]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/arp.c
netfilter: Pass net into okfn
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / arp.c
1 /* linux/net/ipv4/arp.c
2 *
3 * Copyright (C) 1994 by Florian La Roche
4 *
5 * This module implements the Address Resolution Protocol ARP (RFC 826),
6 * which is used to convert IP addresses (or in the future maybe other
7 * high-level addresses) into a low-level hardware address (like an Ethernet
8 * address).
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * Fixes:
16 * Alan Cox : Removed the Ethernet assumptions in
17 * Florian's code
18 * Alan Cox : Fixed some small errors in the ARP
19 * logic
20 * Alan Cox : Allow >4K in /proc
21 * Alan Cox : Make ARP add its own protocol entry
22 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
23 * Stephen Henson : Add AX25 support to arp_get_info()
24 * Alan Cox : Drop data when a device is downed.
25 * Alan Cox : Use init_timer().
26 * Alan Cox : Double lock fixes.
27 * Martin Seine : Move the arphdr structure
28 * to if_arp.h for compatibility.
29 * with BSD based programs.
30 * Andrew Tridgell : Added ARP netmask code and
31 * re-arranged proxy handling.
32 * Alan Cox : Changed to use notifiers.
33 * Niibe Yutaka : Reply for this device or proxies only.
34 * Alan Cox : Don't proxy across hardware types!
35 * Jonathan Naylor : Added support for NET/ROM.
36 * Mike Shaver : RFC1122 checks.
37 * Jonathan Naylor : Only lookup the hardware address for
38 * the correct hardware type.
39 * Germano Caronni : Assorted subtle races.
40 * Craig Schlenter : Don't modify permanent entry
41 * during arp_rcv.
42 * Russ Nelson : Tidied up a few bits.
43 * Alexey Kuznetsov: Major changes to caching and behaviour,
44 * eg intelligent arp probing and
45 * generation
46 * of host down events.
47 * Alan Cox : Missing unlock in device events.
48 * Eckes : ARP ioctl control errors.
49 * Alexey Kuznetsov: Arp free fix.
50 * Manuel Rodriguez: Gratuitous ARP.
51 * Jonathan Layes : Added arpd support through kerneld
52 * message queue (960314)
53 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
54 * Mike McLagan : Routing by source
55 * Stuart Cheshire : Metricom and grat arp fixes
56 * *** FOR 2.1 clean this up ***
57 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
58 * Alan Cox : Took the AP1000 nasty FDDI hack and
59 * folded into the mainstream FDDI code.
60 * Ack spit, Linus how did you allow that
61 * one in...
62 * Jes Sorensen : Make FDDI work again in 2.1.x and
63 * clean up the APFDDI & gen. FDDI bits.
64 * Alexey Kuznetsov: new arp state machine;
65 * now it is in net/core/neighbour.c.
66 * Krzysztof Halasa: Added Frame Relay ARP support.
67 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
68 * Shmulik Hen: Split arp_send to arp_create and
69 * arp_xmit so intermediate drivers like
70 * bonding can change the skb before
71 * sending (e.g. insert 8021q tag).
72 * Harald Welte : convert to make use of jenkins hash
73 * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
74 */
75
76 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
77
78 #include <linux/module.h>
79 #include <linux/types.h>
80 #include <linux/string.h>
81 #include <linux/kernel.h>
82 #include <linux/capability.h>
83 #include <linux/socket.h>
84 #include <linux/sockios.h>
85 #include <linux/errno.h>
86 #include <linux/in.h>
87 #include <linux/mm.h>
88 #include <linux/inet.h>
89 #include <linux/inetdevice.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/fddidevice.h>
93 #include <linux/if_arp.h>
94 #include <linux/skbuff.h>
95 #include <linux/proc_fs.h>
96 #include <linux/seq_file.h>
97 #include <linux/stat.h>
98 #include <linux/init.h>
99 #include <linux/net.h>
100 #include <linux/rcupdate.h>
101 #include <linux/slab.h>
102 #ifdef CONFIG_SYSCTL
103 #include <linux/sysctl.h>
104 #endif
105
106 #include <net/net_namespace.h>
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116
117 #include <linux/uaccess.h>
118
119 #include <linux/netfilter_arp.h>
120
121 /*
122 * Interface to generic neighbour cache.
123 */
124 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
125 static bool arp_key_eq(const struct neighbour *n, const void *pkey);
126 static int arp_constructor(struct neighbour *neigh);
127 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
128 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
129 static void parp_redo(struct sk_buff *skb);
130
131 static const struct neigh_ops arp_generic_ops = {
132 .family = AF_INET,
133 .solicit = arp_solicit,
134 .error_report = arp_error_report,
135 .output = neigh_resolve_output,
136 .connected_output = neigh_connected_output,
137 };
138
139 static const struct neigh_ops arp_hh_ops = {
140 .family = AF_INET,
141 .solicit = arp_solicit,
142 .error_report = arp_error_report,
143 .output = neigh_resolve_output,
144 .connected_output = neigh_resolve_output,
145 };
146
147 static const struct neigh_ops arp_direct_ops = {
148 .family = AF_INET,
149 .output = neigh_direct_output,
150 .connected_output = neigh_direct_output,
151 };
152
153 struct neigh_table arp_tbl = {
154 .family = AF_INET,
155 .key_len = 4,
156 .protocol = cpu_to_be16(ETH_P_IP),
157 .hash = arp_hash,
158 .key_eq = arp_key_eq,
159 .constructor = arp_constructor,
160 .proxy_redo = parp_redo,
161 .id = "arp_cache",
162 .parms = {
163 .tbl = &arp_tbl,
164 .reachable_time = 30 * HZ,
165 .data = {
166 [NEIGH_VAR_MCAST_PROBES] = 3,
167 [NEIGH_VAR_UCAST_PROBES] = 3,
168 [NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
169 [NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
170 [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
171 [NEIGH_VAR_GC_STALETIME] = 60 * HZ,
172 [NEIGH_VAR_QUEUE_LEN_BYTES] = 64 * 1024,
173 [NEIGH_VAR_PROXY_QLEN] = 64,
174 [NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
175 [NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10,
176 [NEIGH_VAR_LOCKTIME] = 1 * HZ,
177 },
178 },
179 .gc_interval = 30 * HZ,
180 .gc_thresh1 = 128,
181 .gc_thresh2 = 512,
182 .gc_thresh3 = 1024,
183 };
184 EXPORT_SYMBOL(arp_tbl);
185
186 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
187 {
188 switch (dev->type) {
189 case ARPHRD_ETHER:
190 case ARPHRD_FDDI:
191 case ARPHRD_IEEE802:
192 ip_eth_mc_map(addr, haddr);
193 return 0;
194 case ARPHRD_INFINIBAND:
195 ip_ib_mc_map(addr, dev->broadcast, haddr);
196 return 0;
197 case ARPHRD_IPGRE:
198 ip_ipgre_mc_map(addr, dev->broadcast, haddr);
199 return 0;
200 default:
201 if (dir) {
202 memcpy(haddr, dev->broadcast, dev->addr_len);
203 return 0;
204 }
205 }
206 return -EINVAL;
207 }
208
209
210 static u32 arp_hash(const void *pkey,
211 const struct net_device *dev,
212 __u32 *hash_rnd)
213 {
214 return arp_hashfn(pkey, dev, hash_rnd);
215 }
216
217 static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
218 {
219 return neigh_key_eq32(neigh, pkey);
220 }
221
222 static int arp_constructor(struct neighbour *neigh)
223 {
224 __be32 addr = *(__be32 *)neigh->primary_key;
225 struct net_device *dev = neigh->dev;
226 struct in_device *in_dev;
227 struct neigh_parms *parms;
228
229 rcu_read_lock();
230 in_dev = __in_dev_get_rcu(dev);
231 if (!in_dev) {
232 rcu_read_unlock();
233 return -EINVAL;
234 }
235
236 neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
237
238 parms = in_dev->arp_parms;
239 __neigh_parms_put(neigh->parms);
240 neigh->parms = neigh_parms_clone(parms);
241 rcu_read_unlock();
242
243 if (!dev->header_ops) {
244 neigh->nud_state = NUD_NOARP;
245 neigh->ops = &arp_direct_ops;
246 neigh->output = neigh_direct_output;
247 } else {
248 /* Good devices (checked by reading texts, but only Ethernet is
249 tested)
250
251 ARPHRD_ETHER: (ethernet, apfddi)
252 ARPHRD_FDDI: (fddi)
253 ARPHRD_IEEE802: (tr)
254 ARPHRD_METRICOM: (strip)
255 ARPHRD_ARCNET:
256 etc. etc. etc.
257
258 ARPHRD_IPDDP will also work, if author repairs it.
259 I did not it, because this driver does not work even
260 in old paradigm.
261 */
262
263 if (neigh->type == RTN_MULTICAST) {
264 neigh->nud_state = NUD_NOARP;
265 arp_mc_map(addr, neigh->ha, dev, 1);
266 } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
267 neigh->nud_state = NUD_NOARP;
268 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
269 } else if (neigh->type == RTN_BROADCAST ||
270 (dev->flags & IFF_POINTOPOINT)) {
271 neigh->nud_state = NUD_NOARP;
272 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
273 }
274
275 if (dev->header_ops->cache)
276 neigh->ops = &arp_hh_ops;
277 else
278 neigh->ops = &arp_generic_ops;
279
280 if (neigh->nud_state & NUD_VALID)
281 neigh->output = neigh->ops->connected_output;
282 else
283 neigh->output = neigh->ops->output;
284 }
285 return 0;
286 }
287
288 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
289 {
290 dst_link_failure(skb);
291 kfree_skb(skb);
292 }
293
294 /* Create and send an arp packet. */
295 static void arp_send_dst(int type, int ptype, __be32 dest_ip,
296 struct net_device *dev, __be32 src_ip,
297 const unsigned char *dest_hw,
298 const unsigned char *src_hw,
299 const unsigned char *target_hw, struct sk_buff *oskb)
300 {
301 struct sk_buff *skb;
302
303 /* arp on this interface. */
304 if (dev->flags & IFF_NOARP)
305 return;
306
307 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
308 dest_hw, src_hw, target_hw);
309 if (!skb)
310 return;
311
312 if (oskb)
313 skb_dst_copy(skb, oskb);
314
315 arp_xmit(skb);
316 }
317
318 void arp_send(int type, int ptype, __be32 dest_ip,
319 struct net_device *dev, __be32 src_ip,
320 const unsigned char *dest_hw, const unsigned char *src_hw,
321 const unsigned char *target_hw)
322 {
323 arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
324 target_hw, NULL);
325 }
326 EXPORT_SYMBOL(arp_send);
327
328 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
329 {
330 __be32 saddr = 0;
331 u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
332 struct net_device *dev = neigh->dev;
333 __be32 target = *(__be32 *)neigh->primary_key;
334 int probes = atomic_read(&neigh->probes);
335 struct in_device *in_dev;
336
337 rcu_read_lock();
338 in_dev = __in_dev_get_rcu(dev);
339 if (!in_dev) {
340 rcu_read_unlock();
341 return;
342 }
343 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
344 default:
345 case 0: /* By default announce any local IP */
346 if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
347 ip_hdr(skb)->saddr) == RTN_LOCAL)
348 saddr = ip_hdr(skb)->saddr;
349 break;
350 case 1: /* Restrict announcements of saddr in same subnet */
351 if (!skb)
352 break;
353 saddr = ip_hdr(skb)->saddr;
354 if (inet_addr_type_dev_table(dev_net(dev), dev,
355 saddr) == RTN_LOCAL) {
356 /* saddr should be known to target */
357 if (inet_addr_onlink(in_dev, target, saddr))
358 break;
359 }
360 saddr = 0;
361 break;
362 case 2: /* Avoid secondary IPs, get a primary/preferred one */
363 break;
364 }
365 rcu_read_unlock();
366
367 if (!saddr)
368 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
369
370 probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
371 if (probes < 0) {
372 if (!(neigh->nud_state & NUD_VALID))
373 pr_debug("trying to ucast probe in NUD_INVALID\n");
374 neigh_ha_snapshot(dst_ha, neigh, dev);
375 dst_hw = dst_ha;
376 } else {
377 probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
378 if (probes < 0) {
379 neigh_app_ns(neigh);
380 return;
381 }
382 }
383
384 arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
385 dst_hw, dev->dev_addr, NULL,
386 dev->priv_flags & IFF_XMIT_DST_RELEASE ? NULL : skb);
387 }
388
389 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
390 {
391 struct net *net = dev_net(in_dev->dev);
392 int scope;
393
394 switch (IN_DEV_ARP_IGNORE(in_dev)) {
395 case 0: /* Reply, the tip is already validated */
396 return 0;
397 case 1: /* Reply only if tip is configured on the incoming interface */
398 sip = 0;
399 scope = RT_SCOPE_HOST;
400 break;
401 case 2: /*
402 * Reply only if tip is configured on the incoming interface
403 * and is in same subnet as sip
404 */
405 scope = RT_SCOPE_HOST;
406 break;
407 case 3: /* Do not reply for scope host addresses */
408 sip = 0;
409 scope = RT_SCOPE_LINK;
410 in_dev = NULL;
411 break;
412 case 4: /* Reserved */
413 case 5:
414 case 6:
415 case 7:
416 return 0;
417 case 8: /* Do not reply */
418 return 1;
419 default:
420 return 0;
421 }
422 return !inet_confirm_addr(net, in_dev, sip, tip, scope);
423 }
424
425 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
426 {
427 struct rtable *rt;
428 int flag = 0;
429 /*unsigned long now; */
430 struct net *net = dev_net(dev);
431
432 rt = ip_route_output(net, sip, tip, 0, 0);
433 if (IS_ERR(rt))
434 return 1;
435 if (rt->dst.dev != dev) {
436 NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
437 flag = 1;
438 }
439 ip_rt_put(rt);
440 return flag;
441 }
442
443 /*
444 * Check if we can use proxy ARP for this path
445 */
446 static inline int arp_fwd_proxy(struct in_device *in_dev,
447 struct net_device *dev, struct rtable *rt)
448 {
449 struct in_device *out_dev;
450 int imi, omi = -1;
451
452 if (rt->dst.dev == dev)
453 return 0;
454
455 if (!IN_DEV_PROXY_ARP(in_dev))
456 return 0;
457 imi = IN_DEV_MEDIUM_ID(in_dev);
458 if (imi == 0)
459 return 1;
460 if (imi == -1)
461 return 0;
462
463 /* place to check for proxy_arp for routes */
464
465 out_dev = __in_dev_get_rcu(rt->dst.dev);
466 if (out_dev)
467 omi = IN_DEV_MEDIUM_ID(out_dev);
468
469 return omi != imi && omi != -1;
470 }
471
472 /*
473 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
474 *
475 * RFC3069 supports proxy arp replies back to the same interface. This
476 * is done to support (ethernet) switch features, like RFC 3069, where
477 * the individual ports are not allowed to communicate with each
478 * other, BUT they are allowed to talk to the upstream router. As
479 * described in RFC 3069, it is possible to allow these hosts to
480 * communicate through the upstream router, by proxy_arp'ing.
481 *
482 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
483 *
484 * This technology is known by different names:
485 * In RFC 3069 it is called VLAN Aggregation.
486 * Cisco and Allied Telesyn call it Private VLAN.
487 * Hewlett-Packard call it Source-Port filtering or port-isolation.
488 * Ericsson call it MAC-Forced Forwarding (RFC Draft).
489 *
490 */
491 static inline int arp_fwd_pvlan(struct in_device *in_dev,
492 struct net_device *dev, struct rtable *rt,
493 __be32 sip, __be32 tip)
494 {
495 /* Private VLAN is only concerned about the same ethernet segment */
496 if (rt->dst.dev != dev)
497 return 0;
498
499 /* Don't reply on self probes (often done by windowz boxes)*/
500 if (sip == tip)
501 return 0;
502
503 if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
504 return 1;
505 else
506 return 0;
507 }
508
509 /*
510 * Interface to link layer: send routine and receive handler.
511 */
512
513 /*
514 * Create an arp packet. If dest_hw is not set, we create a broadcast
515 * message.
516 */
517 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
518 struct net_device *dev, __be32 src_ip,
519 const unsigned char *dest_hw,
520 const unsigned char *src_hw,
521 const unsigned char *target_hw)
522 {
523 struct sk_buff *skb;
524 struct arphdr *arp;
525 unsigned char *arp_ptr;
526 int hlen = LL_RESERVED_SPACE(dev);
527 int tlen = dev->needed_tailroom;
528
529 /*
530 * Allocate a buffer
531 */
532
533 skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
534 if (!skb)
535 return NULL;
536
537 skb_reserve(skb, hlen);
538 skb_reset_network_header(skb);
539 arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
540 skb->dev = dev;
541 skb->protocol = htons(ETH_P_ARP);
542 if (!src_hw)
543 src_hw = dev->dev_addr;
544 if (!dest_hw)
545 dest_hw = dev->broadcast;
546
547 /*
548 * Fill the device header for the ARP frame
549 */
550 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
551 goto out;
552
553 /*
554 * Fill out the arp protocol part.
555 *
556 * The arp hardware type should match the device type, except for FDDI,
557 * which (according to RFC 1390) should always equal 1 (Ethernet).
558 */
559 /*
560 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
561 * DIX code for the protocol. Make these device structure fields.
562 */
563 switch (dev->type) {
564 default:
565 arp->ar_hrd = htons(dev->type);
566 arp->ar_pro = htons(ETH_P_IP);
567 break;
568
569 #if IS_ENABLED(CONFIG_AX25)
570 case ARPHRD_AX25:
571 arp->ar_hrd = htons(ARPHRD_AX25);
572 arp->ar_pro = htons(AX25_P_IP);
573 break;
574
575 #if IS_ENABLED(CONFIG_NETROM)
576 case ARPHRD_NETROM:
577 arp->ar_hrd = htons(ARPHRD_NETROM);
578 arp->ar_pro = htons(AX25_P_IP);
579 break;
580 #endif
581 #endif
582
583 #if IS_ENABLED(CONFIG_FDDI)
584 case ARPHRD_FDDI:
585 arp->ar_hrd = htons(ARPHRD_ETHER);
586 arp->ar_pro = htons(ETH_P_IP);
587 break;
588 #endif
589 }
590
591 arp->ar_hln = dev->addr_len;
592 arp->ar_pln = 4;
593 arp->ar_op = htons(type);
594
595 arp_ptr = (unsigned char *)(arp + 1);
596
597 memcpy(arp_ptr, src_hw, dev->addr_len);
598 arp_ptr += dev->addr_len;
599 memcpy(arp_ptr, &src_ip, 4);
600 arp_ptr += 4;
601
602 switch (dev->type) {
603 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
604 case ARPHRD_IEEE1394:
605 break;
606 #endif
607 default:
608 if (target_hw)
609 memcpy(arp_ptr, target_hw, dev->addr_len);
610 else
611 memset(arp_ptr, 0, dev->addr_len);
612 arp_ptr += dev->addr_len;
613 }
614 memcpy(arp_ptr, &dest_ip, 4);
615
616 return skb;
617
618 out:
619 kfree_skb(skb);
620 return NULL;
621 }
622 EXPORT_SYMBOL(arp_create);
623
624 static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
625 {
626 return dev_queue_xmit(skb);
627 }
628
629 /*
630 * Send an arp packet.
631 */
632 void arp_xmit(struct sk_buff *skb)
633 {
634 /* Send it off, maybe filter it using firewalling first. */
635 NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
636 dev_net(skb->dev), NULL, skb, NULL, skb->dev,
637 arp_xmit_finish);
638 }
639 EXPORT_SYMBOL(arp_xmit);
640
641 /*
642 * Process an arp request.
643 */
644
645 static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
646 {
647 struct net_device *dev = skb->dev;
648 struct in_device *in_dev = __in_dev_get_rcu(dev);
649 struct arphdr *arp;
650 unsigned char *arp_ptr;
651 struct rtable *rt;
652 unsigned char *sha;
653 __be32 sip, tip;
654 u16 dev_type = dev->type;
655 int addr_type;
656 struct neighbour *n;
657 bool is_garp = false;
658
659 /* arp_rcv below verifies the ARP header and verifies the device
660 * is ARP'able.
661 */
662
663 if (!in_dev)
664 goto out;
665
666 arp = arp_hdr(skb);
667
668 switch (dev_type) {
669 default:
670 if (arp->ar_pro != htons(ETH_P_IP) ||
671 htons(dev_type) != arp->ar_hrd)
672 goto out;
673 break;
674 case ARPHRD_ETHER:
675 case ARPHRD_FDDI:
676 case ARPHRD_IEEE802:
677 /*
678 * ETHERNET, and Fibre Channel (which are IEEE 802
679 * devices, according to RFC 2625) devices will accept ARP
680 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
681 * This is the case also of FDDI, where the RFC 1390 says that
682 * FDDI devices should accept ARP hardware of (1) Ethernet,
683 * however, to be more robust, we'll accept both 1 (Ethernet)
684 * or 6 (IEEE 802.2)
685 */
686 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
687 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
688 arp->ar_pro != htons(ETH_P_IP))
689 goto out;
690 break;
691 case ARPHRD_AX25:
692 if (arp->ar_pro != htons(AX25_P_IP) ||
693 arp->ar_hrd != htons(ARPHRD_AX25))
694 goto out;
695 break;
696 case ARPHRD_NETROM:
697 if (arp->ar_pro != htons(AX25_P_IP) ||
698 arp->ar_hrd != htons(ARPHRD_NETROM))
699 goto out;
700 break;
701 }
702
703 /* Understand only these message types */
704
705 if (arp->ar_op != htons(ARPOP_REPLY) &&
706 arp->ar_op != htons(ARPOP_REQUEST))
707 goto out;
708
709 /*
710 * Extract fields
711 */
712 arp_ptr = (unsigned char *)(arp + 1);
713 sha = arp_ptr;
714 arp_ptr += dev->addr_len;
715 memcpy(&sip, arp_ptr, 4);
716 arp_ptr += 4;
717 switch (dev_type) {
718 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
719 case ARPHRD_IEEE1394:
720 break;
721 #endif
722 default:
723 arp_ptr += dev->addr_len;
724 }
725 memcpy(&tip, arp_ptr, 4);
726 /*
727 * Check for bad requests for 127.x.x.x and requests for multicast
728 * addresses. If this is one such, delete it.
729 */
730 if (ipv4_is_multicast(tip) ||
731 (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
732 goto out;
733
734 /*
735 * Special case: We must set Frame Relay source Q.922 address
736 */
737 if (dev_type == ARPHRD_DLCI)
738 sha = dev->broadcast;
739
740 /*
741 * Process entry. The idea here is we want to send a reply if it is a
742 * request for us or if it is a request for someone else that we hold
743 * a proxy for. We want to add an entry to our cache if it is a reply
744 * to us or if it is a request for our address.
745 * (The assumption for this last is that if someone is requesting our
746 * address, they are probably intending to talk to us, so it saves time
747 * if we cache their address. Their address is also probably not in
748 * our cache, since ours is not in their cache.)
749 *
750 * Putting this another way, we only care about replies if they are to
751 * us, in which case we add them to the cache. For requests, we care
752 * about those for us and those for our proxies. We reply to both,
753 * and in the case of requests for us we add the requester to the arp
754 * cache.
755 */
756
757 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
758 if (sip == 0) {
759 if (arp->ar_op == htons(ARPOP_REQUEST) &&
760 inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
761 !arp_ignore(in_dev, sip, tip))
762 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
763 dev->dev_addr, sha);
764 goto out;
765 }
766
767 if (arp->ar_op == htons(ARPOP_REQUEST) &&
768 ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
769
770 rt = skb_rtable(skb);
771 addr_type = rt->rt_type;
772
773 if (addr_type == RTN_LOCAL) {
774 int dont_send;
775
776 dont_send = arp_ignore(in_dev, sip, tip);
777 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
778 dont_send = arp_filter(sip, tip, dev);
779 if (!dont_send) {
780 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
781 if (n) {
782 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
783 dev, tip, sha, dev->dev_addr,
784 sha);
785 neigh_release(n);
786 }
787 }
788 goto out;
789 } else if (IN_DEV_FORWARD(in_dev)) {
790 if (addr_type == RTN_UNICAST &&
791 (arp_fwd_proxy(in_dev, dev, rt) ||
792 arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
793 (rt->dst.dev != dev &&
794 pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
795 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
796 if (n)
797 neigh_release(n);
798
799 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
800 skb->pkt_type == PACKET_HOST ||
801 NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
802 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
803 dev, tip, sha, dev->dev_addr,
804 sha);
805 } else {
806 pneigh_enqueue(&arp_tbl,
807 in_dev->arp_parms, skb);
808 return 0;
809 }
810 goto out;
811 }
812 }
813 }
814
815 /* Update our ARP tables */
816
817 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
818
819 if (IN_DEV_ARP_ACCEPT(in_dev)) {
820 unsigned int addr_type = inet_addr_type_dev_table(net, dev, sip);
821
822 /* Unsolicited ARP is not accepted by default.
823 It is possible, that this option should be enabled for some
824 devices (strip is candidate)
825 */
826 is_garp = arp->ar_op == htons(ARPOP_REQUEST) && tip == sip &&
827 addr_type == RTN_UNICAST;
828
829 if (!n &&
830 ((arp->ar_op == htons(ARPOP_REPLY) &&
831 addr_type == RTN_UNICAST) || is_garp))
832 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
833 }
834
835 if (n) {
836 int state = NUD_REACHABLE;
837 int override;
838
839 /* If several different ARP replies follows back-to-back,
840 use the FIRST one. It is possible, if several proxy
841 agents are active. Taking the first reply prevents
842 arp trashing and chooses the fastest router.
843 */
844 override = time_after(jiffies,
845 n->updated +
846 NEIGH_VAR(n->parms, LOCKTIME)) ||
847 is_garp;
848
849 /* Broadcast replies and request packets
850 do not assert neighbour reachability.
851 */
852 if (arp->ar_op != htons(ARPOP_REPLY) ||
853 skb->pkt_type != PACKET_HOST)
854 state = NUD_STALE;
855 neigh_update(n, sha, state,
856 override ? NEIGH_UPDATE_F_OVERRIDE : 0);
857 neigh_release(n);
858 }
859
860 out:
861 consume_skb(skb);
862 return 0;
863 }
864
865 static void parp_redo(struct sk_buff *skb)
866 {
867 arp_process(dev_net(skb->dev), NULL, skb);
868 }
869
870
871 /*
872 * Receive an arp request from the device layer.
873 */
874
875 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
876 struct packet_type *pt, struct net_device *orig_dev)
877 {
878 const struct arphdr *arp;
879
880 /* do not tweak dropwatch on an ARP we will ignore */
881 if (dev->flags & IFF_NOARP ||
882 skb->pkt_type == PACKET_OTHERHOST ||
883 skb->pkt_type == PACKET_LOOPBACK)
884 goto consumeskb;
885
886 skb = skb_share_check(skb, GFP_ATOMIC);
887 if (!skb)
888 goto out_of_mem;
889
890 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
891 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
892 goto freeskb;
893
894 arp = arp_hdr(skb);
895 if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
896 goto freeskb;
897
898 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
899
900 return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
901 dev_net(dev), NULL, skb, dev, NULL,
902 arp_process);
903
904 consumeskb:
905 consume_skb(skb);
906 return 0;
907 freeskb:
908 kfree_skb(skb);
909 out_of_mem:
910 return 0;
911 }
912
913 /*
914 * User level interface (ioctl)
915 */
916
917 /*
918 * Set (create) an ARP cache entry.
919 */
920
921 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
922 {
923 if (!dev) {
924 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
925 return 0;
926 }
927 if (__in_dev_get_rtnl(dev)) {
928 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
929 return 0;
930 }
931 return -ENXIO;
932 }
933
934 static int arp_req_set_public(struct net *net, struct arpreq *r,
935 struct net_device *dev)
936 {
937 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
938 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
939
940 if (mask && mask != htonl(0xFFFFFFFF))
941 return -EINVAL;
942 if (!dev && (r->arp_flags & ATF_COM)) {
943 dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
944 r->arp_ha.sa_data);
945 if (!dev)
946 return -ENODEV;
947 }
948 if (mask) {
949 if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
950 return -ENOBUFS;
951 return 0;
952 }
953
954 return arp_req_set_proxy(net, dev, 1);
955 }
956
957 static int arp_req_set(struct net *net, struct arpreq *r,
958 struct net_device *dev)
959 {
960 __be32 ip;
961 struct neighbour *neigh;
962 int err;
963
964 if (r->arp_flags & ATF_PUBL)
965 return arp_req_set_public(net, r, dev);
966
967 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
968 if (r->arp_flags & ATF_PERM)
969 r->arp_flags |= ATF_COM;
970 if (!dev) {
971 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
972
973 if (IS_ERR(rt))
974 return PTR_ERR(rt);
975 dev = rt->dst.dev;
976 ip_rt_put(rt);
977 if (!dev)
978 return -EINVAL;
979 }
980 switch (dev->type) {
981 #if IS_ENABLED(CONFIG_FDDI)
982 case ARPHRD_FDDI:
983 /*
984 * According to RFC 1390, FDDI devices should accept ARP
985 * hardware types of 1 (Ethernet). However, to be more
986 * robust, we'll accept hardware types of either 1 (Ethernet)
987 * or 6 (IEEE 802.2).
988 */
989 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
990 r->arp_ha.sa_family != ARPHRD_ETHER &&
991 r->arp_ha.sa_family != ARPHRD_IEEE802)
992 return -EINVAL;
993 break;
994 #endif
995 default:
996 if (r->arp_ha.sa_family != dev->type)
997 return -EINVAL;
998 break;
999 }
1000
1001 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1002 err = PTR_ERR(neigh);
1003 if (!IS_ERR(neigh)) {
1004 unsigned int state = NUD_STALE;
1005 if (r->arp_flags & ATF_PERM)
1006 state = NUD_PERMANENT;
1007 err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1008 r->arp_ha.sa_data : NULL, state,
1009 NEIGH_UPDATE_F_OVERRIDE |
1010 NEIGH_UPDATE_F_ADMIN);
1011 neigh_release(neigh);
1012 }
1013 return err;
1014 }
1015
1016 static unsigned int arp_state_to_flags(struct neighbour *neigh)
1017 {
1018 if (neigh->nud_state&NUD_PERMANENT)
1019 return ATF_PERM | ATF_COM;
1020 else if (neigh->nud_state&NUD_VALID)
1021 return ATF_COM;
1022 else
1023 return 0;
1024 }
1025
1026 /*
1027 * Get an ARP cache entry.
1028 */
1029
1030 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1031 {
1032 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1033 struct neighbour *neigh;
1034 int err = -ENXIO;
1035
1036 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1037 if (neigh) {
1038 if (!(neigh->nud_state & NUD_NOARP)) {
1039 read_lock_bh(&neigh->lock);
1040 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1041 r->arp_flags = arp_state_to_flags(neigh);
1042 read_unlock_bh(&neigh->lock);
1043 r->arp_ha.sa_family = dev->type;
1044 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1045 err = 0;
1046 }
1047 neigh_release(neigh);
1048 }
1049 return err;
1050 }
1051
1052 static int arp_invalidate(struct net_device *dev, __be32 ip)
1053 {
1054 struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1055 int err = -ENXIO;
1056
1057 if (neigh) {
1058 if (neigh->nud_state & ~NUD_NOARP)
1059 err = neigh_update(neigh, NULL, NUD_FAILED,
1060 NEIGH_UPDATE_F_OVERRIDE|
1061 NEIGH_UPDATE_F_ADMIN);
1062 neigh_release(neigh);
1063 }
1064
1065 return err;
1066 }
1067
1068 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1069 struct net_device *dev)
1070 {
1071 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1072 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1073
1074 if (mask == htonl(0xFFFFFFFF))
1075 return pneigh_delete(&arp_tbl, net, &ip, dev);
1076
1077 if (mask)
1078 return -EINVAL;
1079
1080 return arp_req_set_proxy(net, dev, 0);
1081 }
1082
1083 static int arp_req_delete(struct net *net, struct arpreq *r,
1084 struct net_device *dev)
1085 {
1086 __be32 ip;
1087
1088 if (r->arp_flags & ATF_PUBL)
1089 return arp_req_delete_public(net, r, dev);
1090
1091 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1092 if (!dev) {
1093 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1094 if (IS_ERR(rt))
1095 return PTR_ERR(rt);
1096 dev = rt->dst.dev;
1097 ip_rt_put(rt);
1098 if (!dev)
1099 return -EINVAL;
1100 }
1101 return arp_invalidate(dev, ip);
1102 }
1103
1104 /*
1105 * Handle an ARP layer I/O control request.
1106 */
1107
1108 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1109 {
1110 int err;
1111 struct arpreq r;
1112 struct net_device *dev = NULL;
1113
1114 switch (cmd) {
1115 case SIOCDARP:
1116 case SIOCSARP:
1117 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1118 return -EPERM;
1119 case SIOCGARP:
1120 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1121 if (err)
1122 return -EFAULT;
1123 break;
1124 default:
1125 return -EINVAL;
1126 }
1127
1128 if (r.arp_pa.sa_family != AF_INET)
1129 return -EPFNOSUPPORT;
1130
1131 if (!(r.arp_flags & ATF_PUBL) &&
1132 (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1133 return -EINVAL;
1134 if (!(r.arp_flags & ATF_NETMASK))
1135 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1136 htonl(0xFFFFFFFFUL);
1137 rtnl_lock();
1138 if (r.arp_dev[0]) {
1139 err = -ENODEV;
1140 dev = __dev_get_by_name(net, r.arp_dev);
1141 if (!dev)
1142 goto out;
1143
1144 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1145 if (!r.arp_ha.sa_family)
1146 r.arp_ha.sa_family = dev->type;
1147 err = -EINVAL;
1148 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1149 goto out;
1150 } else if (cmd == SIOCGARP) {
1151 err = -ENODEV;
1152 goto out;
1153 }
1154
1155 switch (cmd) {
1156 case SIOCDARP:
1157 err = arp_req_delete(net, &r, dev);
1158 break;
1159 case SIOCSARP:
1160 err = arp_req_set(net, &r, dev);
1161 break;
1162 case SIOCGARP:
1163 err = arp_req_get(&r, dev);
1164 break;
1165 }
1166 out:
1167 rtnl_unlock();
1168 if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1169 err = -EFAULT;
1170 return err;
1171 }
1172
1173 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1174 void *ptr)
1175 {
1176 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1177 struct netdev_notifier_change_info *change_info;
1178
1179 switch (event) {
1180 case NETDEV_CHANGEADDR:
1181 neigh_changeaddr(&arp_tbl, dev);
1182 rt_cache_flush(dev_net(dev));
1183 break;
1184 case NETDEV_CHANGE:
1185 change_info = ptr;
1186 if (change_info->flags_changed & IFF_NOARP)
1187 neigh_changeaddr(&arp_tbl, dev);
1188 break;
1189 default:
1190 break;
1191 }
1192
1193 return NOTIFY_DONE;
1194 }
1195
1196 static struct notifier_block arp_netdev_notifier = {
1197 .notifier_call = arp_netdev_event,
1198 };
1199
1200 /* Note, that it is not on notifier chain.
1201 It is necessary, that this routine was called after route cache will be
1202 flushed.
1203 */
1204 void arp_ifdown(struct net_device *dev)
1205 {
1206 neigh_ifdown(&arp_tbl, dev);
1207 }
1208
1209
1210 /*
1211 * Called once on startup.
1212 */
1213
1214 static struct packet_type arp_packet_type __read_mostly = {
1215 .type = cpu_to_be16(ETH_P_ARP),
1216 .func = arp_rcv,
1217 };
1218
1219 static int arp_proc_init(void);
1220
1221 void __init arp_init(void)
1222 {
1223 neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1224
1225 dev_add_pack(&arp_packet_type);
1226 arp_proc_init();
1227 #ifdef CONFIG_SYSCTL
1228 neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1229 #endif
1230 register_netdevice_notifier(&arp_netdev_notifier);
1231 }
1232
1233 #ifdef CONFIG_PROC_FS
1234 #if IS_ENABLED(CONFIG_AX25)
1235
1236 /* ------------------------------------------------------------------------ */
1237 /*
1238 * ax25 -> ASCII conversion
1239 */
1240 static char *ax2asc2(ax25_address *a, char *buf)
1241 {
1242 char c, *s;
1243 int n;
1244
1245 for (n = 0, s = buf; n < 6; n++) {
1246 c = (a->ax25_call[n] >> 1) & 0x7F;
1247
1248 if (c != ' ')
1249 *s++ = c;
1250 }
1251
1252 *s++ = '-';
1253 n = (a->ax25_call[6] >> 1) & 0x0F;
1254 if (n > 9) {
1255 *s++ = '1';
1256 n -= 10;
1257 }
1258
1259 *s++ = n + '0';
1260 *s++ = '\0';
1261
1262 if (*buf == '\0' || *buf == '-')
1263 return "*";
1264
1265 return buf;
1266 }
1267 #endif /* CONFIG_AX25 */
1268
1269 #define HBUFFERLEN 30
1270
1271 static void arp_format_neigh_entry(struct seq_file *seq,
1272 struct neighbour *n)
1273 {
1274 char hbuffer[HBUFFERLEN];
1275 int k, j;
1276 char tbuf[16];
1277 struct net_device *dev = n->dev;
1278 int hatype = dev->type;
1279
1280 read_lock(&n->lock);
1281 /* Convert hardware address to XX:XX:XX:XX ... form. */
1282 #if IS_ENABLED(CONFIG_AX25)
1283 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1284 ax2asc2((ax25_address *)n->ha, hbuffer);
1285 else {
1286 #endif
1287 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1288 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1289 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1290 hbuffer[k++] = ':';
1291 }
1292 if (k != 0)
1293 --k;
1294 hbuffer[k] = 0;
1295 #if IS_ENABLED(CONFIG_AX25)
1296 }
1297 #endif
1298 sprintf(tbuf, "%pI4", n->primary_key);
1299 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1300 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1301 read_unlock(&n->lock);
1302 }
1303
1304 static void arp_format_pneigh_entry(struct seq_file *seq,
1305 struct pneigh_entry *n)
1306 {
1307 struct net_device *dev = n->dev;
1308 int hatype = dev ? dev->type : 0;
1309 char tbuf[16];
1310
1311 sprintf(tbuf, "%pI4", n->key);
1312 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1313 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1314 dev ? dev->name : "*");
1315 }
1316
1317 static int arp_seq_show(struct seq_file *seq, void *v)
1318 {
1319 if (v == SEQ_START_TOKEN) {
1320 seq_puts(seq, "IP address HW type Flags "
1321 "HW address Mask Device\n");
1322 } else {
1323 struct neigh_seq_state *state = seq->private;
1324
1325 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1326 arp_format_pneigh_entry(seq, v);
1327 else
1328 arp_format_neigh_entry(seq, v);
1329 }
1330
1331 return 0;
1332 }
1333
1334 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1335 {
1336 /* Don't want to confuse "arp -a" w/ magic entries,
1337 * so we tell the generic iterator to skip NUD_NOARP.
1338 */
1339 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1340 }
1341
1342 /* ------------------------------------------------------------------------ */
1343
1344 static const struct seq_operations arp_seq_ops = {
1345 .start = arp_seq_start,
1346 .next = neigh_seq_next,
1347 .stop = neigh_seq_stop,
1348 .show = arp_seq_show,
1349 };
1350
1351 static int arp_seq_open(struct inode *inode, struct file *file)
1352 {
1353 return seq_open_net(inode, file, &arp_seq_ops,
1354 sizeof(struct neigh_seq_state));
1355 }
1356
1357 static const struct file_operations arp_seq_fops = {
1358 .owner = THIS_MODULE,
1359 .open = arp_seq_open,
1360 .read = seq_read,
1361 .llseek = seq_lseek,
1362 .release = seq_release_net,
1363 };
1364
1365
1366 static int __net_init arp_net_init(struct net *net)
1367 {
1368 if (!proc_create("arp", S_IRUGO, net->proc_net, &arp_seq_fops))
1369 return -ENOMEM;
1370 return 0;
1371 }
1372
1373 static void __net_exit arp_net_exit(struct net *net)
1374 {
1375 remove_proc_entry("arp", net->proc_net);
1376 }
1377
1378 static struct pernet_operations arp_net_ops = {
1379 .init = arp_net_init,
1380 .exit = arp_net_exit,
1381 };
1382
1383 static int __init arp_proc_init(void)
1384 {
1385 return register_pernet_subsys(&arp_net_ops);
1386 }
1387
1388 #else /* CONFIG_PROC_FS */
1389
1390 static int __init arp_proc_init(void)
1391 {
1392 return 0;
1393 }
1394
1395 #endif /* CONFIG_PROC_FS */