]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/fib_trie.c
Merge tag 'at91-ab-4.13-soc' of git://git.kernel.org/pub/scm/linux/kernel/git/abellon...
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally described in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.409"
52
53 #include <linux/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <linux/vmalloc.h>
76 #include <linux/notifier.h>
77 #include <net/net_namespace.h>
78 #include <net/ip.h>
79 #include <net/protocol.h>
80 #include <net/route.h>
81 #include <net/tcp.h>
82 #include <net/sock.h>
83 #include <net/ip_fib.h>
84 #include <trace/events/fib.h>
85 #include "fib_lookup.h"
86
87 static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
88 enum fib_event_type event_type, u32 dst,
89 int dst_len, struct fib_info *fi,
90 u8 tos, u8 type, u32 tb_id)
91 {
92 struct fib_entry_notifier_info info = {
93 .dst = dst,
94 .dst_len = dst_len,
95 .fi = fi,
96 .tos = tos,
97 .type = type,
98 .tb_id = tb_id,
99 };
100 return call_fib_notifier(nb, net, event_type, &info.info);
101 }
102
103 static int call_fib_entry_notifiers(struct net *net,
104 enum fib_event_type event_type, u32 dst,
105 int dst_len, struct fib_info *fi,
106 u8 tos, u8 type, u32 tb_id)
107 {
108 struct fib_entry_notifier_info info = {
109 .dst = dst,
110 .dst_len = dst_len,
111 .fi = fi,
112 .tos = tos,
113 .type = type,
114 .tb_id = tb_id,
115 };
116 return call_fib_notifiers(net, event_type, &info.info);
117 }
118
119 #define MAX_STAT_DEPTH 32
120
121 #define KEYLENGTH (8*sizeof(t_key))
122 #define KEY_MAX ((t_key)~0)
123
124 typedef unsigned int t_key;
125
126 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
127 #define IS_TNODE(n) ((n)->bits)
128 #define IS_LEAF(n) (!(n)->bits)
129
130 struct key_vector {
131 t_key key;
132 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
133 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
134 unsigned char slen;
135 union {
136 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
137 struct hlist_head leaf;
138 /* This array is valid if (pos | bits) > 0 (TNODE) */
139 struct key_vector __rcu *tnode[0];
140 };
141 };
142
143 struct tnode {
144 struct rcu_head rcu;
145 t_key empty_children; /* KEYLENGTH bits needed */
146 t_key full_children; /* KEYLENGTH bits needed */
147 struct key_vector __rcu *parent;
148 struct key_vector kv[1];
149 #define tn_bits kv[0].bits
150 };
151
152 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
153 #define LEAF_SIZE TNODE_SIZE(1)
154
155 #ifdef CONFIG_IP_FIB_TRIE_STATS
156 struct trie_use_stats {
157 unsigned int gets;
158 unsigned int backtrack;
159 unsigned int semantic_match_passed;
160 unsigned int semantic_match_miss;
161 unsigned int null_node_hit;
162 unsigned int resize_node_skipped;
163 };
164 #endif
165
166 struct trie_stat {
167 unsigned int totdepth;
168 unsigned int maxdepth;
169 unsigned int tnodes;
170 unsigned int leaves;
171 unsigned int nullpointers;
172 unsigned int prefixes;
173 unsigned int nodesizes[MAX_STAT_DEPTH];
174 };
175
176 struct trie {
177 struct key_vector kv[1];
178 #ifdef CONFIG_IP_FIB_TRIE_STATS
179 struct trie_use_stats __percpu *stats;
180 #endif
181 };
182
183 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
184 static size_t tnode_free_size;
185
186 /*
187 * synchronize_rcu after call_rcu for that many pages; it should be especially
188 * useful before resizing the root node with PREEMPT_NONE configs; the value was
189 * obtained experimentally, aiming to avoid visible slowdown.
190 */
191 static const int sync_pages = 128;
192
193 static struct kmem_cache *fn_alias_kmem __read_mostly;
194 static struct kmem_cache *trie_leaf_kmem __read_mostly;
195
196 static inline struct tnode *tn_info(struct key_vector *kv)
197 {
198 return container_of(kv, struct tnode, kv[0]);
199 }
200
201 /* caller must hold RTNL */
202 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
203 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
204
205 /* caller must hold RCU read lock or RTNL */
206 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
207 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
208
209 /* wrapper for rcu_assign_pointer */
210 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
211 {
212 if (n)
213 rcu_assign_pointer(tn_info(n)->parent, tp);
214 }
215
216 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
217
218 /* This provides us with the number of children in this node, in the case of a
219 * leaf this will return 0 meaning none of the children are accessible.
220 */
221 static inline unsigned long child_length(const struct key_vector *tn)
222 {
223 return (1ul << tn->bits) & ~(1ul);
224 }
225
226 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
227
228 static inline unsigned long get_index(t_key key, struct key_vector *kv)
229 {
230 unsigned long index = key ^ kv->key;
231
232 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
233 return 0;
234
235 return index >> kv->pos;
236 }
237
238 /* To understand this stuff, an understanding of keys and all their bits is
239 * necessary. Every node in the trie has a key associated with it, but not
240 * all of the bits in that key are significant.
241 *
242 * Consider a node 'n' and its parent 'tp'.
243 *
244 * If n is a leaf, every bit in its key is significant. Its presence is
245 * necessitated by path compression, since during a tree traversal (when
246 * searching for a leaf - unless we are doing an insertion) we will completely
247 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
248 * a potentially successful search, that we have indeed been walking the
249 * correct key path.
250 *
251 * Note that we can never "miss" the correct key in the tree if present by
252 * following the wrong path. Path compression ensures that segments of the key
253 * that are the same for all keys with a given prefix are skipped, but the
254 * skipped part *is* identical for each node in the subtrie below the skipped
255 * bit! trie_insert() in this implementation takes care of that.
256 *
257 * if n is an internal node - a 'tnode' here, the various parts of its key
258 * have many different meanings.
259 *
260 * Example:
261 * _________________________________________________________________
262 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
263 * -----------------------------------------------------------------
264 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
265 *
266 * _________________________________________________________________
267 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
268 * -----------------------------------------------------------------
269 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
270 *
271 * tp->pos = 22
272 * tp->bits = 3
273 * n->pos = 13
274 * n->bits = 4
275 *
276 * First, let's just ignore the bits that come before the parent tp, that is
277 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
278 * point we do not use them for anything.
279 *
280 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
281 * index into the parent's child array. That is, they will be used to find
282 * 'n' among tp's children.
283 *
284 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
285 * for the node n.
286 *
287 * All the bits we have seen so far are significant to the node n. The rest
288 * of the bits are really not needed or indeed known in n->key.
289 *
290 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
291 * n's child array, and will of course be different for each child.
292 *
293 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
294 * at this point.
295 */
296
297 static const int halve_threshold = 25;
298 static const int inflate_threshold = 50;
299 static const int halve_threshold_root = 15;
300 static const int inflate_threshold_root = 30;
301
302 static void __alias_free_mem(struct rcu_head *head)
303 {
304 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
305 kmem_cache_free(fn_alias_kmem, fa);
306 }
307
308 static inline void alias_free_mem_rcu(struct fib_alias *fa)
309 {
310 call_rcu(&fa->rcu, __alias_free_mem);
311 }
312
313 #define TNODE_KMALLOC_MAX \
314 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
315 #define TNODE_VMALLOC_MAX \
316 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
317
318 static void __node_free_rcu(struct rcu_head *head)
319 {
320 struct tnode *n = container_of(head, struct tnode, rcu);
321
322 if (!n->tn_bits)
323 kmem_cache_free(trie_leaf_kmem, n);
324 else
325 kvfree(n);
326 }
327
328 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
329
330 static struct tnode *tnode_alloc(int bits)
331 {
332 size_t size;
333
334 /* verify bits is within bounds */
335 if (bits > TNODE_VMALLOC_MAX)
336 return NULL;
337
338 /* determine size and verify it is non-zero and didn't overflow */
339 size = TNODE_SIZE(1ul << bits);
340
341 if (size <= PAGE_SIZE)
342 return kzalloc(size, GFP_KERNEL);
343 else
344 return vzalloc(size);
345 }
346
347 static inline void empty_child_inc(struct key_vector *n)
348 {
349 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
350 }
351
352 static inline void empty_child_dec(struct key_vector *n)
353 {
354 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
355 }
356
357 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
358 {
359 struct key_vector *l;
360 struct tnode *kv;
361
362 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
363 if (!kv)
364 return NULL;
365
366 /* initialize key vector */
367 l = kv->kv;
368 l->key = key;
369 l->pos = 0;
370 l->bits = 0;
371 l->slen = fa->fa_slen;
372
373 /* link leaf to fib alias */
374 INIT_HLIST_HEAD(&l->leaf);
375 hlist_add_head(&fa->fa_list, &l->leaf);
376
377 return l;
378 }
379
380 static struct key_vector *tnode_new(t_key key, int pos, int bits)
381 {
382 unsigned int shift = pos + bits;
383 struct key_vector *tn;
384 struct tnode *tnode;
385
386 /* verify bits and pos their msb bits clear and values are valid */
387 BUG_ON(!bits || (shift > KEYLENGTH));
388
389 tnode = tnode_alloc(bits);
390 if (!tnode)
391 return NULL;
392
393 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
394 sizeof(struct key_vector *) << bits);
395
396 if (bits == KEYLENGTH)
397 tnode->full_children = 1;
398 else
399 tnode->empty_children = 1ul << bits;
400
401 tn = tnode->kv;
402 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
403 tn->pos = pos;
404 tn->bits = bits;
405 tn->slen = pos;
406
407 return tn;
408 }
409
410 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
411 * and no bits are skipped. See discussion in dyntree paper p. 6
412 */
413 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
414 {
415 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
416 }
417
418 /* Add a child at position i overwriting the old value.
419 * Update the value of full_children and empty_children.
420 */
421 static void put_child(struct key_vector *tn, unsigned long i,
422 struct key_vector *n)
423 {
424 struct key_vector *chi = get_child(tn, i);
425 int isfull, wasfull;
426
427 BUG_ON(i >= child_length(tn));
428
429 /* update emptyChildren, overflow into fullChildren */
430 if (!n && chi)
431 empty_child_inc(tn);
432 if (n && !chi)
433 empty_child_dec(tn);
434
435 /* update fullChildren */
436 wasfull = tnode_full(tn, chi);
437 isfull = tnode_full(tn, n);
438
439 if (wasfull && !isfull)
440 tn_info(tn)->full_children--;
441 else if (!wasfull && isfull)
442 tn_info(tn)->full_children++;
443
444 if (n && (tn->slen < n->slen))
445 tn->slen = n->slen;
446
447 rcu_assign_pointer(tn->tnode[i], n);
448 }
449
450 static void update_children(struct key_vector *tn)
451 {
452 unsigned long i;
453
454 /* update all of the child parent pointers */
455 for (i = child_length(tn); i;) {
456 struct key_vector *inode = get_child(tn, --i);
457
458 if (!inode)
459 continue;
460
461 /* Either update the children of a tnode that
462 * already belongs to us or update the child
463 * to point to ourselves.
464 */
465 if (node_parent(inode) == tn)
466 update_children(inode);
467 else
468 node_set_parent(inode, tn);
469 }
470 }
471
472 static inline void put_child_root(struct key_vector *tp, t_key key,
473 struct key_vector *n)
474 {
475 if (IS_TRIE(tp))
476 rcu_assign_pointer(tp->tnode[0], n);
477 else
478 put_child(tp, get_index(key, tp), n);
479 }
480
481 static inline void tnode_free_init(struct key_vector *tn)
482 {
483 tn_info(tn)->rcu.next = NULL;
484 }
485
486 static inline void tnode_free_append(struct key_vector *tn,
487 struct key_vector *n)
488 {
489 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
490 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
491 }
492
493 static void tnode_free(struct key_vector *tn)
494 {
495 struct callback_head *head = &tn_info(tn)->rcu;
496
497 while (head) {
498 head = head->next;
499 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
500 node_free(tn);
501
502 tn = container_of(head, struct tnode, rcu)->kv;
503 }
504
505 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
506 tnode_free_size = 0;
507 synchronize_rcu();
508 }
509 }
510
511 static struct key_vector *replace(struct trie *t,
512 struct key_vector *oldtnode,
513 struct key_vector *tn)
514 {
515 struct key_vector *tp = node_parent(oldtnode);
516 unsigned long i;
517
518 /* setup the parent pointer out of and back into this node */
519 NODE_INIT_PARENT(tn, tp);
520 put_child_root(tp, tn->key, tn);
521
522 /* update all of the child parent pointers */
523 update_children(tn);
524
525 /* all pointers should be clean so we are done */
526 tnode_free(oldtnode);
527
528 /* resize children now that oldtnode is freed */
529 for (i = child_length(tn); i;) {
530 struct key_vector *inode = get_child(tn, --i);
531
532 /* resize child node */
533 if (tnode_full(tn, inode))
534 tn = resize(t, inode);
535 }
536
537 return tp;
538 }
539
540 static struct key_vector *inflate(struct trie *t,
541 struct key_vector *oldtnode)
542 {
543 struct key_vector *tn;
544 unsigned long i;
545 t_key m;
546
547 pr_debug("In inflate\n");
548
549 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
550 if (!tn)
551 goto notnode;
552
553 /* prepare oldtnode to be freed */
554 tnode_free_init(oldtnode);
555
556 /* Assemble all of the pointers in our cluster, in this case that
557 * represents all of the pointers out of our allocated nodes that
558 * point to existing tnodes and the links between our allocated
559 * nodes.
560 */
561 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
562 struct key_vector *inode = get_child(oldtnode, --i);
563 struct key_vector *node0, *node1;
564 unsigned long j, k;
565
566 /* An empty child */
567 if (!inode)
568 continue;
569
570 /* A leaf or an internal node with skipped bits */
571 if (!tnode_full(oldtnode, inode)) {
572 put_child(tn, get_index(inode->key, tn), inode);
573 continue;
574 }
575
576 /* drop the node in the old tnode free list */
577 tnode_free_append(oldtnode, inode);
578
579 /* An internal node with two children */
580 if (inode->bits == 1) {
581 put_child(tn, 2 * i + 1, get_child(inode, 1));
582 put_child(tn, 2 * i, get_child(inode, 0));
583 continue;
584 }
585
586 /* We will replace this node 'inode' with two new
587 * ones, 'node0' and 'node1', each with half of the
588 * original children. The two new nodes will have
589 * a position one bit further down the key and this
590 * means that the "significant" part of their keys
591 * (see the discussion near the top of this file)
592 * will differ by one bit, which will be "0" in
593 * node0's key and "1" in node1's key. Since we are
594 * moving the key position by one step, the bit that
595 * we are moving away from - the bit at position
596 * (tn->pos) - is the one that will differ between
597 * node0 and node1. So... we synthesize that bit in the
598 * two new keys.
599 */
600 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
601 if (!node1)
602 goto nomem;
603 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
604
605 tnode_free_append(tn, node1);
606 if (!node0)
607 goto nomem;
608 tnode_free_append(tn, node0);
609
610 /* populate child pointers in new nodes */
611 for (k = child_length(inode), j = k / 2; j;) {
612 put_child(node1, --j, get_child(inode, --k));
613 put_child(node0, j, get_child(inode, j));
614 put_child(node1, --j, get_child(inode, --k));
615 put_child(node0, j, get_child(inode, j));
616 }
617
618 /* link new nodes to parent */
619 NODE_INIT_PARENT(node1, tn);
620 NODE_INIT_PARENT(node0, tn);
621
622 /* link parent to nodes */
623 put_child(tn, 2 * i + 1, node1);
624 put_child(tn, 2 * i, node0);
625 }
626
627 /* setup the parent pointers into and out of this node */
628 return replace(t, oldtnode, tn);
629 nomem:
630 /* all pointers should be clean so we are done */
631 tnode_free(tn);
632 notnode:
633 return NULL;
634 }
635
636 static struct key_vector *halve(struct trie *t,
637 struct key_vector *oldtnode)
638 {
639 struct key_vector *tn;
640 unsigned long i;
641
642 pr_debug("In halve\n");
643
644 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
645 if (!tn)
646 goto notnode;
647
648 /* prepare oldtnode to be freed */
649 tnode_free_init(oldtnode);
650
651 /* Assemble all of the pointers in our cluster, in this case that
652 * represents all of the pointers out of our allocated nodes that
653 * point to existing tnodes and the links between our allocated
654 * nodes.
655 */
656 for (i = child_length(oldtnode); i;) {
657 struct key_vector *node1 = get_child(oldtnode, --i);
658 struct key_vector *node0 = get_child(oldtnode, --i);
659 struct key_vector *inode;
660
661 /* At least one of the children is empty */
662 if (!node1 || !node0) {
663 put_child(tn, i / 2, node1 ? : node0);
664 continue;
665 }
666
667 /* Two nonempty children */
668 inode = tnode_new(node0->key, oldtnode->pos, 1);
669 if (!inode)
670 goto nomem;
671 tnode_free_append(tn, inode);
672
673 /* initialize pointers out of node */
674 put_child(inode, 1, node1);
675 put_child(inode, 0, node0);
676 NODE_INIT_PARENT(inode, tn);
677
678 /* link parent to node */
679 put_child(tn, i / 2, inode);
680 }
681
682 /* setup the parent pointers into and out of this node */
683 return replace(t, oldtnode, tn);
684 nomem:
685 /* all pointers should be clean so we are done */
686 tnode_free(tn);
687 notnode:
688 return NULL;
689 }
690
691 static struct key_vector *collapse(struct trie *t,
692 struct key_vector *oldtnode)
693 {
694 struct key_vector *n, *tp;
695 unsigned long i;
696
697 /* scan the tnode looking for that one child that might still exist */
698 for (n = NULL, i = child_length(oldtnode); !n && i;)
699 n = get_child(oldtnode, --i);
700
701 /* compress one level */
702 tp = node_parent(oldtnode);
703 put_child_root(tp, oldtnode->key, n);
704 node_set_parent(n, tp);
705
706 /* drop dead node */
707 node_free(oldtnode);
708
709 return tp;
710 }
711
712 static unsigned char update_suffix(struct key_vector *tn)
713 {
714 unsigned char slen = tn->pos;
715 unsigned long stride, i;
716 unsigned char slen_max;
717
718 /* only vector 0 can have a suffix length greater than or equal to
719 * tn->pos + tn->bits, the second highest node will have a suffix
720 * length at most of tn->pos + tn->bits - 1
721 */
722 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
723
724 /* search though the list of children looking for nodes that might
725 * have a suffix greater than the one we currently have. This is
726 * why we start with a stride of 2 since a stride of 1 would
727 * represent the nodes with suffix length equal to tn->pos
728 */
729 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
730 struct key_vector *n = get_child(tn, i);
731
732 if (!n || (n->slen <= slen))
733 continue;
734
735 /* update stride and slen based on new value */
736 stride <<= (n->slen - slen);
737 slen = n->slen;
738 i &= ~(stride - 1);
739
740 /* stop searching if we have hit the maximum possible value */
741 if (slen >= slen_max)
742 break;
743 }
744
745 tn->slen = slen;
746
747 return slen;
748 }
749
750 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
751 * the Helsinki University of Technology and Matti Tikkanen of Nokia
752 * Telecommunications, page 6:
753 * "A node is doubled if the ratio of non-empty children to all
754 * children in the *doubled* node is at least 'high'."
755 *
756 * 'high' in this instance is the variable 'inflate_threshold'. It
757 * is expressed as a percentage, so we multiply it with
758 * child_length() and instead of multiplying by 2 (since the
759 * child array will be doubled by inflate()) and multiplying
760 * the left-hand side by 100 (to handle the percentage thing) we
761 * multiply the left-hand side by 50.
762 *
763 * The left-hand side may look a bit weird: child_length(tn)
764 * - tn->empty_children is of course the number of non-null children
765 * in the current node. tn->full_children is the number of "full"
766 * children, that is non-null tnodes with a skip value of 0.
767 * All of those will be doubled in the resulting inflated tnode, so
768 * we just count them one extra time here.
769 *
770 * A clearer way to write this would be:
771 *
772 * to_be_doubled = tn->full_children;
773 * not_to_be_doubled = child_length(tn) - tn->empty_children -
774 * tn->full_children;
775 *
776 * new_child_length = child_length(tn) * 2;
777 *
778 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
779 * new_child_length;
780 * if (new_fill_factor >= inflate_threshold)
781 *
782 * ...and so on, tho it would mess up the while () loop.
783 *
784 * anyway,
785 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
786 * inflate_threshold
787 *
788 * avoid a division:
789 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
790 * inflate_threshold * new_child_length
791 *
792 * expand not_to_be_doubled and to_be_doubled, and shorten:
793 * 100 * (child_length(tn) - tn->empty_children +
794 * tn->full_children) >= inflate_threshold * new_child_length
795 *
796 * expand new_child_length:
797 * 100 * (child_length(tn) - tn->empty_children +
798 * tn->full_children) >=
799 * inflate_threshold * child_length(tn) * 2
800 *
801 * shorten again:
802 * 50 * (tn->full_children + child_length(tn) -
803 * tn->empty_children) >= inflate_threshold *
804 * child_length(tn)
805 *
806 */
807 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
808 {
809 unsigned long used = child_length(tn);
810 unsigned long threshold = used;
811
812 /* Keep root node larger */
813 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
814 used -= tn_info(tn)->empty_children;
815 used += tn_info(tn)->full_children;
816
817 /* if bits == KEYLENGTH then pos = 0, and will fail below */
818
819 return (used > 1) && tn->pos && ((50 * used) >= threshold);
820 }
821
822 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
823 {
824 unsigned long used = child_length(tn);
825 unsigned long threshold = used;
826
827 /* Keep root node larger */
828 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
829 used -= tn_info(tn)->empty_children;
830
831 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
832
833 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
834 }
835
836 static inline bool should_collapse(struct key_vector *tn)
837 {
838 unsigned long used = child_length(tn);
839
840 used -= tn_info(tn)->empty_children;
841
842 /* account for bits == KEYLENGTH case */
843 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
844 used -= KEY_MAX;
845
846 /* One child or none, time to drop us from the trie */
847 return used < 2;
848 }
849
850 #define MAX_WORK 10
851 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
852 {
853 #ifdef CONFIG_IP_FIB_TRIE_STATS
854 struct trie_use_stats __percpu *stats = t->stats;
855 #endif
856 struct key_vector *tp = node_parent(tn);
857 unsigned long cindex = get_index(tn->key, tp);
858 int max_work = MAX_WORK;
859
860 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
861 tn, inflate_threshold, halve_threshold);
862
863 /* track the tnode via the pointer from the parent instead of
864 * doing it ourselves. This way we can let RCU fully do its
865 * thing without us interfering
866 */
867 BUG_ON(tn != get_child(tp, cindex));
868
869 /* Double as long as the resulting node has a number of
870 * nonempty nodes that are above the threshold.
871 */
872 while (should_inflate(tp, tn) && max_work) {
873 tp = inflate(t, tn);
874 if (!tp) {
875 #ifdef CONFIG_IP_FIB_TRIE_STATS
876 this_cpu_inc(stats->resize_node_skipped);
877 #endif
878 break;
879 }
880
881 max_work--;
882 tn = get_child(tp, cindex);
883 }
884
885 /* update parent in case inflate failed */
886 tp = node_parent(tn);
887
888 /* Return if at least one inflate is run */
889 if (max_work != MAX_WORK)
890 return tp;
891
892 /* Halve as long as the number of empty children in this
893 * node is above threshold.
894 */
895 while (should_halve(tp, tn) && max_work) {
896 tp = halve(t, tn);
897 if (!tp) {
898 #ifdef CONFIG_IP_FIB_TRIE_STATS
899 this_cpu_inc(stats->resize_node_skipped);
900 #endif
901 break;
902 }
903
904 max_work--;
905 tn = get_child(tp, cindex);
906 }
907
908 /* Only one child remains */
909 if (should_collapse(tn))
910 return collapse(t, tn);
911
912 /* update parent in case halve failed */
913 return node_parent(tn);
914 }
915
916 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
917 {
918 unsigned char node_slen = tn->slen;
919
920 while ((node_slen > tn->pos) && (node_slen > slen)) {
921 slen = update_suffix(tn);
922 if (node_slen == slen)
923 break;
924
925 tn = node_parent(tn);
926 node_slen = tn->slen;
927 }
928 }
929
930 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
931 {
932 while (tn->slen < slen) {
933 tn->slen = slen;
934 tn = node_parent(tn);
935 }
936 }
937
938 /* rcu_read_lock needs to be hold by caller from readside */
939 static struct key_vector *fib_find_node(struct trie *t,
940 struct key_vector **tp, u32 key)
941 {
942 struct key_vector *pn, *n = t->kv;
943 unsigned long index = 0;
944
945 do {
946 pn = n;
947 n = get_child_rcu(n, index);
948
949 if (!n)
950 break;
951
952 index = get_cindex(key, n);
953
954 /* This bit of code is a bit tricky but it combines multiple
955 * checks into a single check. The prefix consists of the
956 * prefix plus zeros for the bits in the cindex. The index
957 * is the difference between the key and this value. From
958 * this we can actually derive several pieces of data.
959 * if (index >= (1ul << bits))
960 * we have a mismatch in skip bits and failed
961 * else
962 * we know the value is cindex
963 *
964 * This check is safe even if bits == KEYLENGTH due to the
965 * fact that we can only allocate a node with 32 bits if a
966 * long is greater than 32 bits.
967 */
968 if (index >= (1ul << n->bits)) {
969 n = NULL;
970 break;
971 }
972
973 /* keep searching until we find a perfect match leaf or NULL */
974 } while (IS_TNODE(n));
975
976 *tp = pn;
977
978 return n;
979 }
980
981 /* Return the first fib alias matching TOS with
982 * priority less than or equal to PRIO.
983 */
984 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
985 u8 tos, u32 prio, u32 tb_id)
986 {
987 struct fib_alias *fa;
988
989 if (!fah)
990 return NULL;
991
992 hlist_for_each_entry(fa, fah, fa_list) {
993 if (fa->fa_slen < slen)
994 continue;
995 if (fa->fa_slen != slen)
996 break;
997 if (fa->tb_id > tb_id)
998 continue;
999 if (fa->tb_id != tb_id)
1000 break;
1001 if (fa->fa_tos > tos)
1002 continue;
1003 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1004 return fa;
1005 }
1006
1007 return NULL;
1008 }
1009
1010 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1011 {
1012 while (!IS_TRIE(tn))
1013 tn = resize(t, tn);
1014 }
1015
1016 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1017 struct fib_alias *new, t_key key)
1018 {
1019 struct key_vector *n, *l;
1020
1021 l = leaf_new(key, new);
1022 if (!l)
1023 goto noleaf;
1024
1025 /* retrieve child from parent node */
1026 n = get_child(tp, get_index(key, tp));
1027
1028 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1029 *
1030 * Add a new tnode here
1031 * first tnode need some special handling
1032 * leaves us in position for handling as case 3
1033 */
1034 if (n) {
1035 struct key_vector *tn;
1036
1037 tn = tnode_new(key, __fls(key ^ n->key), 1);
1038 if (!tn)
1039 goto notnode;
1040
1041 /* initialize routes out of node */
1042 NODE_INIT_PARENT(tn, tp);
1043 put_child(tn, get_index(key, tn) ^ 1, n);
1044
1045 /* start adding routes into the node */
1046 put_child_root(tp, key, tn);
1047 node_set_parent(n, tn);
1048
1049 /* parent now has a NULL spot where the leaf can go */
1050 tp = tn;
1051 }
1052
1053 /* Case 3: n is NULL, and will just insert a new leaf */
1054 node_push_suffix(tp, new->fa_slen);
1055 NODE_INIT_PARENT(l, tp);
1056 put_child_root(tp, key, l);
1057 trie_rebalance(t, tp);
1058
1059 return 0;
1060 notnode:
1061 node_free(l);
1062 noleaf:
1063 return -ENOMEM;
1064 }
1065
1066 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1067 struct key_vector *l, struct fib_alias *new,
1068 struct fib_alias *fa, t_key key)
1069 {
1070 if (!l)
1071 return fib_insert_node(t, tp, new, key);
1072
1073 if (fa) {
1074 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1075 } else {
1076 struct fib_alias *last;
1077
1078 hlist_for_each_entry(last, &l->leaf, fa_list) {
1079 if (new->fa_slen < last->fa_slen)
1080 break;
1081 if ((new->fa_slen == last->fa_slen) &&
1082 (new->tb_id > last->tb_id))
1083 break;
1084 fa = last;
1085 }
1086
1087 if (fa)
1088 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1089 else
1090 hlist_add_head_rcu(&new->fa_list, &l->leaf);
1091 }
1092
1093 /* if we added to the tail node then we need to update slen */
1094 if (l->slen < new->fa_slen) {
1095 l->slen = new->fa_slen;
1096 node_push_suffix(tp, new->fa_slen);
1097 }
1098
1099 return 0;
1100 }
1101
1102 /* Caller must hold RTNL. */
1103 int fib_table_insert(struct net *net, struct fib_table *tb,
1104 struct fib_config *cfg)
1105 {
1106 enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1107 struct trie *t = (struct trie *)tb->tb_data;
1108 struct fib_alias *fa, *new_fa;
1109 struct key_vector *l, *tp;
1110 u16 nlflags = NLM_F_EXCL;
1111 struct fib_info *fi;
1112 u8 plen = cfg->fc_dst_len;
1113 u8 slen = KEYLENGTH - plen;
1114 u8 tos = cfg->fc_tos;
1115 u32 key;
1116 int err;
1117
1118 if (plen > KEYLENGTH)
1119 return -EINVAL;
1120
1121 key = ntohl(cfg->fc_dst);
1122
1123 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1124
1125 if ((plen < KEYLENGTH) && (key << plen))
1126 return -EINVAL;
1127
1128 fi = fib_create_info(cfg);
1129 if (IS_ERR(fi)) {
1130 err = PTR_ERR(fi);
1131 goto err;
1132 }
1133
1134 l = fib_find_node(t, &tp, key);
1135 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1136 tb->tb_id) : NULL;
1137
1138 /* Now fa, if non-NULL, points to the first fib alias
1139 * with the same keys [prefix,tos,priority], if such key already
1140 * exists or to the node before which we will insert new one.
1141 *
1142 * If fa is NULL, we will need to allocate a new one and
1143 * insert to the tail of the section matching the suffix length
1144 * of the new alias.
1145 */
1146
1147 if (fa && fa->fa_tos == tos &&
1148 fa->fa_info->fib_priority == fi->fib_priority) {
1149 struct fib_alias *fa_first, *fa_match;
1150
1151 err = -EEXIST;
1152 if (cfg->fc_nlflags & NLM_F_EXCL)
1153 goto out;
1154
1155 nlflags &= ~NLM_F_EXCL;
1156
1157 /* We have 2 goals:
1158 * 1. Find exact match for type, scope, fib_info to avoid
1159 * duplicate routes
1160 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1161 */
1162 fa_match = NULL;
1163 fa_first = fa;
1164 hlist_for_each_entry_from(fa, fa_list) {
1165 if ((fa->fa_slen != slen) ||
1166 (fa->tb_id != tb->tb_id) ||
1167 (fa->fa_tos != tos))
1168 break;
1169 if (fa->fa_info->fib_priority != fi->fib_priority)
1170 break;
1171 if (fa->fa_type == cfg->fc_type &&
1172 fa->fa_info == fi) {
1173 fa_match = fa;
1174 break;
1175 }
1176 }
1177
1178 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1179 struct fib_info *fi_drop;
1180 u8 state;
1181
1182 nlflags |= NLM_F_REPLACE;
1183 fa = fa_first;
1184 if (fa_match) {
1185 if (fa == fa_match)
1186 err = 0;
1187 goto out;
1188 }
1189 err = -ENOBUFS;
1190 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1191 if (!new_fa)
1192 goto out;
1193
1194 fi_drop = fa->fa_info;
1195 new_fa->fa_tos = fa->fa_tos;
1196 new_fa->fa_info = fi;
1197 new_fa->fa_type = cfg->fc_type;
1198 state = fa->fa_state;
1199 new_fa->fa_state = state & ~FA_S_ACCESSED;
1200 new_fa->fa_slen = fa->fa_slen;
1201 new_fa->tb_id = tb->tb_id;
1202 new_fa->fa_default = -1;
1203
1204 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
1205 key, plen, fi,
1206 new_fa->fa_tos, cfg->fc_type,
1207 tb->tb_id);
1208 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1209 tb->tb_id, &cfg->fc_nlinfo, nlflags);
1210
1211 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1212
1213 alias_free_mem_rcu(fa);
1214
1215 fib_release_info(fi_drop);
1216 if (state & FA_S_ACCESSED)
1217 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1218
1219 goto succeeded;
1220 }
1221 /* Error if we find a perfect match which
1222 * uses the same scope, type, and nexthop
1223 * information.
1224 */
1225 if (fa_match)
1226 goto out;
1227
1228 if (cfg->fc_nlflags & NLM_F_APPEND) {
1229 event = FIB_EVENT_ENTRY_APPEND;
1230 nlflags |= NLM_F_APPEND;
1231 } else {
1232 fa = fa_first;
1233 }
1234 }
1235 err = -ENOENT;
1236 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1237 goto out;
1238
1239 nlflags |= NLM_F_CREATE;
1240 err = -ENOBUFS;
1241 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1242 if (!new_fa)
1243 goto out;
1244
1245 new_fa->fa_info = fi;
1246 new_fa->fa_tos = tos;
1247 new_fa->fa_type = cfg->fc_type;
1248 new_fa->fa_state = 0;
1249 new_fa->fa_slen = slen;
1250 new_fa->tb_id = tb->tb_id;
1251 new_fa->fa_default = -1;
1252
1253 /* Insert new entry to the list. */
1254 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1255 if (err)
1256 goto out_free_new_fa;
1257
1258 if (!plen)
1259 tb->tb_num_default++;
1260
1261 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1262 call_fib_entry_notifiers(net, event, key, plen, fi, tos, cfg->fc_type,
1263 tb->tb_id);
1264 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1265 &cfg->fc_nlinfo, nlflags);
1266 succeeded:
1267 return 0;
1268
1269 out_free_new_fa:
1270 kmem_cache_free(fn_alias_kmem, new_fa);
1271 out:
1272 fib_release_info(fi);
1273 err:
1274 return err;
1275 }
1276
1277 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1278 {
1279 t_key prefix = n->key;
1280
1281 return (key ^ prefix) & (prefix | -prefix);
1282 }
1283
1284 /* should be called with rcu_read_lock */
1285 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1286 struct fib_result *res, int fib_flags)
1287 {
1288 struct trie *t = (struct trie *) tb->tb_data;
1289 #ifdef CONFIG_IP_FIB_TRIE_STATS
1290 struct trie_use_stats __percpu *stats = t->stats;
1291 #endif
1292 const t_key key = ntohl(flp->daddr);
1293 struct key_vector *n, *pn;
1294 struct fib_alias *fa;
1295 unsigned long index;
1296 t_key cindex;
1297
1298 trace_fib_table_lookup(tb->tb_id, flp);
1299
1300 pn = t->kv;
1301 cindex = 0;
1302
1303 n = get_child_rcu(pn, cindex);
1304 if (!n)
1305 return -EAGAIN;
1306
1307 #ifdef CONFIG_IP_FIB_TRIE_STATS
1308 this_cpu_inc(stats->gets);
1309 #endif
1310
1311 /* Step 1: Travel to the longest prefix match in the trie */
1312 for (;;) {
1313 index = get_cindex(key, n);
1314
1315 /* This bit of code is a bit tricky but it combines multiple
1316 * checks into a single check. The prefix consists of the
1317 * prefix plus zeros for the "bits" in the prefix. The index
1318 * is the difference between the key and this value. From
1319 * this we can actually derive several pieces of data.
1320 * if (index >= (1ul << bits))
1321 * we have a mismatch in skip bits and failed
1322 * else
1323 * we know the value is cindex
1324 *
1325 * This check is safe even if bits == KEYLENGTH due to the
1326 * fact that we can only allocate a node with 32 bits if a
1327 * long is greater than 32 bits.
1328 */
1329 if (index >= (1ul << n->bits))
1330 break;
1331
1332 /* we have found a leaf. Prefixes have already been compared */
1333 if (IS_LEAF(n))
1334 goto found;
1335
1336 /* only record pn and cindex if we are going to be chopping
1337 * bits later. Otherwise we are just wasting cycles.
1338 */
1339 if (n->slen > n->pos) {
1340 pn = n;
1341 cindex = index;
1342 }
1343
1344 n = get_child_rcu(n, index);
1345 if (unlikely(!n))
1346 goto backtrace;
1347 }
1348
1349 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1350 for (;;) {
1351 /* record the pointer where our next node pointer is stored */
1352 struct key_vector __rcu **cptr = n->tnode;
1353
1354 /* This test verifies that none of the bits that differ
1355 * between the key and the prefix exist in the region of
1356 * the lsb and higher in the prefix.
1357 */
1358 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1359 goto backtrace;
1360
1361 /* exit out and process leaf */
1362 if (unlikely(IS_LEAF(n)))
1363 break;
1364
1365 /* Don't bother recording parent info. Since we are in
1366 * prefix match mode we will have to come back to wherever
1367 * we started this traversal anyway
1368 */
1369
1370 while ((n = rcu_dereference(*cptr)) == NULL) {
1371 backtrace:
1372 #ifdef CONFIG_IP_FIB_TRIE_STATS
1373 if (!n)
1374 this_cpu_inc(stats->null_node_hit);
1375 #endif
1376 /* If we are at cindex 0 there are no more bits for
1377 * us to strip at this level so we must ascend back
1378 * up one level to see if there are any more bits to
1379 * be stripped there.
1380 */
1381 while (!cindex) {
1382 t_key pkey = pn->key;
1383
1384 /* If we don't have a parent then there is
1385 * nothing for us to do as we do not have any
1386 * further nodes to parse.
1387 */
1388 if (IS_TRIE(pn))
1389 return -EAGAIN;
1390 #ifdef CONFIG_IP_FIB_TRIE_STATS
1391 this_cpu_inc(stats->backtrack);
1392 #endif
1393 /* Get Child's index */
1394 pn = node_parent_rcu(pn);
1395 cindex = get_index(pkey, pn);
1396 }
1397
1398 /* strip the least significant bit from the cindex */
1399 cindex &= cindex - 1;
1400
1401 /* grab pointer for next child node */
1402 cptr = &pn->tnode[cindex];
1403 }
1404 }
1405
1406 found:
1407 /* this line carries forward the xor from earlier in the function */
1408 index = key ^ n->key;
1409
1410 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1411 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1412 struct fib_info *fi = fa->fa_info;
1413 int nhsel, err;
1414
1415 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1416 if (index >= (1ul << fa->fa_slen))
1417 continue;
1418 }
1419 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1420 continue;
1421 if (fi->fib_dead)
1422 continue;
1423 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1424 continue;
1425 fib_alias_accessed(fa);
1426 err = fib_props[fa->fa_type].error;
1427 if (unlikely(err < 0)) {
1428 #ifdef CONFIG_IP_FIB_TRIE_STATS
1429 this_cpu_inc(stats->semantic_match_passed);
1430 #endif
1431 return err;
1432 }
1433 if (fi->fib_flags & RTNH_F_DEAD)
1434 continue;
1435 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1436 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1437 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1438
1439 if (nh->nh_flags & RTNH_F_DEAD)
1440 continue;
1441 if (in_dev &&
1442 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1443 nh->nh_flags & RTNH_F_LINKDOWN &&
1444 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1445 continue;
1446 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1447 if (flp->flowi4_oif &&
1448 flp->flowi4_oif != nh->nh_oif)
1449 continue;
1450 }
1451
1452 if (!(fib_flags & FIB_LOOKUP_NOREF))
1453 atomic_inc(&fi->fib_clntref);
1454
1455 res->prefixlen = KEYLENGTH - fa->fa_slen;
1456 res->nh_sel = nhsel;
1457 res->type = fa->fa_type;
1458 res->scope = fi->fib_scope;
1459 res->fi = fi;
1460 res->table = tb;
1461 res->fa_head = &n->leaf;
1462 #ifdef CONFIG_IP_FIB_TRIE_STATS
1463 this_cpu_inc(stats->semantic_match_passed);
1464 #endif
1465 trace_fib_table_lookup_nh(nh);
1466
1467 return err;
1468 }
1469 }
1470 #ifdef CONFIG_IP_FIB_TRIE_STATS
1471 this_cpu_inc(stats->semantic_match_miss);
1472 #endif
1473 goto backtrace;
1474 }
1475 EXPORT_SYMBOL_GPL(fib_table_lookup);
1476
1477 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1478 struct key_vector *l, struct fib_alias *old)
1479 {
1480 /* record the location of the previous list_info entry */
1481 struct hlist_node **pprev = old->fa_list.pprev;
1482 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1483
1484 /* remove the fib_alias from the list */
1485 hlist_del_rcu(&old->fa_list);
1486
1487 /* if we emptied the list this leaf will be freed and we can sort
1488 * out parent suffix lengths as a part of trie_rebalance
1489 */
1490 if (hlist_empty(&l->leaf)) {
1491 if (tp->slen == l->slen)
1492 node_pull_suffix(tp, tp->pos);
1493 put_child_root(tp, l->key, NULL);
1494 node_free(l);
1495 trie_rebalance(t, tp);
1496 return;
1497 }
1498
1499 /* only access fa if it is pointing at the last valid hlist_node */
1500 if (*pprev)
1501 return;
1502
1503 /* update the trie with the latest suffix length */
1504 l->slen = fa->fa_slen;
1505 node_pull_suffix(tp, fa->fa_slen);
1506 }
1507
1508 /* Caller must hold RTNL. */
1509 int fib_table_delete(struct net *net, struct fib_table *tb,
1510 struct fib_config *cfg)
1511 {
1512 struct trie *t = (struct trie *) tb->tb_data;
1513 struct fib_alias *fa, *fa_to_delete;
1514 struct key_vector *l, *tp;
1515 u8 plen = cfg->fc_dst_len;
1516 u8 slen = KEYLENGTH - plen;
1517 u8 tos = cfg->fc_tos;
1518 u32 key;
1519
1520 if (plen > KEYLENGTH)
1521 return -EINVAL;
1522
1523 key = ntohl(cfg->fc_dst);
1524
1525 if ((plen < KEYLENGTH) && (key << plen))
1526 return -EINVAL;
1527
1528 l = fib_find_node(t, &tp, key);
1529 if (!l)
1530 return -ESRCH;
1531
1532 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1533 if (!fa)
1534 return -ESRCH;
1535
1536 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1537
1538 fa_to_delete = NULL;
1539 hlist_for_each_entry_from(fa, fa_list) {
1540 struct fib_info *fi = fa->fa_info;
1541
1542 if ((fa->fa_slen != slen) ||
1543 (fa->tb_id != tb->tb_id) ||
1544 (fa->fa_tos != tos))
1545 break;
1546
1547 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1548 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1549 fa->fa_info->fib_scope == cfg->fc_scope) &&
1550 (!cfg->fc_prefsrc ||
1551 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1552 (!cfg->fc_protocol ||
1553 fi->fib_protocol == cfg->fc_protocol) &&
1554 fib_nh_match(cfg, fi) == 0) {
1555 fa_to_delete = fa;
1556 break;
1557 }
1558 }
1559
1560 if (!fa_to_delete)
1561 return -ESRCH;
1562
1563 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1564 fa_to_delete->fa_info, tos,
1565 fa_to_delete->fa_type, tb->tb_id);
1566 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1567 &cfg->fc_nlinfo, 0);
1568
1569 if (!plen)
1570 tb->tb_num_default--;
1571
1572 fib_remove_alias(t, tp, l, fa_to_delete);
1573
1574 if (fa_to_delete->fa_state & FA_S_ACCESSED)
1575 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1576
1577 fib_release_info(fa_to_delete->fa_info);
1578 alias_free_mem_rcu(fa_to_delete);
1579 return 0;
1580 }
1581
1582 /* Scan for the next leaf starting at the provided key value */
1583 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1584 {
1585 struct key_vector *pn, *n = *tn;
1586 unsigned long cindex;
1587
1588 /* this loop is meant to try and find the key in the trie */
1589 do {
1590 /* record parent and next child index */
1591 pn = n;
1592 cindex = (key > pn->key) ? get_index(key, pn) : 0;
1593
1594 if (cindex >> pn->bits)
1595 break;
1596
1597 /* descend into the next child */
1598 n = get_child_rcu(pn, cindex++);
1599 if (!n)
1600 break;
1601
1602 /* guarantee forward progress on the keys */
1603 if (IS_LEAF(n) && (n->key >= key))
1604 goto found;
1605 } while (IS_TNODE(n));
1606
1607 /* this loop will search for the next leaf with a greater key */
1608 while (!IS_TRIE(pn)) {
1609 /* if we exhausted the parent node we will need to climb */
1610 if (cindex >= (1ul << pn->bits)) {
1611 t_key pkey = pn->key;
1612
1613 pn = node_parent_rcu(pn);
1614 cindex = get_index(pkey, pn) + 1;
1615 continue;
1616 }
1617
1618 /* grab the next available node */
1619 n = get_child_rcu(pn, cindex++);
1620 if (!n)
1621 continue;
1622
1623 /* no need to compare keys since we bumped the index */
1624 if (IS_LEAF(n))
1625 goto found;
1626
1627 /* Rescan start scanning in new node */
1628 pn = n;
1629 cindex = 0;
1630 }
1631
1632 *tn = pn;
1633 return NULL; /* Root of trie */
1634 found:
1635 /* if we are at the limit for keys just return NULL for the tnode */
1636 *tn = pn;
1637 return n;
1638 }
1639
1640 static void fib_trie_free(struct fib_table *tb)
1641 {
1642 struct trie *t = (struct trie *)tb->tb_data;
1643 struct key_vector *pn = t->kv;
1644 unsigned long cindex = 1;
1645 struct hlist_node *tmp;
1646 struct fib_alias *fa;
1647
1648 /* walk trie in reverse order and free everything */
1649 for (;;) {
1650 struct key_vector *n;
1651
1652 if (!(cindex--)) {
1653 t_key pkey = pn->key;
1654
1655 if (IS_TRIE(pn))
1656 break;
1657
1658 n = pn;
1659 pn = node_parent(pn);
1660
1661 /* drop emptied tnode */
1662 put_child_root(pn, n->key, NULL);
1663 node_free(n);
1664
1665 cindex = get_index(pkey, pn);
1666
1667 continue;
1668 }
1669
1670 /* grab the next available node */
1671 n = get_child(pn, cindex);
1672 if (!n)
1673 continue;
1674
1675 if (IS_TNODE(n)) {
1676 /* record pn and cindex for leaf walking */
1677 pn = n;
1678 cindex = 1ul << n->bits;
1679
1680 continue;
1681 }
1682
1683 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1684 hlist_del_rcu(&fa->fa_list);
1685 alias_free_mem_rcu(fa);
1686 }
1687
1688 put_child_root(pn, n->key, NULL);
1689 node_free(n);
1690 }
1691
1692 #ifdef CONFIG_IP_FIB_TRIE_STATS
1693 free_percpu(t->stats);
1694 #endif
1695 kfree(tb);
1696 }
1697
1698 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1699 {
1700 struct trie *ot = (struct trie *)oldtb->tb_data;
1701 struct key_vector *l, *tp = ot->kv;
1702 struct fib_table *local_tb;
1703 struct fib_alias *fa;
1704 struct trie *lt;
1705 t_key key = 0;
1706
1707 if (oldtb->tb_data == oldtb->__data)
1708 return oldtb;
1709
1710 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1711 if (!local_tb)
1712 return NULL;
1713
1714 lt = (struct trie *)local_tb->tb_data;
1715
1716 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1717 struct key_vector *local_l = NULL, *local_tp;
1718
1719 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1720 struct fib_alias *new_fa;
1721
1722 if (local_tb->tb_id != fa->tb_id)
1723 continue;
1724
1725 /* clone fa for new local table */
1726 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1727 if (!new_fa)
1728 goto out;
1729
1730 memcpy(new_fa, fa, sizeof(*fa));
1731
1732 /* insert clone into table */
1733 if (!local_l)
1734 local_l = fib_find_node(lt, &local_tp, l->key);
1735
1736 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1737 NULL, l->key)) {
1738 kmem_cache_free(fn_alias_kmem, new_fa);
1739 goto out;
1740 }
1741 }
1742
1743 /* stop loop if key wrapped back to 0 */
1744 key = l->key + 1;
1745 if (key < l->key)
1746 break;
1747 }
1748
1749 return local_tb;
1750 out:
1751 fib_trie_free(local_tb);
1752
1753 return NULL;
1754 }
1755
1756 /* Caller must hold RTNL */
1757 void fib_table_flush_external(struct fib_table *tb)
1758 {
1759 struct trie *t = (struct trie *)tb->tb_data;
1760 struct key_vector *pn = t->kv;
1761 unsigned long cindex = 1;
1762 struct hlist_node *tmp;
1763 struct fib_alias *fa;
1764
1765 /* walk trie in reverse order */
1766 for (;;) {
1767 unsigned char slen = 0;
1768 struct key_vector *n;
1769
1770 if (!(cindex--)) {
1771 t_key pkey = pn->key;
1772
1773 /* cannot resize the trie vector */
1774 if (IS_TRIE(pn))
1775 break;
1776
1777 /* update the suffix to address pulled leaves */
1778 if (pn->slen > pn->pos)
1779 update_suffix(pn);
1780
1781 /* resize completed node */
1782 pn = resize(t, pn);
1783 cindex = get_index(pkey, pn);
1784
1785 continue;
1786 }
1787
1788 /* grab the next available node */
1789 n = get_child(pn, cindex);
1790 if (!n)
1791 continue;
1792
1793 if (IS_TNODE(n)) {
1794 /* record pn and cindex for leaf walking */
1795 pn = n;
1796 cindex = 1ul << n->bits;
1797
1798 continue;
1799 }
1800
1801 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1802 /* if alias was cloned to local then we just
1803 * need to remove the local copy from main
1804 */
1805 if (tb->tb_id != fa->tb_id) {
1806 hlist_del_rcu(&fa->fa_list);
1807 alias_free_mem_rcu(fa);
1808 continue;
1809 }
1810
1811 /* record local slen */
1812 slen = fa->fa_slen;
1813 }
1814
1815 /* update leaf slen */
1816 n->slen = slen;
1817
1818 if (hlist_empty(&n->leaf)) {
1819 put_child_root(pn, n->key, NULL);
1820 node_free(n);
1821 }
1822 }
1823 }
1824
1825 /* Caller must hold RTNL. */
1826 int fib_table_flush(struct net *net, struct fib_table *tb)
1827 {
1828 struct trie *t = (struct trie *)tb->tb_data;
1829 struct key_vector *pn = t->kv;
1830 unsigned long cindex = 1;
1831 struct hlist_node *tmp;
1832 struct fib_alias *fa;
1833 int found = 0;
1834
1835 /* walk trie in reverse order */
1836 for (;;) {
1837 unsigned char slen = 0;
1838 struct key_vector *n;
1839
1840 if (!(cindex--)) {
1841 t_key pkey = pn->key;
1842
1843 /* cannot resize the trie vector */
1844 if (IS_TRIE(pn))
1845 break;
1846
1847 /* update the suffix to address pulled leaves */
1848 if (pn->slen > pn->pos)
1849 update_suffix(pn);
1850
1851 /* resize completed node */
1852 pn = resize(t, pn);
1853 cindex = get_index(pkey, pn);
1854
1855 continue;
1856 }
1857
1858 /* grab the next available node */
1859 n = get_child(pn, cindex);
1860 if (!n)
1861 continue;
1862
1863 if (IS_TNODE(n)) {
1864 /* record pn and cindex for leaf walking */
1865 pn = n;
1866 cindex = 1ul << n->bits;
1867
1868 continue;
1869 }
1870
1871 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1872 struct fib_info *fi = fa->fa_info;
1873
1874 if (!fi || !(fi->fib_flags & RTNH_F_DEAD) ||
1875 tb->tb_id != fa->tb_id) {
1876 slen = fa->fa_slen;
1877 continue;
1878 }
1879
1880 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1881 n->key,
1882 KEYLENGTH - fa->fa_slen,
1883 fi, fa->fa_tos, fa->fa_type,
1884 tb->tb_id);
1885 hlist_del_rcu(&fa->fa_list);
1886 fib_release_info(fa->fa_info);
1887 alias_free_mem_rcu(fa);
1888 found++;
1889 }
1890
1891 /* update leaf slen */
1892 n->slen = slen;
1893
1894 if (hlist_empty(&n->leaf)) {
1895 put_child_root(pn, n->key, NULL);
1896 node_free(n);
1897 }
1898 }
1899
1900 pr_debug("trie_flush found=%d\n", found);
1901 return found;
1902 }
1903
1904 static void fib_leaf_notify(struct net *net, struct key_vector *l,
1905 struct fib_table *tb, struct notifier_block *nb)
1906 {
1907 struct fib_alias *fa;
1908
1909 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1910 struct fib_info *fi = fa->fa_info;
1911
1912 if (!fi)
1913 continue;
1914
1915 /* local and main table can share the same trie,
1916 * so don't notify twice for the same entry.
1917 */
1918 if (tb->tb_id != fa->tb_id)
1919 continue;
1920
1921 call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
1922 KEYLENGTH - fa->fa_slen, fi, fa->fa_tos,
1923 fa->fa_type, fa->tb_id);
1924 }
1925 }
1926
1927 static void fib_table_notify(struct net *net, struct fib_table *tb,
1928 struct notifier_block *nb)
1929 {
1930 struct trie *t = (struct trie *)tb->tb_data;
1931 struct key_vector *l, *tp = t->kv;
1932 t_key key = 0;
1933
1934 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1935 fib_leaf_notify(net, l, tb, nb);
1936
1937 key = l->key + 1;
1938 /* stop in case of wrap around */
1939 if (key < l->key)
1940 break;
1941 }
1942 }
1943
1944 void fib_notify(struct net *net, struct notifier_block *nb)
1945 {
1946 unsigned int h;
1947
1948 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1949 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
1950 struct fib_table *tb;
1951
1952 hlist_for_each_entry_rcu(tb, head, tb_hlist)
1953 fib_table_notify(net, tb, nb);
1954 }
1955 }
1956
1957 static void __trie_free_rcu(struct rcu_head *head)
1958 {
1959 struct fib_table *tb = container_of(head, struct fib_table, rcu);
1960 #ifdef CONFIG_IP_FIB_TRIE_STATS
1961 struct trie *t = (struct trie *)tb->tb_data;
1962
1963 if (tb->tb_data == tb->__data)
1964 free_percpu(t->stats);
1965 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1966 kfree(tb);
1967 }
1968
1969 void fib_free_table(struct fib_table *tb)
1970 {
1971 call_rcu(&tb->rcu, __trie_free_rcu);
1972 }
1973
1974 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
1975 struct sk_buff *skb, struct netlink_callback *cb)
1976 {
1977 __be32 xkey = htonl(l->key);
1978 struct fib_alias *fa;
1979 int i, s_i;
1980
1981 s_i = cb->args[4];
1982 i = 0;
1983
1984 /* rcu_read_lock is hold by caller */
1985 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1986 int err;
1987
1988 if (i < s_i) {
1989 i++;
1990 continue;
1991 }
1992
1993 if (tb->tb_id != fa->tb_id) {
1994 i++;
1995 continue;
1996 }
1997
1998 err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1999 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2000 tb->tb_id, fa->fa_type,
2001 xkey, KEYLENGTH - fa->fa_slen,
2002 fa->fa_tos, fa->fa_info, NLM_F_MULTI);
2003 if (err < 0) {
2004 cb->args[4] = i;
2005 return err;
2006 }
2007 i++;
2008 }
2009
2010 cb->args[4] = i;
2011 return skb->len;
2012 }
2013
2014 /* rcu_read_lock needs to be hold by caller from readside */
2015 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2016 struct netlink_callback *cb)
2017 {
2018 struct trie *t = (struct trie *)tb->tb_data;
2019 struct key_vector *l, *tp = t->kv;
2020 /* Dump starting at last key.
2021 * Note: 0.0.0.0/0 (ie default) is first key.
2022 */
2023 int count = cb->args[2];
2024 t_key key = cb->args[3];
2025
2026 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2027 int err;
2028
2029 err = fn_trie_dump_leaf(l, tb, skb, cb);
2030 if (err < 0) {
2031 cb->args[3] = key;
2032 cb->args[2] = count;
2033 return err;
2034 }
2035
2036 ++count;
2037 key = l->key + 1;
2038
2039 memset(&cb->args[4], 0,
2040 sizeof(cb->args) - 4*sizeof(cb->args[0]));
2041
2042 /* stop loop if key wrapped back to 0 */
2043 if (key < l->key)
2044 break;
2045 }
2046
2047 cb->args[3] = key;
2048 cb->args[2] = count;
2049
2050 return skb->len;
2051 }
2052
2053 void __init fib_trie_init(void)
2054 {
2055 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2056 sizeof(struct fib_alias),
2057 0, SLAB_PANIC, NULL);
2058
2059 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2060 LEAF_SIZE,
2061 0, SLAB_PANIC, NULL);
2062 }
2063
2064 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2065 {
2066 struct fib_table *tb;
2067 struct trie *t;
2068 size_t sz = sizeof(*tb);
2069
2070 if (!alias)
2071 sz += sizeof(struct trie);
2072
2073 tb = kzalloc(sz, GFP_KERNEL);
2074 if (!tb)
2075 return NULL;
2076
2077 tb->tb_id = id;
2078 tb->tb_num_default = 0;
2079 tb->tb_data = (alias ? alias->__data : tb->__data);
2080
2081 if (alias)
2082 return tb;
2083
2084 t = (struct trie *) tb->tb_data;
2085 t->kv[0].pos = KEYLENGTH;
2086 t->kv[0].slen = KEYLENGTH;
2087 #ifdef CONFIG_IP_FIB_TRIE_STATS
2088 t->stats = alloc_percpu(struct trie_use_stats);
2089 if (!t->stats) {
2090 kfree(tb);
2091 tb = NULL;
2092 }
2093 #endif
2094
2095 return tb;
2096 }
2097
2098 #ifdef CONFIG_PROC_FS
2099 /* Depth first Trie walk iterator */
2100 struct fib_trie_iter {
2101 struct seq_net_private p;
2102 struct fib_table *tb;
2103 struct key_vector *tnode;
2104 unsigned int index;
2105 unsigned int depth;
2106 };
2107
2108 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2109 {
2110 unsigned long cindex = iter->index;
2111 struct key_vector *pn = iter->tnode;
2112 t_key pkey;
2113
2114 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2115 iter->tnode, iter->index, iter->depth);
2116
2117 while (!IS_TRIE(pn)) {
2118 while (cindex < child_length(pn)) {
2119 struct key_vector *n = get_child_rcu(pn, cindex++);
2120
2121 if (!n)
2122 continue;
2123
2124 if (IS_LEAF(n)) {
2125 iter->tnode = pn;
2126 iter->index = cindex;
2127 } else {
2128 /* push down one level */
2129 iter->tnode = n;
2130 iter->index = 0;
2131 ++iter->depth;
2132 }
2133
2134 return n;
2135 }
2136
2137 /* Current node exhausted, pop back up */
2138 pkey = pn->key;
2139 pn = node_parent_rcu(pn);
2140 cindex = get_index(pkey, pn) + 1;
2141 --iter->depth;
2142 }
2143
2144 /* record root node so further searches know we are done */
2145 iter->tnode = pn;
2146 iter->index = 0;
2147
2148 return NULL;
2149 }
2150
2151 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2152 struct trie *t)
2153 {
2154 struct key_vector *n, *pn;
2155
2156 if (!t)
2157 return NULL;
2158
2159 pn = t->kv;
2160 n = rcu_dereference(pn->tnode[0]);
2161 if (!n)
2162 return NULL;
2163
2164 if (IS_TNODE(n)) {
2165 iter->tnode = n;
2166 iter->index = 0;
2167 iter->depth = 1;
2168 } else {
2169 iter->tnode = pn;
2170 iter->index = 0;
2171 iter->depth = 0;
2172 }
2173
2174 return n;
2175 }
2176
2177 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2178 {
2179 struct key_vector *n;
2180 struct fib_trie_iter iter;
2181
2182 memset(s, 0, sizeof(*s));
2183
2184 rcu_read_lock();
2185 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2186 if (IS_LEAF(n)) {
2187 struct fib_alias *fa;
2188
2189 s->leaves++;
2190 s->totdepth += iter.depth;
2191 if (iter.depth > s->maxdepth)
2192 s->maxdepth = iter.depth;
2193
2194 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2195 ++s->prefixes;
2196 } else {
2197 s->tnodes++;
2198 if (n->bits < MAX_STAT_DEPTH)
2199 s->nodesizes[n->bits]++;
2200 s->nullpointers += tn_info(n)->empty_children;
2201 }
2202 }
2203 rcu_read_unlock();
2204 }
2205
2206 /*
2207 * This outputs /proc/net/fib_triestats
2208 */
2209 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2210 {
2211 unsigned int i, max, pointers, bytes, avdepth;
2212
2213 if (stat->leaves)
2214 avdepth = stat->totdepth*100 / stat->leaves;
2215 else
2216 avdepth = 0;
2217
2218 seq_printf(seq, "\tAver depth: %u.%02d\n",
2219 avdepth / 100, avdepth % 100);
2220 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2221
2222 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2223 bytes = LEAF_SIZE * stat->leaves;
2224
2225 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2226 bytes += sizeof(struct fib_alias) * stat->prefixes;
2227
2228 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2229 bytes += TNODE_SIZE(0) * stat->tnodes;
2230
2231 max = MAX_STAT_DEPTH;
2232 while (max > 0 && stat->nodesizes[max-1] == 0)
2233 max--;
2234
2235 pointers = 0;
2236 for (i = 1; i < max; i++)
2237 if (stat->nodesizes[i] != 0) {
2238 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2239 pointers += (1<<i) * stat->nodesizes[i];
2240 }
2241 seq_putc(seq, '\n');
2242 seq_printf(seq, "\tPointers: %u\n", pointers);
2243
2244 bytes += sizeof(struct key_vector *) * pointers;
2245 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2246 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2247 }
2248
2249 #ifdef CONFIG_IP_FIB_TRIE_STATS
2250 static void trie_show_usage(struct seq_file *seq,
2251 const struct trie_use_stats __percpu *stats)
2252 {
2253 struct trie_use_stats s = { 0 };
2254 int cpu;
2255
2256 /* loop through all of the CPUs and gather up the stats */
2257 for_each_possible_cpu(cpu) {
2258 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2259
2260 s.gets += pcpu->gets;
2261 s.backtrack += pcpu->backtrack;
2262 s.semantic_match_passed += pcpu->semantic_match_passed;
2263 s.semantic_match_miss += pcpu->semantic_match_miss;
2264 s.null_node_hit += pcpu->null_node_hit;
2265 s.resize_node_skipped += pcpu->resize_node_skipped;
2266 }
2267
2268 seq_printf(seq, "\nCounters:\n---------\n");
2269 seq_printf(seq, "gets = %u\n", s.gets);
2270 seq_printf(seq, "backtracks = %u\n", s.backtrack);
2271 seq_printf(seq, "semantic match passed = %u\n",
2272 s.semantic_match_passed);
2273 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2274 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2275 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2276 }
2277 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2278
2279 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2280 {
2281 if (tb->tb_id == RT_TABLE_LOCAL)
2282 seq_puts(seq, "Local:\n");
2283 else if (tb->tb_id == RT_TABLE_MAIN)
2284 seq_puts(seq, "Main:\n");
2285 else
2286 seq_printf(seq, "Id %d:\n", tb->tb_id);
2287 }
2288
2289
2290 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2291 {
2292 struct net *net = (struct net *)seq->private;
2293 unsigned int h;
2294
2295 seq_printf(seq,
2296 "Basic info: size of leaf:"
2297 " %zd bytes, size of tnode: %zd bytes.\n",
2298 LEAF_SIZE, TNODE_SIZE(0));
2299
2300 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2301 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2302 struct fib_table *tb;
2303
2304 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2305 struct trie *t = (struct trie *) tb->tb_data;
2306 struct trie_stat stat;
2307
2308 if (!t)
2309 continue;
2310
2311 fib_table_print(seq, tb);
2312
2313 trie_collect_stats(t, &stat);
2314 trie_show_stats(seq, &stat);
2315 #ifdef CONFIG_IP_FIB_TRIE_STATS
2316 trie_show_usage(seq, t->stats);
2317 #endif
2318 }
2319 }
2320
2321 return 0;
2322 }
2323
2324 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2325 {
2326 return single_open_net(inode, file, fib_triestat_seq_show);
2327 }
2328
2329 static const struct file_operations fib_triestat_fops = {
2330 .owner = THIS_MODULE,
2331 .open = fib_triestat_seq_open,
2332 .read = seq_read,
2333 .llseek = seq_lseek,
2334 .release = single_release_net,
2335 };
2336
2337 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2338 {
2339 struct fib_trie_iter *iter = seq->private;
2340 struct net *net = seq_file_net(seq);
2341 loff_t idx = 0;
2342 unsigned int h;
2343
2344 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2345 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2346 struct fib_table *tb;
2347
2348 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2349 struct key_vector *n;
2350
2351 for (n = fib_trie_get_first(iter,
2352 (struct trie *) tb->tb_data);
2353 n; n = fib_trie_get_next(iter))
2354 if (pos == idx++) {
2355 iter->tb = tb;
2356 return n;
2357 }
2358 }
2359 }
2360
2361 return NULL;
2362 }
2363
2364 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2365 __acquires(RCU)
2366 {
2367 rcu_read_lock();
2368 return fib_trie_get_idx(seq, *pos);
2369 }
2370
2371 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2372 {
2373 struct fib_trie_iter *iter = seq->private;
2374 struct net *net = seq_file_net(seq);
2375 struct fib_table *tb = iter->tb;
2376 struct hlist_node *tb_node;
2377 unsigned int h;
2378 struct key_vector *n;
2379
2380 ++*pos;
2381 /* next node in same table */
2382 n = fib_trie_get_next(iter);
2383 if (n)
2384 return n;
2385
2386 /* walk rest of this hash chain */
2387 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2388 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2389 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2390 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2391 if (n)
2392 goto found;
2393 }
2394
2395 /* new hash chain */
2396 while (++h < FIB_TABLE_HASHSZ) {
2397 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2398 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2399 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2400 if (n)
2401 goto found;
2402 }
2403 }
2404 return NULL;
2405
2406 found:
2407 iter->tb = tb;
2408 return n;
2409 }
2410
2411 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2412 __releases(RCU)
2413 {
2414 rcu_read_unlock();
2415 }
2416
2417 static void seq_indent(struct seq_file *seq, int n)
2418 {
2419 while (n-- > 0)
2420 seq_puts(seq, " ");
2421 }
2422
2423 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2424 {
2425 switch (s) {
2426 case RT_SCOPE_UNIVERSE: return "universe";
2427 case RT_SCOPE_SITE: return "site";
2428 case RT_SCOPE_LINK: return "link";
2429 case RT_SCOPE_HOST: return "host";
2430 case RT_SCOPE_NOWHERE: return "nowhere";
2431 default:
2432 snprintf(buf, len, "scope=%d", s);
2433 return buf;
2434 }
2435 }
2436
2437 static const char *const rtn_type_names[__RTN_MAX] = {
2438 [RTN_UNSPEC] = "UNSPEC",
2439 [RTN_UNICAST] = "UNICAST",
2440 [RTN_LOCAL] = "LOCAL",
2441 [RTN_BROADCAST] = "BROADCAST",
2442 [RTN_ANYCAST] = "ANYCAST",
2443 [RTN_MULTICAST] = "MULTICAST",
2444 [RTN_BLACKHOLE] = "BLACKHOLE",
2445 [RTN_UNREACHABLE] = "UNREACHABLE",
2446 [RTN_PROHIBIT] = "PROHIBIT",
2447 [RTN_THROW] = "THROW",
2448 [RTN_NAT] = "NAT",
2449 [RTN_XRESOLVE] = "XRESOLVE",
2450 };
2451
2452 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2453 {
2454 if (t < __RTN_MAX && rtn_type_names[t])
2455 return rtn_type_names[t];
2456 snprintf(buf, len, "type %u", t);
2457 return buf;
2458 }
2459
2460 /* Pretty print the trie */
2461 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2462 {
2463 const struct fib_trie_iter *iter = seq->private;
2464 struct key_vector *n = v;
2465
2466 if (IS_TRIE(node_parent_rcu(n)))
2467 fib_table_print(seq, iter->tb);
2468
2469 if (IS_TNODE(n)) {
2470 __be32 prf = htonl(n->key);
2471
2472 seq_indent(seq, iter->depth-1);
2473 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2474 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2475 tn_info(n)->full_children,
2476 tn_info(n)->empty_children);
2477 } else {
2478 __be32 val = htonl(n->key);
2479 struct fib_alias *fa;
2480
2481 seq_indent(seq, iter->depth);
2482 seq_printf(seq, " |-- %pI4\n", &val);
2483
2484 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2485 char buf1[32], buf2[32];
2486
2487 seq_indent(seq, iter->depth + 1);
2488 seq_printf(seq, " /%zu %s %s",
2489 KEYLENGTH - fa->fa_slen,
2490 rtn_scope(buf1, sizeof(buf1),
2491 fa->fa_info->fib_scope),
2492 rtn_type(buf2, sizeof(buf2),
2493 fa->fa_type));
2494 if (fa->fa_tos)
2495 seq_printf(seq, " tos=%d", fa->fa_tos);
2496 seq_putc(seq, '\n');
2497 }
2498 }
2499
2500 return 0;
2501 }
2502
2503 static const struct seq_operations fib_trie_seq_ops = {
2504 .start = fib_trie_seq_start,
2505 .next = fib_trie_seq_next,
2506 .stop = fib_trie_seq_stop,
2507 .show = fib_trie_seq_show,
2508 };
2509
2510 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2511 {
2512 return seq_open_net(inode, file, &fib_trie_seq_ops,
2513 sizeof(struct fib_trie_iter));
2514 }
2515
2516 static const struct file_operations fib_trie_fops = {
2517 .owner = THIS_MODULE,
2518 .open = fib_trie_seq_open,
2519 .read = seq_read,
2520 .llseek = seq_lseek,
2521 .release = seq_release_net,
2522 };
2523
2524 struct fib_route_iter {
2525 struct seq_net_private p;
2526 struct fib_table *main_tb;
2527 struct key_vector *tnode;
2528 loff_t pos;
2529 t_key key;
2530 };
2531
2532 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2533 loff_t pos)
2534 {
2535 struct key_vector *l, **tp = &iter->tnode;
2536 t_key key;
2537
2538 /* use cached location of previously found key */
2539 if (iter->pos > 0 && pos >= iter->pos) {
2540 key = iter->key;
2541 } else {
2542 iter->pos = 1;
2543 key = 0;
2544 }
2545
2546 pos -= iter->pos;
2547
2548 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2549 key = l->key + 1;
2550 iter->pos++;
2551 l = NULL;
2552
2553 /* handle unlikely case of a key wrap */
2554 if (!key)
2555 break;
2556 }
2557
2558 if (l)
2559 iter->key = l->key; /* remember it */
2560 else
2561 iter->pos = 0; /* forget it */
2562
2563 return l;
2564 }
2565
2566 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2567 __acquires(RCU)
2568 {
2569 struct fib_route_iter *iter = seq->private;
2570 struct fib_table *tb;
2571 struct trie *t;
2572
2573 rcu_read_lock();
2574
2575 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2576 if (!tb)
2577 return NULL;
2578
2579 iter->main_tb = tb;
2580 t = (struct trie *)tb->tb_data;
2581 iter->tnode = t->kv;
2582
2583 if (*pos != 0)
2584 return fib_route_get_idx(iter, *pos);
2585
2586 iter->pos = 0;
2587 iter->key = KEY_MAX;
2588
2589 return SEQ_START_TOKEN;
2590 }
2591
2592 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2593 {
2594 struct fib_route_iter *iter = seq->private;
2595 struct key_vector *l = NULL;
2596 t_key key = iter->key + 1;
2597
2598 ++*pos;
2599
2600 /* only allow key of 0 for start of sequence */
2601 if ((v == SEQ_START_TOKEN) || key)
2602 l = leaf_walk_rcu(&iter->tnode, key);
2603
2604 if (l) {
2605 iter->key = l->key;
2606 iter->pos++;
2607 } else {
2608 iter->pos = 0;
2609 }
2610
2611 return l;
2612 }
2613
2614 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2615 __releases(RCU)
2616 {
2617 rcu_read_unlock();
2618 }
2619
2620 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2621 {
2622 unsigned int flags = 0;
2623
2624 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2625 flags = RTF_REJECT;
2626 if (fi && fi->fib_nh->nh_gw)
2627 flags |= RTF_GATEWAY;
2628 if (mask == htonl(0xFFFFFFFF))
2629 flags |= RTF_HOST;
2630 flags |= RTF_UP;
2631 return flags;
2632 }
2633
2634 /*
2635 * This outputs /proc/net/route.
2636 * The format of the file is not supposed to be changed
2637 * and needs to be same as fib_hash output to avoid breaking
2638 * legacy utilities
2639 */
2640 static int fib_route_seq_show(struct seq_file *seq, void *v)
2641 {
2642 struct fib_route_iter *iter = seq->private;
2643 struct fib_table *tb = iter->main_tb;
2644 struct fib_alias *fa;
2645 struct key_vector *l = v;
2646 __be32 prefix;
2647
2648 if (v == SEQ_START_TOKEN) {
2649 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2650 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2651 "\tWindow\tIRTT");
2652 return 0;
2653 }
2654
2655 prefix = htonl(l->key);
2656
2657 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2658 const struct fib_info *fi = fa->fa_info;
2659 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2660 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2661
2662 if ((fa->fa_type == RTN_BROADCAST) ||
2663 (fa->fa_type == RTN_MULTICAST))
2664 continue;
2665
2666 if (fa->tb_id != tb->tb_id)
2667 continue;
2668
2669 seq_setwidth(seq, 127);
2670
2671 if (fi)
2672 seq_printf(seq,
2673 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2674 "%d\t%08X\t%d\t%u\t%u",
2675 fi->fib_dev ? fi->fib_dev->name : "*",
2676 prefix,
2677 fi->fib_nh->nh_gw, flags, 0, 0,
2678 fi->fib_priority,
2679 mask,
2680 (fi->fib_advmss ?
2681 fi->fib_advmss + 40 : 0),
2682 fi->fib_window,
2683 fi->fib_rtt >> 3);
2684 else
2685 seq_printf(seq,
2686 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2687 "%d\t%08X\t%d\t%u\t%u",
2688 prefix, 0, flags, 0, 0, 0,
2689 mask, 0, 0, 0);
2690
2691 seq_pad(seq, '\n');
2692 }
2693
2694 return 0;
2695 }
2696
2697 static const struct seq_operations fib_route_seq_ops = {
2698 .start = fib_route_seq_start,
2699 .next = fib_route_seq_next,
2700 .stop = fib_route_seq_stop,
2701 .show = fib_route_seq_show,
2702 };
2703
2704 static int fib_route_seq_open(struct inode *inode, struct file *file)
2705 {
2706 return seq_open_net(inode, file, &fib_route_seq_ops,
2707 sizeof(struct fib_route_iter));
2708 }
2709
2710 static const struct file_operations fib_route_fops = {
2711 .owner = THIS_MODULE,
2712 .open = fib_route_seq_open,
2713 .read = seq_read,
2714 .llseek = seq_lseek,
2715 .release = seq_release_net,
2716 };
2717
2718 int __net_init fib_proc_init(struct net *net)
2719 {
2720 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2721 goto out1;
2722
2723 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2724 &fib_triestat_fops))
2725 goto out2;
2726
2727 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2728 goto out3;
2729
2730 return 0;
2731
2732 out3:
2733 remove_proc_entry("fib_triestat", net->proc_net);
2734 out2:
2735 remove_proc_entry("fib_trie", net->proc_net);
2736 out1:
2737 return -ENOMEM;
2738 }
2739
2740 void __net_exit fib_proc_exit(struct net *net)
2741 {
2742 remove_proc_entry("fib_trie", net->proc_net);
2743 remove_proc_entry("fib_triestat", net->proc_net);
2744 remove_proc_entry("route", net->proc_net);
2745 }
2746
2747 #endif /* CONFIG_PROC_FS */