579 const unsigned char *src_hw,
580 const unsigned char *target_hw)
581 {
582 struct sk_buff *skb;
583 struct arphdr *arp;
584 unsigned char *arp_ptr;
585 int hlen = LL_RESERVED_SPACE(dev);
586 int tlen = dev->needed_tailroom;
587
588 /*
589 * Allocate a buffer
590 */
591
592 skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
593 if (skb == NULL)
594 return NULL;
595
596 skb_reserve(skb, hlen);
597 skb_reset_network_header(skb);
598 arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
599 skb->dev = dev;
600 skb->protocol = htons(ETH_P_ARP);
601 if (src_hw == NULL)
602 src_hw = dev->dev_addr;
603 if (dest_hw == NULL)
604 dest_hw = dev->broadcast;
605
606 /*
607 * Fill the device header for the ARP frame
608 */
609 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
610 goto out;
611
612 /*
613 * Fill out the arp protocol part.
614 *
615 * The arp hardware type should match the device type, except for FDDI,
616 * which (according to RFC 1390) should always equal 1 (Ethernet).
617 */
618 /*
619 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
620 * DIX code for the protocol. Make these device structure fields.
621 */
622 switch (dev->type) {
623 default:
624 arp->ar_hrd = htons(dev->type);
625 arp->ar_pro = htons(ETH_P_IP);
626 break;
627
628 #if IS_ENABLED(CONFIG_AX25)
629 case ARPHRD_AX25:
630 arp->ar_hrd = htons(ARPHRD_AX25);
631 arp->ar_pro = htons(AX25_P_IP);
632 break;
633
634 #if IS_ENABLED(CONFIG_NETROM)
635 case ARPHRD_NETROM:
636 arp->ar_hrd = htons(ARPHRD_NETROM);
637 arp->ar_pro = htons(AX25_P_IP);
638 break;
639 #endif
640 #endif
641
642 #if IS_ENABLED(CONFIG_FDDI)
643 case ARPHRD_FDDI:
644 arp->ar_hrd = htons(ARPHRD_ETHER);
645 arp->ar_pro = htons(ETH_P_IP);
646 break;
647 #endif
648 }
649
650 arp->ar_hln = dev->addr_len;
651 arp->ar_pln = 4;
652 arp->ar_op = htons(type);
653
654 arp_ptr = (unsigned char *)(arp + 1);
655
656 memcpy(arp_ptr, src_hw, dev->addr_len);
657 arp_ptr += dev->addr_len;
658 memcpy(arp_ptr, &src_ip, 4);
659 arp_ptr += 4;
660 if (target_hw != NULL)
661 memcpy(arp_ptr, target_hw, dev->addr_len);
662 else
663 memset(arp_ptr, 0, dev->addr_len);
664 arp_ptr += dev->addr_len;
665 memcpy(arp_ptr, &dest_ip, 4);
666
667 return skb;
668
669 out:
670 kfree_skb(skb);
671 return NULL;
672 }
673 EXPORT_SYMBOL(arp_create);
674
675 /*
676 * Send an arp packet.
677 */
678 void arp_xmit(struct sk_buff *skb)
679 {
680 /* Send it off, maybe filter it using firewalling first. */
681 NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
682 }
683 EXPORT_SYMBOL(arp_xmit);
684
685 /*
686 * Create and send an arp packet.
687 */
688 void arp_send(int type, int ptype, __be32 dest_ip,
689 struct net_device *dev, __be32 src_ip,
690 const unsigned char *dest_hw, const unsigned char *src_hw,
691 const unsigned char *target_hw)
692 {
693 struct sk_buff *skb;
694
695 /*
696 * No arp on this interface.
697 */
698
699 if (dev->flags&IFF_NOARP)
700 return;
701
702 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
703 dest_hw, src_hw, target_hw);
704 if (skb == NULL)
705 return;
706
707 arp_xmit(skb);
708 }
709 EXPORT_SYMBOL(arp_send);
710
711 /*
712 * Process an arp request.
713 */
714
715 static int arp_process(struct sk_buff *skb)
716 {
717 struct net_device *dev = skb->dev;
718 struct in_device *in_dev = __in_dev_get_rcu(dev);
719 struct arphdr *arp;
720 unsigned char *arp_ptr;
721 struct rtable *rt;
722 unsigned char *sha;
723 __be32 sip, tip;
724 u16 dev_type = dev->type;
725 int addr_type;
726 struct neighbour *n;
727 struct net *net = dev_net(dev);
728
729 /* arp_rcv below verifies the ARP header and verifies the device
730 * is ARP'able.
731 */
732
733 if (in_dev == NULL)
734 goto out;
735
736 arp = arp_hdr(skb);
737
738 switch (dev_type) {
739 default:
740 if (arp->ar_pro != htons(ETH_P_IP) ||
741 htons(dev_type) != arp->ar_hrd)
742 goto out;
743 break;
744 case ARPHRD_ETHER:
745 case ARPHRD_FDDI:
746 case ARPHRD_IEEE802:
747 /*
748 * ETHERNET, and Fibre Channel (which are IEEE 802
749 * devices, according to RFC 2625) devices will accept ARP
750 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
751 * This is the case also of FDDI, where the RFC 1390 says that
752 * FDDI devices should accept ARP hardware of (1) Ethernet,
753 * however, to be more robust, we'll accept both 1 (Ethernet)
754 * or 6 (IEEE 802.2)
755 */
756 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
757 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
758 arp->ar_pro != htons(ETH_P_IP))
759 goto out;
760 break;
761 case ARPHRD_AX25:
762 if (arp->ar_pro != htons(AX25_P_IP) ||
763 arp->ar_hrd != htons(ARPHRD_AX25))
764 goto out;
765 break;
766 case ARPHRD_NETROM:
767 if (arp->ar_pro != htons(AX25_P_IP) ||
768 arp->ar_hrd != htons(ARPHRD_NETROM))
769 goto out;
770 break;
771 }
772
773 /* Understand only these message types */
774
775 if (arp->ar_op != htons(ARPOP_REPLY) &&
776 arp->ar_op != htons(ARPOP_REQUEST))
777 goto out;
778
779 /*
780 * Extract fields
781 */
782 arp_ptr = (unsigned char *)(arp + 1);
783 sha = arp_ptr;
784 arp_ptr += dev->addr_len;
785 memcpy(&sip, arp_ptr, 4);
786 arp_ptr += 4;
787 arp_ptr += dev->addr_len;
788 memcpy(&tip, arp_ptr, 4);
789 /*
790 * Check for bad requests for 127.x.x.x and requests for multicast
791 * addresses. If this is one such, delete it.
792 */
793 if (ipv4_is_multicast(tip) ||
794 (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
795 goto out;
796
797 /*
798 * Special case: We must set Frame Relay source Q.922 address
799 */
800 if (dev_type == ARPHRD_DLCI)
801 sha = dev->broadcast;
802
803 /*
804 * Process entry. The idea here is we want to send a reply if it is a
805 * request for us or if it is a request for someone else that we hold
806 * a proxy for. We want to add an entry to our cache if it is a reply
807 * to us or if it is a request for our address.
808 * (The assumption for this last is that if someone is requesting our
809 * address, they are probably intending to talk to us, so it saves time
810 * if we cache their address. Their address is also probably not in
811 * our cache, since ours is not in their cache.)
812 *
813 * Putting this another way, we only care about replies if they are to
814 * us, in which case we add them to the cache. For requests, we care
815 * about those for us and those for our proxies. We reply to both,
816 * and in the case of requests for us we add the requester to the arp
817 * cache.
818 */
819
820 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
821 if (sip == 0) {
822 if (arp->ar_op == htons(ARPOP_REQUEST) &&
823 inet_addr_type(net, tip) == RTN_LOCAL &&
824 !arp_ignore(in_dev, sip, tip))
825 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
826 dev->dev_addr, sha);
827 goto out;
828 }
829
830 if (arp->ar_op == htons(ARPOP_REQUEST) &&
831 ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
832
833 rt = skb_rtable(skb);
834 addr_type = rt->rt_type;
835
836 if (addr_type == RTN_LOCAL) {
837 int dont_send;
838
839 dont_send = arp_ignore(in_dev, sip, tip);
840 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
841 dont_send = arp_filter(sip, tip, dev);
842 if (!dont_send) {
843 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
844 if (n) {
845 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
846 dev, tip, sha, dev->dev_addr,
847 sha);
848 neigh_release(n);
849 }
850 }
851 goto out;
852 } else if (IN_DEV_FORWARD(in_dev)) {
853 if (addr_type == RTN_UNICAST &&
854 (arp_fwd_proxy(in_dev, dev, rt) ||
855 arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
856 (rt->dst.dev != dev &&
857 pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
858 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
859 if (n)
860 neigh_release(n);
861
862 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
863 skb->pkt_type == PACKET_HOST ||
864 in_dev->arp_parms->proxy_delay == 0) {
865 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
866 dev, tip, sha, dev->dev_addr,
867 sha);
868 } else {
869 pneigh_enqueue(&arp_tbl,
870 in_dev->arp_parms, skb);
871 return 0;
872 }
873 goto out;
874 }
875 }
876 }
877
878 /* Update our ARP tables */
879
880 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
881
882 if (IN_DEV_ARP_ACCEPT(in_dev)) {
883 /* Unsolicited ARP is not accepted by default.
884 It is possible, that this option should be enabled for some
885 devices (strip is candidate)
886 */
887 if (n == NULL &&
888 (arp->ar_op == htons(ARPOP_REPLY) ||
889 (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
890 inet_addr_type(net, sip) == RTN_UNICAST)
891 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
892 }
893
894 if (n) {
895 int state = NUD_REACHABLE;
896 int override;
897
898 /* If several different ARP replies follows back-to-back,
899 use the FIRST one. It is possible, if several proxy
900 agents are active. Taking the first reply prevents
901 arp trashing and chooses the fastest router.
902 */
903 override = time_after(jiffies, n->updated + n->parms->locktime);
904
905 /* Broadcast replies and request packets
906 do not assert neighbour reachability.
907 */
908 if (arp->ar_op != htons(ARPOP_REPLY) ||
909 skb->pkt_type != PACKET_HOST)
910 state = NUD_STALE;
911 neigh_update(n, sha, state,
912 override ? NEIGH_UPDATE_F_OVERRIDE : 0);
913 neigh_release(n);
914 }
915
916 out:
917 consume_skb(skb);
918 return 0;
919 }
920
921 static void parp_redo(struct sk_buff *skb)
922 {
923 arp_process(skb);
924 }
925
926
927 /*
928 * Receive an arp request from the device layer.
929 */
930
931 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
932 struct packet_type *pt, struct net_device *orig_dev)
933 {
934 struct arphdr *arp;
935
936 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
937 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
938 goto freeskb;
939
940 arp = arp_hdr(skb);
941 if (arp->ar_hln != dev->addr_len ||
942 dev->flags & IFF_NOARP ||
943 skb->pkt_type == PACKET_OTHERHOST ||
944 skb->pkt_type == PACKET_LOOPBACK ||
945 arp->ar_pln != 4)
946 goto freeskb;
947
948 skb = skb_share_check(skb, GFP_ATOMIC);
949 if (skb == NULL)
950 goto out_of_mem;
951
952 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
953
954 return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
955
956 freeskb:
957 kfree_skb(skb);
958 out_of_mem:
959 return 0;
960 }
961
962 /*
963 * User level interface (ioctl)
964 */
965
966 /*
967 * Set (create) an ARP cache entry.
968 */
969
970 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
971 {
972 if (dev == NULL) {
973 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
974 return 0;
975 }
976 if (__in_dev_get_rtnl(dev)) {
977 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
978 return 0;
979 }
980 return -ENXIO;
981 }
982
983 static int arp_req_set_public(struct net *net, struct arpreq *r,
984 struct net_device *dev)
985 {
986 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
987 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
988
989 if (mask && mask != htonl(0xFFFFFFFF))
990 return -EINVAL;
991 if (!dev && (r->arp_flags & ATF_COM)) {
992 dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
993 r->arp_ha.sa_data);
994 if (!dev)
995 return -ENODEV;
996 }
997 if (mask) {
998 if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
999 return -ENOBUFS;
1000 return 0;
1001 }
1002
1003 return arp_req_set_proxy(net, dev, 1);
1004 }
1005
1006 static int arp_req_set(struct net *net, struct arpreq *r,
1007 struct net_device *dev)
1008 {
1009 __be32 ip;
1010 struct neighbour *neigh;
1011 int err;
1012
1013 if (r->arp_flags & ATF_PUBL)
1014 return arp_req_set_public(net, r, dev);
1015
1016 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1017 if (r->arp_flags & ATF_PERM)
1018 r->arp_flags |= ATF_COM;
1019 if (dev == NULL) {
1020 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1021
1022 if (IS_ERR(rt))
1023 return PTR_ERR(rt);
1024 dev = rt->dst.dev;
1025 ip_rt_put(rt);
1026 if (!dev)
1027 return -EINVAL;
1028 }
1029 switch (dev->type) {
1030 #if IS_ENABLED(CONFIG_FDDI)
1031 case ARPHRD_FDDI:
1032 /*
1033 * According to RFC 1390, FDDI devices should accept ARP
1034 * hardware types of 1 (Ethernet). However, to be more
1035 * robust, we'll accept hardware types of either 1 (Ethernet)
1036 * or 6 (IEEE 802.2).
1037 */
1038 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1039 r->arp_ha.sa_family != ARPHRD_ETHER &&
1040 r->arp_ha.sa_family != ARPHRD_IEEE802)
1041 return -EINVAL;
1042 break;
1043 #endif
1044 default:
1045 if (r->arp_ha.sa_family != dev->type)
1046 return -EINVAL;
1047 break;
1048 }
1049
1050 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1051 err = PTR_ERR(neigh);
1052 if (!IS_ERR(neigh)) {
1053 unsigned int state = NUD_STALE;
1054 if (r->arp_flags & ATF_PERM)
1055 state = NUD_PERMANENT;
1056 err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1057 r->arp_ha.sa_data : NULL, state,
1058 NEIGH_UPDATE_F_OVERRIDE |
1059 NEIGH_UPDATE_F_ADMIN);
1060 neigh_release(neigh);
1061 }
1062 return err;
1063 }
1064
1065 static unsigned int arp_state_to_flags(struct neighbour *neigh)
1066 {
1067 if (neigh->nud_state&NUD_PERMANENT)
1068 return ATF_PERM | ATF_COM;
1069 else if (neigh->nud_state&NUD_VALID)
1070 return ATF_COM;
1071 else
1072 return 0;
1073 }
1074
1075 /*
1076 * Get an ARP cache entry.
1077 */
1078
1079 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1080 {
1081 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1082 struct neighbour *neigh;
1083 int err = -ENXIO;
1084
1085 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1086 if (neigh) {
1087 read_lock_bh(&neigh->lock);
1088 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1089 r->arp_flags = arp_state_to_flags(neigh);
1090 read_unlock_bh(&neigh->lock);
1091 r->arp_ha.sa_family = dev->type;
1092 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1093 neigh_release(neigh);
1094 err = 0;
1095 }
1096 return err;
1097 }
1098
1099 int arp_invalidate(struct net_device *dev, __be32 ip)
1100 {
1101 struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1102 int err = -ENXIO;
1103
1104 if (neigh) {
1105 if (neigh->nud_state & ~NUD_NOARP)
1106 err = neigh_update(neigh, NULL, NUD_FAILED,
1107 NEIGH_UPDATE_F_OVERRIDE|
1108 NEIGH_UPDATE_F_ADMIN);
1109 neigh_release(neigh);
1110 }
1111
1112 return err;
1113 }
1114 EXPORT_SYMBOL(arp_invalidate);
1115
1116 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1117 struct net_device *dev)
1118 {
1119 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1120 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1121
1122 if (mask == htonl(0xFFFFFFFF))
1123 return pneigh_delete(&arp_tbl, net, &ip, dev);
1124
1125 if (mask)
1126 return -EINVAL;
1127
1128 return arp_req_set_proxy(net, dev, 0);
1129 }
1130
1131 static int arp_req_delete(struct net *net, struct arpreq *r,
1132 struct net_device *dev)
1133 {
1134 __be32 ip;
1135
1136 if (r->arp_flags & ATF_PUBL)
1137 return arp_req_delete_public(net, r, dev);
1138
1139 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1140 if (dev == NULL) {
1141 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1142 if (IS_ERR(rt))
1143 return PTR_ERR(rt);
1144 dev = rt->dst.dev;
1145 ip_rt_put(rt);
1146 if (!dev)
1147 return -EINVAL;
1148 }
1149 return arp_invalidate(dev, ip);
1150 }
1151
1152 /*
1153 * Handle an ARP layer I/O control request.
1154 */
1155
1156 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1157 {
1158 int err;
1159 struct arpreq r;
1160 struct net_device *dev = NULL;
1161
1162 switch (cmd) {
1163 case SIOCDARP:
1164 case SIOCSARP:
1165 if (!capable(CAP_NET_ADMIN))
1166 return -EPERM;
1167 case SIOCGARP:
1168 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1169 if (err)
1170 return -EFAULT;
1171 break;
1172 default:
1173 return -EINVAL;
1174 }
1175
1176 if (r.arp_pa.sa_family != AF_INET)
1177 return -EPFNOSUPPORT;
1178
1179 if (!(r.arp_flags & ATF_PUBL) &&
1180 (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1181 return -EINVAL;
1182 if (!(r.arp_flags & ATF_NETMASK))
1183 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1184 htonl(0xFFFFFFFFUL);
1185 rtnl_lock();
1186 if (r.arp_dev[0]) {
1187 err = -ENODEV;
1188 dev = __dev_get_by_name(net, r.arp_dev);
1189 if (dev == NULL)
1190 goto out;
1191
1192 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1193 if (!r.arp_ha.sa_family)
1194 r.arp_ha.sa_family = dev->type;
1195 err = -EINVAL;
1196 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1197 goto out;
1198 } else if (cmd == SIOCGARP) {
1199 err = -ENODEV;
1200 goto out;
1201 }
1202
1203 switch (cmd) {
1204 case SIOCDARP:
1205 err = arp_req_delete(net, &r, dev);
1206 break;
1207 case SIOCSARP:
1208 err = arp_req_set(net, &r, dev);
1209 break;
1210 case SIOCGARP:
1211 err = arp_req_get(&r, dev);
1212 break;
1213 }
1214 out:
1215 rtnl_unlock();
1216 if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1217 err = -EFAULT;
1218 return err;
1219 }
1220
1221 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1222 void *ptr)
1223 {
1224 struct net_device *dev = ptr;
1225
1226 switch (event) {
1227 case NETDEV_CHANGEADDR:
1228 neigh_changeaddr(&arp_tbl, dev);
1229 rt_cache_flush(dev_net(dev), 0);
1230 break;
1231 default:
1232 break;
1233 }
1234
1235 return NOTIFY_DONE;
1236 }
1237
1238 static struct notifier_block arp_netdev_notifier = {
1239 .notifier_call = arp_netdev_event,
1240 };
1241
1242 /* Note, that it is not on notifier chain.
1243 It is necessary, that this routine was called after route cache will be
1244 flushed.
1245 */
1246 void arp_ifdown(struct net_device *dev)
1247 {
1248 neigh_ifdown(&arp_tbl, dev);
1249 }
1250
1251
1252 /*
1253 * Called once on startup.
1254 */
1255
1256 static struct packet_type arp_packet_type __read_mostly = {
1257 .type = cpu_to_be16(ETH_P_ARP),
1258 .func = arp_rcv,
1259 };
1260
1261 static int arp_proc_init(void);
1262
1263 void __init arp_init(void)
1264 {
1265 neigh_table_init(&arp_tbl);
1266
1267 dev_add_pack(&arp_packet_type);
1268 arp_proc_init();
1269 #ifdef CONFIG_SYSCTL
1270 neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1271 #endif
1272 register_netdevice_notifier(&arp_netdev_notifier);
1273 }
1274
1275 #ifdef CONFIG_PROC_FS
1276 #if IS_ENABLED(CONFIG_AX25)
1277
1278 /* ------------------------------------------------------------------------ */
1279 /*
1280 * ax25 -> ASCII conversion
1281 */
1282 static char *ax2asc2(ax25_address *a, char *buf)
1283 {
1284 char c, *s;
1285 int n;
1286
1287 for (n = 0, s = buf; n < 6; n++) {
1288 c = (a->ax25_call[n] >> 1) & 0x7F;
1289
1290 if (c != ' ')
1291 *s++ = c;
1292 }
1293
1294 *s++ = '-';
1295 n = (a->ax25_call[6] >> 1) & 0x0F;
1296 if (n > 9) {
1297 *s++ = '1';
1298 n -= 10;
1299 }
1300
1301 *s++ = n + '0';
1302 *s++ = '\0';
1303
1304 if (*buf == '\0' || *buf == '-')
1305 return "*";
1306
1307 return buf;
1308 }
1309 #endif /* CONFIG_AX25 */
1310
1311 #define HBUFFERLEN 30
1312
1313 static void arp_format_neigh_entry(struct seq_file *seq,
1314 struct neighbour *n)
1315 {
1316 char hbuffer[HBUFFERLEN];
1317 int k, j;
1318 char tbuf[16];
1319 struct net_device *dev = n->dev;
1320 int hatype = dev->type;
1321
1322 read_lock(&n->lock);
1323 /* Convert hardware address to XX:XX:XX:XX ... form. */
1324 #if IS_ENABLED(CONFIG_AX25)
1325 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1326 ax2asc2((ax25_address *)n->ha, hbuffer);
1327 else {
1328 #endif
1329 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1330 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1331 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1332 hbuffer[k++] = ':';
1333 }
1334 if (k != 0)
1335 --k;
1336 hbuffer[k] = 0;
1337 #if IS_ENABLED(CONFIG_AX25)
1338 }
1339 #endif
1340 sprintf(tbuf, "%pI4", n->primary_key);
1341 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1342 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1343 read_unlock(&n->lock);
1344 }
1345
1346 static void arp_format_pneigh_entry(struct seq_file *seq,
1347 struct pneigh_entry *n)
1348 {
1349 struct net_device *dev = n->dev;
1350 int hatype = dev ? dev->type : 0;
1351 char tbuf[16];
1352
1353 sprintf(tbuf, "%pI4", n->key);
1354 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1355 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1356 dev ? dev->name : "*");
1357 }
1358
1359 static int arp_seq_show(struct seq_file *seq, void *v)
1360 {
1361 if (v == SEQ_START_TOKEN) {
1362 seq_puts(seq, "IP address HW type Flags "
1363 "HW address Mask Device\n");
1364 } else {
1365 struct neigh_seq_state *state = seq->private;
1366
1367 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1368 arp_format_pneigh_entry(seq, v);
1369 else
1370 arp_format_neigh_entry(seq, v);
1371 }
1372
1373 return 0;
1374 }
1375
1376 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1377 {
1378 /* Don't want to confuse "arp -a" w/ magic entries,
1379 * so we tell the generic iterator to skip NUD_NOARP.
1380 */
1381 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1382 }
1383
1384 /* ------------------------------------------------------------------------ */
1385
1386 static const struct seq_operations arp_seq_ops = {
1387 .start = arp_seq_start,
1388 .next = neigh_seq_next,
1389 .stop = neigh_seq_stop,
1390 .show = arp_seq_show,
1391 };
1392
1393 static int arp_seq_open(struct inode *inode, struct file *file)
1394 {
1395 return seq_open_net(inode, file, &arp_seq_ops,
1396 sizeof(struct neigh_seq_state));
1397 }
1398
1399 static const struct file_operations arp_seq_fops = {
1400 .owner = THIS_MODULE,
1401 .open = arp_seq_open,
1402 .read = seq_read,
1403 .llseek = seq_lseek,
1404 .release = seq_release_net,
1405 };
1406
1407
1408 static int __net_init arp_net_init(struct net *net)
1409 {
1410 if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
1411 return -ENOMEM;
1412 return 0;
1413 }
1414
1415 static void __net_exit arp_net_exit(struct net *net)
1416 {
1417 proc_net_remove(net, "arp");
1418 }
1419
1420 static struct pernet_operations arp_net_ops = {
1421 .init = arp_net_init,
1422 .exit = arp_net_exit,
1423 };
1424
1425 static int __init arp_proc_init(void)
1426 {
1427 return register_pernet_subsys(&arp_net_ops);
1428 }
1429
1430 #else /* CONFIG_PROC_FS */
1431
1432 static int __init arp_proc_init(void)
1433 {
1434 return 0;
1435 }
1436
1437 #endif /* CONFIG_PROC_FS */