]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/ipv4/fib_trie.c
538d2a9a51155b089474dcf58a89c6fd18c29afe
[mirror_ubuntu-hirsute-kernel.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.408"
52
53 #include <asm/uaccess.h>
54 #include <asm/system.h>
55 #include <linux/bitops.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/mm.h>
59 #include <linux/string.h>
60 #include <linux/socket.h>
61 #include <linux/sockios.h>
62 #include <linux/errno.h>
63 #include <linux/in.h>
64 #include <linux/inet.h>
65 #include <linux/inetdevice.h>
66 #include <linux/netdevice.h>
67 #include <linux/if_arp.h>
68 #include <linux/proc_fs.h>
69 #include <linux/rcupdate.h>
70 #include <linux/skbuff.h>
71 #include <linux/netlink.h>
72 #include <linux/init.h>
73 #include <linux/list.h>
74 #include <net/net_namespace.h>
75 #include <net/ip.h>
76 #include <net/protocol.h>
77 #include <net/route.h>
78 #include <net/tcp.h>
79 #include <net/sock.h>
80 #include <net/ip_fib.h>
81 #include "fib_lookup.h"
82
83 #define MAX_STAT_DEPTH 32
84
85 #define KEYLENGTH (8*sizeof(t_key))
86
87 typedef unsigned int t_key;
88
89 #define T_TNODE 0
90 #define T_LEAF 1
91 #define NODE_TYPE_MASK 0x1UL
92 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
93
94 #define IS_TNODE(n) (!(n->parent & T_LEAF))
95 #define IS_LEAF(n) (n->parent & T_LEAF)
96
97 struct node {
98 unsigned long parent;
99 t_key key;
100 };
101
102 struct leaf {
103 unsigned long parent;
104 t_key key;
105 struct hlist_head list;
106 struct rcu_head rcu;
107 };
108
109 struct leaf_info {
110 struct hlist_node hlist;
111 struct rcu_head rcu;
112 int plen;
113 struct list_head falh;
114 };
115
116 struct tnode {
117 unsigned long parent;
118 t_key key;
119 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
120 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
121 unsigned int full_children; /* KEYLENGTH bits needed */
122 unsigned int empty_children; /* KEYLENGTH bits needed */
123 union {
124 struct rcu_head rcu;
125 struct work_struct work;
126 };
127 struct node *child[0];
128 };
129
130 #ifdef CONFIG_IP_FIB_TRIE_STATS
131 struct trie_use_stats {
132 unsigned int gets;
133 unsigned int backtrack;
134 unsigned int semantic_match_passed;
135 unsigned int semantic_match_miss;
136 unsigned int null_node_hit;
137 unsigned int resize_node_skipped;
138 };
139 #endif
140
141 struct trie_stat {
142 unsigned int totdepth;
143 unsigned int maxdepth;
144 unsigned int tnodes;
145 unsigned int leaves;
146 unsigned int nullpointers;
147 unsigned int prefixes;
148 unsigned int nodesizes[MAX_STAT_DEPTH];
149 };
150
151 struct trie {
152 struct node *trie;
153 #ifdef CONFIG_IP_FIB_TRIE_STATS
154 struct trie_use_stats stats;
155 #endif
156 };
157
158 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
159 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
160 int wasfull);
161 static struct node *resize(struct trie *t, struct tnode *tn);
162 static struct tnode *inflate(struct trie *t, struct tnode *tn);
163 static struct tnode *halve(struct trie *t, struct tnode *tn);
164
165 static struct kmem_cache *fn_alias_kmem __read_mostly;
166 static struct kmem_cache *trie_leaf_kmem __read_mostly;
167
168 static inline struct tnode *node_parent(struct node *node)
169 {
170 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
171 }
172
173 static inline struct tnode *node_parent_rcu(struct node *node)
174 {
175 struct tnode *ret = node_parent(node);
176
177 return rcu_dereference(ret);
178 }
179
180 /* Same as rcu_assign_pointer
181 * but that macro() assumes that value is a pointer.
182 */
183 static inline void node_set_parent(struct node *node, struct tnode *ptr)
184 {
185 smp_wmb();
186 node->parent = (unsigned long)ptr | NODE_TYPE(node);
187 }
188
189 static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
190 {
191 BUG_ON(i >= 1U << tn->bits);
192
193 return tn->child[i];
194 }
195
196 static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
197 {
198 struct node *ret = tnode_get_child(tn, i);
199
200 return rcu_dereference(ret);
201 }
202
203 static inline int tnode_child_length(const struct tnode *tn)
204 {
205 return 1 << tn->bits;
206 }
207
208 static inline t_key mask_pfx(t_key k, unsigned short l)
209 {
210 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
211 }
212
213 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
214 {
215 if (offset < KEYLENGTH)
216 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
217 else
218 return 0;
219 }
220
221 static inline int tkey_equals(t_key a, t_key b)
222 {
223 return a == b;
224 }
225
226 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
227 {
228 if (bits == 0 || offset >= KEYLENGTH)
229 return 1;
230 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
231 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
232 }
233
234 static inline int tkey_mismatch(t_key a, int offset, t_key b)
235 {
236 t_key diff = a ^ b;
237 int i = offset;
238
239 if (!diff)
240 return 0;
241 while ((diff << i) >> (KEYLENGTH-1) == 0)
242 i++;
243 return i;
244 }
245
246 /*
247 To understand this stuff, an understanding of keys and all their bits is
248 necessary. Every node in the trie has a key associated with it, but not
249 all of the bits in that key are significant.
250
251 Consider a node 'n' and its parent 'tp'.
252
253 If n is a leaf, every bit in its key is significant. Its presence is
254 necessitated by path compression, since during a tree traversal (when
255 searching for a leaf - unless we are doing an insertion) we will completely
256 ignore all skipped bits we encounter. Thus we need to verify, at the end of
257 a potentially successful search, that we have indeed been walking the
258 correct key path.
259
260 Note that we can never "miss" the correct key in the tree if present by
261 following the wrong path. Path compression ensures that segments of the key
262 that are the same for all keys with a given prefix are skipped, but the
263 skipped part *is* identical for each node in the subtrie below the skipped
264 bit! trie_insert() in this implementation takes care of that - note the
265 call to tkey_sub_equals() in trie_insert().
266
267 if n is an internal node - a 'tnode' here, the various parts of its key
268 have many different meanings.
269
270 Example:
271 _________________________________________________________________
272 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
273 -----------------------------------------------------------------
274 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
275
276 _________________________________________________________________
277 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
278 -----------------------------------------------------------------
279 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
280
281 tp->pos = 7
282 tp->bits = 3
283 n->pos = 15
284 n->bits = 4
285
286 First, let's just ignore the bits that come before the parent tp, that is
287 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
288 not use them for anything.
289
290 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
291 index into the parent's child array. That is, they will be used to find
292 'n' among tp's children.
293
294 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
295 for the node n.
296
297 All the bits we have seen so far are significant to the node n. The rest
298 of the bits are really not needed or indeed known in n->key.
299
300 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
301 n's child array, and will of course be different for each child.
302
303
304 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
305 at this point.
306
307 */
308
309 static inline void check_tnode(const struct tnode *tn)
310 {
311 WARN_ON(tn && tn->pos+tn->bits > 32);
312 }
313
314 static const int halve_threshold = 25;
315 static const int inflate_threshold = 50;
316 static const int halve_threshold_root = 8;
317 static const int inflate_threshold_root = 15;
318
319
320 static void __alias_free_mem(struct rcu_head *head)
321 {
322 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
323 kmem_cache_free(fn_alias_kmem, fa);
324 }
325
326 static inline void alias_free_mem_rcu(struct fib_alias *fa)
327 {
328 call_rcu(&fa->rcu, __alias_free_mem);
329 }
330
331 static void __leaf_free_rcu(struct rcu_head *head)
332 {
333 struct leaf *l = container_of(head, struct leaf, rcu);
334 kmem_cache_free(trie_leaf_kmem, l);
335 }
336
337 static inline void free_leaf(struct leaf *l)
338 {
339 call_rcu_bh(&l->rcu, __leaf_free_rcu);
340 }
341
342 static void __leaf_info_free_rcu(struct rcu_head *head)
343 {
344 kfree(container_of(head, struct leaf_info, rcu));
345 }
346
347 static inline void free_leaf_info(struct leaf_info *leaf)
348 {
349 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
350 }
351
352 static struct tnode *tnode_alloc(size_t size)
353 {
354 if (size <= PAGE_SIZE)
355 return kzalloc(size, GFP_KERNEL);
356 else
357 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
358 }
359
360 static void __tnode_vfree(struct work_struct *arg)
361 {
362 struct tnode *tn = container_of(arg, struct tnode, work);
363 vfree(tn);
364 }
365
366 static void __tnode_free_rcu(struct rcu_head *head)
367 {
368 struct tnode *tn = container_of(head, struct tnode, rcu);
369 size_t size = sizeof(struct tnode) +
370 (sizeof(struct node *) << tn->bits);
371
372 if (size <= PAGE_SIZE)
373 kfree(tn);
374 else {
375 INIT_WORK(&tn->work, __tnode_vfree);
376 schedule_work(&tn->work);
377 }
378 }
379
380 static inline void tnode_free(struct tnode *tn)
381 {
382 if (IS_LEAF(tn))
383 free_leaf((struct leaf *) tn);
384 else
385 call_rcu(&tn->rcu, __tnode_free_rcu);
386 }
387
388 static struct leaf *leaf_new(void)
389 {
390 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
391 if (l) {
392 l->parent = T_LEAF;
393 INIT_HLIST_HEAD(&l->list);
394 }
395 return l;
396 }
397
398 static struct leaf_info *leaf_info_new(int plen)
399 {
400 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
401 if (li) {
402 li->plen = plen;
403 INIT_LIST_HEAD(&li->falh);
404 }
405 return li;
406 }
407
408 static struct tnode *tnode_new(t_key key, int pos, int bits)
409 {
410 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
411 struct tnode *tn = tnode_alloc(sz);
412
413 if (tn) {
414 tn->parent = T_TNODE;
415 tn->pos = pos;
416 tn->bits = bits;
417 tn->key = key;
418 tn->full_children = 0;
419 tn->empty_children = 1<<bits;
420 }
421
422 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
423 (unsigned long) (sizeof(struct node) << bits));
424 return tn;
425 }
426
427 /*
428 * Check whether a tnode 'n' is "full", i.e. it is an internal node
429 * and no bits are skipped. See discussion in dyntree paper p. 6
430 */
431
432 static inline int tnode_full(const struct tnode *tn, const struct node *n)
433 {
434 if (n == NULL || IS_LEAF(n))
435 return 0;
436
437 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
438 }
439
440 static inline void put_child(struct trie *t, struct tnode *tn, int i,
441 struct node *n)
442 {
443 tnode_put_child_reorg(tn, i, n, -1);
444 }
445
446 /*
447 * Add a child at position i overwriting the old value.
448 * Update the value of full_children and empty_children.
449 */
450
451 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
452 int wasfull)
453 {
454 struct node *chi = tn->child[i];
455 int isfull;
456
457 BUG_ON(i >= 1<<tn->bits);
458
459 /* update emptyChildren */
460 if (n == NULL && chi != NULL)
461 tn->empty_children++;
462 else if (n != NULL && chi == NULL)
463 tn->empty_children--;
464
465 /* update fullChildren */
466 if (wasfull == -1)
467 wasfull = tnode_full(tn, chi);
468
469 isfull = tnode_full(tn, n);
470 if (wasfull && !isfull)
471 tn->full_children--;
472 else if (!wasfull && isfull)
473 tn->full_children++;
474
475 if (n)
476 node_set_parent(n, tn);
477
478 rcu_assign_pointer(tn->child[i], n);
479 }
480
481 static struct node *resize(struct trie *t, struct tnode *tn)
482 {
483 int i;
484 int err = 0;
485 struct tnode *old_tn;
486 int inflate_threshold_use;
487 int halve_threshold_use;
488 int max_resize;
489
490 if (!tn)
491 return NULL;
492
493 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
494 tn, inflate_threshold, halve_threshold);
495
496 /* No children */
497 if (tn->empty_children == tnode_child_length(tn)) {
498 tnode_free(tn);
499 return NULL;
500 }
501 /* One child */
502 if (tn->empty_children == tnode_child_length(tn) - 1)
503 for (i = 0; i < tnode_child_length(tn); i++) {
504 struct node *n;
505
506 n = tn->child[i];
507 if (!n)
508 continue;
509
510 /* compress one level */
511 node_set_parent(n, NULL);
512 tnode_free(tn);
513 return n;
514 }
515 /*
516 * Double as long as the resulting node has a number of
517 * nonempty nodes that are above the threshold.
518 */
519
520 /*
521 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
522 * the Helsinki University of Technology and Matti Tikkanen of Nokia
523 * Telecommunications, page 6:
524 * "A node is doubled if the ratio of non-empty children to all
525 * children in the *doubled* node is at least 'high'."
526 *
527 * 'high' in this instance is the variable 'inflate_threshold'. It
528 * is expressed as a percentage, so we multiply it with
529 * tnode_child_length() and instead of multiplying by 2 (since the
530 * child array will be doubled by inflate()) and multiplying
531 * the left-hand side by 100 (to handle the percentage thing) we
532 * multiply the left-hand side by 50.
533 *
534 * The left-hand side may look a bit weird: tnode_child_length(tn)
535 * - tn->empty_children is of course the number of non-null children
536 * in the current node. tn->full_children is the number of "full"
537 * children, that is non-null tnodes with a skip value of 0.
538 * All of those will be doubled in the resulting inflated tnode, so
539 * we just count them one extra time here.
540 *
541 * A clearer way to write this would be:
542 *
543 * to_be_doubled = tn->full_children;
544 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
545 * tn->full_children;
546 *
547 * new_child_length = tnode_child_length(tn) * 2;
548 *
549 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
550 * new_child_length;
551 * if (new_fill_factor >= inflate_threshold)
552 *
553 * ...and so on, tho it would mess up the while () loop.
554 *
555 * anyway,
556 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
557 * inflate_threshold
558 *
559 * avoid a division:
560 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
561 * inflate_threshold * new_child_length
562 *
563 * expand not_to_be_doubled and to_be_doubled, and shorten:
564 * 100 * (tnode_child_length(tn) - tn->empty_children +
565 * tn->full_children) >= inflate_threshold * new_child_length
566 *
567 * expand new_child_length:
568 * 100 * (tnode_child_length(tn) - tn->empty_children +
569 * tn->full_children) >=
570 * inflate_threshold * tnode_child_length(tn) * 2
571 *
572 * shorten again:
573 * 50 * (tn->full_children + tnode_child_length(tn) -
574 * tn->empty_children) >= inflate_threshold *
575 * tnode_child_length(tn)
576 *
577 */
578
579 check_tnode(tn);
580
581 /* Keep root node larger */
582
583 if (!tn->parent)
584 inflate_threshold_use = inflate_threshold_root;
585 else
586 inflate_threshold_use = inflate_threshold;
587
588 err = 0;
589 max_resize = 10;
590 while ((tn->full_children > 0 && max_resize-- &&
591 50 * (tn->full_children + tnode_child_length(tn)
592 - tn->empty_children)
593 >= inflate_threshold_use * tnode_child_length(tn))) {
594
595 old_tn = tn;
596 tn = inflate(t, tn);
597
598 if (IS_ERR(tn)) {
599 tn = old_tn;
600 #ifdef CONFIG_IP_FIB_TRIE_STATS
601 t->stats.resize_node_skipped++;
602 #endif
603 break;
604 }
605 }
606
607 if (max_resize < 0) {
608 if (!tn->parent)
609 pr_warning("Fix inflate_threshold_root."
610 " Now=%d size=%d bits\n",
611 inflate_threshold_root, tn->bits);
612 else
613 pr_warning("Fix inflate_threshold."
614 " Now=%d size=%d bits\n",
615 inflate_threshold, tn->bits);
616 }
617
618 check_tnode(tn);
619
620 /*
621 * Halve as long as the number of empty children in this
622 * node is above threshold.
623 */
624
625
626 /* Keep root node larger */
627
628 if (!tn->parent)
629 halve_threshold_use = halve_threshold_root;
630 else
631 halve_threshold_use = halve_threshold;
632
633 err = 0;
634 max_resize = 10;
635 while (tn->bits > 1 && max_resize-- &&
636 100 * (tnode_child_length(tn) - tn->empty_children) <
637 halve_threshold_use * tnode_child_length(tn)) {
638
639 old_tn = tn;
640 tn = halve(t, tn);
641 if (IS_ERR(tn)) {
642 tn = old_tn;
643 #ifdef CONFIG_IP_FIB_TRIE_STATS
644 t->stats.resize_node_skipped++;
645 #endif
646 break;
647 }
648 }
649
650 if (max_resize < 0) {
651 if (!tn->parent)
652 pr_warning("Fix halve_threshold_root."
653 " Now=%d size=%d bits\n",
654 halve_threshold_root, tn->bits);
655 else
656 pr_warning("Fix halve_threshold."
657 " Now=%d size=%d bits\n",
658 halve_threshold, tn->bits);
659 }
660
661 /* Only one child remains */
662 if (tn->empty_children == tnode_child_length(tn) - 1)
663 for (i = 0; i < tnode_child_length(tn); i++) {
664 struct node *n;
665
666 n = tn->child[i];
667 if (!n)
668 continue;
669
670 /* compress one level */
671
672 node_set_parent(n, NULL);
673 tnode_free(tn);
674 return n;
675 }
676
677 return (struct node *) tn;
678 }
679
680 static struct tnode *inflate(struct trie *t, struct tnode *tn)
681 {
682 struct tnode *oldtnode = tn;
683 int olen = tnode_child_length(tn);
684 int i;
685
686 pr_debug("In inflate\n");
687
688 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
689
690 if (!tn)
691 return ERR_PTR(-ENOMEM);
692
693 /*
694 * Preallocate and store tnodes before the actual work so we
695 * don't get into an inconsistent state if memory allocation
696 * fails. In case of failure we return the oldnode and inflate
697 * of tnode is ignored.
698 */
699
700 for (i = 0; i < olen; i++) {
701 struct tnode *inode;
702
703 inode = (struct tnode *) tnode_get_child(oldtnode, i);
704 if (inode &&
705 IS_TNODE(inode) &&
706 inode->pos == oldtnode->pos + oldtnode->bits &&
707 inode->bits > 1) {
708 struct tnode *left, *right;
709 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
710
711 left = tnode_new(inode->key&(~m), inode->pos + 1,
712 inode->bits - 1);
713 if (!left)
714 goto nomem;
715
716 right = tnode_new(inode->key|m, inode->pos + 1,
717 inode->bits - 1);
718
719 if (!right) {
720 tnode_free(left);
721 goto nomem;
722 }
723
724 put_child(t, tn, 2*i, (struct node *) left);
725 put_child(t, tn, 2*i+1, (struct node *) right);
726 }
727 }
728
729 for (i = 0; i < olen; i++) {
730 struct tnode *inode;
731 struct node *node = tnode_get_child(oldtnode, i);
732 struct tnode *left, *right;
733 int size, j;
734
735 /* An empty child */
736 if (node == NULL)
737 continue;
738
739 /* A leaf or an internal node with skipped bits */
740
741 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
742 tn->pos + tn->bits - 1) {
743 if (tkey_extract_bits(node->key,
744 oldtnode->pos + oldtnode->bits,
745 1) == 0)
746 put_child(t, tn, 2*i, node);
747 else
748 put_child(t, tn, 2*i+1, node);
749 continue;
750 }
751
752 /* An internal node with two children */
753 inode = (struct tnode *) node;
754
755 if (inode->bits == 1) {
756 put_child(t, tn, 2*i, inode->child[0]);
757 put_child(t, tn, 2*i+1, inode->child[1]);
758
759 tnode_free(inode);
760 continue;
761 }
762
763 /* An internal node with more than two children */
764
765 /* We will replace this node 'inode' with two new
766 * ones, 'left' and 'right', each with half of the
767 * original children. The two new nodes will have
768 * a position one bit further down the key and this
769 * means that the "significant" part of their keys
770 * (see the discussion near the top of this file)
771 * will differ by one bit, which will be "0" in
772 * left's key and "1" in right's key. Since we are
773 * moving the key position by one step, the bit that
774 * we are moving away from - the bit at position
775 * (inode->pos) - is the one that will differ between
776 * left and right. So... we synthesize that bit in the
777 * two new keys.
778 * The mask 'm' below will be a single "one" bit at
779 * the position (inode->pos)
780 */
781
782 /* Use the old key, but set the new significant
783 * bit to zero.
784 */
785
786 left = (struct tnode *) tnode_get_child(tn, 2*i);
787 put_child(t, tn, 2*i, NULL);
788
789 BUG_ON(!left);
790
791 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
792 put_child(t, tn, 2*i+1, NULL);
793
794 BUG_ON(!right);
795
796 size = tnode_child_length(left);
797 for (j = 0; j < size; j++) {
798 put_child(t, left, j, inode->child[j]);
799 put_child(t, right, j, inode->child[j + size]);
800 }
801 put_child(t, tn, 2*i, resize(t, left));
802 put_child(t, tn, 2*i+1, resize(t, right));
803
804 tnode_free(inode);
805 }
806 tnode_free(oldtnode);
807 return tn;
808 nomem:
809 {
810 int size = tnode_child_length(tn);
811 int j;
812
813 for (j = 0; j < size; j++)
814 if (tn->child[j])
815 tnode_free((struct tnode *)tn->child[j]);
816
817 tnode_free(tn);
818
819 return ERR_PTR(-ENOMEM);
820 }
821 }
822
823 static struct tnode *halve(struct trie *t, struct tnode *tn)
824 {
825 struct tnode *oldtnode = tn;
826 struct node *left, *right;
827 int i;
828 int olen = tnode_child_length(tn);
829
830 pr_debug("In halve\n");
831
832 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
833
834 if (!tn)
835 return ERR_PTR(-ENOMEM);
836
837 /*
838 * Preallocate and store tnodes before the actual work so we
839 * don't get into an inconsistent state if memory allocation
840 * fails. In case of failure we return the oldnode and halve
841 * of tnode is ignored.
842 */
843
844 for (i = 0; i < olen; i += 2) {
845 left = tnode_get_child(oldtnode, i);
846 right = tnode_get_child(oldtnode, i+1);
847
848 /* Two nonempty children */
849 if (left && right) {
850 struct tnode *newn;
851
852 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
853
854 if (!newn)
855 goto nomem;
856
857 put_child(t, tn, i/2, (struct node *)newn);
858 }
859
860 }
861
862 for (i = 0; i < olen; i += 2) {
863 struct tnode *newBinNode;
864
865 left = tnode_get_child(oldtnode, i);
866 right = tnode_get_child(oldtnode, i+1);
867
868 /* At least one of the children is empty */
869 if (left == NULL) {
870 if (right == NULL) /* Both are empty */
871 continue;
872 put_child(t, tn, i/2, right);
873 continue;
874 }
875
876 if (right == NULL) {
877 put_child(t, tn, i/2, left);
878 continue;
879 }
880
881 /* Two nonempty children */
882 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
883 put_child(t, tn, i/2, NULL);
884 put_child(t, newBinNode, 0, left);
885 put_child(t, newBinNode, 1, right);
886 put_child(t, tn, i/2, resize(t, newBinNode));
887 }
888 tnode_free(oldtnode);
889 return tn;
890 nomem:
891 {
892 int size = tnode_child_length(tn);
893 int j;
894
895 for (j = 0; j < size; j++)
896 if (tn->child[j])
897 tnode_free((struct tnode *)tn->child[j]);
898
899 tnode_free(tn);
900
901 return ERR_PTR(-ENOMEM);
902 }
903 }
904
905 /* readside must use rcu_read_lock currently dump routines
906 via get_fa_head and dump */
907
908 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
909 {
910 struct hlist_head *head = &l->list;
911 struct hlist_node *node;
912 struct leaf_info *li;
913
914 hlist_for_each_entry_rcu(li, node, head, hlist)
915 if (li->plen == plen)
916 return li;
917
918 return NULL;
919 }
920
921 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
922 {
923 struct leaf_info *li = find_leaf_info(l, plen);
924
925 if (!li)
926 return NULL;
927
928 return &li->falh;
929 }
930
931 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
932 {
933 struct leaf_info *li = NULL, *last = NULL;
934 struct hlist_node *node;
935
936 if (hlist_empty(head)) {
937 hlist_add_head_rcu(&new->hlist, head);
938 } else {
939 hlist_for_each_entry(li, node, head, hlist) {
940 if (new->plen > li->plen)
941 break;
942
943 last = li;
944 }
945 if (last)
946 hlist_add_after_rcu(&last->hlist, &new->hlist);
947 else
948 hlist_add_before_rcu(&new->hlist, &li->hlist);
949 }
950 }
951
952 /* rcu_read_lock needs to be hold by caller from readside */
953
954 static struct leaf *
955 fib_find_node(struct trie *t, u32 key)
956 {
957 int pos;
958 struct tnode *tn;
959 struct node *n;
960
961 pos = 0;
962 n = rcu_dereference(t->trie);
963
964 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
965 tn = (struct tnode *) n;
966
967 check_tnode(tn);
968
969 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
970 pos = tn->pos + tn->bits;
971 n = tnode_get_child_rcu(tn,
972 tkey_extract_bits(key,
973 tn->pos,
974 tn->bits));
975 } else
976 break;
977 }
978 /* Case we have found a leaf. Compare prefixes */
979
980 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
981 return (struct leaf *)n;
982
983 return NULL;
984 }
985
986 static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
987 {
988 int wasfull;
989 t_key cindex, key;
990 struct tnode *tp;
991
992 preempt_disable();
993 key = tn->key;
994
995 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
996 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
997 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
998 tn = (struct tnode *) resize(t, (struct tnode *)tn);
999
1000 tnode_put_child_reorg((struct tnode *)tp, cindex,
1001 (struct node *)tn, wasfull);
1002
1003 tp = node_parent((struct node *) tn);
1004 if (!tp)
1005 break;
1006 tn = tp;
1007 }
1008
1009 /* Handle last (top) tnode */
1010 if (IS_TNODE(tn))
1011 tn = (struct tnode *)resize(t, (struct tnode *)tn);
1012
1013 preempt_enable();
1014 return (struct node *)tn;
1015 }
1016
1017 /* only used from updater-side */
1018
1019 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1020 {
1021 int pos, newpos;
1022 struct tnode *tp = NULL, *tn = NULL;
1023 struct node *n;
1024 struct leaf *l;
1025 int missbit;
1026 struct list_head *fa_head = NULL;
1027 struct leaf_info *li;
1028 t_key cindex;
1029
1030 pos = 0;
1031 n = t->trie;
1032
1033 /* If we point to NULL, stop. Either the tree is empty and we should
1034 * just put a new leaf in if, or we have reached an empty child slot,
1035 * and we should just put our new leaf in that.
1036 * If we point to a T_TNODE, check if it matches our key. Note that
1037 * a T_TNODE might be skipping any number of bits - its 'pos' need
1038 * not be the parent's 'pos'+'bits'!
1039 *
1040 * If it does match the current key, get pos/bits from it, extract
1041 * the index from our key, push the T_TNODE and walk the tree.
1042 *
1043 * If it doesn't, we have to replace it with a new T_TNODE.
1044 *
1045 * If we point to a T_LEAF, it might or might not have the same key
1046 * as we do. If it does, just change the value, update the T_LEAF's
1047 * value, and return it.
1048 * If it doesn't, we need to replace it with a T_TNODE.
1049 */
1050
1051 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1052 tn = (struct tnode *) n;
1053
1054 check_tnode(tn);
1055
1056 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1057 tp = tn;
1058 pos = tn->pos + tn->bits;
1059 n = tnode_get_child(tn,
1060 tkey_extract_bits(key,
1061 tn->pos,
1062 tn->bits));
1063
1064 BUG_ON(n && node_parent(n) != tn);
1065 } else
1066 break;
1067 }
1068
1069 /*
1070 * n ----> NULL, LEAF or TNODE
1071 *
1072 * tp is n's (parent) ----> NULL or TNODE
1073 */
1074
1075 BUG_ON(tp && IS_LEAF(tp));
1076
1077 /* Case 1: n is a leaf. Compare prefixes */
1078
1079 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1080 l = (struct leaf *) n;
1081 li = leaf_info_new(plen);
1082
1083 if (!li)
1084 return NULL;
1085
1086 fa_head = &li->falh;
1087 insert_leaf_info(&l->list, li);
1088 goto done;
1089 }
1090 l = leaf_new();
1091
1092 if (!l)
1093 return NULL;
1094
1095 l->key = key;
1096 li = leaf_info_new(plen);
1097
1098 if (!li) {
1099 free_leaf(l);
1100 return NULL;
1101 }
1102
1103 fa_head = &li->falh;
1104 insert_leaf_info(&l->list, li);
1105
1106 if (t->trie && n == NULL) {
1107 /* Case 2: n is NULL, and will just insert a new leaf */
1108
1109 node_set_parent((struct node *)l, tp);
1110
1111 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1112 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1113 } else {
1114 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1115 /*
1116 * Add a new tnode here
1117 * first tnode need some special handling
1118 */
1119
1120 if (tp)
1121 pos = tp->pos+tp->bits;
1122 else
1123 pos = 0;
1124
1125 if (n) {
1126 newpos = tkey_mismatch(key, pos, n->key);
1127 tn = tnode_new(n->key, newpos, 1);
1128 } else {
1129 newpos = 0;
1130 tn = tnode_new(key, newpos, 1); /* First tnode */
1131 }
1132
1133 if (!tn) {
1134 free_leaf_info(li);
1135 free_leaf(l);
1136 return NULL;
1137 }
1138
1139 node_set_parent((struct node *)tn, tp);
1140
1141 missbit = tkey_extract_bits(key, newpos, 1);
1142 put_child(t, tn, missbit, (struct node *)l);
1143 put_child(t, tn, 1-missbit, n);
1144
1145 if (tp) {
1146 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1147 put_child(t, (struct tnode *)tp, cindex,
1148 (struct node *)tn);
1149 } else {
1150 rcu_assign_pointer(t->trie, (struct node *)tn);
1151 tp = tn;
1152 }
1153 }
1154
1155 if (tp && tp->pos + tp->bits > 32)
1156 pr_warning("fib_trie"
1157 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1158 tp, tp->pos, tp->bits, key, plen);
1159
1160 /* Rebalance the trie */
1161
1162 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1163 done:
1164 return fa_head;
1165 }
1166
1167 /*
1168 * Caller must hold RTNL.
1169 */
1170 static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
1171 {
1172 struct trie *t = (struct trie *) tb->tb_data;
1173 struct fib_alias *fa, *new_fa;
1174 struct list_head *fa_head = NULL;
1175 struct fib_info *fi;
1176 int plen = cfg->fc_dst_len;
1177 u8 tos = cfg->fc_tos;
1178 u32 key, mask;
1179 int err;
1180 struct leaf *l;
1181
1182 if (plen > 32)
1183 return -EINVAL;
1184
1185 key = ntohl(cfg->fc_dst);
1186
1187 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1188
1189 mask = ntohl(inet_make_mask(plen));
1190
1191 if (key & ~mask)
1192 return -EINVAL;
1193
1194 key = key & mask;
1195
1196 fi = fib_create_info(cfg);
1197 if (IS_ERR(fi)) {
1198 err = PTR_ERR(fi);
1199 goto err;
1200 }
1201
1202 l = fib_find_node(t, key);
1203 fa = NULL;
1204
1205 if (l) {
1206 fa_head = get_fa_head(l, plen);
1207 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1208 }
1209
1210 /* Now fa, if non-NULL, points to the first fib alias
1211 * with the same keys [prefix,tos,priority], if such key already
1212 * exists or to the node before which we will insert new one.
1213 *
1214 * If fa is NULL, we will need to allocate a new one and
1215 * insert to the head of f.
1216 *
1217 * If f is NULL, no fib node matched the destination key
1218 * and we need to allocate a new one of those as well.
1219 */
1220
1221 if (fa && fa->fa_tos == tos &&
1222 fa->fa_info->fib_priority == fi->fib_priority) {
1223 struct fib_alias *fa_first, *fa_match;
1224
1225 err = -EEXIST;
1226 if (cfg->fc_nlflags & NLM_F_EXCL)
1227 goto out;
1228
1229 /* We have 2 goals:
1230 * 1. Find exact match for type, scope, fib_info to avoid
1231 * duplicate routes
1232 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1233 */
1234 fa_match = NULL;
1235 fa_first = fa;
1236 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1237 list_for_each_entry_continue(fa, fa_head, fa_list) {
1238 if (fa->fa_tos != tos)
1239 break;
1240 if (fa->fa_info->fib_priority != fi->fib_priority)
1241 break;
1242 if (fa->fa_type == cfg->fc_type &&
1243 fa->fa_scope == cfg->fc_scope &&
1244 fa->fa_info == fi) {
1245 fa_match = fa;
1246 break;
1247 }
1248 }
1249
1250 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1251 struct fib_info *fi_drop;
1252 u8 state;
1253
1254 fa = fa_first;
1255 if (fa_match) {
1256 if (fa == fa_match)
1257 err = 0;
1258 goto out;
1259 }
1260 err = -ENOBUFS;
1261 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1262 if (new_fa == NULL)
1263 goto out;
1264
1265 fi_drop = fa->fa_info;
1266 new_fa->fa_tos = fa->fa_tos;
1267 new_fa->fa_info = fi;
1268 new_fa->fa_type = cfg->fc_type;
1269 new_fa->fa_scope = cfg->fc_scope;
1270 state = fa->fa_state;
1271 new_fa->fa_state = state & ~FA_S_ACCESSED;
1272
1273 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1274 alias_free_mem_rcu(fa);
1275
1276 fib_release_info(fi_drop);
1277 if (state & FA_S_ACCESSED)
1278 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1279 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1280 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1281
1282 goto succeeded;
1283 }
1284 /* Error if we find a perfect match which
1285 * uses the same scope, type, and nexthop
1286 * information.
1287 */
1288 if (fa_match)
1289 goto out;
1290
1291 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1292 fa = fa_first;
1293 }
1294 err = -ENOENT;
1295 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1296 goto out;
1297
1298 err = -ENOBUFS;
1299 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1300 if (new_fa == NULL)
1301 goto out;
1302
1303 new_fa->fa_info = fi;
1304 new_fa->fa_tos = tos;
1305 new_fa->fa_type = cfg->fc_type;
1306 new_fa->fa_scope = cfg->fc_scope;
1307 new_fa->fa_state = 0;
1308 /*
1309 * Insert new entry to the list.
1310 */
1311
1312 if (!fa_head) {
1313 fa_head = fib_insert_node(t, key, plen);
1314 if (unlikely(!fa_head)) {
1315 err = -ENOMEM;
1316 goto out_free_new_fa;
1317 }
1318 }
1319
1320 list_add_tail_rcu(&new_fa->fa_list,
1321 (fa ? &fa->fa_list : fa_head));
1322
1323 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1324 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1325 &cfg->fc_nlinfo, 0);
1326 succeeded:
1327 return 0;
1328
1329 out_free_new_fa:
1330 kmem_cache_free(fn_alias_kmem, new_fa);
1331 out:
1332 fib_release_info(fi);
1333 err:
1334 return err;
1335 }
1336
1337 /* should be called with rcu_read_lock */
1338 static int check_leaf(struct trie *t, struct leaf *l,
1339 t_key key, const struct flowi *flp,
1340 struct fib_result *res)
1341 {
1342 struct leaf_info *li;
1343 struct hlist_head *hhead = &l->list;
1344 struct hlist_node *node;
1345
1346 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1347 int err;
1348 int plen = li->plen;
1349 __be32 mask = inet_make_mask(plen);
1350
1351 if (l->key != (key & ntohl(mask)))
1352 continue;
1353
1354 err = fib_semantic_match(&li->falh, flp, res, plen);
1355
1356 #ifdef CONFIG_IP_FIB_TRIE_STATS
1357 if (err <= 0)
1358 t->stats.semantic_match_passed++;
1359 else
1360 t->stats.semantic_match_miss++;
1361 #endif
1362 if (err <= 0)
1363 return err;
1364 }
1365
1366 return 1;
1367 }
1368
1369 static int fn_trie_lookup(struct fib_table *tb, const struct flowi *flp,
1370 struct fib_result *res)
1371 {
1372 struct trie *t = (struct trie *) tb->tb_data;
1373 int ret;
1374 struct node *n;
1375 struct tnode *pn;
1376 int pos, bits;
1377 t_key key = ntohl(flp->fl4_dst);
1378 int chopped_off;
1379 t_key cindex = 0;
1380 int current_prefix_length = KEYLENGTH;
1381 struct tnode *cn;
1382 t_key node_prefix, key_prefix, pref_mismatch;
1383 int mp;
1384
1385 rcu_read_lock();
1386
1387 n = rcu_dereference(t->trie);
1388 if (!n)
1389 goto failed;
1390
1391 #ifdef CONFIG_IP_FIB_TRIE_STATS
1392 t->stats.gets++;
1393 #endif
1394
1395 /* Just a leaf? */
1396 if (IS_LEAF(n)) {
1397 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1398 goto found;
1399 }
1400
1401 pn = (struct tnode *) n;
1402 chopped_off = 0;
1403
1404 while (pn) {
1405 pos = pn->pos;
1406 bits = pn->bits;
1407
1408 if (!chopped_off)
1409 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1410 pos, bits);
1411
1412 n = tnode_get_child(pn, cindex);
1413
1414 if (n == NULL) {
1415 #ifdef CONFIG_IP_FIB_TRIE_STATS
1416 t->stats.null_node_hit++;
1417 #endif
1418 goto backtrace;
1419 }
1420
1421 if (IS_LEAF(n)) {
1422 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1423 if (ret > 0)
1424 goto backtrace;
1425 goto found;
1426 }
1427
1428 cn = (struct tnode *)n;
1429
1430 /*
1431 * It's a tnode, and we can do some extra checks here if we
1432 * like, to avoid descending into a dead-end branch.
1433 * This tnode is in the parent's child array at index
1434 * key[p_pos..p_pos+p_bits] but potentially with some bits
1435 * chopped off, so in reality the index may be just a
1436 * subprefix, padded with zero at the end.
1437 * We can also take a look at any skipped bits in this
1438 * tnode - everything up to p_pos is supposed to be ok,
1439 * and the non-chopped bits of the index (se previous
1440 * paragraph) are also guaranteed ok, but the rest is
1441 * considered unknown.
1442 *
1443 * The skipped bits are key[pos+bits..cn->pos].
1444 */
1445
1446 /* If current_prefix_length < pos+bits, we are already doing
1447 * actual prefix matching, which means everything from
1448 * pos+(bits-chopped_off) onward must be zero along some
1449 * branch of this subtree - otherwise there is *no* valid
1450 * prefix present. Here we can only check the skipped
1451 * bits. Remember, since we have already indexed into the
1452 * parent's child array, we know that the bits we chopped of
1453 * *are* zero.
1454 */
1455
1456 /* NOTA BENE: Checking only skipped bits
1457 for the new node here */
1458
1459 if (current_prefix_length < pos+bits) {
1460 if (tkey_extract_bits(cn->key, current_prefix_length,
1461 cn->pos - current_prefix_length)
1462 || !(cn->child[0]))
1463 goto backtrace;
1464 }
1465
1466 /*
1467 * If chopped_off=0, the index is fully validated and we
1468 * only need to look at the skipped bits for this, the new,
1469 * tnode. What we actually want to do is to find out if
1470 * these skipped bits match our key perfectly, or if we will
1471 * have to count on finding a matching prefix further down,
1472 * because if we do, we would like to have some way of
1473 * verifying the existence of such a prefix at this point.
1474 */
1475
1476 /* The only thing we can do at this point is to verify that
1477 * any such matching prefix can indeed be a prefix to our
1478 * key, and if the bits in the node we are inspecting that
1479 * do not match our key are not ZERO, this cannot be true.
1480 * Thus, find out where there is a mismatch (before cn->pos)
1481 * and verify that all the mismatching bits are zero in the
1482 * new tnode's key.
1483 */
1484
1485 /*
1486 * Note: We aren't very concerned about the piece of
1487 * the key that precede pn->pos+pn->bits, since these
1488 * have already been checked. The bits after cn->pos
1489 * aren't checked since these are by definition
1490 * "unknown" at this point. Thus, what we want to see
1491 * is if we are about to enter the "prefix matching"
1492 * state, and in that case verify that the skipped
1493 * bits that will prevail throughout this subtree are
1494 * zero, as they have to be if we are to find a
1495 * matching prefix.
1496 */
1497
1498 node_prefix = mask_pfx(cn->key, cn->pos);
1499 key_prefix = mask_pfx(key, cn->pos);
1500 pref_mismatch = key_prefix^node_prefix;
1501 mp = 0;
1502
1503 /*
1504 * In short: If skipped bits in this node do not match
1505 * the search key, enter the "prefix matching"
1506 * state.directly.
1507 */
1508 if (pref_mismatch) {
1509 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1510 mp++;
1511 pref_mismatch = pref_mismatch << 1;
1512 }
1513 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1514
1515 if (key_prefix != 0)
1516 goto backtrace;
1517
1518 if (current_prefix_length >= cn->pos)
1519 current_prefix_length = mp;
1520 }
1521
1522 pn = (struct tnode *)n; /* Descend */
1523 chopped_off = 0;
1524 continue;
1525
1526 backtrace:
1527 chopped_off++;
1528
1529 /* As zero don't change the child key (cindex) */
1530 while ((chopped_off <= pn->bits)
1531 && !(cindex & (1<<(chopped_off-1))))
1532 chopped_off++;
1533
1534 /* Decrease current_... with bits chopped off */
1535 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1536 current_prefix_length = pn->pos + pn->bits
1537 - chopped_off;
1538
1539 /*
1540 * Either we do the actual chop off according or if we have
1541 * chopped off all bits in this tnode walk up to our parent.
1542 */
1543
1544 if (chopped_off <= pn->bits) {
1545 cindex &= ~(1 << (chopped_off-1));
1546 } else {
1547 struct tnode *parent = node_parent((struct node *) pn);
1548 if (!parent)
1549 goto failed;
1550
1551 /* Get Child's index */
1552 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1553 pn = parent;
1554 chopped_off = 0;
1555
1556 #ifdef CONFIG_IP_FIB_TRIE_STATS
1557 t->stats.backtrack++;
1558 #endif
1559 goto backtrace;
1560 }
1561 }
1562 failed:
1563 ret = 1;
1564 found:
1565 rcu_read_unlock();
1566 return ret;
1567 }
1568
1569 /*
1570 * Remove the leaf and return parent.
1571 */
1572 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1573 {
1574 struct tnode *tp = node_parent((struct node *) l);
1575
1576 pr_debug("entering trie_leaf_remove(%p)\n", l);
1577
1578 if (tp) {
1579 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1580 put_child(t, (struct tnode *)tp, cindex, NULL);
1581 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1582 } else
1583 rcu_assign_pointer(t->trie, NULL);
1584
1585 free_leaf(l);
1586 }
1587
1588 /*
1589 * Caller must hold RTNL.
1590 */
1591 static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
1592 {
1593 struct trie *t = (struct trie *) tb->tb_data;
1594 u32 key, mask;
1595 int plen = cfg->fc_dst_len;
1596 u8 tos = cfg->fc_tos;
1597 struct fib_alias *fa, *fa_to_delete;
1598 struct list_head *fa_head;
1599 struct leaf *l;
1600 struct leaf_info *li;
1601
1602 if (plen > 32)
1603 return -EINVAL;
1604
1605 key = ntohl(cfg->fc_dst);
1606 mask = ntohl(inet_make_mask(plen));
1607
1608 if (key & ~mask)
1609 return -EINVAL;
1610
1611 key = key & mask;
1612 l = fib_find_node(t, key);
1613
1614 if (!l)
1615 return -ESRCH;
1616
1617 fa_head = get_fa_head(l, plen);
1618 fa = fib_find_alias(fa_head, tos, 0);
1619
1620 if (!fa)
1621 return -ESRCH;
1622
1623 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1624
1625 fa_to_delete = NULL;
1626 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1627 list_for_each_entry_continue(fa, fa_head, fa_list) {
1628 struct fib_info *fi = fa->fa_info;
1629
1630 if (fa->fa_tos != tos)
1631 break;
1632
1633 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1634 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1635 fa->fa_scope == cfg->fc_scope) &&
1636 (!cfg->fc_protocol ||
1637 fi->fib_protocol == cfg->fc_protocol) &&
1638 fib_nh_match(cfg, fi) == 0) {
1639 fa_to_delete = fa;
1640 break;
1641 }
1642 }
1643
1644 if (!fa_to_delete)
1645 return -ESRCH;
1646
1647 fa = fa_to_delete;
1648 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1649 &cfg->fc_nlinfo, 0);
1650
1651 l = fib_find_node(t, key);
1652 li = find_leaf_info(l, plen);
1653
1654 list_del_rcu(&fa->fa_list);
1655
1656 if (list_empty(fa_head)) {
1657 hlist_del_rcu(&li->hlist);
1658 free_leaf_info(li);
1659 }
1660
1661 if (hlist_empty(&l->list))
1662 trie_leaf_remove(t, l);
1663
1664 if (fa->fa_state & FA_S_ACCESSED)
1665 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1666
1667 fib_release_info(fa->fa_info);
1668 alias_free_mem_rcu(fa);
1669 return 0;
1670 }
1671
1672 static int trie_flush_list(struct list_head *head)
1673 {
1674 struct fib_alias *fa, *fa_node;
1675 int found = 0;
1676
1677 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1678 struct fib_info *fi = fa->fa_info;
1679
1680 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1681 list_del_rcu(&fa->fa_list);
1682 fib_release_info(fa->fa_info);
1683 alias_free_mem_rcu(fa);
1684 found++;
1685 }
1686 }
1687 return found;
1688 }
1689
1690 static int trie_flush_leaf(struct leaf *l)
1691 {
1692 int found = 0;
1693 struct hlist_head *lih = &l->list;
1694 struct hlist_node *node, *tmp;
1695 struct leaf_info *li = NULL;
1696
1697 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1698 found += trie_flush_list(&li->falh);
1699
1700 if (list_empty(&li->falh)) {
1701 hlist_del_rcu(&li->hlist);
1702 free_leaf_info(li);
1703 }
1704 }
1705 return found;
1706 }
1707
1708 /*
1709 * Scan for the next right leaf starting at node p->child[idx]
1710 * Since we have back pointer, no recursion necessary.
1711 */
1712 static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
1713 {
1714 do {
1715 t_key idx;
1716
1717 if (c)
1718 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1719 else
1720 idx = 0;
1721
1722 while (idx < 1u << p->bits) {
1723 c = tnode_get_child_rcu(p, idx++);
1724 if (!c)
1725 continue;
1726
1727 if (IS_LEAF(c)) {
1728 prefetch(p->child[idx]);
1729 return (struct leaf *) c;
1730 }
1731
1732 /* Rescan start scanning in new node */
1733 p = (struct tnode *) c;
1734 idx = 0;
1735 }
1736
1737 /* Node empty, walk back up to parent */
1738 c = (struct node *) p;
1739 } while ( (p = node_parent_rcu(c)) != NULL);
1740
1741 return NULL; /* Root of trie */
1742 }
1743
1744 static struct leaf *trie_firstleaf(struct trie *t)
1745 {
1746 struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1747
1748 if (!n)
1749 return NULL;
1750
1751 if (IS_LEAF(n)) /* trie is just a leaf */
1752 return (struct leaf *) n;
1753
1754 return leaf_walk_rcu(n, NULL);
1755 }
1756
1757 static struct leaf *trie_nextleaf(struct leaf *l)
1758 {
1759 struct node *c = (struct node *) l;
1760 struct tnode *p = node_parent(c);
1761
1762 if (!p)
1763 return NULL; /* trie with just one leaf */
1764
1765 return leaf_walk_rcu(p, c);
1766 }
1767
1768 static struct leaf *trie_leafindex(struct trie *t, int index)
1769 {
1770 struct leaf *l = trie_firstleaf(t);
1771
1772 while (l && index-- > 0)
1773 l = trie_nextleaf(l);
1774
1775 return l;
1776 }
1777
1778
1779 /*
1780 * Caller must hold RTNL.
1781 */
1782 static int fn_trie_flush(struct fib_table *tb)
1783 {
1784 struct trie *t = (struct trie *) tb->tb_data;
1785 struct leaf *l, *ll = NULL;
1786 int found = 0;
1787
1788 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1789 found += trie_flush_leaf(l);
1790
1791 if (ll && hlist_empty(&ll->list))
1792 trie_leaf_remove(t, ll);
1793 ll = l;
1794 }
1795
1796 if (ll && hlist_empty(&ll->list))
1797 trie_leaf_remove(t, ll);
1798
1799 pr_debug("trie_flush found=%d\n", found);
1800 return found;
1801 }
1802
1803 static void fn_trie_select_default(struct fib_table *tb,
1804 const struct flowi *flp,
1805 struct fib_result *res)
1806 {
1807 struct trie *t = (struct trie *) tb->tb_data;
1808 int order, last_idx;
1809 struct fib_info *fi = NULL;
1810 struct fib_info *last_resort;
1811 struct fib_alias *fa = NULL;
1812 struct list_head *fa_head;
1813 struct leaf *l;
1814
1815 last_idx = -1;
1816 last_resort = NULL;
1817 order = -1;
1818
1819 rcu_read_lock();
1820
1821 l = fib_find_node(t, 0);
1822 if (!l)
1823 goto out;
1824
1825 fa_head = get_fa_head(l, 0);
1826 if (!fa_head)
1827 goto out;
1828
1829 if (list_empty(fa_head))
1830 goto out;
1831
1832 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1833 struct fib_info *next_fi = fa->fa_info;
1834
1835 if (fa->fa_scope != res->scope ||
1836 fa->fa_type != RTN_UNICAST)
1837 continue;
1838
1839 if (next_fi->fib_priority > res->fi->fib_priority)
1840 break;
1841 if (!next_fi->fib_nh[0].nh_gw ||
1842 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1843 continue;
1844 fa->fa_state |= FA_S_ACCESSED;
1845
1846 if (fi == NULL) {
1847 if (next_fi != res->fi)
1848 break;
1849 } else if (!fib_detect_death(fi, order, &last_resort,
1850 &last_idx, tb->tb_default)) {
1851 fib_result_assign(res, fi);
1852 tb->tb_default = order;
1853 goto out;
1854 }
1855 fi = next_fi;
1856 order++;
1857 }
1858 if (order <= 0 || fi == NULL) {
1859 tb->tb_default = -1;
1860 goto out;
1861 }
1862
1863 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1864 tb->tb_default)) {
1865 fib_result_assign(res, fi);
1866 tb->tb_default = order;
1867 goto out;
1868 }
1869 if (last_idx >= 0)
1870 fib_result_assign(res, last_resort);
1871 tb->tb_default = last_idx;
1872 out:
1873 rcu_read_unlock();
1874 }
1875
1876 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1877 struct fib_table *tb,
1878 struct sk_buff *skb, struct netlink_callback *cb)
1879 {
1880 int i, s_i;
1881 struct fib_alias *fa;
1882 __be32 xkey = htonl(key);
1883
1884 s_i = cb->args[5];
1885 i = 0;
1886
1887 /* rcu_read_lock is hold by caller */
1888
1889 list_for_each_entry_rcu(fa, fah, fa_list) {
1890 if (i < s_i) {
1891 i++;
1892 continue;
1893 }
1894
1895 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1896 cb->nlh->nlmsg_seq,
1897 RTM_NEWROUTE,
1898 tb->tb_id,
1899 fa->fa_type,
1900 fa->fa_scope,
1901 xkey,
1902 plen,
1903 fa->fa_tos,
1904 fa->fa_info, NLM_F_MULTI) < 0) {
1905 cb->args[5] = i;
1906 return -1;
1907 }
1908 i++;
1909 }
1910 cb->args[5] = i;
1911 return skb->len;
1912 }
1913
1914 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1915 struct sk_buff *skb, struct netlink_callback *cb)
1916 {
1917 struct leaf_info *li;
1918 struct hlist_node *node;
1919 int i, s_i;
1920
1921 s_i = cb->args[4];
1922 i = 0;
1923
1924 /* rcu_read_lock is hold by caller */
1925 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1926 if (i < s_i) {
1927 i++;
1928 continue;
1929 }
1930
1931 if (i > s_i)
1932 cb->args[5] = 0;
1933
1934 if (list_empty(&li->falh))
1935 continue;
1936
1937 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1938 cb->args[4] = i;
1939 return -1;
1940 }
1941 i++;
1942 }
1943
1944 cb->args[4] = i;
1945 return skb->len;
1946 }
1947
1948 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb,
1949 struct netlink_callback *cb)
1950 {
1951 struct leaf *l;
1952 struct trie *t = (struct trie *) tb->tb_data;
1953 t_key key = cb->args[2];
1954 int count = cb->args[3];
1955
1956 rcu_read_lock();
1957 /* Dump starting at last key.
1958 * Note: 0.0.0.0/0 (ie default) is first key.
1959 */
1960 if (count == 0)
1961 l = trie_firstleaf(t);
1962 else {
1963 /* Normally, continue from last key, but if that is missing
1964 * fallback to using slow rescan
1965 */
1966 l = fib_find_node(t, key);
1967 if (!l)
1968 l = trie_leafindex(t, count);
1969 }
1970
1971 while (l) {
1972 cb->args[2] = l->key;
1973 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1974 cb->args[3] = count;
1975 rcu_read_unlock();
1976 return -1;
1977 }
1978
1979 ++count;
1980 l = trie_nextleaf(l);
1981 memset(&cb->args[4], 0,
1982 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1983 }
1984 cb->args[3] = count;
1985 rcu_read_unlock();
1986
1987 return skb->len;
1988 }
1989
1990 void __init fib_hash_init(void)
1991 {
1992 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1993 sizeof(struct fib_alias),
1994 0, SLAB_PANIC, NULL);
1995
1996 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1997 max(sizeof(struct leaf),
1998 sizeof(struct leaf_info)),
1999 0, SLAB_PANIC, NULL);
2000 }
2001
2002
2003 /* Fix more generic FIB names for init later */
2004 struct fib_table *fib_hash_table(u32 id)
2005 {
2006 struct fib_table *tb;
2007 struct trie *t;
2008
2009 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2010 GFP_KERNEL);
2011 if (tb == NULL)
2012 return NULL;
2013
2014 tb->tb_id = id;
2015 tb->tb_default = -1;
2016 tb->tb_lookup = fn_trie_lookup;
2017 tb->tb_insert = fn_trie_insert;
2018 tb->tb_delete = fn_trie_delete;
2019 tb->tb_flush = fn_trie_flush;
2020 tb->tb_select_default = fn_trie_select_default;
2021 tb->tb_dump = fn_trie_dump;
2022
2023 t = (struct trie *) tb->tb_data;
2024 memset(t, 0, sizeof(*t));
2025
2026 if (id == RT_TABLE_LOCAL)
2027 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
2028
2029 return tb;
2030 }
2031
2032 #ifdef CONFIG_PROC_FS
2033 /* Depth first Trie walk iterator */
2034 struct fib_trie_iter {
2035 struct seq_net_private p;
2036 struct fib_table *tb;
2037 struct tnode *tnode;
2038 unsigned index;
2039 unsigned depth;
2040 };
2041
2042 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
2043 {
2044 struct tnode *tn = iter->tnode;
2045 unsigned cindex = iter->index;
2046 struct tnode *p;
2047
2048 /* A single entry routing table */
2049 if (!tn)
2050 return NULL;
2051
2052 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2053 iter->tnode, iter->index, iter->depth);
2054 rescan:
2055 while (cindex < (1<<tn->bits)) {
2056 struct node *n = tnode_get_child_rcu(tn, cindex);
2057
2058 if (n) {
2059 if (IS_LEAF(n)) {
2060 iter->tnode = tn;
2061 iter->index = cindex + 1;
2062 } else {
2063 /* push down one level */
2064 iter->tnode = (struct tnode *) n;
2065 iter->index = 0;
2066 ++iter->depth;
2067 }
2068 return n;
2069 }
2070
2071 ++cindex;
2072 }
2073
2074 /* Current node exhausted, pop back up */
2075 p = node_parent_rcu((struct node *)tn);
2076 if (p) {
2077 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2078 tn = p;
2079 --iter->depth;
2080 goto rescan;
2081 }
2082
2083 /* got root? */
2084 return NULL;
2085 }
2086
2087 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2088 struct trie *t)
2089 {
2090 struct node *n;
2091
2092 if (!t)
2093 return NULL;
2094
2095 n = rcu_dereference(t->trie);
2096 if (!n)
2097 return NULL;
2098
2099 if (IS_TNODE(n)) {
2100 iter->tnode = (struct tnode *) n;
2101 iter->index = 0;
2102 iter->depth = 1;
2103 } else {
2104 iter->tnode = NULL;
2105 iter->index = 0;
2106 iter->depth = 0;
2107 }
2108
2109 return n;
2110 }
2111
2112 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2113 {
2114 struct node *n;
2115 struct fib_trie_iter iter;
2116
2117 memset(s, 0, sizeof(*s));
2118
2119 rcu_read_lock();
2120 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2121 if (IS_LEAF(n)) {
2122 struct leaf *l = (struct leaf *)n;
2123 struct leaf_info *li;
2124 struct hlist_node *tmp;
2125
2126 s->leaves++;
2127 s->totdepth += iter.depth;
2128 if (iter.depth > s->maxdepth)
2129 s->maxdepth = iter.depth;
2130
2131 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2132 ++s->prefixes;
2133 } else {
2134 const struct tnode *tn = (const struct tnode *) n;
2135 int i;
2136
2137 s->tnodes++;
2138 if (tn->bits < MAX_STAT_DEPTH)
2139 s->nodesizes[tn->bits]++;
2140
2141 for (i = 0; i < (1<<tn->bits); i++)
2142 if (!tn->child[i])
2143 s->nullpointers++;
2144 }
2145 }
2146 rcu_read_unlock();
2147 }
2148
2149 /*
2150 * This outputs /proc/net/fib_triestats
2151 */
2152 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2153 {
2154 unsigned i, max, pointers, bytes, avdepth;
2155
2156 if (stat->leaves)
2157 avdepth = stat->totdepth*100 / stat->leaves;
2158 else
2159 avdepth = 0;
2160
2161 seq_printf(seq, "\tAver depth: %u.%02d\n",
2162 avdepth / 100, avdepth % 100);
2163 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2164
2165 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2166 bytes = sizeof(struct leaf) * stat->leaves;
2167
2168 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2169 bytes += sizeof(struct leaf_info) * stat->prefixes;
2170
2171 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2172 bytes += sizeof(struct tnode) * stat->tnodes;
2173
2174 max = MAX_STAT_DEPTH;
2175 while (max > 0 && stat->nodesizes[max-1] == 0)
2176 max--;
2177
2178 pointers = 0;
2179 for (i = 1; i <= max; i++)
2180 if (stat->nodesizes[i] != 0) {
2181 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2182 pointers += (1<<i) * stat->nodesizes[i];
2183 }
2184 seq_putc(seq, '\n');
2185 seq_printf(seq, "\tPointers: %u\n", pointers);
2186
2187 bytes += sizeof(struct node *) * pointers;
2188 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2189 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2190 }
2191
2192 #ifdef CONFIG_IP_FIB_TRIE_STATS
2193 static void trie_show_usage(struct seq_file *seq,
2194 const struct trie_use_stats *stats)
2195 {
2196 seq_printf(seq, "\nCounters:\n---------\n");
2197 seq_printf(seq, "gets = %u\n", stats->gets);
2198 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2199 seq_printf(seq, "semantic match passed = %u\n",
2200 stats->semantic_match_passed);
2201 seq_printf(seq, "semantic match miss = %u\n",
2202 stats->semantic_match_miss);
2203 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2204 seq_printf(seq, "skipped node resize = %u\n\n",
2205 stats->resize_node_skipped);
2206 }
2207 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2208
2209 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2210 {
2211 if (tb->tb_id == RT_TABLE_LOCAL)
2212 seq_puts(seq, "Local:\n");
2213 else if (tb->tb_id == RT_TABLE_MAIN)
2214 seq_puts(seq, "Main:\n");
2215 else
2216 seq_printf(seq, "Id %d:\n", tb->tb_id);
2217 }
2218
2219
2220 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2221 {
2222 struct net *net = (struct net *)seq->private;
2223 unsigned int h;
2224
2225 seq_printf(seq,
2226 "Basic info: size of leaf:"
2227 " %Zd bytes, size of tnode: %Zd bytes.\n",
2228 sizeof(struct leaf), sizeof(struct tnode));
2229
2230 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2231 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2232 struct hlist_node *node;
2233 struct fib_table *tb;
2234
2235 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2236 struct trie *t = (struct trie *) tb->tb_data;
2237 struct trie_stat stat;
2238
2239 if (!t)
2240 continue;
2241
2242 fib_table_print(seq, tb);
2243
2244 trie_collect_stats(t, &stat);
2245 trie_show_stats(seq, &stat);
2246 #ifdef CONFIG_IP_FIB_TRIE_STATS
2247 trie_show_usage(seq, &t->stats);
2248 #endif
2249 }
2250 }
2251
2252 return 0;
2253 }
2254
2255 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2256 {
2257 return single_open_net(inode, file, fib_triestat_seq_show);
2258 }
2259
2260 static const struct file_operations fib_triestat_fops = {
2261 .owner = THIS_MODULE,
2262 .open = fib_triestat_seq_open,
2263 .read = seq_read,
2264 .llseek = seq_lseek,
2265 .release = single_release_net,
2266 };
2267
2268 static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2269 {
2270 struct fib_trie_iter *iter = seq->private;
2271 struct net *net = seq_file_net(seq);
2272 loff_t idx = 0;
2273 unsigned int h;
2274
2275 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2276 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2277 struct hlist_node *node;
2278 struct fib_table *tb;
2279
2280 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2281 struct node *n;
2282
2283 for (n = fib_trie_get_first(iter,
2284 (struct trie *) tb->tb_data);
2285 n; n = fib_trie_get_next(iter))
2286 if (pos == idx++) {
2287 iter->tb = tb;
2288 return n;
2289 }
2290 }
2291 }
2292
2293 return NULL;
2294 }
2295
2296 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2297 __acquires(RCU)
2298 {
2299 rcu_read_lock();
2300 return fib_trie_get_idx(seq, *pos);
2301 }
2302
2303 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2304 {
2305 struct fib_trie_iter *iter = seq->private;
2306 struct net *net = seq_file_net(seq);
2307 struct fib_table *tb = iter->tb;
2308 struct hlist_node *tb_node;
2309 unsigned int h;
2310 struct node *n;
2311
2312 ++*pos;
2313 /* next node in same table */
2314 n = fib_trie_get_next(iter);
2315 if (n)
2316 return n;
2317
2318 /* walk rest of this hash chain */
2319 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2320 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2321 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2322 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2323 if (n)
2324 goto found;
2325 }
2326
2327 /* new hash chain */
2328 while (++h < FIB_TABLE_HASHSZ) {
2329 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2330 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2331 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2332 if (n)
2333 goto found;
2334 }
2335 }
2336 return NULL;
2337
2338 found:
2339 iter->tb = tb;
2340 return n;
2341 }
2342
2343 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2344 __releases(RCU)
2345 {
2346 rcu_read_unlock();
2347 }
2348
2349 static void seq_indent(struct seq_file *seq, int n)
2350 {
2351 while (n-- > 0) seq_puts(seq, " ");
2352 }
2353
2354 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2355 {
2356 switch (s) {
2357 case RT_SCOPE_UNIVERSE: return "universe";
2358 case RT_SCOPE_SITE: return "site";
2359 case RT_SCOPE_LINK: return "link";
2360 case RT_SCOPE_HOST: return "host";
2361 case RT_SCOPE_NOWHERE: return "nowhere";
2362 default:
2363 snprintf(buf, len, "scope=%d", s);
2364 return buf;
2365 }
2366 }
2367
2368 static const char *rtn_type_names[__RTN_MAX] = {
2369 [RTN_UNSPEC] = "UNSPEC",
2370 [RTN_UNICAST] = "UNICAST",
2371 [RTN_LOCAL] = "LOCAL",
2372 [RTN_BROADCAST] = "BROADCAST",
2373 [RTN_ANYCAST] = "ANYCAST",
2374 [RTN_MULTICAST] = "MULTICAST",
2375 [RTN_BLACKHOLE] = "BLACKHOLE",
2376 [RTN_UNREACHABLE] = "UNREACHABLE",
2377 [RTN_PROHIBIT] = "PROHIBIT",
2378 [RTN_THROW] = "THROW",
2379 [RTN_NAT] = "NAT",
2380 [RTN_XRESOLVE] = "XRESOLVE",
2381 };
2382
2383 static inline const char *rtn_type(char *buf, size_t len, unsigned t)
2384 {
2385 if (t < __RTN_MAX && rtn_type_names[t])
2386 return rtn_type_names[t];
2387 snprintf(buf, len, "type %u", t);
2388 return buf;
2389 }
2390
2391 /* Pretty print the trie */
2392 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2393 {
2394 const struct fib_trie_iter *iter = seq->private;
2395 struct node *n = v;
2396
2397 if (!node_parent_rcu(n))
2398 fib_table_print(seq, iter->tb);
2399
2400 if (IS_TNODE(n)) {
2401 struct tnode *tn = (struct tnode *) n;
2402 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2403
2404 seq_indent(seq, iter->depth-1);
2405 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2406 &prf, tn->pos, tn->bits, tn->full_children,
2407 tn->empty_children);
2408
2409 } else {
2410 struct leaf *l = (struct leaf *) n;
2411 struct leaf_info *li;
2412 struct hlist_node *node;
2413 __be32 val = htonl(l->key);
2414
2415 seq_indent(seq, iter->depth);
2416 seq_printf(seq, " |-- %pI4\n", &val);
2417
2418 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2419 struct fib_alias *fa;
2420
2421 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2422 char buf1[32], buf2[32];
2423
2424 seq_indent(seq, iter->depth+1);
2425 seq_printf(seq, " /%d %s %s", li->plen,
2426 rtn_scope(buf1, sizeof(buf1),
2427 fa->fa_scope),
2428 rtn_type(buf2, sizeof(buf2),
2429 fa->fa_type));
2430 if (fa->fa_tos)
2431 seq_printf(seq, " tos=%d", fa->fa_tos);
2432 seq_putc(seq, '\n');
2433 }
2434 }
2435 }
2436
2437 return 0;
2438 }
2439
2440 static const struct seq_operations fib_trie_seq_ops = {
2441 .start = fib_trie_seq_start,
2442 .next = fib_trie_seq_next,
2443 .stop = fib_trie_seq_stop,
2444 .show = fib_trie_seq_show,
2445 };
2446
2447 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2448 {
2449 return seq_open_net(inode, file, &fib_trie_seq_ops,
2450 sizeof(struct fib_trie_iter));
2451 }
2452
2453 static const struct file_operations fib_trie_fops = {
2454 .owner = THIS_MODULE,
2455 .open = fib_trie_seq_open,
2456 .read = seq_read,
2457 .llseek = seq_lseek,
2458 .release = seq_release_net,
2459 };
2460
2461 struct fib_route_iter {
2462 struct seq_net_private p;
2463 struct trie *main_trie;
2464 loff_t pos;
2465 t_key key;
2466 };
2467
2468 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2469 {
2470 struct leaf *l = NULL;
2471 struct trie *t = iter->main_trie;
2472
2473 /* use cache location of last found key */
2474 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2475 pos -= iter->pos;
2476 else {
2477 iter->pos = 0;
2478 l = trie_firstleaf(t);
2479 }
2480
2481 while (l && pos-- > 0) {
2482 iter->pos++;
2483 l = trie_nextleaf(l);
2484 }
2485
2486 if (l)
2487 iter->key = pos; /* remember it */
2488 else
2489 iter->pos = 0; /* forget it */
2490
2491 return l;
2492 }
2493
2494 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2495 __acquires(RCU)
2496 {
2497 struct fib_route_iter *iter = seq->private;
2498 struct fib_table *tb;
2499
2500 rcu_read_lock();
2501 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2502 if (!tb)
2503 return NULL;
2504
2505 iter->main_trie = (struct trie *) tb->tb_data;
2506 if (*pos == 0)
2507 return SEQ_START_TOKEN;
2508 else
2509 return fib_route_get_idx(iter, *pos - 1);
2510 }
2511
2512 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2513 {
2514 struct fib_route_iter *iter = seq->private;
2515 struct leaf *l = v;
2516
2517 ++*pos;
2518 if (v == SEQ_START_TOKEN) {
2519 iter->pos = 0;
2520 l = trie_firstleaf(iter->main_trie);
2521 } else {
2522 iter->pos++;
2523 l = trie_nextleaf(l);
2524 }
2525
2526 if (l)
2527 iter->key = l->key;
2528 else
2529 iter->pos = 0;
2530 return l;
2531 }
2532
2533 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2534 __releases(RCU)
2535 {
2536 rcu_read_unlock();
2537 }
2538
2539 static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2540 {
2541 static unsigned type2flags[RTN_MAX + 1] = {
2542 [7] = RTF_REJECT, [8] = RTF_REJECT,
2543 };
2544 unsigned flags = type2flags[type];
2545
2546 if (fi && fi->fib_nh->nh_gw)
2547 flags |= RTF_GATEWAY;
2548 if (mask == htonl(0xFFFFFFFF))
2549 flags |= RTF_HOST;
2550 flags |= RTF_UP;
2551 return flags;
2552 }
2553
2554 /*
2555 * This outputs /proc/net/route.
2556 * The format of the file is not supposed to be changed
2557 * and needs to be same as fib_hash output to avoid breaking
2558 * legacy utilities
2559 */
2560 static int fib_route_seq_show(struct seq_file *seq, void *v)
2561 {
2562 struct leaf *l = v;
2563 struct leaf_info *li;
2564 struct hlist_node *node;
2565
2566 if (v == SEQ_START_TOKEN) {
2567 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2568 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2569 "\tWindow\tIRTT");
2570 return 0;
2571 }
2572
2573 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2574 struct fib_alias *fa;
2575 __be32 mask, prefix;
2576
2577 mask = inet_make_mask(li->plen);
2578 prefix = htonl(l->key);
2579
2580 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2581 const struct fib_info *fi = fa->fa_info;
2582 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2583 int len;
2584
2585 if (fa->fa_type == RTN_BROADCAST
2586 || fa->fa_type == RTN_MULTICAST)
2587 continue;
2588
2589 if (fi)
2590 seq_printf(seq,
2591 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2592 "%d\t%08X\t%d\t%u\t%u%n",
2593 fi->fib_dev ? fi->fib_dev->name : "*",
2594 prefix,
2595 fi->fib_nh->nh_gw, flags, 0, 0,
2596 fi->fib_priority,
2597 mask,
2598 (fi->fib_advmss ?
2599 fi->fib_advmss + 40 : 0),
2600 fi->fib_window,
2601 fi->fib_rtt >> 3, &len);
2602 else
2603 seq_printf(seq,
2604 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2605 "%d\t%08X\t%d\t%u\t%u%n",
2606 prefix, 0, flags, 0, 0, 0,
2607 mask, 0, 0, 0, &len);
2608
2609 seq_printf(seq, "%*s\n", 127 - len, "");
2610 }
2611 }
2612
2613 return 0;
2614 }
2615
2616 static const struct seq_operations fib_route_seq_ops = {
2617 .start = fib_route_seq_start,
2618 .next = fib_route_seq_next,
2619 .stop = fib_route_seq_stop,
2620 .show = fib_route_seq_show,
2621 };
2622
2623 static int fib_route_seq_open(struct inode *inode, struct file *file)
2624 {
2625 return seq_open_net(inode, file, &fib_route_seq_ops,
2626 sizeof(struct fib_route_iter));
2627 }
2628
2629 static const struct file_operations fib_route_fops = {
2630 .owner = THIS_MODULE,
2631 .open = fib_route_seq_open,
2632 .read = seq_read,
2633 .llseek = seq_lseek,
2634 .release = seq_release_net,
2635 };
2636
2637 int __net_init fib_proc_init(struct net *net)
2638 {
2639 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2640 goto out1;
2641
2642 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2643 &fib_triestat_fops))
2644 goto out2;
2645
2646 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2647 goto out3;
2648
2649 return 0;
2650
2651 out3:
2652 proc_net_remove(net, "fib_triestat");
2653 out2:
2654 proc_net_remove(net, "fib_trie");
2655 out1:
2656 return -ENOMEM;
2657 }
2658
2659 void __net_exit fib_proc_exit(struct net *net)
2660 {
2661 proc_net_remove(net, "fib_trie");
2662 proc_net_remove(net, "fib_triestat");
2663 proc_net_remove(net, "route");
2664 }
2665
2666 #endif /* CONFIG_PROC_FS */