]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/arp.c
net: cleanup unsigned to unsigned int
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / arp.c
1 /* linux/net/ipv4/arp.c
2 *
3 * Copyright (C) 1994 by Florian La Roche
4 *
5 * This module implements the Address Resolution Protocol ARP (RFC 826),
6 * which is used to convert IP addresses (or in the future maybe other
7 * high-level addresses) into a low-level hardware address (like an Ethernet
8 * address).
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * Fixes:
16 * Alan Cox : Removed the Ethernet assumptions in
17 * Florian's code
18 * Alan Cox : Fixed some small errors in the ARP
19 * logic
20 * Alan Cox : Allow >4K in /proc
21 * Alan Cox : Make ARP add its own protocol entry
22 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
23 * Stephen Henson : Add AX25 support to arp_get_info()
24 * Alan Cox : Drop data when a device is downed.
25 * Alan Cox : Use init_timer().
26 * Alan Cox : Double lock fixes.
27 * Martin Seine : Move the arphdr structure
28 * to if_arp.h for compatibility.
29 * with BSD based programs.
30 * Andrew Tridgell : Added ARP netmask code and
31 * re-arranged proxy handling.
32 * Alan Cox : Changed to use notifiers.
33 * Niibe Yutaka : Reply for this device or proxies only.
34 * Alan Cox : Don't proxy across hardware types!
35 * Jonathan Naylor : Added support for NET/ROM.
36 * Mike Shaver : RFC1122 checks.
37 * Jonathan Naylor : Only lookup the hardware address for
38 * the correct hardware type.
39 * Germano Caronni : Assorted subtle races.
40 * Craig Schlenter : Don't modify permanent entry
41 * during arp_rcv.
42 * Russ Nelson : Tidied up a few bits.
43 * Alexey Kuznetsov: Major changes to caching and behaviour,
44 * eg intelligent arp probing and
45 * generation
46 * of host down events.
47 * Alan Cox : Missing unlock in device events.
48 * Eckes : ARP ioctl control errors.
49 * Alexey Kuznetsov: Arp free fix.
50 * Manuel Rodriguez: Gratuitous ARP.
51 * Jonathan Layes : Added arpd support through kerneld
52 * message queue (960314)
53 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
54 * Mike McLagan : Routing by source
55 * Stuart Cheshire : Metricom and grat arp fixes
56 * *** FOR 2.1 clean this up ***
57 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
58 * Alan Cox : Took the AP1000 nasty FDDI hack and
59 * folded into the mainstream FDDI code.
60 * Ack spit, Linus how did you allow that
61 * one in...
62 * Jes Sorensen : Make FDDI work again in 2.1.x and
63 * clean up the APFDDI & gen. FDDI bits.
64 * Alexey Kuznetsov: new arp state machine;
65 * now it is in net/core/neighbour.c.
66 * Krzysztof Halasa: Added Frame Relay ARP support.
67 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
68 * Shmulik Hen: Split arp_send to arp_create and
69 * arp_xmit so intermediate drivers like
70 * bonding can change the skb before
71 * sending (e.g. insert 8021q tag).
72 * Harald Welte : convert to make use of jenkins hash
73 * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
74 */
75
76 #include <linux/module.h>
77 #include <linux/types.h>
78 #include <linux/string.h>
79 #include <linux/kernel.h>
80 #include <linux/capability.h>
81 #include <linux/socket.h>
82 #include <linux/sockios.h>
83 #include <linux/errno.h>
84 #include <linux/in.h>
85 #include <linux/mm.h>
86 #include <linux/inet.h>
87 #include <linux/inetdevice.h>
88 #include <linux/netdevice.h>
89 #include <linux/etherdevice.h>
90 #include <linux/fddidevice.h>
91 #include <linux/if_arp.h>
92 #include <linux/trdevice.h>
93 #include <linux/skbuff.h>
94 #include <linux/proc_fs.h>
95 #include <linux/seq_file.h>
96 #include <linux/stat.h>
97 #include <linux/init.h>
98 #include <linux/net.h>
99 #include <linux/rcupdate.h>
100 #include <linux/slab.h>
101 #ifdef CONFIG_SYSCTL
102 #include <linux/sysctl.h>
103 #endif
104
105 #include <net/net_namespace.h>
106 #include <net/ip.h>
107 #include <net/icmp.h>
108 #include <net/route.h>
109 #include <net/protocol.h>
110 #include <net/tcp.h>
111 #include <net/sock.h>
112 #include <net/arp.h>
113 #include <net/ax25.h>
114 #include <net/netrom.h>
115
116 #include <linux/uaccess.h>
117
118 #include <linux/netfilter_arp.h>
119
120 /*
121 * Interface to generic neighbour cache.
122 */
123 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
124 static int arp_constructor(struct neighbour *neigh);
125 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
126 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
127 static void parp_redo(struct sk_buff *skb);
128
129 static const struct neigh_ops arp_generic_ops = {
130 .family = AF_INET,
131 .solicit = arp_solicit,
132 .error_report = arp_error_report,
133 .output = neigh_resolve_output,
134 .connected_output = neigh_connected_output,
135 };
136
137 static const struct neigh_ops arp_hh_ops = {
138 .family = AF_INET,
139 .solicit = arp_solicit,
140 .error_report = arp_error_report,
141 .output = neigh_resolve_output,
142 .connected_output = neigh_resolve_output,
143 };
144
145 static const struct neigh_ops arp_direct_ops = {
146 .family = AF_INET,
147 .output = neigh_direct_output,
148 .connected_output = neigh_direct_output,
149 };
150
151 static const struct neigh_ops arp_broken_ops = {
152 .family = AF_INET,
153 .solicit = arp_solicit,
154 .error_report = arp_error_report,
155 .output = neigh_compat_output,
156 .connected_output = neigh_compat_output,
157 };
158
159 struct neigh_table arp_tbl = {
160 .family = AF_INET,
161 .key_len = 4,
162 .hash = arp_hash,
163 .constructor = arp_constructor,
164 .proxy_redo = parp_redo,
165 .id = "arp_cache",
166 .parms = {
167 .tbl = &arp_tbl,
168 .base_reachable_time = 30 * HZ,
169 .retrans_time = 1 * HZ,
170 .gc_staletime = 60 * HZ,
171 .reachable_time = 30 * HZ,
172 .delay_probe_time = 5 * HZ,
173 .queue_len_bytes = 64*1024,
174 .ucast_probes = 3,
175 .mcast_probes = 3,
176 .anycast_delay = 1 * HZ,
177 .proxy_delay = (8 * HZ) / 10,
178 .proxy_qlen = 64,
179 .locktime = 1 * HZ,
180 },
181 .gc_interval = 30 * HZ,
182 .gc_thresh1 = 128,
183 .gc_thresh2 = 512,
184 .gc_thresh3 = 1024,
185 };
186 EXPORT_SYMBOL(arp_tbl);
187
188 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
189 {
190 switch (dev->type) {
191 case ARPHRD_ETHER:
192 case ARPHRD_FDDI:
193 case ARPHRD_IEEE802:
194 ip_eth_mc_map(addr, haddr);
195 return 0;
196 case ARPHRD_IEEE802_TR:
197 ip_tr_mc_map(addr, haddr);
198 return 0;
199 case ARPHRD_INFINIBAND:
200 ip_ib_mc_map(addr, dev->broadcast, haddr);
201 return 0;
202 case ARPHRD_IPGRE:
203 ip_ipgre_mc_map(addr, dev->broadcast, haddr);
204 return 0;
205 default:
206 if (dir) {
207 memcpy(haddr, dev->broadcast, dev->addr_len);
208 return 0;
209 }
210 }
211 return -EINVAL;
212 }
213
214
215 static u32 arp_hash(const void *pkey,
216 const struct net_device *dev,
217 __u32 *hash_rnd)
218 {
219 return arp_hashfn(*(u32 *)pkey, dev, *hash_rnd);
220 }
221
222 static int arp_constructor(struct neighbour *neigh)
223 {
224 __be32 addr = *(__be32 *)neigh->primary_key;
225 struct net_device *dev = neigh->dev;
226 struct in_device *in_dev;
227 struct neigh_parms *parms;
228
229 rcu_read_lock();
230 in_dev = __in_dev_get_rcu(dev);
231 if (in_dev == NULL) {
232 rcu_read_unlock();
233 return -EINVAL;
234 }
235
236 neigh->type = inet_addr_type(dev_net(dev), addr);
237
238 parms = in_dev->arp_parms;
239 __neigh_parms_put(neigh->parms);
240 neigh->parms = neigh_parms_clone(parms);
241 rcu_read_unlock();
242
243 if (!dev->header_ops) {
244 neigh->nud_state = NUD_NOARP;
245 neigh->ops = &arp_direct_ops;
246 neigh->output = neigh_direct_output;
247 } else {
248 /* Good devices (checked by reading texts, but only Ethernet is
249 tested)
250
251 ARPHRD_ETHER: (ethernet, apfddi)
252 ARPHRD_FDDI: (fddi)
253 ARPHRD_IEEE802: (tr)
254 ARPHRD_METRICOM: (strip)
255 ARPHRD_ARCNET:
256 etc. etc. etc.
257
258 ARPHRD_IPDDP will also work, if author repairs it.
259 I did not it, because this driver does not work even
260 in old paradigm.
261 */
262
263 #if 1
264 /* So... these "amateur" devices are hopeless.
265 The only thing, that I can say now:
266 It is very sad that we need to keep ugly obsolete
267 code to make them happy.
268
269 They should be moved to more reasonable state, now
270 they use rebuild_header INSTEAD OF hard_start_xmit!!!
271 Besides that, they are sort of out of date
272 (a lot of redundant clones/copies, useless in 2.1),
273 I wonder why people believe that they work.
274 */
275 switch (dev->type) {
276 default:
277 break;
278 case ARPHRD_ROSE:
279 #if IS_ENABLED(CONFIG_AX25)
280 case ARPHRD_AX25:
281 #if IS_ENABLED(CONFIG_NETROM)
282 case ARPHRD_NETROM:
283 #endif
284 neigh->ops = &arp_broken_ops;
285 neigh->output = neigh->ops->output;
286 return 0;
287 #else
288 break;
289 #endif
290 }
291 #endif
292 if (neigh->type == RTN_MULTICAST) {
293 neigh->nud_state = NUD_NOARP;
294 arp_mc_map(addr, neigh->ha, dev, 1);
295 } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
296 neigh->nud_state = NUD_NOARP;
297 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
298 } else if (neigh->type == RTN_BROADCAST ||
299 (dev->flags & IFF_POINTOPOINT)) {
300 neigh->nud_state = NUD_NOARP;
301 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
302 }
303
304 if (dev->header_ops->cache)
305 neigh->ops = &arp_hh_ops;
306 else
307 neigh->ops = &arp_generic_ops;
308
309 if (neigh->nud_state & NUD_VALID)
310 neigh->output = neigh->ops->connected_output;
311 else
312 neigh->output = neigh->ops->output;
313 }
314 return 0;
315 }
316
317 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
318 {
319 dst_link_failure(skb);
320 kfree_skb(skb);
321 }
322
323 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
324 {
325 __be32 saddr = 0;
326 u8 *dst_ha = NULL;
327 struct net_device *dev = neigh->dev;
328 __be32 target = *(__be32 *)neigh->primary_key;
329 int probes = atomic_read(&neigh->probes);
330 struct in_device *in_dev;
331
332 rcu_read_lock();
333 in_dev = __in_dev_get_rcu(dev);
334 if (!in_dev) {
335 rcu_read_unlock();
336 return;
337 }
338 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
339 default:
340 case 0: /* By default announce any local IP */
341 if (skb && inet_addr_type(dev_net(dev),
342 ip_hdr(skb)->saddr) == RTN_LOCAL)
343 saddr = ip_hdr(skb)->saddr;
344 break;
345 case 1: /* Restrict announcements of saddr in same subnet */
346 if (!skb)
347 break;
348 saddr = ip_hdr(skb)->saddr;
349 if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
350 /* saddr should be known to target */
351 if (inet_addr_onlink(in_dev, target, saddr))
352 break;
353 }
354 saddr = 0;
355 break;
356 case 2: /* Avoid secondary IPs, get a primary/preferred one */
357 break;
358 }
359 rcu_read_unlock();
360
361 if (!saddr)
362 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
363
364 probes -= neigh->parms->ucast_probes;
365 if (probes < 0) {
366 if (!(neigh->nud_state & NUD_VALID))
367 printk(KERN_DEBUG
368 "trying to ucast probe in NUD_INVALID\n");
369 dst_ha = neigh->ha;
370 read_lock_bh(&neigh->lock);
371 } else {
372 probes -= neigh->parms->app_probes;
373 if (probes < 0) {
374 #ifdef CONFIG_ARPD
375 neigh_app_ns(neigh);
376 #endif
377 return;
378 }
379 }
380
381 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
382 dst_ha, dev->dev_addr, NULL);
383 if (dst_ha)
384 read_unlock_bh(&neigh->lock);
385 }
386
387 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
388 {
389 int scope;
390
391 switch (IN_DEV_ARP_IGNORE(in_dev)) {
392 case 0: /* Reply, the tip is already validated */
393 return 0;
394 case 1: /* Reply only if tip is configured on the incoming interface */
395 sip = 0;
396 scope = RT_SCOPE_HOST;
397 break;
398 case 2: /*
399 * Reply only if tip is configured on the incoming interface
400 * and is in same subnet as sip
401 */
402 scope = RT_SCOPE_HOST;
403 break;
404 case 3: /* Do not reply for scope host addresses */
405 sip = 0;
406 scope = RT_SCOPE_LINK;
407 break;
408 case 4: /* Reserved */
409 case 5:
410 case 6:
411 case 7:
412 return 0;
413 case 8: /* Do not reply */
414 return 1;
415 default:
416 return 0;
417 }
418 return !inet_confirm_addr(in_dev, sip, tip, scope);
419 }
420
421 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
422 {
423 struct rtable *rt;
424 int flag = 0;
425 /*unsigned long now; */
426 struct net *net = dev_net(dev);
427
428 rt = ip_route_output(net, sip, tip, 0, 0);
429 if (IS_ERR(rt))
430 return 1;
431 if (rt->dst.dev != dev) {
432 NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
433 flag = 1;
434 }
435 ip_rt_put(rt);
436 return flag;
437 }
438
439 /* OBSOLETE FUNCTIONS */
440
441 /*
442 * Find an arp mapping in the cache. If not found, post a request.
443 *
444 * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
445 * even if it exists. It is supposed that skb->dev was mangled
446 * by a virtual device (eql, shaper). Nobody but broken devices
447 * is allowed to use this function, it is scheduled to be removed. --ANK
448 */
449
450 static int arp_set_predefined(int addr_hint, unsigned char *haddr,
451 __be32 paddr, struct net_device *dev)
452 {
453 switch (addr_hint) {
454 case RTN_LOCAL:
455 printk(KERN_DEBUG "ARP: arp called for own IP address\n");
456 memcpy(haddr, dev->dev_addr, dev->addr_len);
457 return 1;
458 case RTN_MULTICAST:
459 arp_mc_map(paddr, haddr, dev, 1);
460 return 1;
461 case RTN_BROADCAST:
462 memcpy(haddr, dev->broadcast, dev->addr_len);
463 return 1;
464 }
465 return 0;
466 }
467
468
469 int arp_find(unsigned char *haddr, struct sk_buff *skb)
470 {
471 struct net_device *dev = skb->dev;
472 __be32 paddr;
473 struct neighbour *n;
474
475 if (!skb_dst(skb)) {
476 printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
477 kfree_skb(skb);
478 return 1;
479 }
480
481 paddr = skb_rtable(skb)->rt_gateway;
482
483 if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
484 paddr, dev))
485 return 0;
486
487 n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
488
489 if (n) {
490 n->used = jiffies;
491 if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
492 neigh_ha_snapshot(haddr, n, dev);
493 neigh_release(n);
494 return 0;
495 }
496 neigh_release(n);
497 } else
498 kfree_skb(skb);
499 return 1;
500 }
501 EXPORT_SYMBOL(arp_find);
502
503 /* END OF OBSOLETE FUNCTIONS */
504
505 /*
506 * Check if we can use proxy ARP for this path
507 */
508 static inline int arp_fwd_proxy(struct in_device *in_dev,
509 struct net_device *dev, struct rtable *rt)
510 {
511 struct in_device *out_dev;
512 int imi, omi = -1;
513
514 if (rt->dst.dev == dev)
515 return 0;
516
517 if (!IN_DEV_PROXY_ARP(in_dev))
518 return 0;
519 imi = IN_DEV_MEDIUM_ID(in_dev);
520 if (imi == 0)
521 return 1;
522 if (imi == -1)
523 return 0;
524
525 /* place to check for proxy_arp for routes */
526
527 out_dev = __in_dev_get_rcu(rt->dst.dev);
528 if (out_dev)
529 omi = IN_DEV_MEDIUM_ID(out_dev);
530
531 return omi != imi && omi != -1;
532 }
533
534 /*
535 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
536 *
537 * RFC3069 supports proxy arp replies back to the same interface. This
538 * is done to support (ethernet) switch features, like RFC 3069, where
539 * the individual ports are not allowed to communicate with each
540 * other, BUT they are allowed to talk to the upstream router. As
541 * described in RFC 3069, it is possible to allow these hosts to
542 * communicate through the upstream router, by proxy_arp'ing.
543 *
544 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
545 *
546 * This technology is known by different names:
547 * In RFC 3069 it is called VLAN Aggregation.
548 * Cisco and Allied Telesyn call it Private VLAN.
549 * Hewlett-Packard call it Source-Port filtering or port-isolation.
550 * Ericsson call it MAC-Forced Forwarding (RFC Draft).
551 *
552 */
553 static inline int arp_fwd_pvlan(struct in_device *in_dev,
554 struct net_device *dev, struct rtable *rt,
555 __be32 sip, __be32 tip)
556 {
557 /* Private VLAN is only concerned about the same ethernet segment */
558 if (rt->dst.dev != dev)
559 return 0;
560
561 /* Don't reply on self probes (often done by windowz boxes)*/
562 if (sip == tip)
563 return 0;
564
565 if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
566 return 1;
567 else
568 return 0;
569 }
570
571 /*
572 * Interface to link layer: send routine and receive handler.
573 */
574
575 /*
576 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
577 * message.
578 */
579 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
580 struct net_device *dev, __be32 src_ip,
581 const unsigned char *dest_hw,
582 const unsigned char *src_hw,
583 const unsigned char *target_hw)
584 {
585 struct sk_buff *skb;
586 struct arphdr *arp;
587 unsigned char *arp_ptr;
588 int hlen = LL_RESERVED_SPACE(dev);
589 int tlen = dev->needed_tailroom;
590
591 /*
592 * Allocate a buffer
593 */
594
595 skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
596 if (skb == NULL)
597 return NULL;
598
599 skb_reserve(skb, hlen);
600 skb_reset_network_header(skb);
601 arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
602 skb->dev = dev;
603 skb->protocol = htons(ETH_P_ARP);
604 if (src_hw == NULL)
605 src_hw = dev->dev_addr;
606 if (dest_hw == NULL)
607 dest_hw = dev->broadcast;
608
609 /*
610 * Fill the device header for the ARP frame
611 */
612 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
613 goto out;
614
615 /*
616 * Fill out the arp protocol part.
617 *
618 * The arp hardware type should match the device type, except for FDDI,
619 * which (according to RFC 1390) should always equal 1 (Ethernet).
620 */
621 /*
622 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
623 * DIX code for the protocol. Make these device structure fields.
624 */
625 switch (dev->type) {
626 default:
627 arp->ar_hrd = htons(dev->type);
628 arp->ar_pro = htons(ETH_P_IP);
629 break;
630
631 #if IS_ENABLED(CONFIG_AX25)
632 case ARPHRD_AX25:
633 arp->ar_hrd = htons(ARPHRD_AX25);
634 arp->ar_pro = htons(AX25_P_IP);
635 break;
636
637 #if IS_ENABLED(CONFIG_NETROM)
638 case ARPHRD_NETROM:
639 arp->ar_hrd = htons(ARPHRD_NETROM);
640 arp->ar_pro = htons(AX25_P_IP);
641 break;
642 #endif
643 #endif
644
645 #if IS_ENABLED(CONFIG_FDDI)
646 case ARPHRD_FDDI:
647 arp->ar_hrd = htons(ARPHRD_ETHER);
648 arp->ar_pro = htons(ETH_P_IP);
649 break;
650 #endif
651 #if IS_ENABLED(CONFIG_TR)
652 case ARPHRD_IEEE802_TR:
653 arp->ar_hrd = htons(ARPHRD_IEEE802);
654 arp->ar_pro = htons(ETH_P_IP);
655 break;
656 #endif
657 }
658
659 arp->ar_hln = dev->addr_len;
660 arp->ar_pln = 4;
661 arp->ar_op = htons(type);
662
663 arp_ptr = (unsigned char *)(arp + 1);
664
665 memcpy(arp_ptr, src_hw, dev->addr_len);
666 arp_ptr += dev->addr_len;
667 memcpy(arp_ptr, &src_ip, 4);
668 arp_ptr += 4;
669 if (target_hw != NULL)
670 memcpy(arp_ptr, target_hw, dev->addr_len);
671 else
672 memset(arp_ptr, 0, dev->addr_len);
673 arp_ptr += dev->addr_len;
674 memcpy(arp_ptr, &dest_ip, 4);
675
676 return skb;
677
678 out:
679 kfree_skb(skb);
680 return NULL;
681 }
682 EXPORT_SYMBOL(arp_create);
683
684 /*
685 * Send an arp packet.
686 */
687 void arp_xmit(struct sk_buff *skb)
688 {
689 /* Send it off, maybe filter it using firewalling first. */
690 NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
691 }
692 EXPORT_SYMBOL(arp_xmit);
693
694 /*
695 * Create and send an arp packet.
696 */
697 void arp_send(int type, int ptype, __be32 dest_ip,
698 struct net_device *dev, __be32 src_ip,
699 const unsigned char *dest_hw, const unsigned char *src_hw,
700 const unsigned char *target_hw)
701 {
702 struct sk_buff *skb;
703
704 /*
705 * No arp on this interface.
706 */
707
708 if (dev->flags&IFF_NOARP)
709 return;
710
711 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
712 dest_hw, src_hw, target_hw);
713 if (skb == NULL)
714 return;
715
716 arp_xmit(skb);
717 }
718 EXPORT_SYMBOL(arp_send);
719
720 /*
721 * Process an arp request.
722 */
723
724 static int arp_process(struct sk_buff *skb)
725 {
726 struct net_device *dev = skb->dev;
727 struct in_device *in_dev = __in_dev_get_rcu(dev);
728 struct arphdr *arp;
729 unsigned char *arp_ptr;
730 struct rtable *rt;
731 unsigned char *sha;
732 __be32 sip, tip;
733 u16 dev_type = dev->type;
734 int addr_type;
735 struct neighbour *n;
736 struct net *net = dev_net(dev);
737
738 /* arp_rcv below verifies the ARP header and verifies the device
739 * is ARP'able.
740 */
741
742 if (in_dev == NULL)
743 goto out;
744
745 arp = arp_hdr(skb);
746
747 switch (dev_type) {
748 default:
749 if (arp->ar_pro != htons(ETH_P_IP) ||
750 htons(dev_type) != arp->ar_hrd)
751 goto out;
752 break;
753 case ARPHRD_ETHER:
754 case ARPHRD_IEEE802_TR:
755 case ARPHRD_FDDI:
756 case ARPHRD_IEEE802:
757 /*
758 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
759 * devices, according to RFC 2625) devices will accept ARP
760 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
761 * This is the case also of FDDI, where the RFC 1390 says that
762 * FDDI devices should accept ARP hardware of (1) Ethernet,
763 * however, to be more robust, we'll accept both 1 (Ethernet)
764 * or 6 (IEEE 802.2)
765 */
766 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
767 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
768 arp->ar_pro != htons(ETH_P_IP))
769 goto out;
770 break;
771 case ARPHRD_AX25:
772 if (arp->ar_pro != htons(AX25_P_IP) ||
773 arp->ar_hrd != htons(ARPHRD_AX25))
774 goto out;
775 break;
776 case ARPHRD_NETROM:
777 if (arp->ar_pro != htons(AX25_P_IP) ||
778 arp->ar_hrd != htons(ARPHRD_NETROM))
779 goto out;
780 break;
781 }
782
783 /* Understand only these message types */
784
785 if (arp->ar_op != htons(ARPOP_REPLY) &&
786 arp->ar_op != htons(ARPOP_REQUEST))
787 goto out;
788
789 /*
790 * Extract fields
791 */
792 arp_ptr = (unsigned char *)(arp + 1);
793 sha = arp_ptr;
794 arp_ptr += dev->addr_len;
795 memcpy(&sip, arp_ptr, 4);
796 arp_ptr += 4;
797 arp_ptr += dev->addr_len;
798 memcpy(&tip, arp_ptr, 4);
799 /*
800 * Check for bad requests for 127.x.x.x and requests for multicast
801 * addresses. If this is one such, delete it.
802 */
803 if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
804 goto out;
805
806 /*
807 * Special case: We must set Frame Relay source Q.922 address
808 */
809 if (dev_type == ARPHRD_DLCI)
810 sha = dev->broadcast;
811
812 /*
813 * Process entry. The idea here is we want to send a reply if it is a
814 * request for us or if it is a request for someone else that we hold
815 * a proxy for. We want to add an entry to our cache if it is a reply
816 * to us or if it is a request for our address.
817 * (The assumption for this last is that if someone is requesting our
818 * address, they are probably intending to talk to us, so it saves time
819 * if we cache their address. Their address is also probably not in
820 * our cache, since ours is not in their cache.)
821 *
822 * Putting this another way, we only care about replies if they are to
823 * us, in which case we add them to the cache. For requests, we care
824 * about those for us and those for our proxies. We reply to both,
825 * and in the case of requests for us we add the requester to the arp
826 * cache.
827 */
828
829 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
830 if (sip == 0) {
831 if (arp->ar_op == htons(ARPOP_REQUEST) &&
832 inet_addr_type(net, tip) == RTN_LOCAL &&
833 !arp_ignore(in_dev, sip, tip))
834 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
835 dev->dev_addr, sha);
836 goto out;
837 }
838
839 if (arp->ar_op == htons(ARPOP_REQUEST) &&
840 ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
841
842 rt = skb_rtable(skb);
843 addr_type = rt->rt_type;
844
845 if (addr_type == RTN_LOCAL) {
846 int dont_send;
847
848 dont_send = arp_ignore(in_dev, sip, tip);
849 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
850 dont_send = arp_filter(sip, tip, dev);
851 if (!dont_send) {
852 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
853 if (n) {
854 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
855 dev, tip, sha, dev->dev_addr,
856 sha);
857 neigh_release(n);
858 }
859 }
860 goto out;
861 } else if (IN_DEV_FORWARD(in_dev)) {
862 if (addr_type == RTN_UNICAST &&
863 (arp_fwd_proxy(in_dev, dev, rt) ||
864 arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
865 (rt->dst.dev != dev &&
866 pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
867 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
868 if (n)
869 neigh_release(n);
870
871 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
872 skb->pkt_type == PACKET_HOST ||
873 in_dev->arp_parms->proxy_delay == 0) {
874 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
875 dev, tip, sha, dev->dev_addr,
876 sha);
877 } else {
878 pneigh_enqueue(&arp_tbl,
879 in_dev->arp_parms, skb);
880 return 0;
881 }
882 goto out;
883 }
884 }
885 }
886
887 /* Update our ARP tables */
888
889 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
890
891 if (IN_DEV_ARP_ACCEPT(in_dev)) {
892 /* Unsolicited ARP is not accepted by default.
893 It is possible, that this option should be enabled for some
894 devices (strip is candidate)
895 */
896 if (n == NULL &&
897 (arp->ar_op == htons(ARPOP_REPLY) ||
898 (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
899 inet_addr_type(net, sip) == RTN_UNICAST)
900 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
901 }
902
903 if (n) {
904 int state = NUD_REACHABLE;
905 int override;
906
907 /* If several different ARP replies follows back-to-back,
908 use the FIRST one. It is possible, if several proxy
909 agents are active. Taking the first reply prevents
910 arp trashing and chooses the fastest router.
911 */
912 override = time_after(jiffies, n->updated + n->parms->locktime);
913
914 /* Broadcast replies and request packets
915 do not assert neighbour reachability.
916 */
917 if (arp->ar_op != htons(ARPOP_REPLY) ||
918 skb->pkt_type != PACKET_HOST)
919 state = NUD_STALE;
920 neigh_update(n, sha, state,
921 override ? NEIGH_UPDATE_F_OVERRIDE : 0);
922 neigh_release(n);
923 }
924
925 out:
926 consume_skb(skb);
927 return 0;
928 }
929
930 static void parp_redo(struct sk_buff *skb)
931 {
932 arp_process(skb);
933 }
934
935
936 /*
937 * Receive an arp request from the device layer.
938 */
939
940 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
941 struct packet_type *pt, struct net_device *orig_dev)
942 {
943 struct arphdr *arp;
944
945 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
946 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
947 goto freeskb;
948
949 arp = arp_hdr(skb);
950 if (arp->ar_hln != dev->addr_len ||
951 dev->flags & IFF_NOARP ||
952 skb->pkt_type == PACKET_OTHERHOST ||
953 skb->pkt_type == PACKET_LOOPBACK ||
954 arp->ar_pln != 4)
955 goto freeskb;
956
957 skb = skb_share_check(skb, GFP_ATOMIC);
958 if (skb == NULL)
959 goto out_of_mem;
960
961 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
962
963 return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
964
965 freeskb:
966 kfree_skb(skb);
967 out_of_mem:
968 return 0;
969 }
970
971 /*
972 * User level interface (ioctl)
973 */
974
975 /*
976 * Set (create) an ARP cache entry.
977 */
978
979 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
980 {
981 if (dev == NULL) {
982 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
983 return 0;
984 }
985 if (__in_dev_get_rtnl(dev)) {
986 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
987 return 0;
988 }
989 return -ENXIO;
990 }
991
992 static int arp_req_set_public(struct net *net, struct arpreq *r,
993 struct net_device *dev)
994 {
995 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
996 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
997
998 if (mask && mask != htonl(0xFFFFFFFF))
999 return -EINVAL;
1000 if (!dev && (r->arp_flags & ATF_COM)) {
1001 dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1002 r->arp_ha.sa_data);
1003 if (!dev)
1004 return -ENODEV;
1005 }
1006 if (mask) {
1007 if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1008 return -ENOBUFS;
1009 return 0;
1010 }
1011
1012 return arp_req_set_proxy(net, dev, 1);
1013 }
1014
1015 static int arp_req_set(struct net *net, struct arpreq *r,
1016 struct net_device *dev)
1017 {
1018 __be32 ip;
1019 struct neighbour *neigh;
1020 int err;
1021
1022 if (r->arp_flags & ATF_PUBL)
1023 return arp_req_set_public(net, r, dev);
1024
1025 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1026 if (r->arp_flags & ATF_PERM)
1027 r->arp_flags |= ATF_COM;
1028 if (dev == NULL) {
1029 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1030
1031 if (IS_ERR(rt))
1032 return PTR_ERR(rt);
1033 dev = rt->dst.dev;
1034 ip_rt_put(rt);
1035 if (!dev)
1036 return -EINVAL;
1037 }
1038 switch (dev->type) {
1039 #if IS_ENABLED(CONFIG_FDDI)
1040 case ARPHRD_FDDI:
1041 /*
1042 * According to RFC 1390, FDDI devices should accept ARP
1043 * hardware types of 1 (Ethernet). However, to be more
1044 * robust, we'll accept hardware types of either 1 (Ethernet)
1045 * or 6 (IEEE 802.2).
1046 */
1047 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1048 r->arp_ha.sa_family != ARPHRD_ETHER &&
1049 r->arp_ha.sa_family != ARPHRD_IEEE802)
1050 return -EINVAL;
1051 break;
1052 #endif
1053 default:
1054 if (r->arp_ha.sa_family != dev->type)
1055 return -EINVAL;
1056 break;
1057 }
1058
1059 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1060 err = PTR_ERR(neigh);
1061 if (!IS_ERR(neigh)) {
1062 unsigned int state = NUD_STALE;
1063 if (r->arp_flags & ATF_PERM)
1064 state = NUD_PERMANENT;
1065 err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1066 r->arp_ha.sa_data : NULL, state,
1067 NEIGH_UPDATE_F_OVERRIDE |
1068 NEIGH_UPDATE_F_ADMIN);
1069 neigh_release(neigh);
1070 }
1071 return err;
1072 }
1073
1074 static unsigned int arp_state_to_flags(struct neighbour *neigh)
1075 {
1076 if (neigh->nud_state&NUD_PERMANENT)
1077 return ATF_PERM | ATF_COM;
1078 else if (neigh->nud_state&NUD_VALID)
1079 return ATF_COM;
1080 else
1081 return 0;
1082 }
1083
1084 /*
1085 * Get an ARP cache entry.
1086 */
1087
1088 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1089 {
1090 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1091 struct neighbour *neigh;
1092 int err = -ENXIO;
1093
1094 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1095 if (neigh) {
1096 read_lock_bh(&neigh->lock);
1097 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1098 r->arp_flags = arp_state_to_flags(neigh);
1099 read_unlock_bh(&neigh->lock);
1100 r->arp_ha.sa_family = dev->type;
1101 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1102 neigh_release(neigh);
1103 err = 0;
1104 }
1105 return err;
1106 }
1107
1108 int arp_invalidate(struct net_device *dev, __be32 ip)
1109 {
1110 struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1111 int err = -ENXIO;
1112
1113 if (neigh) {
1114 if (neigh->nud_state & ~NUD_NOARP)
1115 err = neigh_update(neigh, NULL, NUD_FAILED,
1116 NEIGH_UPDATE_F_OVERRIDE|
1117 NEIGH_UPDATE_F_ADMIN);
1118 neigh_release(neigh);
1119 }
1120
1121 return err;
1122 }
1123 EXPORT_SYMBOL(arp_invalidate);
1124
1125 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1126 struct net_device *dev)
1127 {
1128 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1129 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1130
1131 if (mask == htonl(0xFFFFFFFF))
1132 return pneigh_delete(&arp_tbl, net, &ip, dev);
1133
1134 if (mask)
1135 return -EINVAL;
1136
1137 return arp_req_set_proxy(net, dev, 0);
1138 }
1139
1140 static int arp_req_delete(struct net *net, struct arpreq *r,
1141 struct net_device *dev)
1142 {
1143 __be32 ip;
1144
1145 if (r->arp_flags & ATF_PUBL)
1146 return arp_req_delete_public(net, r, dev);
1147
1148 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1149 if (dev == NULL) {
1150 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1151 if (IS_ERR(rt))
1152 return PTR_ERR(rt);
1153 dev = rt->dst.dev;
1154 ip_rt_put(rt);
1155 if (!dev)
1156 return -EINVAL;
1157 }
1158 return arp_invalidate(dev, ip);
1159 }
1160
1161 /*
1162 * Handle an ARP layer I/O control request.
1163 */
1164
1165 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1166 {
1167 int err;
1168 struct arpreq r;
1169 struct net_device *dev = NULL;
1170
1171 switch (cmd) {
1172 case SIOCDARP:
1173 case SIOCSARP:
1174 if (!capable(CAP_NET_ADMIN))
1175 return -EPERM;
1176 case SIOCGARP:
1177 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1178 if (err)
1179 return -EFAULT;
1180 break;
1181 default:
1182 return -EINVAL;
1183 }
1184
1185 if (r.arp_pa.sa_family != AF_INET)
1186 return -EPFNOSUPPORT;
1187
1188 if (!(r.arp_flags & ATF_PUBL) &&
1189 (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1190 return -EINVAL;
1191 if (!(r.arp_flags & ATF_NETMASK))
1192 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1193 htonl(0xFFFFFFFFUL);
1194 rtnl_lock();
1195 if (r.arp_dev[0]) {
1196 err = -ENODEV;
1197 dev = __dev_get_by_name(net, r.arp_dev);
1198 if (dev == NULL)
1199 goto out;
1200
1201 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1202 if (!r.arp_ha.sa_family)
1203 r.arp_ha.sa_family = dev->type;
1204 err = -EINVAL;
1205 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1206 goto out;
1207 } else if (cmd == SIOCGARP) {
1208 err = -ENODEV;
1209 goto out;
1210 }
1211
1212 switch (cmd) {
1213 case SIOCDARP:
1214 err = arp_req_delete(net, &r, dev);
1215 break;
1216 case SIOCSARP:
1217 err = arp_req_set(net, &r, dev);
1218 break;
1219 case SIOCGARP:
1220 err = arp_req_get(&r, dev);
1221 break;
1222 }
1223 out:
1224 rtnl_unlock();
1225 if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1226 err = -EFAULT;
1227 return err;
1228 }
1229
1230 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1231 void *ptr)
1232 {
1233 struct net_device *dev = ptr;
1234
1235 switch (event) {
1236 case NETDEV_CHANGEADDR:
1237 neigh_changeaddr(&arp_tbl, dev);
1238 rt_cache_flush(dev_net(dev), 0);
1239 break;
1240 default:
1241 break;
1242 }
1243
1244 return NOTIFY_DONE;
1245 }
1246
1247 static struct notifier_block arp_netdev_notifier = {
1248 .notifier_call = arp_netdev_event,
1249 };
1250
1251 /* Note, that it is not on notifier chain.
1252 It is necessary, that this routine was called after route cache will be
1253 flushed.
1254 */
1255 void arp_ifdown(struct net_device *dev)
1256 {
1257 neigh_ifdown(&arp_tbl, dev);
1258 }
1259
1260
1261 /*
1262 * Called once on startup.
1263 */
1264
1265 static struct packet_type arp_packet_type __read_mostly = {
1266 .type = cpu_to_be16(ETH_P_ARP),
1267 .func = arp_rcv,
1268 };
1269
1270 static int arp_proc_init(void);
1271
1272 void __init arp_init(void)
1273 {
1274 neigh_table_init(&arp_tbl);
1275
1276 dev_add_pack(&arp_packet_type);
1277 arp_proc_init();
1278 #ifdef CONFIG_SYSCTL
1279 neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1280 #endif
1281 register_netdevice_notifier(&arp_netdev_notifier);
1282 }
1283
1284 #ifdef CONFIG_PROC_FS
1285 #if IS_ENABLED(CONFIG_AX25)
1286
1287 /* ------------------------------------------------------------------------ */
1288 /*
1289 * ax25 -> ASCII conversion
1290 */
1291 static char *ax2asc2(ax25_address *a, char *buf)
1292 {
1293 char c, *s;
1294 int n;
1295
1296 for (n = 0, s = buf; n < 6; n++) {
1297 c = (a->ax25_call[n] >> 1) & 0x7F;
1298
1299 if (c != ' ')
1300 *s++ = c;
1301 }
1302
1303 *s++ = '-';
1304 n = (a->ax25_call[6] >> 1) & 0x0F;
1305 if (n > 9) {
1306 *s++ = '1';
1307 n -= 10;
1308 }
1309
1310 *s++ = n + '0';
1311 *s++ = '\0';
1312
1313 if (*buf == '\0' || *buf == '-')
1314 return "*";
1315
1316 return buf;
1317 }
1318 #endif /* CONFIG_AX25 */
1319
1320 #define HBUFFERLEN 30
1321
1322 static void arp_format_neigh_entry(struct seq_file *seq,
1323 struct neighbour *n)
1324 {
1325 char hbuffer[HBUFFERLEN];
1326 int k, j;
1327 char tbuf[16];
1328 struct net_device *dev = n->dev;
1329 int hatype = dev->type;
1330
1331 read_lock(&n->lock);
1332 /* Convert hardware address to XX:XX:XX:XX ... form. */
1333 #if IS_ENABLED(CONFIG_AX25)
1334 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1335 ax2asc2((ax25_address *)n->ha, hbuffer);
1336 else {
1337 #endif
1338 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1339 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1340 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1341 hbuffer[k++] = ':';
1342 }
1343 if (k != 0)
1344 --k;
1345 hbuffer[k] = 0;
1346 #if IS_ENABLED(CONFIG_AX25)
1347 }
1348 #endif
1349 sprintf(tbuf, "%pI4", n->primary_key);
1350 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1351 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1352 read_unlock(&n->lock);
1353 }
1354
1355 static void arp_format_pneigh_entry(struct seq_file *seq,
1356 struct pneigh_entry *n)
1357 {
1358 struct net_device *dev = n->dev;
1359 int hatype = dev ? dev->type : 0;
1360 char tbuf[16];
1361
1362 sprintf(tbuf, "%pI4", n->key);
1363 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1364 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1365 dev ? dev->name : "*");
1366 }
1367
1368 static int arp_seq_show(struct seq_file *seq, void *v)
1369 {
1370 if (v == SEQ_START_TOKEN) {
1371 seq_puts(seq, "IP address HW type Flags "
1372 "HW address Mask Device\n");
1373 } else {
1374 struct neigh_seq_state *state = seq->private;
1375
1376 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1377 arp_format_pneigh_entry(seq, v);
1378 else
1379 arp_format_neigh_entry(seq, v);
1380 }
1381
1382 return 0;
1383 }
1384
1385 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1386 {
1387 /* Don't want to confuse "arp -a" w/ magic entries,
1388 * so we tell the generic iterator to skip NUD_NOARP.
1389 */
1390 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1391 }
1392
1393 /* ------------------------------------------------------------------------ */
1394
1395 static const struct seq_operations arp_seq_ops = {
1396 .start = arp_seq_start,
1397 .next = neigh_seq_next,
1398 .stop = neigh_seq_stop,
1399 .show = arp_seq_show,
1400 };
1401
1402 static int arp_seq_open(struct inode *inode, struct file *file)
1403 {
1404 return seq_open_net(inode, file, &arp_seq_ops,
1405 sizeof(struct neigh_seq_state));
1406 }
1407
1408 static const struct file_operations arp_seq_fops = {
1409 .owner = THIS_MODULE,
1410 .open = arp_seq_open,
1411 .read = seq_read,
1412 .llseek = seq_lseek,
1413 .release = seq_release_net,
1414 };
1415
1416
1417 static int __net_init arp_net_init(struct net *net)
1418 {
1419 if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
1420 return -ENOMEM;
1421 return 0;
1422 }
1423
1424 static void __net_exit arp_net_exit(struct net *net)
1425 {
1426 proc_net_remove(net, "arp");
1427 }
1428
1429 static struct pernet_operations arp_net_ops = {
1430 .init = arp_net_init,
1431 .exit = arp_net_exit,
1432 };
1433
1434 static int __init arp_proc_init(void)
1435 {
1436 return register_pernet_subsys(&arp_net_ops);
1437 }
1438
1439 #else /* CONFIG_PROC_FS */
1440
1441 static int __init arp_proc_init(void)
1442 {
1443 return 0;
1444 }
1445
1446 #endif /* CONFIG_PROC_FS */