]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv4/fib_hash.c
Linux-2.6.12-rc2
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / fib_hash.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * IPv4 FIB: lookup engine and maintenance routines.
7 *
8 * Version: $Id: fib_hash.c,v 1.13 2001/10/31 21:55:54 davem Exp $
9 *
10 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
18 #include <linux/config.h>
19 #include <asm/uaccess.h>
20 #include <asm/system.h>
21 #include <linux/bitops.h>
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/mm.h>
26 #include <linux/string.h>
27 #include <linux/socket.h>
28 #include <linux/sockios.h>
29 #include <linux/errno.h>
30 #include <linux/in.h>
31 #include <linux/inet.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_arp.h>
34 #include <linux/proc_fs.h>
35 #include <linux/skbuff.h>
36 #include <linux/netlink.h>
37 #include <linux/init.h>
38
39 #include <net/ip.h>
40 #include <net/protocol.h>
41 #include <net/route.h>
42 #include <net/tcp.h>
43 #include <net/sock.h>
44 #include <net/ip_fib.h>
45
46 #include "fib_lookup.h"
47
48 static kmem_cache_t *fn_hash_kmem;
49 static kmem_cache_t *fn_alias_kmem;
50
51 struct fib_node {
52 struct hlist_node fn_hash;
53 struct list_head fn_alias;
54 u32 fn_key;
55 };
56
57 struct fn_zone {
58 struct fn_zone *fz_next; /* Next not empty zone */
59 struct hlist_head *fz_hash; /* Hash table pointer */
60 int fz_nent; /* Number of entries */
61
62 int fz_divisor; /* Hash divisor */
63 u32 fz_hashmask; /* (fz_divisor - 1) */
64 #define FZ_HASHMASK(fz) ((fz)->fz_hashmask)
65
66 int fz_order; /* Zone order */
67 u32 fz_mask;
68 #define FZ_MASK(fz) ((fz)->fz_mask)
69 };
70
71 /* NOTE. On fast computers evaluation of fz_hashmask and fz_mask
72 * can be cheaper than memory lookup, so that FZ_* macros are used.
73 */
74
75 struct fn_hash {
76 struct fn_zone *fn_zones[33];
77 struct fn_zone *fn_zone_list;
78 };
79
80 static inline u32 fn_hash(u32 key, struct fn_zone *fz)
81 {
82 u32 h = ntohl(key)>>(32 - fz->fz_order);
83 h ^= (h>>20);
84 h ^= (h>>10);
85 h ^= (h>>5);
86 h &= FZ_HASHMASK(fz);
87 return h;
88 }
89
90 static inline u32 fz_key(u32 dst, struct fn_zone *fz)
91 {
92 return dst & FZ_MASK(fz);
93 }
94
95 static DEFINE_RWLOCK(fib_hash_lock);
96 static unsigned int fib_hash_genid;
97
98 #define FZ_MAX_DIVISOR ((PAGE_SIZE<<MAX_ORDER) / sizeof(struct hlist_head))
99
100 static struct hlist_head *fz_hash_alloc(int divisor)
101 {
102 unsigned long size = divisor * sizeof(struct hlist_head);
103
104 if (size <= PAGE_SIZE) {
105 return kmalloc(size, GFP_KERNEL);
106 } else {
107 return (struct hlist_head *)
108 __get_free_pages(GFP_KERNEL, get_order(size));
109 }
110 }
111
112 /* The fib hash lock must be held when this is called. */
113 static inline void fn_rebuild_zone(struct fn_zone *fz,
114 struct hlist_head *old_ht,
115 int old_divisor)
116 {
117 int i;
118
119 for (i = 0; i < old_divisor; i++) {
120 struct hlist_node *node, *n;
121 struct fib_node *f;
122
123 hlist_for_each_entry_safe(f, node, n, &old_ht[i], fn_hash) {
124 struct hlist_head *new_head;
125
126 hlist_del(&f->fn_hash);
127
128 new_head = &fz->fz_hash[fn_hash(f->fn_key, fz)];
129 hlist_add_head(&f->fn_hash, new_head);
130 }
131 }
132 }
133
134 static void fz_hash_free(struct hlist_head *hash, int divisor)
135 {
136 unsigned long size = divisor * sizeof(struct hlist_head);
137
138 if (size <= PAGE_SIZE)
139 kfree(hash);
140 else
141 free_pages((unsigned long)hash, get_order(size));
142 }
143
144 static void fn_rehash_zone(struct fn_zone *fz)
145 {
146 struct hlist_head *ht, *old_ht;
147 int old_divisor, new_divisor;
148 u32 new_hashmask;
149
150 old_divisor = fz->fz_divisor;
151
152 switch (old_divisor) {
153 case 16:
154 new_divisor = 256;
155 break;
156 case 256:
157 new_divisor = 1024;
158 break;
159 default:
160 if ((old_divisor << 1) > FZ_MAX_DIVISOR) {
161 printk(KERN_CRIT "route.c: bad divisor %d!\n", old_divisor);
162 return;
163 }
164 new_divisor = (old_divisor << 1);
165 break;
166 }
167
168 new_hashmask = (new_divisor - 1);
169
170 #if RT_CACHE_DEBUG >= 2
171 printk("fn_rehash_zone: hash for zone %d grows from %d\n", fz->fz_order, old_divisor);
172 #endif
173
174 ht = fz_hash_alloc(new_divisor);
175
176 if (ht) {
177 memset(ht, 0, new_divisor * sizeof(struct hlist_head));
178
179 write_lock_bh(&fib_hash_lock);
180 old_ht = fz->fz_hash;
181 fz->fz_hash = ht;
182 fz->fz_hashmask = new_hashmask;
183 fz->fz_divisor = new_divisor;
184 fn_rebuild_zone(fz, old_ht, old_divisor);
185 fib_hash_genid++;
186 write_unlock_bh(&fib_hash_lock);
187
188 fz_hash_free(old_ht, old_divisor);
189 }
190 }
191
192 static inline void fn_free_node(struct fib_node * f)
193 {
194 kmem_cache_free(fn_hash_kmem, f);
195 }
196
197 static inline void fn_free_alias(struct fib_alias *fa)
198 {
199 fib_release_info(fa->fa_info);
200 kmem_cache_free(fn_alias_kmem, fa);
201 }
202
203 static struct fn_zone *
204 fn_new_zone(struct fn_hash *table, int z)
205 {
206 int i;
207 struct fn_zone *fz = kmalloc(sizeof(struct fn_zone), GFP_KERNEL);
208 if (!fz)
209 return NULL;
210
211 memset(fz, 0, sizeof(struct fn_zone));
212 if (z) {
213 fz->fz_divisor = 16;
214 } else {
215 fz->fz_divisor = 1;
216 }
217 fz->fz_hashmask = (fz->fz_divisor - 1);
218 fz->fz_hash = fz_hash_alloc(fz->fz_divisor);
219 if (!fz->fz_hash) {
220 kfree(fz);
221 return NULL;
222 }
223 memset(fz->fz_hash, 0, fz->fz_divisor * sizeof(struct hlist_head *));
224 fz->fz_order = z;
225 fz->fz_mask = inet_make_mask(z);
226
227 /* Find the first not empty zone with more specific mask */
228 for (i=z+1; i<=32; i++)
229 if (table->fn_zones[i])
230 break;
231 write_lock_bh(&fib_hash_lock);
232 if (i>32) {
233 /* No more specific masks, we are the first. */
234 fz->fz_next = table->fn_zone_list;
235 table->fn_zone_list = fz;
236 } else {
237 fz->fz_next = table->fn_zones[i]->fz_next;
238 table->fn_zones[i]->fz_next = fz;
239 }
240 table->fn_zones[z] = fz;
241 fib_hash_genid++;
242 write_unlock_bh(&fib_hash_lock);
243 return fz;
244 }
245
246 static int
247 fn_hash_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
248 {
249 int err;
250 struct fn_zone *fz;
251 struct fn_hash *t = (struct fn_hash*)tb->tb_data;
252
253 read_lock(&fib_hash_lock);
254 for (fz = t->fn_zone_list; fz; fz = fz->fz_next) {
255 struct hlist_head *head;
256 struct hlist_node *node;
257 struct fib_node *f;
258 u32 k = fz_key(flp->fl4_dst, fz);
259
260 head = &fz->fz_hash[fn_hash(k, fz)];
261 hlist_for_each_entry(f, node, head, fn_hash) {
262 if (f->fn_key != k)
263 continue;
264
265 err = fib_semantic_match(&f->fn_alias,
266 flp, res,
267 f->fn_key, fz->fz_mask,
268 fz->fz_order);
269 if (err <= 0)
270 goto out;
271 }
272 }
273 err = 1;
274 out:
275 read_unlock(&fib_hash_lock);
276 return err;
277 }
278
279 static int fn_hash_last_dflt=-1;
280
281 static void
282 fn_hash_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
283 {
284 int order, last_idx;
285 struct hlist_node *node;
286 struct fib_node *f;
287 struct fib_info *fi = NULL;
288 struct fib_info *last_resort;
289 struct fn_hash *t = (struct fn_hash*)tb->tb_data;
290 struct fn_zone *fz = t->fn_zones[0];
291
292 if (fz == NULL)
293 return;
294
295 last_idx = -1;
296 last_resort = NULL;
297 order = -1;
298
299 read_lock(&fib_hash_lock);
300 hlist_for_each_entry(f, node, &fz->fz_hash[0], fn_hash) {
301 struct fib_alias *fa;
302
303 list_for_each_entry(fa, &f->fn_alias, fa_list) {
304 struct fib_info *next_fi = fa->fa_info;
305
306 if (fa->fa_scope != res->scope ||
307 fa->fa_type != RTN_UNICAST)
308 continue;
309
310 if (next_fi->fib_priority > res->fi->fib_priority)
311 break;
312 if (!next_fi->fib_nh[0].nh_gw ||
313 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
314 continue;
315 fa->fa_state |= FA_S_ACCESSED;
316
317 if (fi == NULL) {
318 if (next_fi != res->fi)
319 break;
320 } else if (!fib_detect_death(fi, order, &last_resort,
321 &last_idx, &fn_hash_last_dflt)) {
322 if (res->fi)
323 fib_info_put(res->fi);
324 res->fi = fi;
325 atomic_inc(&fi->fib_clntref);
326 fn_hash_last_dflt = order;
327 goto out;
328 }
329 fi = next_fi;
330 order++;
331 }
332 }
333
334 if (order <= 0 || fi == NULL) {
335 fn_hash_last_dflt = -1;
336 goto out;
337 }
338
339 if (!fib_detect_death(fi, order, &last_resort, &last_idx, &fn_hash_last_dflt)) {
340 if (res->fi)
341 fib_info_put(res->fi);
342 res->fi = fi;
343 atomic_inc(&fi->fib_clntref);
344 fn_hash_last_dflt = order;
345 goto out;
346 }
347
348 if (last_idx >= 0) {
349 if (res->fi)
350 fib_info_put(res->fi);
351 res->fi = last_resort;
352 if (last_resort)
353 atomic_inc(&last_resort->fib_clntref);
354 }
355 fn_hash_last_dflt = last_idx;
356 out:
357 read_unlock(&fib_hash_lock);
358 }
359
360 /* Insert node F to FZ. */
361 static inline void fib_insert_node(struct fn_zone *fz, struct fib_node *f)
362 {
363 struct hlist_head *head = &fz->fz_hash[fn_hash(f->fn_key, fz)];
364
365 hlist_add_head(&f->fn_hash, head);
366 }
367
368 /* Return the node in FZ matching KEY. */
369 static struct fib_node *fib_find_node(struct fn_zone *fz, u32 key)
370 {
371 struct hlist_head *head = &fz->fz_hash[fn_hash(key, fz)];
372 struct hlist_node *node;
373 struct fib_node *f;
374
375 hlist_for_each_entry(f, node, head, fn_hash) {
376 if (f->fn_key == key)
377 return f;
378 }
379
380 return NULL;
381 }
382
383 static int
384 fn_hash_insert(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
385 struct nlmsghdr *n, struct netlink_skb_parms *req)
386 {
387 struct fn_hash *table = (struct fn_hash *) tb->tb_data;
388 struct fib_node *new_f, *f;
389 struct fib_alias *fa, *new_fa;
390 struct fn_zone *fz;
391 struct fib_info *fi;
392 int z = r->rtm_dst_len;
393 int type = r->rtm_type;
394 u8 tos = r->rtm_tos;
395 u32 key;
396 int err;
397
398 if (z > 32)
399 return -EINVAL;
400 fz = table->fn_zones[z];
401 if (!fz && !(fz = fn_new_zone(table, z)))
402 return -ENOBUFS;
403
404 key = 0;
405 if (rta->rta_dst) {
406 u32 dst;
407 memcpy(&dst, rta->rta_dst, 4);
408 if (dst & ~FZ_MASK(fz))
409 return -EINVAL;
410 key = fz_key(dst, fz);
411 }
412
413 if ((fi = fib_create_info(r, rta, n, &err)) == NULL)
414 return err;
415
416 if (fz->fz_nent > (fz->fz_divisor<<1) &&
417 fz->fz_divisor < FZ_MAX_DIVISOR &&
418 (z==32 || (1<<z) > fz->fz_divisor))
419 fn_rehash_zone(fz);
420
421 f = fib_find_node(fz, key);
422
423 if (!f)
424 fa = NULL;
425 else
426 fa = fib_find_alias(&f->fn_alias, tos, fi->fib_priority);
427
428 /* Now fa, if non-NULL, points to the first fib alias
429 * with the same keys [prefix,tos,priority], if such key already
430 * exists or to the node before which we will insert new one.
431 *
432 * If fa is NULL, we will need to allocate a new one and
433 * insert to the head of f.
434 *
435 * If f is NULL, no fib node matched the destination key
436 * and we need to allocate a new one of those as well.
437 */
438
439 if (fa && fa->fa_tos == tos &&
440 fa->fa_info->fib_priority == fi->fib_priority) {
441 struct fib_alias *fa_orig;
442
443 err = -EEXIST;
444 if (n->nlmsg_flags & NLM_F_EXCL)
445 goto out;
446
447 if (n->nlmsg_flags & NLM_F_REPLACE) {
448 struct fib_info *fi_drop;
449 u8 state;
450
451 write_lock_bh(&fib_hash_lock);
452 fi_drop = fa->fa_info;
453 fa->fa_info = fi;
454 fa->fa_type = type;
455 fa->fa_scope = r->rtm_scope;
456 state = fa->fa_state;
457 fa->fa_state &= ~FA_S_ACCESSED;
458 fib_hash_genid++;
459 write_unlock_bh(&fib_hash_lock);
460
461 fib_release_info(fi_drop);
462 if (state & FA_S_ACCESSED)
463 rt_cache_flush(-1);
464 return 0;
465 }
466
467 /* Error if we find a perfect match which
468 * uses the same scope, type, and nexthop
469 * information.
470 */
471 fa_orig = fa;
472 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
473 list_for_each_entry_continue(fa, &f->fn_alias, fa_list) {
474 if (fa->fa_tos != tos)
475 break;
476 if (fa->fa_info->fib_priority != fi->fib_priority)
477 break;
478 if (fa->fa_type == type &&
479 fa->fa_scope == r->rtm_scope &&
480 fa->fa_info == fi)
481 goto out;
482 }
483 if (!(n->nlmsg_flags & NLM_F_APPEND))
484 fa = fa_orig;
485 }
486
487 err = -ENOENT;
488 if (!(n->nlmsg_flags&NLM_F_CREATE))
489 goto out;
490
491 err = -ENOBUFS;
492 new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL);
493 if (new_fa == NULL)
494 goto out;
495
496 new_f = NULL;
497 if (!f) {
498 new_f = kmem_cache_alloc(fn_hash_kmem, SLAB_KERNEL);
499 if (new_f == NULL)
500 goto out_free_new_fa;
501
502 INIT_HLIST_NODE(&new_f->fn_hash);
503 INIT_LIST_HEAD(&new_f->fn_alias);
504 new_f->fn_key = key;
505 f = new_f;
506 }
507
508 new_fa->fa_info = fi;
509 new_fa->fa_tos = tos;
510 new_fa->fa_type = type;
511 new_fa->fa_scope = r->rtm_scope;
512 new_fa->fa_state = 0;
513
514 /*
515 * Insert new entry to the list.
516 */
517
518 write_lock_bh(&fib_hash_lock);
519 if (new_f)
520 fib_insert_node(fz, new_f);
521 list_add_tail(&new_fa->fa_list,
522 (fa ? &fa->fa_list : &f->fn_alias));
523 fib_hash_genid++;
524 write_unlock_bh(&fib_hash_lock);
525
526 if (new_f)
527 fz->fz_nent++;
528 rt_cache_flush(-1);
529
530 rtmsg_fib(RTM_NEWROUTE, key, new_fa, z, tb->tb_id, n, req);
531 return 0;
532
533 out_free_new_fa:
534 kmem_cache_free(fn_alias_kmem, new_fa);
535 out:
536 fib_release_info(fi);
537 return err;
538 }
539
540
541 static int
542 fn_hash_delete(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
543 struct nlmsghdr *n, struct netlink_skb_parms *req)
544 {
545 struct fn_hash *table = (struct fn_hash*)tb->tb_data;
546 struct fib_node *f;
547 struct fib_alias *fa, *fa_to_delete;
548 int z = r->rtm_dst_len;
549 struct fn_zone *fz;
550 u32 key;
551 u8 tos = r->rtm_tos;
552
553 if (z > 32)
554 return -EINVAL;
555 if ((fz = table->fn_zones[z]) == NULL)
556 return -ESRCH;
557
558 key = 0;
559 if (rta->rta_dst) {
560 u32 dst;
561 memcpy(&dst, rta->rta_dst, 4);
562 if (dst & ~FZ_MASK(fz))
563 return -EINVAL;
564 key = fz_key(dst, fz);
565 }
566
567 f = fib_find_node(fz, key);
568
569 if (!f)
570 fa = NULL;
571 else
572 fa = fib_find_alias(&f->fn_alias, tos, 0);
573 if (!fa)
574 return -ESRCH;
575
576 fa_to_delete = NULL;
577 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
578 list_for_each_entry_continue(fa, &f->fn_alias, fa_list) {
579 struct fib_info *fi = fa->fa_info;
580
581 if (fa->fa_tos != tos)
582 break;
583
584 if ((!r->rtm_type ||
585 fa->fa_type == r->rtm_type) &&
586 (r->rtm_scope == RT_SCOPE_NOWHERE ||
587 fa->fa_scope == r->rtm_scope) &&
588 (!r->rtm_protocol ||
589 fi->fib_protocol == r->rtm_protocol) &&
590 fib_nh_match(r, n, rta, fi) == 0) {
591 fa_to_delete = fa;
592 break;
593 }
594 }
595
596 if (fa_to_delete) {
597 int kill_fn;
598
599 fa = fa_to_delete;
600 rtmsg_fib(RTM_DELROUTE, key, fa, z, tb->tb_id, n, req);
601
602 kill_fn = 0;
603 write_lock_bh(&fib_hash_lock);
604 list_del(&fa->fa_list);
605 if (list_empty(&f->fn_alias)) {
606 hlist_del(&f->fn_hash);
607 kill_fn = 1;
608 }
609 fib_hash_genid++;
610 write_unlock_bh(&fib_hash_lock);
611
612 if (fa->fa_state & FA_S_ACCESSED)
613 rt_cache_flush(-1);
614 fn_free_alias(fa);
615 if (kill_fn) {
616 fn_free_node(f);
617 fz->fz_nent--;
618 }
619
620 return 0;
621 }
622 return -ESRCH;
623 }
624
625 static int fn_flush_list(struct fn_zone *fz, int idx)
626 {
627 struct hlist_head *head = &fz->fz_hash[idx];
628 struct hlist_node *node, *n;
629 struct fib_node *f;
630 int found = 0;
631
632 hlist_for_each_entry_safe(f, node, n, head, fn_hash) {
633 struct fib_alias *fa, *fa_node;
634 int kill_f;
635
636 kill_f = 0;
637 list_for_each_entry_safe(fa, fa_node, &f->fn_alias, fa_list) {
638 struct fib_info *fi = fa->fa_info;
639
640 if (fi && (fi->fib_flags&RTNH_F_DEAD)) {
641 write_lock_bh(&fib_hash_lock);
642 list_del(&fa->fa_list);
643 if (list_empty(&f->fn_alias)) {
644 hlist_del(&f->fn_hash);
645 kill_f = 1;
646 }
647 fib_hash_genid++;
648 write_unlock_bh(&fib_hash_lock);
649
650 fn_free_alias(fa);
651 found++;
652 }
653 }
654 if (kill_f) {
655 fn_free_node(f);
656 fz->fz_nent--;
657 }
658 }
659 return found;
660 }
661
662 static int fn_hash_flush(struct fib_table *tb)
663 {
664 struct fn_hash *table = (struct fn_hash *) tb->tb_data;
665 struct fn_zone *fz;
666 int found = 0;
667
668 for (fz = table->fn_zone_list; fz; fz = fz->fz_next) {
669 int i;
670
671 for (i = fz->fz_divisor - 1; i >= 0; i--)
672 found += fn_flush_list(fz, i);
673 }
674 return found;
675 }
676
677
678 static inline int
679 fn_hash_dump_bucket(struct sk_buff *skb, struct netlink_callback *cb,
680 struct fib_table *tb,
681 struct fn_zone *fz,
682 struct hlist_head *head)
683 {
684 struct hlist_node *node;
685 struct fib_node *f;
686 int i, s_i;
687
688 s_i = cb->args[3];
689 i = 0;
690 hlist_for_each_entry(f, node, head, fn_hash) {
691 struct fib_alias *fa;
692
693 list_for_each_entry(fa, &f->fn_alias, fa_list) {
694 if (i < s_i)
695 goto next;
696
697 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
698 cb->nlh->nlmsg_seq,
699 RTM_NEWROUTE,
700 tb->tb_id,
701 fa->fa_type,
702 fa->fa_scope,
703 &f->fn_key,
704 fz->fz_order,
705 fa->fa_tos,
706 fa->fa_info) < 0) {
707 cb->args[3] = i;
708 return -1;
709 }
710 next:
711 i++;
712 }
713 }
714 cb->args[3] = i;
715 return skb->len;
716 }
717
718 static inline int
719 fn_hash_dump_zone(struct sk_buff *skb, struct netlink_callback *cb,
720 struct fib_table *tb,
721 struct fn_zone *fz)
722 {
723 int h, s_h;
724
725 s_h = cb->args[2];
726 for (h=0; h < fz->fz_divisor; h++) {
727 if (h < s_h) continue;
728 if (h > s_h)
729 memset(&cb->args[3], 0,
730 sizeof(cb->args) - 3*sizeof(cb->args[0]));
731 if (fz->fz_hash == NULL ||
732 hlist_empty(&fz->fz_hash[h]))
733 continue;
734 if (fn_hash_dump_bucket(skb, cb, tb, fz, &fz->fz_hash[h])<0) {
735 cb->args[2] = h;
736 return -1;
737 }
738 }
739 cb->args[2] = h;
740 return skb->len;
741 }
742
743 static int fn_hash_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
744 {
745 int m, s_m;
746 struct fn_zone *fz;
747 struct fn_hash *table = (struct fn_hash*)tb->tb_data;
748
749 s_m = cb->args[1];
750 read_lock(&fib_hash_lock);
751 for (fz = table->fn_zone_list, m=0; fz; fz = fz->fz_next, m++) {
752 if (m < s_m) continue;
753 if (m > s_m)
754 memset(&cb->args[2], 0,
755 sizeof(cb->args) - 2*sizeof(cb->args[0]));
756 if (fn_hash_dump_zone(skb, cb, tb, fz) < 0) {
757 cb->args[1] = m;
758 read_unlock(&fib_hash_lock);
759 return -1;
760 }
761 }
762 read_unlock(&fib_hash_lock);
763 cb->args[1] = m;
764 return skb->len;
765 }
766
767 #ifdef CONFIG_IP_MULTIPLE_TABLES
768 struct fib_table * fib_hash_init(int id)
769 #else
770 struct fib_table * __init fib_hash_init(int id)
771 #endif
772 {
773 struct fib_table *tb;
774
775 if (fn_hash_kmem == NULL)
776 fn_hash_kmem = kmem_cache_create("ip_fib_hash",
777 sizeof(struct fib_node),
778 0, SLAB_HWCACHE_ALIGN,
779 NULL, NULL);
780
781 if (fn_alias_kmem == NULL)
782 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
783 sizeof(struct fib_alias),
784 0, SLAB_HWCACHE_ALIGN,
785 NULL, NULL);
786
787 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct fn_hash),
788 GFP_KERNEL);
789 if (tb == NULL)
790 return NULL;
791
792 tb->tb_id = id;
793 tb->tb_lookup = fn_hash_lookup;
794 tb->tb_insert = fn_hash_insert;
795 tb->tb_delete = fn_hash_delete;
796 tb->tb_flush = fn_hash_flush;
797 tb->tb_select_default = fn_hash_select_default;
798 tb->tb_dump = fn_hash_dump;
799 memset(tb->tb_data, 0, sizeof(struct fn_hash));
800 return tb;
801 }
802
803 /* ------------------------------------------------------------------------ */
804 #ifdef CONFIG_PROC_FS
805
806 struct fib_iter_state {
807 struct fn_zone *zone;
808 int bucket;
809 struct hlist_head *hash_head;
810 struct fib_node *fn;
811 struct fib_alias *fa;
812 loff_t pos;
813 unsigned int genid;
814 int valid;
815 };
816
817 static struct fib_alias *fib_get_first(struct seq_file *seq)
818 {
819 struct fib_iter_state *iter = seq->private;
820 struct fn_hash *table = (struct fn_hash *) ip_fib_main_table->tb_data;
821
822 iter->bucket = 0;
823 iter->hash_head = NULL;
824 iter->fn = NULL;
825 iter->fa = NULL;
826 iter->pos = 0;
827 iter->genid = fib_hash_genid;
828 iter->valid = 1;
829
830 for (iter->zone = table->fn_zone_list; iter->zone;
831 iter->zone = iter->zone->fz_next) {
832 int maxslot;
833
834 if (!iter->zone->fz_nent)
835 continue;
836
837 iter->hash_head = iter->zone->fz_hash;
838 maxslot = iter->zone->fz_divisor;
839
840 for (iter->bucket = 0; iter->bucket < maxslot;
841 ++iter->bucket, ++iter->hash_head) {
842 struct hlist_node *node;
843 struct fib_node *fn;
844
845 hlist_for_each_entry(fn,node,iter->hash_head,fn_hash) {
846 struct fib_alias *fa;
847
848 list_for_each_entry(fa,&fn->fn_alias,fa_list) {
849 iter->fn = fn;
850 iter->fa = fa;
851 goto out;
852 }
853 }
854 }
855 }
856 out:
857 return iter->fa;
858 }
859
860 static struct fib_alias *fib_get_next(struct seq_file *seq)
861 {
862 struct fib_iter_state *iter = seq->private;
863 struct fib_node *fn;
864 struct fib_alias *fa;
865
866 /* Advance FA, if any. */
867 fn = iter->fn;
868 fa = iter->fa;
869 if (fa) {
870 BUG_ON(!fn);
871 list_for_each_entry_continue(fa, &fn->fn_alias, fa_list) {
872 iter->fa = fa;
873 goto out;
874 }
875 }
876
877 fa = iter->fa = NULL;
878
879 /* Advance FN. */
880 if (fn) {
881 struct hlist_node *node = &fn->fn_hash;
882 hlist_for_each_entry_continue(fn, node, fn_hash) {
883 iter->fn = fn;
884
885 list_for_each_entry(fa, &fn->fn_alias, fa_list) {
886 iter->fa = fa;
887 goto out;
888 }
889 }
890 }
891
892 fn = iter->fn = NULL;
893
894 /* Advance hash chain. */
895 if (!iter->zone)
896 goto out;
897
898 for (;;) {
899 struct hlist_node *node;
900 int maxslot;
901
902 maxslot = iter->zone->fz_divisor;
903
904 while (++iter->bucket < maxslot) {
905 iter->hash_head++;
906
907 hlist_for_each_entry(fn, node, iter->hash_head, fn_hash) {
908 list_for_each_entry(fa, &fn->fn_alias, fa_list) {
909 iter->fn = fn;
910 iter->fa = fa;
911 goto out;
912 }
913 }
914 }
915
916 iter->zone = iter->zone->fz_next;
917
918 if (!iter->zone)
919 goto out;
920
921 iter->bucket = 0;
922 iter->hash_head = iter->zone->fz_hash;
923
924 hlist_for_each_entry(fn, node, iter->hash_head, fn_hash) {
925 list_for_each_entry(fa, &fn->fn_alias, fa_list) {
926 iter->fn = fn;
927 iter->fa = fa;
928 goto out;
929 }
930 }
931 }
932 out:
933 iter->pos++;
934 return fa;
935 }
936
937 static struct fib_alias *fib_get_idx(struct seq_file *seq, loff_t pos)
938 {
939 struct fib_iter_state *iter = seq->private;
940 struct fib_alias *fa;
941
942 if (iter->valid && pos >= iter->pos && iter->genid == fib_hash_genid) {
943 fa = iter->fa;
944 pos -= iter->pos;
945 } else
946 fa = fib_get_first(seq);
947
948 if (fa)
949 while (pos && (fa = fib_get_next(seq)))
950 --pos;
951 return pos ? NULL : fa;
952 }
953
954 static void *fib_seq_start(struct seq_file *seq, loff_t *pos)
955 {
956 void *v = NULL;
957
958 read_lock(&fib_hash_lock);
959 if (ip_fib_main_table)
960 v = *pos ? fib_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
961 return v;
962 }
963
964 static void *fib_seq_next(struct seq_file *seq, void *v, loff_t *pos)
965 {
966 ++*pos;
967 return v == SEQ_START_TOKEN ? fib_get_first(seq) : fib_get_next(seq);
968 }
969
970 static void fib_seq_stop(struct seq_file *seq, void *v)
971 {
972 read_unlock(&fib_hash_lock);
973 }
974
975 static unsigned fib_flag_trans(int type, u32 mask, struct fib_info *fi)
976 {
977 static unsigned type2flags[RTN_MAX + 1] = {
978 [7] = RTF_REJECT, [8] = RTF_REJECT,
979 };
980 unsigned flags = type2flags[type];
981
982 if (fi && fi->fib_nh->nh_gw)
983 flags |= RTF_GATEWAY;
984 if (mask == 0xFFFFFFFF)
985 flags |= RTF_HOST;
986 flags |= RTF_UP;
987 return flags;
988 }
989
990 /*
991 * This outputs /proc/net/route.
992 *
993 * It always works in backward compatibility mode.
994 * The format of the file is not supposed to be changed.
995 */
996 static int fib_seq_show(struct seq_file *seq, void *v)
997 {
998 struct fib_iter_state *iter;
999 char bf[128];
1000 u32 prefix, mask;
1001 unsigned flags;
1002 struct fib_node *f;
1003 struct fib_alias *fa;
1004 struct fib_info *fi;
1005
1006 if (v == SEQ_START_TOKEN) {
1007 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
1008 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
1009 "\tWindow\tIRTT");
1010 goto out;
1011 }
1012
1013 iter = seq->private;
1014 f = iter->fn;
1015 fa = iter->fa;
1016 fi = fa->fa_info;
1017 prefix = f->fn_key;
1018 mask = FZ_MASK(iter->zone);
1019 flags = fib_flag_trans(fa->fa_type, mask, fi);
1020 if (fi)
1021 snprintf(bf, sizeof(bf),
1022 "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
1023 fi->fib_dev ? fi->fib_dev->name : "*", prefix,
1024 fi->fib_nh->nh_gw, flags, 0, 0, fi->fib_priority,
1025 mask, (fi->fib_advmss ? fi->fib_advmss + 40 : 0),
1026 fi->fib_window,
1027 fi->fib_rtt >> 3);
1028 else
1029 snprintf(bf, sizeof(bf),
1030 "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
1031 prefix, 0, flags, 0, 0, 0, mask, 0, 0, 0);
1032 seq_printf(seq, "%-127s\n", bf);
1033 out:
1034 return 0;
1035 }
1036
1037 static struct seq_operations fib_seq_ops = {
1038 .start = fib_seq_start,
1039 .next = fib_seq_next,
1040 .stop = fib_seq_stop,
1041 .show = fib_seq_show,
1042 };
1043
1044 static int fib_seq_open(struct inode *inode, struct file *file)
1045 {
1046 struct seq_file *seq;
1047 int rc = -ENOMEM;
1048 struct fib_iter_state *s = kmalloc(sizeof(*s), GFP_KERNEL);
1049
1050 if (!s)
1051 goto out;
1052
1053 rc = seq_open(file, &fib_seq_ops);
1054 if (rc)
1055 goto out_kfree;
1056
1057 seq = file->private_data;
1058 seq->private = s;
1059 memset(s, 0, sizeof(*s));
1060 out:
1061 return rc;
1062 out_kfree:
1063 kfree(s);
1064 goto out;
1065 }
1066
1067 static struct file_operations fib_seq_fops = {
1068 .owner = THIS_MODULE,
1069 .open = fib_seq_open,
1070 .read = seq_read,
1071 .llseek = seq_lseek,
1072 .release = seq_release_private,
1073 };
1074
1075 int __init fib_proc_init(void)
1076 {
1077 if (!proc_net_fops_create("route", S_IRUGO, &fib_seq_fops))
1078 return -ENOMEM;
1079 return 0;
1080 }
1081
1082 void __init fib_proc_exit(void)
1083 {
1084 proc_net_remove("route");
1085 }
1086 #endif /* CONFIG_PROC_FS */