]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv4/arp.c
ipv6: Use universal hash for NDISC.
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / arp.c
1 /* linux/net/ipv4/arp.c
2 *
3 * Copyright (C) 1994 by Florian La Roche
4 *
5 * This module implements the Address Resolution Protocol ARP (RFC 826),
6 * which is used to convert IP addresses (or in the future maybe other
7 * high-level addresses) into a low-level hardware address (like an Ethernet
8 * address).
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * Fixes:
16 * Alan Cox : Removed the Ethernet assumptions in
17 * Florian's code
18 * Alan Cox : Fixed some small errors in the ARP
19 * logic
20 * Alan Cox : Allow >4K in /proc
21 * Alan Cox : Make ARP add its own protocol entry
22 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
23 * Stephen Henson : Add AX25 support to arp_get_info()
24 * Alan Cox : Drop data when a device is downed.
25 * Alan Cox : Use init_timer().
26 * Alan Cox : Double lock fixes.
27 * Martin Seine : Move the arphdr structure
28 * to if_arp.h for compatibility.
29 * with BSD based programs.
30 * Andrew Tridgell : Added ARP netmask code and
31 * re-arranged proxy handling.
32 * Alan Cox : Changed to use notifiers.
33 * Niibe Yutaka : Reply for this device or proxies only.
34 * Alan Cox : Don't proxy across hardware types!
35 * Jonathan Naylor : Added support for NET/ROM.
36 * Mike Shaver : RFC1122 checks.
37 * Jonathan Naylor : Only lookup the hardware address for
38 * the correct hardware type.
39 * Germano Caronni : Assorted subtle races.
40 * Craig Schlenter : Don't modify permanent entry
41 * during arp_rcv.
42 * Russ Nelson : Tidied up a few bits.
43 * Alexey Kuznetsov: Major changes to caching and behaviour,
44 * eg intelligent arp probing and
45 * generation
46 * of host down events.
47 * Alan Cox : Missing unlock in device events.
48 * Eckes : ARP ioctl control errors.
49 * Alexey Kuznetsov: Arp free fix.
50 * Manuel Rodriguez: Gratuitous ARP.
51 * Jonathan Layes : Added arpd support through kerneld
52 * message queue (960314)
53 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
54 * Mike McLagan : Routing by source
55 * Stuart Cheshire : Metricom and grat arp fixes
56 * *** FOR 2.1 clean this up ***
57 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
58 * Alan Cox : Took the AP1000 nasty FDDI hack and
59 * folded into the mainstream FDDI code.
60 * Ack spit, Linus how did you allow that
61 * one in...
62 * Jes Sorensen : Make FDDI work again in 2.1.x and
63 * clean up the APFDDI & gen. FDDI bits.
64 * Alexey Kuznetsov: new arp state machine;
65 * now it is in net/core/neighbour.c.
66 * Krzysztof Halasa: Added Frame Relay ARP support.
67 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
68 * Shmulik Hen: Split arp_send to arp_create and
69 * arp_xmit so intermediate drivers like
70 * bonding can change the skb before
71 * sending (e.g. insert 8021q tag).
72 * Harald Welte : convert to make use of jenkins hash
73 * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
74 */
75
76 #include <linux/module.h>
77 #include <linux/types.h>
78 #include <linux/string.h>
79 #include <linux/kernel.h>
80 #include <linux/capability.h>
81 #include <linux/socket.h>
82 #include <linux/sockios.h>
83 #include <linux/errno.h>
84 #include <linux/in.h>
85 #include <linux/mm.h>
86 #include <linux/inet.h>
87 #include <linux/inetdevice.h>
88 #include <linux/netdevice.h>
89 #include <linux/etherdevice.h>
90 #include <linux/fddidevice.h>
91 #include <linux/if_arp.h>
92 #include <linux/trdevice.h>
93 #include <linux/skbuff.h>
94 #include <linux/proc_fs.h>
95 #include <linux/seq_file.h>
96 #include <linux/stat.h>
97 #include <linux/init.h>
98 #include <linux/net.h>
99 #include <linux/rcupdate.h>
100 #include <linux/slab.h>
101 #ifdef CONFIG_SYSCTL
102 #include <linux/sysctl.h>
103 #endif
104
105 #include <net/net_namespace.h>
106 #include <net/ip.h>
107 #include <net/icmp.h>
108 #include <net/route.h>
109 #include <net/protocol.h>
110 #include <net/tcp.h>
111 #include <net/sock.h>
112 #include <net/arp.h>
113 #include <net/ax25.h>
114 #include <net/netrom.h>
115
116 #include <asm/system.h>
117 #include <linux/uaccess.h>
118
119 #include <linux/netfilter_arp.h>
120
121 /*
122 * Interface to generic neighbour cache.
123 */
124 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
125 static int arp_constructor(struct neighbour *neigh);
126 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
127 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
128 static void parp_redo(struct sk_buff *skb);
129
130 static const struct neigh_ops arp_generic_ops = {
131 .family = AF_INET,
132 .solicit = arp_solicit,
133 .error_report = arp_error_report,
134 .output = neigh_resolve_output,
135 .connected_output = neigh_connected_output,
136 };
137
138 static const struct neigh_ops arp_hh_ops = {
139 .family = AF_INET,
140 .solicit = arp_solicit,
141 .error_report = arp_error_report,
142 .output = neigh_resolve_output,
143 .connected_output = neigh_resolve_output,
144 };
145
146 static const struct neigh_ops arp_direct_ops = {
147 .family = AF_INET,
148 .output = neigh_direct_output,
149 .connected_output = neigh_direct_output,
150 };
151
152 static const struct neigh_ops arp_broken_ops = {
153 .family = AF_INET,
154 .solicit = arp_solicit,
155 .error_report = arp_error_report,
156 .output = neigh_compat_output,
157 .connected_output = neigh_compat_output,
158 };
159
160 struct neigh_table arp_tbl = {
161 .family = AF_INET,
162 .key_len = 4,
163 .hash = arp_hash,
164 .constructor = arp_constructor,
165 .proxy_redo = parp_redo,
166 .id = "arp_cache",
167 .parms = {
168 .tbl = &arp_tbl,
169 .base_reachable_time = 30 * HZ,
170 .retrans_time = 1 * HZ,
171 .gc_staletime = 60 * HZ,
172 .reachable_time = 30 * HZ,
173 .delay_probe_time = 5 * HZ,
174 .queue_len_bytes = 64*1024,
175 .ucast_probes = 3,
176 .mcast_probes = 3,
177 .anycast_delay = 1 * HZ,
178 .proxy_delay = (8 * HZ) / 10,
179 .proxy_qlen = 64,
180 .locktime = 1 * HZ,
181 },
182 .gc_interval = 30 * HZ,
183 .gc_thresh1 = 128,
184 .gc_thresh2 = 512,
185 .gc_thresh3 = 1024,
186 };
187 EXPORT_SYMBOL(arp_tbl);
188
189 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
190 {
191 switch (dev->type) {
192 case ARPHRD_ETHER:
193 case ARPHRD_FDDI:
194 case ARPHRD_IEEE802:
195 ip_eth_mc_map(addr, haddr);
196 return 0;
197 case ARPHRD_IEEE802_TR:
198 ip_tr_mc_map(addr, haddr);
199 return 0;
200 case ARPHRD_INFINIBAND:
201 ip_ib_mc_map(addr, dev->broadcast, haddr);
202 return 0;
203 case ARPHRD_IPGRE:
204 ip_ipgre_mc_map(addr, dev->broadcast, haddr);
205 return 0;
206 default:
207 if (dir) {
208 memcpy(haddr, dev->broadcast, dev->addr_len);
209 return 0;
210 }
211 }
212 return -EINVAL;
213 }
214
215
216 static u32 arp_hash(const void *pkey,
217 const struct net_device *dev,
218 __u32 *hash_rnd)
219 {
220 return arp_hashfn(*(u32 *)pkey, dev, *hash_rnd);
221 }
222
223 static int arp_constructor(struct neighbour *neigh)
224 {
225 __be32 addr = *(__be32 *)neigh->primary_key;
226 struct net_device *dev = neigh->dev;
227 struct in_device *in_dev;
228 struct neigh_parms *parms;
229
230 rcu_read_lock();
231 in_dev = __in_dev_get_rcu(dev);
232 if (in_dev == NULL) {
233 rcu_read_unlock();
234 return -EINVAL;
235 }
236
237 neigh->type = inet_addr_type(dev_net(dev), addr);
238
239 parms = in_dev->arp_parms;
240 __neigh_parms_put(neigh->parms);
241 neigh->parms = neigh_parms_clone(parms);
242 rcu_read_unlock();
243
244 if (!dev->header_ops) {
245 neigh->nud_state = NUD_NOARP;
246 neigh->ops = &arp_direct_ops;
247 neigh->output = neigh_direct_output;
248 } else {
249 /* Good devices (checked by reading texts, but only Ethernet is
250 tested)
251
252 ARPHRD_ETHER: (ethernet, apfddi)
253 ARPHRD_FDDI: (fddi)
254 ARPHRD_IEEE802: (tr)
255 ARPHRD_METRICOM: (strip)
256 ARPHRD_ARCNET:
257 etc. etc. etc.
258
259 ARPHRD_IPDDP will also work, if author repairs it.
260 I did not it, because this driver does not work even
261 in old paradigm.
262 */
263
264 #if 1
265 /* So... these "amateur" devices are hopeless.
266 The only thing, that I can say now:
267 It is very sad that we need to keep ugly obsolete
268 code to make them happy.
269
270 They should be moved to more reasonable state, now
271 they use rebuild_header INSTEAD OF hard_start_xmit!!!
272 Besides that, they are sort of out of date
273 (a lot of redundant clones/copies, useless in 2.1),
274 I wonder why people believe that they work.
275 */
276 switch (dev->type) {
277 default:
278 break;
279 case ARPHRD_ROSE:
280 #if IS_ENABLED(CONFIG_AX25)
281 case ARPHRD_AX25:
282 #if IS_ENABLED(CONFIG_NETROM)
283 case ARPHRD_NETROM:
284 #endif
285 neigh->ops = &arp_broken_ops;
286 neigh->output = neigh->ops->output;
287 return 0;
288 #else
289 break;
290 #endif
291 }
292 #endif
293 if (neigh->type == RTN_MULTICAST) {
294 neigh->nud_state = NUD_NOARP;
295 arp_mc_map(addr, neigh->ha, dev, 1);
296 } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
297 neigh->nud_state = NUD_NOARP;
298 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
299 } else if (neigh->type == RTN_BROADCAST ||
300 (dev->flags & IFF_POINTOPOINT)) {
301 neigh->nud_state = NUD_NOARP;
302 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
303 }
304
305 if (dev->header_ops->cache)
306 neigh->ops = &arp_hh_ops;
307 else
308 neigh->ops = &arp_generic_ops;
309
310 if (neigh->nud_state & NUD_VALID)
311 neigh->output = neigh->ops->connected_output;
312 else
313 neigh->output = neigh->ops->output;
314 }
315 return 0;
316 }
317
318 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
319 {
320 dst_link_failure(skb);
321 kfree_skb(skb);
322 }
323
324 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
325 {
326 __be32 saddr = 0;
327 u8 *dst_ha = NULL;
328 struct net_device *dev = neigh->dev;
329 __be32 target = *(__be32 *)neigh->primary_key;
330 int probes = atomic_read(&neigh->probes);
331 struct in_device *in_dev;
332
333 rcu_read_lock();
334 in_dev = __in_dev_get_rcu(dev);
335 if (!in_dev) {
336 rcu_read_unlock();
337 return;
338 }
339 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
340 default:
341 case 0: /* By default announce any local IP */
342 if (skb && inet_addr_type(dev_net(dev),
343 ip_hdr(skb)->saddr) == RTN_LOCAL)
344 saddr = ip_hdr(skb)->saddr;
345 break;
346 case 1: /* Restrict announcements of saddr in same subnet */
347 if (!skb)
348 break;
349 saddr = ip_hdr(skb)->saddr;
350 if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
351 /* saddr should be known to target */
352 if (inet_addr_onlink(in_dev, target, saddr))
353 break;
354 }
355 saddr = 0;
356 break;
357 case 2: /* Avoid secondary IPs, get a primary/preferred one */
358 break;
359 }
360 rcu_read_unlock();
361
362 if (!saddr)
363 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
364
365 probes -= neigh->parms->ucast_probes;
366 if (probes < 0) {
367 if (!(neigh->nud_state & NUD_VALID))
368 printk(KERN_DEBUG
369 "trying to ucast probe in NUD_INVALID\n");
370 dst_ha = neigh->ha;
371 read_lock_bh(&neigh->lock);
372 } else {
373 probes -= neigh->parms->app_probes;
374 if (probes < 0) {
375 #ifdef CONFIG_ARPD
376 neigh_app_ns(neigh);
377 #endif
378 return;
379 }
380 }
381
382 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
383 dst_ha, dev->dev_addr, NULL);
384 if (dst_ha)
385 read_unlock_bh(&neigh->lock);
386 }
387
388 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
389 {
390 int scope;
391
392 switch (IN_DEV_ARP_IGNORE(in_dev)) {
393 case 0: /* Reply, the tip is already validated */
394 return 0;
395 case 1: /* Reply only if tip is configured on the incoming interface */
396 sip = 0;
397 scope = RT_SCOPE_HOST;
398 break;
399 case 2: /*
400 * Reply only if tip is configured on the incoming interface
401 * and is in same subnet as sip
402 */
403 scope = RT_SCOPE_HOST;
404 break;
405 case 3: /* Do not reply for scope host addresses */
406 sip = 0;
407 scope = RT_SCOPE_LINK;
408 break;
409 case 4: /* Reserved */
410 case 5:
411 case 6:
412 case 7:
413 return 0;
414 case 8: /* Do not reply */
415 return 1;
416 default:
417 return 0;
418 }
419 return !inet_confirm_addr(in_dev, sip, tip, scope);
420 }
421
422 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
423 {
424 struct rtable *rt;
425 int flag = 0;
426 /*unsigned long now; */
427 struct net *net = dev_net(dev);
428
429 rt = ip_route_output(net, sip, tip, 0, 0);
430 if (IS_ERR(rt))
431 return 1;
432 if (rt->dst.dev != dev) {
433 NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
434 flag = 1;
435 }
436 ip_rt_put(rt);
437 return flag;
438 }
439
440 /* OBSOLETE FUNCTIONS */
441
442 /*
443 * Find an arp mapping in the cache. If not found, post a request.
444 *
445 * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
446 * even if it exists. It is supposed that skb->dev was mangled
447 * by a virtual device (eql, shaper). Nobody but broken devices
448 * is allowed to use this function, it is scheduled to be removed. --ANK
449 */
450
451 static int arp_set_predefined(int addr_hint, unsigned char *haddr,
452 __be32 paddr, struct net_device *dev)
453 {
454 switch (addr_hint) {
455 case RTN_LOCAL:
456 printk(KERN_DEBUG "ARP: arp called for own IP address\n");
457 memcpy(haddr, dev->dev_addr, dev->addr_len);
458 return 1;
459 case RTN_MULTICAST:
460 arp_mc_map(paddr, haddr, dev, 1);
461 return 1;
462 case RTN_BROADCAST:
463 memcpy(haddr, dev->broadcast, dev->addr_len);
464 return 1;
465 }
466 return 0;
467 }
468
469
470 int arp_find(unsigned char *haddr, struct sk_buff *skb)
471 {
472 struct net_device *dev = skb->dev;
473 __be32 paddr;
474 struct neighbour *n;
475
476 if (!skb_dst(skb)) {
477 printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
478 kfree_skb(skb);
479 return 1;
480 }
481
482 paddr = skb_rtable(skb)->rt_gateway;
483
484 if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
485 paddr, dev))
486 return 0;
487
488 n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
489
490 if (n) {
491 n->used = jiffies;
492 if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
493 neigh_ha_snapshot(haddr, n, dev);
494 neigh_release(n);
495 return 0;
496 }
497 neigh_release(n);
498 } else
499 kfree_skb(skb);
500 return 1;
501 }
502 EXPORT_SYMBOL(arp_find);
503
504 /* END OF OBSOLETE FUNCTIONS */
505
506 /*
507 * Check if we can use proxy ARP for this path
508 */
509 static inline int arp_fwd_proxy(struct in_device *in_dev,
510 struct net_device *dev, struct rtable *rt)
511 {
512 struct in_device *out_dev;
513 int imi, omi = -1;
514
515 if (rt->dst.dev == dev)
516 return 0;
517
518 if (!IN_DEV_PROXY_ARP(in_dev))
519 return 0;
520 imi = IN_DEV_MEDIUM_ID(in_dev);
521 if (imi == 0)
522 return 1;
523 if (imi == -1)
524 return 0;
525
526 /* place to check for proxy_arp for routes */
527
528 out_dev = __in_dev_get_rcu(rt->dst.dev);
529 if (out_dev)
530 omi = IN_DEV_MEDIUM_ID(out_dev);
531
532 return omi != imi && omi != -1;
533 }
534
535 /*
536 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
537 *
538 * RFC3069 supports proxy arp replies back to the same interface. This
539 * is done to support (ethernet) switch features, like RFC 3069, where
540 * the individual ports are not allowed to communicate with each
541 * other, BUT they are allowed to talk to the upstream router. As
542 * described in RFC 3069, it is possible to allow these hosts to
543 * communicate through the upstream router, by proxy_arp'ing.
544 *
545 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
546 *
547 * This technology is known by different names:
548 * In RFC 3069 it is called VLAN Aggregation.
549 * Cisco and Allied Telesyn call it Private VLAN.
550 * Hewlett-Packard call it Source-Port filtering or port-isolation.
551 * Ericsson call it MAC-Forced Forwarding (RFC Draft).
552 *
553 */
554 static inline int arp_fwd_pvlan(struct in_device *in_dev,
555 struct net_device *dev, struct rtable *rt,
556 __be32 sip, __be32 tip)
557 {
558 /* Private VLAN is only concerned about the same ethernet segment */
559 if (rt->dst.dev != dev)
560 return 0;
561
562 /* Don't reply on self probes (often done by windowz boxes)*/
563 if (sip == tip)
564 return 0;
565
566 if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
567 return 1;
568 else
569 return 0;
570 }
571
572 /*
573 * Interface to link layer: send routine and receive handler.
574 */
575
576 /*
577 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
578 * message.
579 */
580 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
581 struct net_device *dev, __be32 src_ip,
582 const unsigned char *dest_hw,
583 const unsigned char *src_hw,
584 const unsigned char *target_hw)
585 {
586 struct sk_buff *skb;
587 struct arphdr *arp;
588 unsigned char *arp_ptr;
589 int hlen = LL_RESERVED_SPACE(dev);
590 int tlen = dev->needed_tailroom;
591
592 /*
593 * Allocate a buffer
594 */
595
596 skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
597 if (skb == NULL)
598 return NULL;
599
600 skb_reserve(skb, hlen);
601 skb_reset_network_header(skb);
602 arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
603 skb->dev = dev;
604 skb->protocol = htons(ETH_P_ARP);
605 if (src_hw == NULL)
606 src_hw = dev->dev_addr;
607 if (dest_hw == NULL)
608 dest_hw = dev->broadcast;
609
610 /*
611 * Fill the device header for the ARP frame
612 */
613 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
614 goto out;
615
616 /*
617 * Fill out the arp protocol part.
618 *
619 * The arp hardware type should match the device type, except for FDDI,
620 * which (according to RFC 1390) should always equal 1 (Ethernet).
621 */
622 /*
623 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
624 * DIX code for the protocol. Make these device structure fields.
625 */
626 switch (dev->type) {
627 default:
628 arp->ar_hrd = htons(dev->type);
629 arp->ar_pro = htons(ETH_P_IP);
630 break;
631
632 #if IS_ENABLED(CONFIG_AX25)
633 case ARPHRD_AX25:
634 arp->ar_hrd = htons(ARPHRD_AX25);
635 arp->ar_pro = htons(AX25_P_IP);
636 break;
637
638 #if IS_ENABLED(CONFIG_NETROM)
639 case ARPHRD_NETROM:
640 arp->ar_hrd = htons(ARPHRD_NETROM);
641 arp->ar_pro = htons(AX25_P_IP);
642 break;
643 #endif
644 #endif
645
646 #if IS_ENABLED(CONFIG_FDDI)
647 case ARPHRD_FDDI:
648 arp->ar_hrd = htons(ARPHRD_ETHER);
649 arp->ar_pro = htons(ETH_P_IP);
650 break;
651 #endif
652 #if IS_ENABLED(CONFIG_TR)
653 case ARPHRD_IEEE802_TR:
654 arp->ar_hrd = htons(ARPHRD_IEEE802);
655 arp->ar_pro = htons(ETH_P_IP);
656 break;
657 #endif
658 }
659
660 arp->ar_hln = dev->addr_len;
661 arp->ar_pln = 4;
662 arp->ar_op = htons(type);
663
664 arp_ptr = (unsigned char *)(arp + 1);
665
666 memcpy(arp_ptr, src_hw, dev->addr_len);
667 arp_ptr += dev->addr_len;
668 memcpy(arp_ptr, &src_ip, 4);
669 arp_ptr += 4;
670 if (target_hw != NULL)
671 memcpy(arp_ptr, target_hw, dev->addr_len);
672 else
673 memset(arp_ptr, 0, dev->addr_len);
674 arp_ptr += dev->addr_len;
675 memcpy(arp_ptr, &dest_ip, 4);
676
677 return skb;
678
679 out:
680 kfree_skb(skb);
681 return NULL;
682 }
683 EXPORT_SYMBOL(arp_create);
684
685 /*
686 * Send an arp packet.
687 */
688 void arp_xmit(struct sk_buff *skb)
689 {
690 /* Send it off, maybe filter it using firewalling first. */
691 NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
692 }
693 EXPORT_SYMBOL(arp_xmit);
694
695 /*
696 * Create and send an arp packet.
697 */
698 void arp_send(int type, int ptype, __be32 dest_ip,
699 struct net_device *dev, __be32 src_ip,
700 const unsigned char *dest_hw, const unsigned char *src_hw,
701 const unsigned char *target_hw)
702 {
703 struct sk_buff *skb;
704
705 /*
706 * No arp on this interface.
707 */
708
709 if (dev->flags&IFF_NOARP)
710 return;
711
712 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
713 dest_hw, src_hw, target_hw);
714 if (skb == NULL)
715 return;
716
717 arp_xmit(skb);
718 }
719 EXPORT_SYMBOL(arp_send);
720
721 /*
722 * Process an arp request.
723 */
724
725 static int arp_process(struct sk_buff *skb)
726 {
727 struct net_device *dev = skb->dev;
728 struct in_device *in_dev = __in_dev_get_rcu(dev);
729 struct arphdr *arp;
730 unsigned char *arp_ptr;
731 struct rtable *rt;
732 unsigned char *sha;
733 __be32 sip, tip;
734 u16 dev_type = dev->type;
735 int addr_type;
736 struct neighbour *n;
737 struct net *net = dev_net(dev);
738
739 /* arp_rcv below verifies the ARP header and verifies the device
740 * is ARP'able.
741 */
742
743 if (in_dev == NULL)
744 goto out;
745
746 arp = arp_hdr(skb);
747
748 switch (dev_type) {
749 default:
750 if (arp->ar_pro != htons(ETH_P_IP) ||
751 htons(dev_type) != arp->ar_hrd)
752 goto out;
753 break;
754 case ARPHRD_ETHER:
755 case ARPHRD_IEEE802_TR:
756 case ARPHRD_FDDI:
757 case ARPHRD_IEEE802:
758 /*
759 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
760 * devices, according to RFC 2625) devices will accept ARP
761 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
762 * This is the case also of FDDI, where the RFC 1390 says that
763 * FDDI devices should accept ARP hardware of (1) Ethernet,
764 * however, to be more robust, we'll accept both 1 (Ethernet)
765 * or 6 (IEEE 802.2)
766 */
767 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
768 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
769 arp->ar_pro != htons(ETH_P_IP))
770 goto out;
771 break;
772 case ARPHRD_AX25:
773 if (arp->ar_pro != htons(AX25_P_IP) ||
774 arp->ar_hrd != htons(ARPHRD_AX25))
775 goto out;
776 break;
777 case ARPHRD_NETROM:
778 if (arp->ar_pro != htons(AX25_P_IP) ||
779 arp->ar_hrd != htons(ARPHRD_NETROM))
780 goto out;
781 break;
782 }
783
784 /* Understand only these message types */
785
786 if (arp->ar_op != htons(ARPOP_REPLY) &&
787 arp->ar_op != htons(ARPOP_REQUEST))
788 goto out;
789
790 /*
791 * Extract fields
792 */
793 arp_ptr = (unsigned char *)(arp + 1);
794 sha = arp_ptr;
795 arp_ptr += dev->addr_len;
796 memcpy(&sip, arp_ptr, 4);
797 arp_ptr += 4;
798 arp_ptr += dev->addr_len;
799 memcpy(&tip, arp_ptr, 4);
800 /*
801 * Check for bad requests for 127.x.x.x and requests for multicast
802 * addresses. If this is one such, delete it.
803 */
804 if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
805 goto out;
806
807 /*
808 * Special case: We must set Frame Relay source Q.922 address
809 */
810 if (dev_type == ARPHRD_DLCI)
811 sha = dev->broadcast;
812
813 /*
814 * Process entry. The idea here is we want to send a reply if it is a
815 * request for us or if it is a request for someone else that we hold
816 * a proxy for. We want to add an entry to our cache if it is a reply
817 * to us or if it is a request for our address.
818 * (The assumption for this last is that if someone is requesting our
819 * address, they are probably intending to talk to us, so it saves time
820 * if we cache their address. Their address is also probably not in
821 * our cache, since ours is not in their cache.)
822 *
823 * Putting this another way, we only care about replies if they are to
824 * us, in which case we add them to the cache. For requests, we care
825 * about those for us and those for our proxies. We reply to both,
826 * and in the case of requests for us we add the requester to the arp
827 * cache.
828 */
829
830 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
831 if (sip == 0) {
832 if (arp->ar_op == htons(ARPOP_REQUEST) &&
833 inet_addr_type(net, tip) == RTN_LOCAL &&
834 !arp_ignore(in_dev, sip, tip))
835 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
836 dev->dev_addr, sha);
837 goto out;
838 }
839
840 if (arp->ar_op == htons(ARPOP_REQUEST) &&
841 ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
842
843 rt = skb_rtable(skb);
844 addr_type = rt->rt_type;
845
846 if (addr_type == RTN_LOCAL) {
847 int dont_send;
848
849 dont_send = arp_ignore(in_dev, sip, tip);
850 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
851 dont_send = arp_filter(sip, tip, dev);
852 if (!dont_send) {
853 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
854 if (n) {
855 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
856 dev, tip, sha, dev->dev_addr,
857 sha);
858 neigh_release(n);
859 }
860 }
861 goto out;
862 } else if (IN_DEV_FORWARD(in_dev)) {
863 if (addr_type == RTN_UNICAST &&
864 (arp_fwd_proxy(in_dev, dev, rt) ||
865 arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
866 pneigh_lookup(&arp_tbl, net, &tip, dev, 0))) {
867 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
868 if (n)
869 neigh_release(n);
870
871 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
872 skb->pkt_type == PACKET_HOST ||
873 in_dev->arp_parms->proxy_delay == 0) {
874 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
875 dev, tip, sha, dev->dev_addr,
876 sha);
877 } else {
878 pneigh_enqueue(&arp_tbl,
879 in_dev->arp_parms, skb);
880 return 0;
881 }
882 goto out;
883 }
884 }
885 }
886
887 /* Update our ARP tables */
888
889 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
890
891 if (IPV4_DEVCONF_ALL(dev_net(dev), ARP_ACCEPT)) {
892 /* Unsolicited ARP is not accepted by default.
893 It is possible, that this option should be enabled for some
894 devices (strip is candidate)
895 */
896 if (n == NULL &&
897 (arp->ar_op == htons(ARPOP_REPLY) ||
898 (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
899 inet_addr_type(net, sip) == RTN_UNICAST)
900 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
901 }
902
903 if (n) {
904 int state = NUD_REACHABLE;
905 int override;
906
907 /* If several different ARP replies follows back-to-back,
908 use the FIRST one. It is possible, if several proxy
909 agents are active. Taking the first reply prevents
910 arp trashing and chooses the fastest router.
911 */
912 override = time_after(jiffies, n->updated + n->parms->locktime);
913
914 /* Broadcast replies and request packets
915 do not assert neighbour reachability.
916 */
917 if (arp->ar_op != htons(ARPOP_REPLY) ||
918 skb->pkt_type != PACKET_HOST)
919 state = NUD_STALE;
920 neigh_update(n, sha, state,
921 override ? NEIGH_UPDATE_F_OVERRIDE : 0);
922 neigh_release(n);
923 }
924
925 out:
926 consume_skb(skb);
927 return 0;
928 }
929
930 static void parp_redo(struct sk_buff *skb)
931 {
932 arp_process(skb);
933 }
934
935
936 /*
937 * Receive an arp request from the device layer.
938 */
939
940 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
941 struct packet_type *pt, struct net_device *orig_dev)
942 {
943 struct arphdr *arp;
944
945 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
946 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
947 goto freeskb;
948
949 arp = arp_hdr(skb);
950 if (arp->ar_hln != dev->addr_len ||
951 dev->flags & IFF_NOARP ||
952 skb->pkt_type == PACKET_OTHERHOST ||
953 skb->pkt_type == PACKET_LOOPBACK ||
954 arp->ar_pln != 4)
955 goto freeskb;
956
957 skb = skb_share_check(skb, GFP_ATOMIC);
958 if (skb == NULL)
959 goto out_of_mem;
960
961 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
962
963 return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
964
965 freeskb:
966 kfree_skb(skb);
967 out_of_mem:
968 return 0;
969 }
970
971 /*
972 * User level interface (ioctl)
973 */
974
975 /*
976 * Set (create) an ARP cache entry.
977 */
978
979 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
980 {
981 if (dev == NULL) {
982 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
983 return 0;
984 }
985 if (__in_dev_get_rtnl(dev)) {
986 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
987 return 0;
988 }
989 return -ENXIO;
990 }
991
992 static int arp_req_set_public(struct net *net, struct arpreq *r,
993 struct net_device *dev)
994 {
995 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
996 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
997
998 if (mask && mask != htonl(0xFFFFFFFF))
999 return -EINVAL;
1000 if (!dev && (r->arp_flags & ATF_COM)) {
1001 dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1002 r->arp_ha.sa_data);
1003 if (!dev)
1004 return -ENODEV;
1005 }
1006 if (mask) {
1007 if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1008 return -ENOBUFS;
1009 return 0;
1010 }
1011
1012 return arp_req_set_proxy(net, dev, 1);
1013 }
1014
1015 static int arp_req_set(struct net *net, struct arpreq *r,
1016 struct net_device *dev)
1017 {
1018 __be32 ip;
1019 struct neighbour *neigh;
1020 int err;
1021
1022 if (r->arp_flags & ATF_PUBL)
1023 return arp_req_set_public(net, r, dev);
1024
1025 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1026 if (r->arp_flags & ATF_PERM)
1027 r->arp_flags |= ATF_COM;
1028 if (dev == NULL) {
1029 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1030
1031 if (IS_ERR(rt))
1032 return PTR_ERR(rt);
1033 dev = rt->dst.dev;
1034 ip_rt_put(rt);
1035 if (!dev)
1036 return -EINVAL;
1037 }
1038 switch (dev->type) {
1039 #if IS_ENABLED(CONFIG_FDDI)
1040 case ARPHRD_FDDI:
1041 /*
1042 * According to RFC 1390, FDDI devices should accept ARP
1043 * hardware types of 1 (Ethernet). However, to be more
1044 * robust, we'll accept hardware types of either 1 (Ethernet)
1045 * or 6 (IEEE 802.2).
1046 */
1047 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1048 r->arp_ha.sa_family != ARPHRD_ETHER &&
1049 r->arp_ha.sa_family != ARPHRD_IEEE802)
1050 return -EINVAL;
1051 break;
1052 #endif
1053 default:
1054 if (r->arp_ha.sa_family != dev->type)
1055 return -EINVAL;
1056 break;
1057 }
1058
1059 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1060 err = PTR_ERR(neigh);
1061 if (!IS_ERR(neigh)) {
1062 unsigned state = NUD_STALE;
1063 if (r->arp_flags & ATF_PERM)
1064 state = NUD_PERMANENT;
1065 err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1066 r->arp_ha.sa_data : NULL, state,
1067 NEIGH_UPDATE_F_OVERRIDE |
1068 NEIGH_UPDATE_F_ADMIN);
1069 neigh_release(neigh);
1070 }
1071 return err;
1072 }
1073
1074 static unsigned arp_state_to_flags(struct neighbour *neigh)
1075 {
1076 if (neigh->nud_state&NUD_PERMANENT)
1077 return ATF_PERM | ATF_COM;
1078 else if (neigh->nud_state&NUD_VALID)
1079 return ATF_COM;
1080 else
1081 return 0;
1082 }
1083
1084 /*
1085 * Get an ARP cache entry.
1086 */
1087
1088 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1089 {
1090 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1091 struct neighbour *neigh;
1092 int err = -ENXIO;
1093
1094 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1095 if (neigh) {
1096 read_lock_bh(&neigh->lock);
1097 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1098 r->arp_flags = arp_state_to_flags(neigh);
1099 read_unlock_bh(&neigh->lock);
1100 r->arp_ha.sa_family = dev->type;
1101 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1102 neigh_release(neigh);
1103 err = 0;
1104 }
1105 return err;
1106 }
1107
1108 int arp_invalidate(struct net_device *dev, __be32 ip)
1109 {
1110 struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1111 int err = -ENXIO;
1112
1113 if (neigh) {
1114 if (neigh->nud_state & ~NUD_NOARP)
1115 err = neigh_update(neigh, NULL, NUD_FAILED,
1116 NEIGH_UPDATE_F_OVERRIDE|
1117 NEIGH_UPDATE_F_ADMIN);
1118 neigh_release(neigh);
1119 }
1120
1121 return err;
1122 }
1123 EXPORT_SYMBOL(arp_invalidate);
1124
1125 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1126 struct net_device *dev)
1127 {
1128 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1129 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1130
1131 if (mask == htonl(0xFFFFFFFF))
1132 return pneigh_delete(&arp_tbl, net, &ip, dev);
1133
1134 if (mask)
1135 return -EINVAL;
1136
1137 return arp_req_set_proxy(net, dev, 0);
1138 }
1139
1140 static int arp_req_delete(struct net *net, struct arpreq *r,
1141 struct net_device *dev)
1142 {
1143 __be32 ip;
1144
1145 if (r->arp_flags & ATF_PUBL)
1146 return arp_req_delete_public(net, r, dev);
1147
1148 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1149 if (dev == NULL) {
1150 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1151 if (IS_ERR(rt))
1152 return PTR_ERR(rt);
1153 dev = rt->dst.dev;
1154 ip_rt_put(rt);
1155 if (!dev)
1156 return -EINVAL;
1157 }
1158 return arp_invalidate(dev, ip);
1159 }
1160
1161 /*
1162 * Handle an ARP layer I/O control request.
1163 */
1164
1165 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1166 {
1167 int err;
1168 struct arpreq r;
1169 struct net_device *dev = NULL;
1170
1171 switch (cmd) {
1172 case SIOCDARP:
1173 case SIOCSARP:
1174 if (!capable(CAP_NET_ADMIN))
1175 return -EPERM;
1176 case SIOCGARP:
1177 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1178 if (err)
1179 return -EFAULT;
1180 break;
1181 default:
1182 return -EINVAL;
1183 }
1184
1185 if (r.arp_pa.sa_family != AF_INET)
1186 return -EPFNOSUPPORT;
1187
1188 if (!(r.arp_flags & ATF_PUBL) &&
1189 (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1190 return -EINVAL;
1191 if (!(r.arp_flags & ATF_NETMASK))
1192 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1193 htonl(0xFFFFFFFFUL);
1194 rtnl_lock();
1195 if (r.arp_dev[0]) {
1196 err = -ENODEV;
1197 dev = __dev_get_by_name(net, r.arp_dev);
1198 if (dev == NULL)
1199 goto out;
1200
1201 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1202 if (!r.arp_ha.sa_family)
1203 r.arp_ha.sa_family = dev->type;
1204 err = -EINVAL;
1205 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1206 goto out;
1207 } else if (cmd == SIOCGARP) {
1208 err = -ENODEV;
1209 goto out;
1210 }
1211
1212 switch (cmd) {
1213 case SIOCDARP:
1214 err = arp_req_delete(net, &r, dev);
1215 break;
1216 case SIOCSARP:
1217 err = arp_req_set(net, &r, dev);
1218 break;
1219 case SIOCGARP:
1220 err = arp_req_get(&r, dev);
1221 break;
1222 }
1223 out:
1224 rtnl_unlock();
1225 if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1226 err = -EFAULT;
1227 return err;
1228 }
1229
1230 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1231 void *ptr)
1232 {
1233 struct net_device *dev = ptr;
1234
1235 switch (event) {
1236 case NETDEV_CHANGEADDR:
1237 neigh_changeaddr(&arp_tbl, dev);
1238 rt_cache_flush(dev_net(dev), 0);
1239 break;
1240 default:
1241 break;
1242 }
1243
1244 return NOTIFY_DONE;
1245 }
1246
1247 static struct notifier_block arp_netdev_notifier = {
1248 .notifier_call = arp_netdev_event,
1249 };
1250
1251 /* Note, that it is not on notifier chain.
1252 It is necessary, that this routine was called after route cache will be
1253 flushed.
1254 */
1255 void arp_ifdown(struct net_device *dev)
1256 {
1257 neigh_ifdown(&arp_tbl, dev);
1258 }
1259
1260
1261 /*
1262 * Called once on startup.
1263 */
1264
1265 static struct packet_type arp_packet_type __read_mostly = {
1266 .type = cpu_to_be16(ETH_P_ARP),
1267 .func = arp_rcv,
1268 };
1269
1270 static int arp_proc_init(void);
1271
1272 void __init arp_init(void)
1273 {
1274 neigh_table_init(&arp_tbl);
1275
1276 dev_add_pack(&arp_packet_type);
1277 arp_proc_init();
1278 #ifdef CONFIG_SYSCTL
1279 neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1280 #endif
1281 register_netdevice_notifier(&arp_netdev_notifier);
1282 }
1283
1284 #ifdef CONFIG_PROC_FS
1285 #if IS_ENABLED(CONFIG_AX25)
1286
1287 /* ------------------------------------------------------------------------ */
1288 /*
1289 * ax25 -> ASCII conversion
1290 */
1291 static char *ax2asc2(ax25_address *a, char *buf)
1292 {
1293 char c, *s;
1294 int n;
1295
1296 for (n = 0, s = buf; n < 6; n++) {
1297 c = (a->ax25_call[n] >> 1) & 0x7F;
1298
1299 if (c != ' ')
1300 *s++ = c;
1301 }
1302
1303 *s++ = '-';
1304 n = (a->ax25_call[6] >> 1) & 0x0F;
1305 if (n > 9) {
1306 *s++ = '1';
1307 n -= 10;
1308 }
1309
1310 *s++ = n + '0';
1311 *s++ = '\0';
1312
1313 if (*buf == '\0' || *buf == '-')
1314 return "*";
1315
1316 return buf;
1317 }
1318 #endif /* CONFIG_AX25 */
1319
1320 #define HBUFFERLEN 30
1321
1322 static void arp_format_neigh_entry(struct seq_file *seq,
1323 struct neighbour *n)
1324 {
1325 char hbuffer[HBUFFERLEN];
1326 int k, j;
1327 char tbuf[16];
1328 struct net_device *dev = n->dev;
1329 int hatype = dev->type;
1330
1331 read_lock(&n->lock);
1332 /* Convert hardware address to XX:XX:XX:XX ... form. */
1333 #if IS_ENABLED(CONFIG_AX25)
1334 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1335 ax2asc2((ax25_address *)n->ha, hbuffer);
1336 else {
1337 #endif
1338 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1339 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1340 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1341 hbuffer[k++] = ':';
1342 }
1343 if (k != 0)
1344 --k;
1345 hbuffer[k] = 0;
1346 #if IS_ENABLED(CONFIG_AX25)
1347 }
1348 #endif
1349 sprintf(tbuf, "%pI4", n->primary_key);
1350 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1351 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1352 read_unlock(&n->lock);
1353 }
1354
1355 static void arp_format_pneigh_entry(struct seq_file *seq,
1356 struct pneigh_entry *n)
1357 {
1358 struct net_device *dev = n->dev;
1359 int hatype = dev ? dev->type : 0;
1360 char tbuf[16];
1361
1362 sprintf(tbuf, "%pI4", n->key);
1363 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1364 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1365 dev ? dev->name : "*");
1366 }
1367
1368 static int arp_seq_show(struct seq_file *seq, void *v)
1369 {
1370 if (v == SEQ_START_TOKEN) {
1371 seq_puts(seq, "IP address HW type Flags "
1372 "HW address Mask Device\n");
1373 } else {
1374 struct neigh_seq_state *state = seq->private;
1375
1376 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1377 arp_format_pneigh_entry(seq, v);
1378 else
1379 arp_format_neigh_entry(seq, v);
1380 }
1381
1382 return 0;
1383 }
1384
1385 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1386 {
1387 /* Don't want to confuse "arp -a" w/ magic entries,
1388 * so we tell the generic iterator to skip NUD_NOARP.
1389 */
1390 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1391 }
1392
1393 /* ------------------------------------------------------------------------ */
1394
1395 static const struct seq_operations arp_seq_ops = {
1396 .start = arp_seq_start,
1397 .next = neigh_seq_next,
1398 .stop = neigh_seq_stop,
1399 .show = arp_seq_show,
1400 };
1401
1402 static int arp_seq_open(struct inode *inode, struct file *file)
1403 {
1404 return seq_open_net(inode, file, &arp_seq_ops,
1405 sizeof(struct neigh_seq_state));
1406 }
1407
1408 static const struct file_operations arp_seq_fops = {
1409 .owner = THIS_MODULE,
1410 .open = arp_seq_open,
1411 .read = seq_read,
1412 .llseek = seq_lseek,
1413 .release = seq_release_net,
1414 };
1415
1416
1417 static int __net_init arp_net_init(struct net *net)
1418 {
1419 if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
1420 return -ENOMEM;
1421 return 0;
1422 }
1423
1424 static void __net_exit arp_net_exit(struct net *net)
1425 {
1426 proc_net_remove(net, "arp");
1427 }
1428
1429 static struct pernet_operations arp_net_ops = {
1430 .init = arp_net_init,
1431 .exit = arp_net_exit,
1432 };
1433
1434 static int __init arp_proc_init(void)
1435 {
1436 return register_pernet_subsys(&arp_net_ops);
1437 }
1438
1439 #else /* CONFIG_PROC_FS */
1440
1441 static int __init arp_proc_init(void)
1442 {
1443 return 0;
1444 }
1445
1446 #endif /* CONFIG_PROC_FS */