]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/ipv4/fib_trie.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-jammy-kernel.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.409"
52
53 #include <asm/uaccess.h>
54 #include <asm/system.h>
55 #include <linux/bitops.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/mm.h>
59 #include <linux/string.h>
60 #include <linux/socket.h>
61 #include <linux/sockios.h>
62 #include <linux/errno.h>
63 #include <linux/in.h>
64 #include <linux/inet.h>
65 #include <linux/inetdevice.h>
66 #include <linux/netdevice.h>
67 #include <linux/if_arp.h>
68 #include <linux/proc_fs.h>
69 #include <linux/rcupdate.h>
70 #include <linux/skbuff.h>
71 #include <linux/netlink.h>
72 #include <linux/init.h>
73 #include <linux/list.h>
74 #include <linux/slab.h>
75 #include <net/net_namespace.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include "fib_lookup.h"
83
84 #define MAX_STAT_DEPTH 32
85
86 #define KEYLENGTH (8*sizeof(t_key))
87
88 typedef unsigned int t_key;
89
90 #define T_TNODE 0
91 #define T_LEAF 1
92 #define NODE_TYPE_MASK 0x1UL
93 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
94
95 #define IS_TNODE(n) (!(n->parent & T_LEAF))
96 #define IS_LEAF(n) (n->parent & T_LEAF)
97
98 struct node {
99 unsigned long parent;
100 t_key key;
101 };
102
103 struct leaf {
104 unsigned long parent;
105 t_key key;
106 struct hlist_head list;
107 struct rcu_head rcu;
108 };
109
110 struct leaf_info {
111 struct hlist_node hlist;
112 struct rcu_head rcu;
113 int plen;
114 struct list_head falh;
115 };
116
117 struct tnode {
118 unsigned long parent;
119 t_key key;
120 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
121 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
122 unsigned int full_children; /* KEYLENGTH bits needed */
123 unsigned int empty_children; /* KEYLENGTH bits needed */
124 union {
125 struct rcu_head rcu;
126 struct work_struct work;
127 struct tnode *tnode_free;
128 };
129 struct node *child[0];
130 };
131
132 #ifdef CONFIG_IP_FIB_TRIE_STATS
133 struct trie_use_stats {
134 unsigned int gets;
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
139 unsigned int resize_node_skipped;
140 };
141 #endif
142
143 struct trie_stat {
144 unsigned int totdepth;
145 unsigned int maxdepth;
146 unsigned int tnodes;
147 unsigned int leaves;
148 unsigned int nullpointers;
149 unsigned int prefixes;
150 unsigned int nodesizes[MAX_STAT_DEPTH];
151 };
152
153 struct trie {
154 struct node *trie;
155 #ifdef CONFIG_IP_FIB_TRIE_STATS
156 struct trie_use_stats stats;
157 #endif
158 };
159
160 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
161 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
162 int wasfull);
163 static struct node *resize(struct trie *t, struct tnode *tn);
164 static struct tnode *inflate(struct trie *t, struct tnode *tn);
165 static struct tnode *halve(struct trie *t, struct tnode *tn);
166 /* tnodes to free after resize(); protected by RTNL */
167 static struct tnode *tnode_free_head;
168 static size_t tnode_free_size;
169
170 /*
171 * synchronize_rcu after call_rcu for that many pages; it should be especially
172 * useful before resizing the root node with PREEMPT_NONE configs; the value was
173 * obtained experimentally, aiming to avoid visible slowdown.
174 */
175 static const int sync_pages = 128;
176
177 static struct kmem_cache *fn_alias_kmem __read_mostly;
178 static struct kmem_cache *trie_leaf_kmem __read_mostly;
179
180 static inline struct tnode *node_parent(struct node *node)
181 {
182 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
183 }
184
185 static inline struct tnode *node_parent_rcu(struct node *node)
186 {
187 struct tnode *ret = node_parent(node);
188
189 return rcu_dereference(ret);
190 }
191
192 /* Same as rcu_assign_pointer
193 * but that macro() assumes that value is a pointer.
194 */
195 static inline void node_set_parent(struct node *node, struct tnode *ptr)
196 {
197 smp_wmb();
198 node->parent = (unsigned long)ptr | NODE_TYPE(node);
199 }
200
201 static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
202 {
203 BUG_ON(i >= 1U << tn->bits);
204
205 return tn->child[i];
206 }
207
208 static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
209 {
210 struct node *ret = tnode_get_child(tn, i);
211
212 return rcu_dereference(ret);
213 }
214
215 static inline int tnode_child_length(const struct tnode *tn)
216 {
217 return 1 << tn->bits;
218 }
219
220 static inline t_key mask_pfx(t_key k, unsigned short l)
221 {
222 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
223 }
224
225 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
226 {
227 if (offset < KEYLENGTH)
228 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
229 else
230 return 0;
231 }
232
233 static inline int tkey_equals(t_key a, t_key b)
234 {
235 return a == b;
236 }
237
238 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
239 {
240 if (bits == 0 || offset >= KEYLENGTH)
241 return 1;
242 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
243 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
244 }
245
246 static inline int tkey_mismatch(t_key a, int offset, t_key b)
247 {
248 t_key diff = a ^ b;
249 int i = offset;
250
251 if (!diff)
252 return 0;
253 while ((diff << i) >> (KEYLENGTH-1) == 0)
254 i++;
255 return i;
256 }
257
258 /*
259 To understand this stuff, an understanding of keys and all their bits is
260 necessary. Every node in the trie has a key associated with it, but not
261 all of the bits in that key are significant.
262
263 Consider a node 'n' and its parent 'tp'.
264
265 If n is a leaf, every bit in its key is significant. Its presence is
266 necessitated by path compression, since during a tree traversal (when
267 searching for a leaf - unless we are doing an insertion) we will completely
268 ignore all skipped bits we encounter. Thus we need to verify, at the end of
269 a potentially successful search, that we have indeed been walking the
270 correct key path.
271
272 Note that we can never "miss" the correct key in the tree if present by
273 following the wrong path. Path compression ensures that segments of the key
274 that are the same for all keys with a given prefix are skipped, but the
275 skipped part *is* identical for each node in the subtrie below the skipped
276 bit! trie_insert() in this implementation takes care of that - note the
277 call to tkey_sub_equals() in trie_insert().
278
279 if n is an internal node - a 'tnode' here, the various parts of its key
280 have many different meanings.
281
282 Example:
283 _________________________________________________________________
284 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
285 -----------------------------------------------------------------
286 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
287
288 _________________________________________________________________
289 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
290 -----------------------------------------------------------------
291 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
292
293 tp->pos = 7
294 tp->bits = 3
295 n->pos = 15
296 n->bits = 4
297
298 First, let's just ignore the bits that come before the parent tp, that is
299 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
300 not use them for anything.
301
302 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
303 index into the parent's child array. That is, they will be used to find
304 'n' among tp's children.
305
306 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
307 for the node n.
308
309 All the bits we have seen so far are significant to the node n. The rest
310 of the bits are really not needed or indeed known in n->key.
311
312 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
313 n's child array, and will of course be different for each child.
314
315
316 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
317 at this point.
318
319 */
320
321 static inline void check_tnode(const struct tnode *tn)
322 {
323 WARN_ON(tn && tn->pos+tn->bits > 32);
324 }
325
326 static const int halve_threshold = 25;
327 static const int inflate_threshold = 50;
328 static const int halve_threshold_root = 15;
329 static const int inflate_threshold_root = 30;
330
331 static void __alias_free_mem(struct rcu_head *head)
332 {
333 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
334 kmem_cache_free(fn_alias_kmem, fa);
335 }
336
337 static inline void alias_free_mem_rcu(struct fib_alias *fa)
338 {
339 call_rcu(&fa->rcu, __alias_free_mem);
340 }
341
342 static void __leaf_free_rcu(struct rcu_head *head)
343 {
344 struct leaf *l = container_of(head, struct leaf, rcu);
345 kmem_cache_free(trie_leaf_kmem, l);
346 }
347
348 static inline void free_leaf(struct leaf *l)
349 {
350 call_rcu_bh(&l->rcu, __leaf_free_rcu);
351 }
352
353 static void __leaf_info_free_rcu(struct rcu_head *head)
354 {
355 kfree(container_of(head, struct leaf_info, rcu));
356 }
357
358 static inline void free_leaf_info(struct leaf_info *leaf)
359 {
360 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
361 }
362
363 static struct tnode *tnode_alloc(size_t size)
364 {
365 if (size <= PAGE_SIZE)
366 return kzalloc(size, GFP_KERNEL);
367 else
368 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
369 }
370
371 static void __tnode_vfree(struct work_struct *arg)
372 {
373 struct tnode *tn = container_of(arg, struct tnode, work);
374 vfree(tn);
375 }
376
377 static void __tnode_free_rcu(struct rcu_head *head)
378 {
379 struct tnode *tn = container_of(head, struct tnode, rcu);
380 size_t size = sizeof(struct tnode) +
381 (sizeof(struct node *) << tn->bits);
382
383 if (size <= PAGE_SIZE)
384 kfree(tn);
385 else {
386 INIT_WORK(&tn->work, __tnode_vfree);
387 schedule_work(&tn->work);
388 }
389 }
390
391 static inline void tnode_free(struct tnode *tn)
392 {
393 if (IS_LEAF(tn))
394 free_leaf((struct leaf *) tn);
395 else
396 call_rcu(&tn->rcu, __tnode_free_rcu);
397 }
398
399 static void tnode_free_safe(struct tnode *tn)
400 {
401 BUG_ON(IS_LEAF(tn));
402 tn->tnode_free = tnode_free_head;
403 tnode_free_head = tn;
404 tnode_free_size += sizeof(struct tnode) +
405 (sizeof(struct node *) << tn->bits);
406 }
407
408 static void tnode_free_flush(void)
409 {
410 struct tnode *tn;
411
412 while ((tn = tnode_free_head)) {
413 tnode_free_head = tn->tnode_free;
414 tn->tnode_free = NULL;
415 tnode_free(tn);
416 }
417
418 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
419 tnode_free_size = 0;
420 synchronize_rcu();
421 }
422 }
423
424 static struct leaf *leaf_new(void)
425 {
426 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
427 if (l) {
428 l->parent = T_LEAF;
429 INIT_HLIST_HEAD(&l->list);
430 }
431 return l;
432 }
433
434 static struct leaf_info *leaf_info_new(int plen)
435 {
436 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
437 if (li) {
438 li->plen = plen;
439 INIT_LIST_HEAD(&li->falh);
440 }
441 return li;
442 }
443
444 static struct tnode *tnode_new(t_key key, int pos, int bits)
445 {
446 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
447 struct tnode *tn = tnode_alloc(sz);
448
449 if (tn) {
450 tn->parent = T_TNODE;
451 tn->pos = pos;
452 tn->bits = bits;
453 tn->key = key;
454 tn->full_children = 0;
455 tn->empty_children = 1<<bits;
456 }
457
458 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
459 (unsigned long) (sizeof(struct node) << bits));
460 return tn;
461 }
462
463 /*
464 * Check whether a tnode 'n' is "full", i.e. it is an internal node
465 * and no bits are skipped. See discussion in dyntree paper p. 6
466 */
467
468 static inline int tnode_full(const struct tnode *tn, const struct node *n)
469 {
470 if (n == NULL || IS_LEAF(n))
471 return 0;
472
473 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
474 }
475
476 static inline void put_child(struct trie *t, struct tnode *tn, int i,
477 struct node *n)
478 {
479 tnode_put_child_reorg(tn, i, n, -1);
480 }
481
482 /*
483 * Add a child at position i overwriting the old value.
484 * Update the value of full_children and empty_children.
485 */
486
487 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
488 int wasfull)
489 {
490 struct node *chi = tn->child[i];
491 int isfull;
492
493 BUG_ON(i >= 1<<tn->bits);
494
495 /* update emptyChildren */
496 if (n == NULL && chi != NULL)
497 tn->empty_children++;
498 else if (n != NULL && chi == NULL)
499 tn->empty_children--;
500
501 /* update fullChildren */
502 if (wasfull == -1)
503 wasfull = tnode_full(tn, chi);
504
505 isfull = tnode_full(tn, n);
506 if (wasfull && !isfull)
507 tn->full_children--;
508 else if (!wasfull && isfull)
509 tn->full_children++;
510
511 if (n)
512 node_set_parent(n, tn);
513
514 rcu_assign_pointer(tn->child[i], n);
515 }
516
517 #define MAX_WORK 10
518 static struct node *resize(struct trie *t, struct tnode *tn)
519 {
520 int i;
521 struct tnode *old_tn;
522 int inflate_threshold_use;
523 int halve_threshold_use;
524 int max_work;
525
526 if (!tn)
527 return NULL;
528
529 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
530 tn, inflate_threshold, halve_threshold);
531
532 /* No children */
533 if (tn->empty_children == tnode_child_length(tn)) {
534 tnode_free_safe(tn);
535 return NULL;
536 }
537 /* One child */
538 if (tn->empty_children == tnode_child_length(tn) - 1)
539 goto one_child;
540 /*
541 * Double as long as the resulting node has a number of
542 * nonempty nodes that are above the threshold.
543 */
544
545 /*
546 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
547 * the Helsinki University of Technology and Matti Tikkanen of Nokia
548 * Telecommunications, page 6:
549 * "A node is doubled if the ratio of non-empty children to all
550 * children in the *doubled* node is at least 'high'."
551 *
552 * 'high' in this instance is the variable 'inflate_threshold'. It
553 * is expressed as a percentage, so we multiply it with
554 * tnode_child_length() and instead of multiplying by 2 (since the
555 * child array will be doubled by inflate()) and multiplying
556 * the left-hand side by 100 (to handle the percentage thing) we
557 * multiply the left-hand side by 50.
558 *
559 * The left-hand side may look a bit weird: tnode_child_length(tn)
560 * - tn->empty_children is of course the number of non-null children
561 * in the current node. tn->full_children is the number of "full"
562 * children, that is non-null tnodes with a skip value of 0.
563 * All of those will be doubled in the resulting inflated tnode, so
564 * we just count them one extra time here.
565 *
566 * A clearer way to write this would be:
567 *
568 * to_be_doubled = tn->full_children;
569 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
570 * tn->full_children;
571 *
572 * new_child_length = tnode_child_length(tn) * 2;
573 *
574 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
575 * new_child_length;
576 * if (new_fill_factor >= inflate_threshold)
577 *
578 * ...and so on, tho it would mess up the while () loop.
579 *
580 * anyway,
581 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
582 * inflate_threshold
583 *
584 * avoid a division:
585 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
586 * inflate_threshold * new_child_length
587 *
588 * expand not_to_be_doubled and to_be_doubled, and shorten:
589 * 100 * (tnode_child_length(tn) - tn->empty_children +
590 * tn->full_children) >= inflate_threshold * new_child_length
591 *
592 * expand new_child_length:
593 * 100 * (tnode_child_length(tn) - tn->empty_children +
594 * tn->full_children) >=
595 * inflate_threshold * tnode_child_length(tn) * 2
596 *
597 * shorten again:
598 * 50 * (tn->full_children + tnode_child_length(tn) -
599 * tn->empty_children) >= inflate_threshold *
600 * tnode_child_length(tn)
601 *
602 */
603
604 check_tnode(tn);
605
606 /* Keep root node larger */
607
608 if (!node_parent((struct node*) tn)) {
609 inflate_threshold_use = inflate_threshold_root;
610 halve_threshold_use = halve_threshold_root;
611 }
612 else {
613 inflate_threshold_use = inflate_threshold;
614 halve_threshold_use = halve_threshold;
615 }
616
617 max_work = MAX_WORK;
618 while ((tn->full_children > 0 && max_work-- &&
619 50 * (tn->full_children + tnode_child_length(tn)
620 - tn->empty_children)
621 >= inflate_threshold_use * tnode_child_length(tn))) {
622
623 old_tn = tn;
624 tn = inflate(t, tn);
625
626 if (IS_ERR(tn)) {
627 tn = old_tn;
628 #ifdef CONFIG_IP_FIB_TRIE_STATS
629 t->stats.resize_node_skipped++;
630 #endif
631 break;
632 }
633 }
634
635 check_tnode(tn);
636
637 /* Return if at least one inflate is run */
638 if( max_work != MAX_WORK)
639 return (struct node *) tn;
640
641 /*
642 * Halve as long as the number of empty children in this
643 * node is above threshold.
644 */
645
646 max_work = MAX_WORK;
647 while (tn->bits > 1 && max_work-- &&
648 100 * (tnode_child_length(tn) - tn->empty_children) <
649 halve_threshold_use * tnode_child_length(tn)) {
650
651 old_tn = tn;
652 tn = halve(t, tn);
653 if (IS_ERR(tn)) {
654 tn = old_tn;
655 #ifdef CONFIG_IP_FIB_TRIE_STATS
656 t->stats.resize_node_skipped++;
657 #endif
658 break;
659 }
660 }
661
662
663 /* Only one child remains */
664 if (tn->empty_children == tnode_child_length(tn) - 1) {
665 one_child:
666 for (i = 0; i < tnode_child_length(tn); i++) {
667 struct node *n;
668
669 n = tn->child[i];
670 if (!n)
671 continue;
672
673 /* compress one level */
674
675 node_set_parent(n, NULL);
676 tnode_free_safe(tn);
677 return n;
678 }
679 }
680 return (struct node *) tn;
681 }
682
683 static struct tnode *inflate(struct trie *t, struct tnode *tn)
684 {
685 struct tnode *oldtnode = tn;
686 int olen = tnode_child_length(tn);
687 int i;
688
689 pr_debug("In inflate\n");
690
691 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
692
693 if (!tn)
694 return ERR_PTR(-ENOMEM);
695
696 /*
697 * Preallocate and store tnodes before the actual work so we
698 * don't get into an inconsistent state if memory allocation
699 * fails. In case of failure we return the oldnode and inflate
700 * of tnode is ignored.
701 */
702
703 for (i = 0; i < olen; i++) {
704 struct tnode *inode;
705
706 inode = (struct tnode *) tnode_get_child(oldtnode, i);
707 if (inode &&
708 IS_TNODE(inode) &&
709 inode->pos == oldtnode->pos + oldtnode->bits &&
710 inode->bits > 1) {
711 struct tnode *left, *right;
712 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
713
714 left = tnode_new(inode->key&(~m), inode->pos + 1,
715 inode->bits - 1);
716 if (!left)
717 goto nomem;
718
719 right = tnode_new(inode->key|m, inode->pos + 1,
720 inode->bits - 1);
721
722 if (!right) {
723 tnode_free(left);
724 goto nomem;
725 }
726
727 put_child(t, tn, 2*i, (struct node *) left);
728 put_child(t, tn, 2*i+1, (struct node *) right);
729 }
730 }
731
732 for (i = 0; i < olen; i++) {
733 struct tnode *inode;
734 struct node *node = tnode_get_child(oldtnode, i);
735 struct tnode *left, *right;
736 int size, j;
737
738 /* An empty child */
739 if (node == NULL)
740 continue;
741
742 /* A leaf or an internal node with skipped bits */
743
744 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
745 tn->pos + tn->bits - 1) {
746 if (tkey_extract_bits(node->key,
747 oldtnode->pos + oldtnode->bits,
748 1) == 0)
749 put_child(t, tn, 2*i, node);
750 else
751 put_child(t, tn, 2*i+1, node);
752 continue;
753 }
754
755 /* An internal node with two children */
756 inode = (struct tnode *) node;
757
758 if (inode->bits == 1) {
759 put_child(t, tn, 2*i, inode->child[0]);
760 put_child(t, tn, 2*i+1, inode->child[1]);
761
762 tnode_free_safe(inode);
763 continue;
764 }
765
766 /* An internal node with more than two children */
767
768 /* We will replace this node 'inode' with two new
769 * ones, 'left' and 'right', each with half of the
770 * original children. The two new nodes will have
771 * a position one bit further down the key and this
772 * means that the "significant" part of their keys
773 * (see the discussion near the top of this file)
774 * will differ by one bit, which will be "0" in
775 * left's key and "1" in right's key. Since we are
776 * moving the key position by one step, the bit that
777 * we are moving away from - the bit at position
778 * (inode->pos) - is the one that will differ between
779 * left and right. So... we synthesize that bit in the
780 * two new keys.
781 * The mask 'm' below will be a single "one" bit at
782 * the position (inode->pos)
783 */
784
785 /* Use the old key, but set the new significant
786 * bit to zero.
787 */
788
789 left = (struct tnode *) tnode_get_child(tn, 2*i);
790 put_child(t, tn, 2*i, NULL);
791
792 BUG_ON(!left);
793
794 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
795 put_child(t, tn, 2*i+1, NULL);
796
797 BUG_ON(!right);
798
799 size = tnode_child_length(left);
800 for (j = 0; j < size; j++) {
801 put_child(t, left, j, inode->child[j]);
802 put_child(t, right, j, inode->child[j + size]);
803 }
804 put_child(t, tn, 2*i, resize(t, left));
805 put_child(t, tn, 2*i+1, resize(t, right));
806
807 tnode_free_safe(inode);
808 }
809 tnode_free_safe(oldtnode);
810 return tn;
811 nomem:
812 {
813 int size = tnode_child_length(tn);
814 int j;
815
816 for (j = 0; j < size; j++)
817 if (tn->child[j])
818 tnode_free((struct tnode *)tn->child[j]);
819
820 tnode_free(tn);
821
822 return ERR_PTR(-ENOMEM);
823 }
824 }
825
826 static struct tnode *halve(struct trie *t, struct tnode *tn)
827 {
828 struct tnode *oldtnode = tn;
829 struct node *left, *right;
830 int i;
831 int olen = tnode_child_length(tn);
832
833 pr_debug("In halve\n");
834
835 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
836
837 if (!tn)
838 return ERR_PTR(-ENOMEM);
839
840 /*
841 * Preallocate and store tnodes before the actual work so we
842 * don't get into an inconsistent state if memory allocation
843 * fails. In case of failure we return the oldnode and halve
844 * of tnode is ignored.
845 */
846
847 for (i = 0; i < olen; i += 2) {
848 left = tnode_get_child(oldtnode, i);
849 right = tnode_get_child(oldtnode, i+1);
850
851 /* Two nonempty children */
852 if (left && right) {
853 struct tnode *newn;
854
855 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
856
857 if (!newn)
858 goto nomem;
859
860 put_child(t, tn, i/2, (struct node *)newn);
861 }
862
863 }
864
865 for (i = 0; i < olen; i += 2) {
866 struct tnode *newBinNode;
867
868 left = tnode_get_child(oldtnode, i);
869 right = tnode_get_child(oldtnode, i+1);
870
871 /* At least one of the children is empty */
872 if (left == NULL) {
873 if (right == NULL) /* Both are empty */
874 continue;
875 put_child(t, tn, i/2, right);
876 continue;
877 }
878
879 if (right == NULL) {
880 put_child(t, tn, i/2, left);
881 continue;
882 }
883
884 /* Two nonempty children */
885 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
886 put_child(t, tn, i/2, NULL);
887 put_child(t, newBinNode, 0, left);
888 put_child(t, newBinNode, 1, right);
889 put_child(t, tn, i/2, resize(t, newBinNode));
890 }
891 tnode_free_safe(oldtnode);
892 return tn;
893 nomem:
894 {
895 int size = tnode_child_length(tn);
896 int j;
897
898 for (j = 0; j < size; j++)
899 if (tn->child[j])
900 tnode_free((struct tnode *)tn->child[j]);
901
902 tnode_free(tn);
903
904 return ERR_PTR(-ENOMEM);
905 }
906 }
907
908 /* readside must use rcu_read_lock currently dump routines
909 via get_fa_head and dump */
910
911 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
912 {
913 struct hlist_head *head = &l->list;
914 struct hlist_node *node;
915 struct leaf_info *li;
916
917 hlist_for_each_entry_rcu(li, node, head, hlist)
918 if (li->plen == plen)
919 return li;
920
921 return NULL;
922 }
923
924 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
925 {
926 struct leaf_info *li = find_leaf_info(l, plen);
927
928 if (!li)
929 return NULL;
930
931 return &li->falh;
932 }
933
934 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
935 {
936 struct leaf_info *li = NULL, *last = NULL;
937 struct hlist_node *node;
938
939 if (hlist_empty(head)) {
940 hlist_add_head_rcu(&new->hlist, head);
941 } else {
942 hlist_for_each_entry(li, node, head, hlist) {
943 if (new->plen > li->plen)
944 break;
945
946 last = li;
947 }
948 if (last)
949 hlist_add_after_rcu(&last->hlist, &new->hlist);
950 else
951 hlist_add_before_rcu(&new->hlist, &li->hlist);
952 }
953 }
954
955 /* rcu_read_lock needs to be hold by caller from readside */
956
957 static struct leaf *
958 fib_find_node(struct trie *t, u32 key)
959 {
960 int pos;
961 struct tnode *tn;
962 struct node *n;
963
964 pos = 0;
965 n = rcu_dereference_check(t->trie,
966 rcu_read_lock_held() ||
967 lockdep_rtnl_is_held());
968
969 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
970 tn = (struct tnode *) n;
971
972 check_tnode(tn);
973
974 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
975 pos = tn->pos + tn->bits;
976 n = tnode_get_child_rcu(tn,
977 tkey_extract_bits(key,
978 tn->pos,
979 tn->bits));
980 } else
981 break;
982 }
983 /* Case we have found a leaf. Compare prefixes */
984
985 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
986 return (struct leaf *)n;
987
988 return NULL;
989 }
990
991 static void trie_rebalance(struct trie *t, struct tnode *tn)
992 {
993 int wasfull;
994 t_key cindex, key;
995 struct tnode *tp;
996
997 key = tn->key;
998
999 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
1000 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1001 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
1002 tn = (struct tnode *) resize(t, (struct tnode *)tn);
1003
1004 tnode_put_child_reorg((struct tnode *)tp, cindex,
1005 (struct node *)tn, wasfull);
1006
1007 tp = node_parent((struct node *) tn);
1008 if (!tp)
1009 rcu_assign_pointer(t->trie, (struct node *)tn);
1010
1011 tnode_free_flush();
1012 if (!tp)
1013 break;
1014 tn = tp;
1015 }
1016
1017 /* Handle last (top) tnode */
1018 if (IS_TNODE(tn))
1019 tn = (struct tnode *)resize(t, (struct tnode *)tn);
1020
1021 rcu_assign_pointer(t->trie, (struct node *)tn);
1022 tnode_free_flush();
1023
1024 return;
1025 }
1026
1027 /* only used from updater-side */
1028
1029 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1030 {
1031 int pos, newpos;
1032 struct tnode *tp = NULL, *tn = NULL;
1033 struct node *n;
1034 struct leaf *l;
1035 int missbit;
1036 struct list_head *fa_head = NULL;
1037 struct leaf_info *li;
1038 t_key cindex;
1039
1040 pos = 0;
1041 n = t->trie;
1042
1043 /* If we point to NULL, stop. Either the tree is empty and we should
1044 * just put a new leaf in if, or we have reached an empty child slot,
1045 * and we should just put our new leaf in that.
1046 * If we point to a T_TNODE, check if it matches our key. Note that
1047 * a T_TNODE might be skipping any number of bits - its 'pos' need
1048 * not be the parent's 'pos'+'bits'!
1049 *
1050 * If it does match the current key, get pos/bits from it, extract
1051 * the index from our key, push the T_TNODE and walk the tree.
1052 *
1053 * If it doesn't, we have to replace it with a new T_TNODE.
1054 *
1055 * If we point to a T_LEAF, it might or might not have the same key
1056 * as we do. If it does, just change the value, update the T_LEAF's
1057 * value, and return it.
1058 * If it doesn't, we need to replace it with a T_TNODE.
1059 */
1060
1061 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1062 tn = (struct tnode *) n;
1063
1064 check_tnode(tn);
1065
1066 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1067 tp = tn;
1068 pos = tn->pos + tn->bits;
1069 n = tnode_get_child(tn,
1070 tkey_extract_bits(key,
1071 tn->pos,
1072 tn->bits));
1073
1074 BUG_ON(n && node_parent(n) != tn);
1075 } else
1076 break;
1077 }
1078
1079 /*
1080 * n ----> NULL, LEAF or TNODE
1081 *
1082 * tp is n's (parent) ----> NULL or TNODE
1083 */
1084
1085 BUG_ON(tp && IS_LEAF(tp));
1086
1087 /* Case 1: n is a leaf. Compare prefixes */
1088
1089 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1090 l = (struct leaf *) n;
1091 li = leaf_info_new(plen);
1092
1093 if (!li)
1094 return NULL;
1095
1096 fa_head = &li->falh;
1097 insert_leaf_info(&l->list, li);
1098 goto done;
1099 }
1100 l = leaf_new();
1101
1102 if (!l)
1103 return NULL;
1104
1105 l->key = key;
1106 li = leaf_info_new(plen);
1107
1108 if (!li) {
1109 free_leaf(l);
1110 return NULL;
1111 }
1112
1113 fa_head = &li->falh;
1114 insert_leaf_info(&l->list, li);
1115
1116 if (t->trie && n == NULL) {
1117 /* Case 2: n is NULL, and will just insert a new leaf */
1118
1119 node_set_parent((struct node *)l, tp);
1120
1121 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1122 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1123 } else {
1124 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1125 /*
1126 * Add a new tnode here
1127 * first tnode need some special handling
1128 */
1129
1130 if (tp)
1131 pos = tp->pos+tp->bits;
1132 else
1133 pos = 0;
1134
1135 if (n) {
1136 newpos = tkey_mismatch(key, pos, n->key);
1137 tn = tnode_new(n->key, newpos, 1);
1138 } else {
1139 newpos = 0;
1140 tn = tnode_new(key, newpos, 1); /* First tnode */
1141 }
1142
1143 if (!tn) {
1144 free_leaf_info(li);
1145 free_leaf(l);
1146 return NULL;
1147 }
1148
1149 node_set_parent((struct node *)tn, tp);
1150
1151 missbit = tkey_extract_bits(key, newpos, 1);
1152 put_child(t, tn, missbit, (struct node *)l);
1153 put_child(t, tn, 1-missbit, n);
1154
1155 if (tp) {
1156 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1157 put_child(t, (struct tnode *)tp, cindex,
1158 (struct node *)tn);
1159 } else {
1160 rcu_assign_pointer(t->trie, (struct node *)tn);
1161 tp = tn;
1162 }
1163 }
1164
1165 if (tp && tp->pos + tp->bits > 32)
1166 pr_warning("fib_trie"
1167 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1168 tp, tp->pos, tp->bits, key, plen);
1169
1170 /* Rebalance the trie */
1171
1172 trie_rebalance(t, tp);
1173 done:
1174 return fa_head;
1175 }
1176
1177 /*
1178 * Caller must hold RTNL.
1179 */
1180 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1181 {
1182 struct trie *t = (struct trie *) tb->tb_data;
1183 struct fib_alias *fa, *new_fa;
1184 struct list_head *fa_head = NULL;
1185 struct fib_info *fi;
1186 int plen = cfg->fc_dst_len;
1187 u8 tos = cfg->fc_tos;
1188 u32 key, mask;
1189 int err;
1190 struct leaf *l;
1191
1192 if (plen > 32)
1193 return -EINVAL;
1194
1195 key = ntohl(cfg->fc_dst);
1196
1197 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1198
1199 mask = ntohl(inet_make_mask(plen));
1200
1201 if (key & ~mask)
1202 return -EINVAL;
1203
1204 key = key & mask;
1205
1206 fi = fib_create_info(cfg);
1207 if (IS_ERR(fi)) {
1208 err = PTR_ERR(fi);
1209 goto err;
1210 }
1211
1212 l = fib_find_node(t, key);
1213 fa = NULL;
1214
1215 if (l) {
1216 fa_head = get_fa_head(l, plen);
1217 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1218 }
1219
1220 /* Now fa, if non-NULL, points to the first fib alias
1221 * with the same keys [prefix,tos,priority], if such key already
1222 * exists or to the node before which we will insert new one.
1223 *
1224 * If fa is NULL, we will need to allocate a new one and
1225 * insert to the head of f.
1226 *
1227 * If f is NULL, no fib node matched the destination key
1228 * and we need to allocate a new one of those as well.
1229 */
1230
1231 if (fa && fa->fa_tos == tos &&
1232 fa->fa_info->fib_priority == fi->fib_priority) {
1233 struct fib_alias *fa_first, *fa_match;
1234
1235 err = -EEXIST;
1236 if (cfg->fc_nlflags & NLM_F_EXCL)
1237 goto out;
1238
1239 /* We have 2 goals:
1240 * 1. Find exact match for type, scope, fib_info to avoid
1241 * duplicate routes
1242 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1243 */
1244 fa_match = NULL;
1245 fa_first = fa;
1246 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1247 list_for_each_entry_continue(fa, fa_head, fa_list) {
1248 if (fa->fa_tos != tos)
1249 break;
1250 if (fa->fa_info->fib_priority != fi->fib_priority)
1251 break;
1252 if (fa->fa_type == cfg->fc_type &&
1253 fa->fa_scope == cfg->fc_scope &&
1254 fa->fa_info == fi) {
1255 fa_match = fa;
1256 break;
1257 }
1258 }
1259
1260 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1261 struct fib_info *fi_drop;
1262 u8 state;
1263
1264 fa = fa_first;
1265 if (fa_match) {
1266 if (fa == fa_match)
1267 err = 0;
1268 goto out;
1269 }
1270 err = -ENOBUFS;
1271 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1272 if (new_fa == NULL)
1273 goto out;
1274
1275 fi_drop = fa->fa_info;
1276 new_fa->fa_tos = fa->fa_tos;
1277 new_fa->fa_info = fi;
1278 new_fa->fa_type = cfg->fc_type;
1279 new_fa->fa_scope = cfg->fc_scope;
1280 state = fa->fa_state;
1281 new_fa->fa_state = state & ~FA_S_ACCESSED;
1282
1283 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1284 alias_free_mem_rcu(fa);
1285
1286 fib_release_info(fi_drop);
1287 if (state & FA_S_ACCESSED)
1288 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1289 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1290 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1291
1292 goto succeeded;
1293 }
1294 /* Error if we find a perfect match which
1295 * uses the same scope, type, and nexthop
1296 * information.
1297 */
1298 if (fa_match)
1299 goto out;
1300
1301 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1302 fa = fa_first;
1303 }
1304 err = -ENOENT;
1305 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1306 goto out;
1307
1308 err = -ENOBUFS;
1309 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1310 if (new_fa == NULL)
1311 goto out;
1312
1313 new_fa->fa_info = fi;
1314 new_fa->fa_tos = tos;
1315 new_fa->fa_type = cfg->fc_type;
1316 new_fa->fa_scope = cfg->fc_scope;
1317 new_fa->fa_state = 0;
1318 /*
1319 * Insert new entry to the list.
1320 */
1321
1322 if (!fa_head) {
1323 fa_head = fib_insert_node(t, key, plen);
1324 if (unlikely(!fa_head)) {
1325 err = -ENOMEM;
1326 goto out_free_new_fa;
1327 }
1328 }
1329
1330 list_add_tail_rcu(&new_fa->fa_list,
1331 (fa ? &fa->fa_list : fa_head));
1332
1333 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1334 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1335 &cfg->fc_nlinfo, 0);
1336 succeeded:
1337 return 0;
1338
1339 out_free_new_fa:
1340 kmem_cache_free(fn_alias_kmem, new_fa);
1341 out:
1342 fib_release_info(fi);
1343 err:
1344 return err;
1345 }
1346
1347 /* should be called with rcu_read_lock */
1348 static int check_leaf(struct trie *t, struct leaf *l,
1349 t_key key, const struct flowi *flp,
1350 struct fib_result *res)
1351 {
1352 struct leaf_info *li;
1353 struct hlist_head *hhead = &l->list;
1354 struct hlist_node *node;
1355
1356 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1357 int err;
1358 int plen = li->plen;
1359 __be32 mask = inet_make_mask(plen);
1360
1361 if (l->key != (key & ntohl(mask)))
1362 continue;
1363
1364 err = fib_semantic_match(&li->falh, flp, res, plen);
1365
1366 #ifdef CONFIG_IP_FIB_TRIE_STATS
1367 if (err <= 0)
1368 t->stats.semantic_match_passed++;
1369 else
1370 t->stats.semantic_match_miss++;
1371 #endif
1372 if (err <= 0)
1373 return err;
1374 }
1375
1376 return 1;
1377 }
1378
1379 int fib_table_lookup(struct fib_table *tb, const struct flowi *flp,
1380 struct fib_result *res)
1381 {
1382 struct trie *t = (struct trie *) tb->tb_data;
1383 int ret;
1384 struct node *n;
1385 struct tnode *pn;
1386 int pos, bits;
1387 t_key key = ntohl(flp->fl4_dst);
1388 int chopped_off;
1389 t_key cindex = 0;
1390 int current_prefix_length = KEYLENGTH;
1391 struct tnode *cn;
1392 t_key node_prefix, key_prefix, pref_mismatch;
1393 int mp;
1394
1395 rcu_read_lock();
1396
1397 n = rcu_dereference(t->trie);
1398 if (!n)
1399 goto failed;
1400
1401 #ifdef CONFIG_IP_FIB_TRIE_STATS
1402 t->stats.gets++;
1403 #endif
1404
1405 /* Just a leaf? */
1406 if (IS_LEAF(n)) {
1407 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1408 goto found;
1409 }
1410
1411 pn = (struct tnode *) n;
1412 chopped_off = 0;
1413
1414 while (pn) {
1415 pos = pn->pos;
1416 bits = pn->bits;
1417
1418 if (!chopped_off)
1419 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1420 pos, bits);
1421
1422 n = tnode_get_child_rcu(pn, cindex);
1423
1424 if (n == NULL) {
1425 #ifdef CONFIG_IP_FIB_TRIE_STATS
1426 t->stats.null_node_hit++;
1427 #endif
1428 goto backtrace;
1429 }
1430
1431 if (IS_LEAF(n)) {
1432 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1433 if (ret > 0)
1434 goto backtrace;
1435 goto found;
1436 }
1437
1438 cn = (struct tnode *)n;
1439
1440 /*
1441 * It's a tnode, and we can do some extra checks here if we
1442 * like, to avoid descending into a dead-end branch.
1443 * This tnode is in the parent's child array at index
1444 * key[p_pos..p_pos+p_bits] but potentially with some bits
1445 * chopped off, so in reality the index may be just a
1446 * subprefix, padded with zero at the end.
1447 * We can also take a look at any skipped bits in this
1448 * tnode - everything up to p_pos is supposed to be ok,
1449 * and the non-chopped bits of the index (se previous
1450 * paragraph) are also guaranteed ok, but the rest is
1451 * considered unknown.
1452 *
1453 * The skipped bits are key[pos+bits..cn->pos].
1454 */
1455
1456 /* If current_prefix_length < pos+bits, we are already doing
1457 * actual prefix matching, which means everything from
1458 * pos+(bits-chopped_off) onward must be zero along some
1459 * branch of this subtree - otherwise there is *no* valid
1460 * prefix present. Here we can only check the skipped
1461 * bits. Remember, since we have already indexed into the
1462 * parent's child array, we know that the bits we chopped of
1463 * *are* zero.
1464 */
1465
1466 /* NOTA BENE: Checking only skipped bits
1467 for the new node here */
1468
1469 if (current_prefix_length < pos+bits) {
1470 if (tkey_extract_bits(cn->key, current_prefix_length,
1471 cn->pos - current_prefix_length)
1472 || !(cn->child[0]))
1473 goto backtrace;
1474 }
1475
1476 /*
1477 * If chopped_off=0, the index is fully validated and we
1478 * only need to look at the skipped bits for this, the new,
1479 * tnode. What we actually want to do is to find out if
1480 * these skipped bits match our key perfectly, or if we will
1481 * have to count on finding a matching prefix further down,
1482 * because if we do, we would like to have some way of
1483 * verifying the existence of such a prefix at this point.
1484 */
1485
1486 /* The only thing we can do at this point is to verify that
1487 * any such matching prefix can indeed be a prefix to our
1488 * key, and if the bits in the node we are inspecting that
1489 * do not match our key are not ZERO, this cannot be true.
1490 * Thus, find out where there is a mismatch (before cn->pos)
1491 * and verify that all the mismatching bits are zero in the
1492 * new tnode's key.
1493 */
1494
1495 /*
1496 * Note: We aren't very concerned about the piece of
1497 * the key that precede pn->pos+pn->bits, since these
1498 * have already been checked. The bits after cn->pos
1499 * aren't checked since these are by definition
1500 * "unknown" at this point. Thus, what we want to see
1501 * is if we are about to enter the "prefix matching"
1502 * state, and in that case verify that the skipped
1503 * bits that will prevail throughout this subtree are
1504 * zero, as they have to be if we are to find a
1505 * matching prefix.
1506 */
1507
1508 node_prefix = mask_pfx(cn->key, cn->pos);
1509 key_prefix = mask_pfx(key, cn->pos);
1510 pref_mismatch = key_prefix^node_prefix;
1511 mp = 0;
1512
1513 /*
1514 * In short: If skipped bits in this node do not match
1515 * the search key, enter the "prefix matching"
1516 * state.directly.
1517 */
1518 if (pref_mismatch) {
1519 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1520 mp++;
1521 pref_mismatch = pref_mismatch << 1;
1522 }
1523 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1524
1525 if (key_prefix != 0)
1526 goto backtrace;
1527
1528 if (current_prefix_length >= cn->pos)
1529 current_prefix_length = mp;
1530 }
1531
1532 pn = (struct tnode *)n; /* Descend */
1533 chopped_off = 0;
1534 continue;
1535
1536 backtrace:
1537 chopped_off++;
1538
1539 /* As zero don't change the child key (cindex) */
1540 while ((chopped_off <= pn->bits)
1541 && !(cindex & (1<<(chopped_off-1))))
1542 chopped_off++;
1543
1544 /* Decrease current_... with bits chopped off */
1545 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1546 current_prefix_length = pn->pos + pn->bits
1547 - chopped_off;
1548
1549 /*
1550 * Either we do the actual chop off according or if we have
1551 * chopped off all bits in this tnode walk up to our parent.
1552 */
1553
1554 if (chopped_off <= pn->bits) {
1555 cindex &= ~(1 << (chopped_off-1));
1556 } else {
1557 struct tnode *parent = node_parent_rcu((struct node *) pn);
1558 if (!parent)
1559 goto failed;
1560
1561 /* Get Child's index */
1562 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1563 pn = parent;
1564 chopped_off = 0;
1565
1566 #ifdef CONFIG_IP_FIB_TRIE_STATS
1567 t->stats.backtrack++;
1568 #endif
1569 goto backtrace;
1570 }
1571 }
1572 failed:
1573 ret = 1;
1574 found:
1575 rcu_read_unlock();
1576 return ret;
1577 }
1578
1579 /*
1580 * Remove the leaf and return parent.
1581 */
1582 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1583 {
1584 struct tnode *tp = node_parent((struct node *) l);
1585
1586 pr_debug("entering trie_leaf_remove(%p)\n", l);
1587
1588 if (tp) {
1589 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1590 put_child(t, (struct tnode *)tp, cindex, NULL);
1591 trie_rebalance(t, tp);
1592 } else
1593 rcu_assign_pointer(t->trie, NULL);
1594
1595 free_leaf(l);
1596 }
1597
1598 /*
1599 * Caller must hold RTNL.
1600 */
1601 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1602 {
1603 struct trie *t = (struct trie *) tb->tb_data;
1604 u32 key, mask;
1605 int plen = cfg->fc_dst_len;
1606 u8 tos = cfg->fc_tos;
1607 struct fib_alias *fa, *fa_to_delete;
1608 struct list_head *fa_head;
1609 struct leaf *l;
1610 struct leaf_info *li;
1611
1612 if (plen > 32)
1613 return -EINVAL;
1614
1615 key = ntohl(cfg->fc_dst);
1616 mask = ntohl(inet_make_mask(plen));
1617
1618 if (key & ~mask)
1619 return -EINVAL;
1620
1621 key = key & mask;
1622 l = fib_find_node(t, key);
1623
1624 if (!l)
1625 return -ESRCH;
1626
1627 fa_head = get_fa_head(l, plen);
1628 fa = fib_find_alias(fa_head, tos, 0);
1629
1630 if (!fa)
1631 return -ESRCH;
1632
1633 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1634
1635 fa_to_delete = NULL;
1636 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1637 list_for_each_entry_continue(fa, fa_head, fa_list) {
1638 struct fib_info *fi = fa->fa_info;
1639
1640 if (fa->fa_tos != tos)
1641 break;
1642
1643 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1644 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1645 fa->fa_scope == cfg->fc_scope) &&
1646 (!cfg->fc_protocol ||
1647 fi->fib_protocol == cfg->fc_protocol) &&
1648 fib_nh_match(cfg, fi) == 0) {
1649 fa_to_delete = fa;
1650 break;
1651 }
1652 }
1653
1654 if (!fa_to_delete)
1655 return -ESRCH;
1656
1657 fa = fa_to_delete;
1658 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1659 &cfg->fc_nlinfo, 0);
1660
1661 l = fib_find_node(t, key);
1662 li = find_leaf_info(l, plen);
1663
1664 list_del_rcu(&fa->fa_list);
1665
1666 if (list_empty(fa_head)) {
1667 hlist_del_rcu(&li->hlist);
1668 free_leaf_info(li);
1669 }
1670
1671 if (hlist_empty(&l->list))
1672 trie_leaf_remove(t, l);
1673
1674 if (fa->fa_state & FA_S_ACCESSED)
1675 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1676
1677 fib_release_info(fa->fa_info);
1678 alias_free_mem_rcu(fa);
1679 return 0;
1680 }
1681
1682 static int trie_flush_list(struct list_head *head)
1683 {
1684 struct fib_alias *fa, *fa_node;
1685 int found = 0;
1686
1687 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1688 struct fib_info *fi = fa->fa_info;
1689
1690 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1691 list_del_rcu(&fa->fa_list);
1692 fib_release_info(fa->fa_info);
1693 alias_free_mem_rcu(fa);
1694 found++;
1695 }
1696 }
1697 return found;
1698 }
1699
1700 static int trie_flush_leaf(struct leaf *l)
1701 {
1702 int found = 0;
1703 struct hlist_head *lih = &l->list;
1704 struct hlist_node *node, *tmp;
1705 struct leaf_info *li = NULL;
1706
1707 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1708 found += trie_flush_list(&li->falh);
1709
1710 if (list_empty(&li->falh)) {
1711 hlist_del_rcu(&li->hlist);
1712 free_leaf_info(li);
1713 }
1714 }
1715 return found;
1716 }
1717
1718 /*
1719 * Scan for the next right leaf starting at node p->child[idx]
1720 * Since we have back pointer, no recursion necessary.
1721 */
1722 static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
1723 {
1724 do {
1725 t_key idx;
1726
1727 if (c)
1728 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1729 else
1730 idx = 0;
1731
1732 while (idx < 1u << p->bits) {
1733 c = tnode_get_child_rcu(p, idx++);
1734 if (!c)
1735 continue;
1736
1737 if (IS_LEAF(c)) {
1738 prefetch(p->child[idx]);
1739 return (struct leaf *) c;
1740 }
1741
1742 /* Rescan start scanning in new node */
1743 p = (struct tnode *) c;
1744 idx = 0;
1745 }
1746
1747 /* Node empty, walk back up to parent */
1748 c = (struct node *) p;
1749 } while ( (p = node_parent_rcu(c)) != NULL);
1750
1751 return NULL; /* Root of trie */
1752 }
1753
1754 static struct leaf *trie_firstleaf(struct trie *t)
1755 {
1756 struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1757
1758 if (!n)
1759 return NULL;
1760
1761 if (IS_LEAF(n)) /* trie is just a leaf */
1762 return (struct leaf *) n;
1763
1764 return leaf_walk_rcu(n, NULL);
1765 }
1766
1767 static struct leaf *trie_nextleaf(struct leaf *l)
1768 {
1769 struct node *c = (struct node *) l;
1770 struct tnode *p = node_parent_rcu(c);
1771
1772 if (!p)
1773 return NULL; /* trie with just one leaf */
1774
1775 return leaf_walk_rcu(p, c);
1776 }
1777
1778 static struct leaf *trie_leafindex(struct trie *t, int index)
1779 {
1780 struct leaf *l = trie_firstleaf(t);
1781
1782 while (l && index-- > 0)
1783 l = trie_nextleaf(l);
1784
1785 return l;
1786 }
1787
1788
1789 /*
1790 * Caller must hold RTNL.
1791 */
1792 int fib_table_flush(struct fib_table *tb)
1793 {
1794 struct trie *t = (struct trie *) tb->tb_data;
1795 struct leaf *l, *ll = NULL;
1796 int found = 0;
1797
1798 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1799 found += trie_flush_leaf(l);
1800
1801 if (ll && hlist_empty(&ll->list))
1802 trie_leaf_remove(t, ll);
1803 ll = l;
1804 }
1805
1806 if (ll && hlist_empty(&ll->list))
1807 trie_leaf_remove(t, ll);
1808
1809 pr_debug("trie_flush found=%d\n", found);
1810 return found;
1811 }
1812
1813 void fib_table_select_default(struct fib_table *tb,
1814 const struct flowi *flp,
1815 struct fib_result *res)
1816 {
1817 struct trie *t = (struct trie *) tb->tb_data;
1818 int order, last_idx;
1819 struct fib_info *fi = NULL;
1820 struct fib_info *last_resort;
1821 struct fib_alias *fa = NULL;
1822 struct list_head *fa_head;
1823 struct leaf *l;
1824
1825 last_idx = -1;
1826 last_resort = NULL;
1827 order = -1;
1828
1829 rcu_read_lock();
1830
1831 l = fib_find_node(t, 0);
1832 if (!l)
1833 goto out;
1834
1835 fa_head = get_fa_head(l, 0);
1836 if (!fa_head)
1837 goto out;
1838
1839 if (list_empty(fa_head))
1840 goto out;
1841
1842 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1843 struct fib_info *next_fi = fa->fa_info;
1844
1845 if (fa->fa_scope != res->scope ||
1846 fa->fa_type != RTN_UNICAST)
1847 continue;
1848
1849 if (next_fi->fib_priority > res->fi->fib_priority)
1850 break;
1851 if (!next_fi->fib_nh[0].nh_gw ||
1852 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1853 continue;
1854 fa->fa_state |= FA_S_ACCESSED;
1855
1856 if (fi == NULL) {
1857 if (next_fi != res->fi)
1858 break;
1859 } else if (!fib_detect_death(fi, order, &last_resort,
1860 &last_idx, tb->tb_default)) {
1861 fib_result_assign(res, fi);
1862 tb->tb_default = order;
1863 goto out;
1864 }
1865 fi = next_fi;
1866 order++;
1867 }
1868 if (order <= 0 || fi == NULL) {
1869 tb->tb_default = -1;
1870 goto out;
1871 }
1872
1873 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1874 tb->tb_default)) {
1875 fib_result_assign(res, fi);
1876 tb->tb_default = order;
1877 goto out;
1878 }
1879 if (last_idx >= 0)
1880 fib_result_assign(res, last_resort);
1881 tb->tb_default = last_idx;
1882 out:
1883 rcu_read_unlock();
1884 }
1885
1886 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1887 struct fib_table *tb,
1888 struct sk_buff *skb, struct netlink_callback *cb)
1889 {
1890 int i, s_i;
1891 struct fib_alias *fa;
1892 __be32 xkey = htonl(key);
1893
1894 s_i = cb->args[5];
1895 i = 0;
1896
1897 /* rcu_read_lock is hold by caller */
1898
1899 list_for_each_entry_rcu(fa, fah, fa_list) {
1900 if (i < s_i) {
1901 i++;
1902 continue;
1903 }
1904
1905 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1906 cb->nlh->nlmsg_seq,
1907 RTM_NEWROUTE,
1908 tb->tb_id,
1909 fa->fa_type,
1910 fa->fa_scope,
1911 xkey,
1912 plen,
1913 fa->fa_tos,
1914 fa->fa_info, NLM_F_MULTI) < 0) {
1915 cb->args[5] = i;
1916 return -1;
1917 }
1918 i++;
1919 }
1920 cb->args[5] = i;
1921 return skb->len;
1922 }
1923
1924 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1925 struct sk_buff *skb, struct netlink_callback *cb)
1926 {
1927 struct leaf_info *li;
1928 struct hlist_node *node;
1929 int i, s_i;
1930
1931 s_i = cb->args[4];
1932 i = 0;
1933
1934 /* rcu_read_lock is hold by caller */
1935 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1936 if (i < s_i) {
1937 i++;
1938 continue;
1939 }
1940
1941 if (i > s_i)
1942 cb->args[5] = 0;
1943
1944 if (list_empty(&li->falh))
1945 continue;
1946
1947 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1948 cb->args[4] = i;
1949 return -1;
1950 }
1951 i++;
1952 }
1953
1954 cb->args[4] = i;
1955 return skb->len;
1956 }
1957
1958 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1959 struct netlink_callback *cb)
1960 {
1961 struct leaf *l;
1962 struct trie *t = (struct trie *) tb->tb_data;
1963 t_key key = cb->args[2];
1964 int count = cb->args[3];
1965
1966 rcu_read_lock();
1967 /* Dump starting at last key.
1968 * Note: 0.0.0.0/0 (ie default) is first key.
1969 */
1970 if (count == 0)
1971 l = trie_firstleaf(t);
1972 else {
1973 /* Normally, continue from last key, but if that is missing
1974 * fallback to using slow rescan
1975 */
1976 l = fib_find_node(t, key);
1977 if (!l)
1978 l = trie_leafindex(t, count);
1979 }
1980
1981 while (l) {
1982 cb->args[2] = l->key;
1983 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1984 cb->args[3] = count;
1985 rcu_read_unlock();
1986 return -1;
1987 }
1988
1989 ++count;
1990 l = trie_nextleaf(l);
1991 memset(&cb->args[4], 0,
1992 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1993 }
1994 cb->args[3] = count;
1995 rcu_read_unlock();
1996
1997 return skb->len;
1998 }
1999
2000 void __init fib_hash_init(void)
2001 {
2002 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2003 sizeof(struct fib_alias),
2004 0, SLAB_PANIC, NULL);
2005
2006 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2007 max(sizeof(struct leaf),
2008 sizeof(struct leaf_info)),
2009 0, SLAB_PANIC, NULL);
2010 }
2011
2012
2013 /* Fix more generic FIB names for init later */
2014 struct fib_table *fib_hash_table(u32 id)
2015 {
2016 struct fib_table *tb;
2017 struct trie *t;
2018
2019 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2020 GFP_KERNEL);
2021 if (tb == NULL)
2022 return NULL;
2023
2024 tb->tb_id = id;
2025 tb->tb_default = -1;
2026
2027 t = (struct trie *) tb->tb_data;
2028 memset(t, 0, sizeof(*t));
2029
2030 if (id == RT_TABLE_LOCAL)
2031 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
2032
2033 return tb;
2034 }
2035
2036 #ifdef CONFIG_PROC_FS
2037 /* Depth first Trie walk iterator */
2038 struct fib_trie_iter {
2039 struct seq_net_private p;
2040 struct fib_table *tb;
2041 struct tnode *tnode;
2042 unsigned index;
2043 unsigned depth;
2044 };
2045
2046 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
2047 {
2048 struct tnode *tn = iter->tnode;
2049 unsigned cindex = iter->index;
2050 struct tnode *p;
2051
2052 /* A single entry routing table */
2053 if (!tn)
2054 return NULL;
2055
2056 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2057 iter->tnode, iter->index, iter->depth);
2058 rescan:
2059 while (cindex < (1<<tn->bits)) {
2060 struct node *n = tnode_get_child_rcu(tn, cindex);
2061
2062 if (n) {
2063 if (IS_LEAF(n)) {
2064 iter->tnode = tn;
2065 iter->index = cindex + 1;
2066 } else {
2067 /* push down one level */
2068 iter->tnode = (struct tnode *) n;
2069 iter->index = 0;
2070 ++iter->depth;
2071 }
2072 return n;
2073 }
2074
2075 ++cindex;
2076 }
2077
2078 /* Current node exhausted, pop back up */
2079 p = node_parent_rcu((struct node *)tn);
2080 if (p) {
2081 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2082 tn = p;
2083 --iter->depth;
2084 goto rescan;
2085 }
2086
2087 /* got root? */
2088 return NULL;
2089 }
2090
2091 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2092 struct trie *t)
2093 {
2094 struct node *n;
2095
2096 if (!t)
2097 return NULL;
2098
2099 n = rcu_dereference(t->trie);
2100 if (!n)
2101 return NULL;
2102
2103 if (IS_TNODE(n)) {
2104 iter->tnode = (struct tnode *) n;
2105 iter->index = 0;
2106 iter->depth = 1;
2107 } else {
2108 iter->tnode = NULL;
2109 iter->index = 0;
2110 iter->depth = 0;
2111 }
2112
2113 return n;
2114 }
2115
2116 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2117 {
2118 struct node *n;
2119 struct fib_trie_iter iter;
2120
2121 memset(s, 0, sizeof(*s));
2122
2123 rcu_read_lock();
2124 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2125 if (IS_LEAF(n)) {
2126 struct leaf *l = (struct leaf *)n;
2127 struct leaf_info *li;
2128 struct hlist_node *tmp;
2129
2130 s->leaves++;
2131 s->totdepth += iter.depth;
2132 if (iter.depth > s->maxdepth)
2133 s->maxdepth = iter.depth;
2134
2135 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2136 ++s->prefixes;
2137 } else {
2138 const struct tnode *tn = (const struct tnode *) n;
2139 int i;
2140
2141 s->tnodes++;
2142 if (tn->bits < MAX_STAT_DEPTH)
2143 s->nodesizes[tn->bits]++;
2144
2145 for (i = 0; i < (1<<tn->bits); i++)
2146 if (!tn->child[i])
2147 s->nullpointers++;
2148 }
2149 }
2150 rcu_read_unlock();
2151 }
2152
2153 /*
2154 * This outputs /proc/net/fib_triestats
2155 */
2156 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2157 {
2158 unsigned i, max, pointers, bytes, avdepth;
2159
2160 if (stat->leaves)
2161 avdepth = stat->totdepth*100 / stat->leaves;
2162 else
2163 avdepth = 0;
2164
2165 seq_printf(seq, "\tAver depth: %u.%02d\n",
2166 avdepth / 100, avdepth % 100);
2167 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2168
2169 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2170 bytes = sizeof(struct leaf) * stat->leaves;
2171
2172 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2173 bytes += sizeof(struct leaf_info) * stat->prefixes;
2174
2175 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2176 bytes += sizeof(struct tnode) * stat->tnodes;
2177
2178 max = MAX_STAT_DEPTH;
2179 while (max > 0 && stat->nodesizes[max-1] == 0)
2180 max--;
2181
2182 pointers = 0;
2183 for (i = 1; i <= max; i++)
2184 if (stat->nodesizes[i] != 0) {
2185 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2186 pointers += (1<<i) * stat->nodesizes[i];
2187 }
2188 seq_putc(seq, '\n');
2189 seq_printf(seq, "\tPointers: %u\n", pointers);
2190
2191 bytes += sizeof(struct node *) * pointers;
2192 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2193 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2194 }
2195
2196 #ifdef CONFIG_IP_FIB_TRIE_STATS
2197 static void trie_show_usage(struct seq_file *seq,
2198 const struct trie_use_stats *stats)
2199 {
2200 seq_printf(seq, "\nCounters:\n---------\n");
2201 seq_printf(seq, "gets = %u\n", stats->gets);
2202 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2203 seq_printf(seq, "semantic match passed = %u\n",
2204 stats->semantic_match_passed);
2205 seq_printf(seq, "semantic match miss = %u\n",
2206 stats->semantic_match_miss);
2207 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2208 seq_printf(seq, "skipped node resize = %u\n\n",
2209 stats->resize_node_skipped);
2210 }
2211 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2212
2213 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2214 {
2215 if (tb->tb_id == RT_TABLE_LOCAL)
2216 seq_puts(seq, "Local:\n");
2217 else if (tb->tb_id == RT_TABLE_MAIN)
2218 seq_puts(seq, "Main:\n");
2219 else
2220 seq_printf(seq, "Id %d:\n", tb->tb_id);
2221 }
2222
2223
2224 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2225 {
2226 struct net *net = (struct net *)seq->private;
2227 unsigned int h;
2228
2229 seq_printf(seq,
2230 "Basic info: size of leaf:"
2231 " %Zd bytes, size of tnode: %Zd bytes.\n",
2232 sizeof(struct leaf), sizeof(struct tnode));
2233
2234 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2235 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2236 struct hlist_node *node;
2237 struct fib_table *tb;
2238
2239 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2240 struct trie *t = (struct trie *) tb->tb_data;
2241 struct trie_stat stat;
2242
2243 if (!t)
2244 continue;
2245
2246 fib_table_print(seq, tb);
2247
2248 trie_collect_stats(t, &stat);
2249 trie_show_stats(seq, &stat);
2250 #ifdef CONFIG_IP_FIB_TRIE_STATS
2251 trie_show_usage(seq, &t->stats);
2252 #endif
2253 }
2254 }
2255
2256 return 0;
2257 }
2258
2259 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2260 {
2261 return single_open_net(inode, file, fib_triestat_seq_show);
2262 }
2263
2264 static const struct file_operations fib_triestat_fops = {
2265 .owner = THIS_MODULE,
2266 .open = fib_triestat_seq_open,
2267 .read = seq_read,
2268 .llseek = seq_lseek,
2269 .release = single_release_net,
2270 };
2271
2272 static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2273 {
2274 struct fib_trie_iter *iter = seq->private;
2275 struct net *net = seq_file_net(seq);
2276 loff_t idx = 0;
2277 unsigned int h;
2278
2279 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2280 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2281 struct hlist_node *node;
2282 struct fib_table *tb;
2283
2284 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2285 struct node *n;
2286
2287 for (n = fib_trie_get_first(iter,
2288 (struct trie *) tb->tb_data);
2289 n; n = fib_trie_get_next(iter))
2290 if (pos == idx++) {
2291 iter->tb = tb;
2292 return n;
2293 }
2294 }
2295 }
2296
2297 return NULL;
2298 }
2299
2300 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2301 __acquires(RCU)
2302 {
2303 rcu_read_lock();
2304 return fib_trie_get_idx(seq, *pos);
2305 }
2306
2307 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2308 {
2309 struct fib_trie_iter *iter = seq->private;
2310 struct net *net = seq_file_net(seq);
2311 struct fib_table *tb = iter->tb;
2312 struct hlist_node *tb_node;
2313 unsigned int h;
2314 struct node *n;
2315
2316 ++*pos;
2317 /* next node in same table */
2318 n = fib_trie_get_next(iter);
2319 if (n)
2320 return n;
2321
2322 /* walk rest of this hash chain */
2323 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2324 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2325 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2326 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2327 if (n)
2328 goto found;
2329 }
2330
2331 /* new hash chain */
2332 while (++h < FIB_TABLE_HASHSZ) {
2333 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2334 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2335 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2336 if (n)
2337 goto found;
2338 }
2339 }
2340 return NULL;
2341
2342 found:
2343 iter->tb = tb;
2344 return n;
2345 }
2346
2347 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2348 __releases(RCU)
2349 {
2350 rcu_read_unlock();
2351 }
2352
2353 static void seq_indent(struct seq_file *seq, int n)
2354 {
2355 while (n-- > 0) seq_puts(seq, " ");
2356 }
2357
2358 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2359 {
2360 switch (s) {
2361 case RT_SCOPE_UNIVERSE: return "universe";
2362 case RT_SCOPE_SITE: return "site";
2363 case RT_SCOPE_LINK: return "link";
2364 case RT_SCOPE_HOST: return "host";
2365 case RT_SCOPE_NOWHERE: return "nowhere";
2366 default:
2367 snprintf(buf, len, "scope=%d", s);
2368 return buf;
2369 }
2370 }
2371
2372 static const char *const rtn_type_names[__RTN_MAX] = {
2373 [RTN_UNSPEC] = "UNSPEC",
2374 [RTN_UNICAST] = "UNICAST",
2375 [RTN_LOCAL] = "LOCAL",
2376 [RTN_BROADCAST] = "BROADCAST",
2377 [RTN_ANYCAST] = "ANYCAST",
2378 [RTN_MULTICAST] = "MULTICAST",
2379 [RTN_BLACKHOLE] = "BLACKHOLE",
2380 [RTN_UNREACHABLE] = "UNREACHABLE",
2381 [RTN_PROHIBIT] = "PROHIBIT",
2382 [RTN_THROW] = "THROW",
2383 [RTN_NAT] = "NAT",
2384 [RTN_XRESOLVE] = "XRESOLVE",
2385 };
2386
2387 static inline const char *rtn_type(char *buf, size_t len, unsigned t)
2388 {
2389 if (t < __RTN_MAX && rtn_type_names[t])
2390 return rtn_type_names[t];
2391 snprintf(buf, len, "type %u", t);
2392 return buf;
2393 }
2394
2395 /* Pretty print the trie */
2396 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2397 {
2398 const struct fib_trie_iter *iter = seq->private;
2399 struct node *n = v;
2400
2401 if (!node_parent_rcu(n))
2402 fib_table_print(seq, iter->tb);
2403
2404 if (IS_TNODE(n)) {
2405 struct tnode *tn = (struct tnode *) n;
2406 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2407
2408 seq_indent(seq, iter->depth-1);
2409 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2410 &prf, tn->pos, tn->bits, tn->full_children,
2411 tn->empty_children);
2412
2413 } else {
2414 struct leaf *l = (struct leaf *) n;
2415 struct leaf_info *li;
2416 struct hlist_node *node;
2417 __be32 val = htonl(l->key);
2418
2419 seq_indent(seq, iter->depth);
2420 seq_printf(seq, " |-- %pI4\n", &val);
2421
2422 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2423 struct fib_alias *fa;
2424
2425 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2426 char buf1[32], buf2[32];
2427
2428 seq_indent(seq, iter->depth+1);
2429 seq_printf(seq, " /%d %s %s", li->plen,
2430 rtn_scope(buf1, sizeof(buf1),
2431 fa->fa_scope),
2432 rtn_type(buf2, sizeof(buf2),
2433 fa->fa_type));
2434 if (fa->fa_tos)
2435 seq_printf(seq, " tos=%d", fa->fa_tos);
2436 seq_putc(seq, '\n');
2437 }
2438 }
2439 }
2440
2441 return 0;
2442 }
2443
2444 static const struct seq_operations fib_trie_seq_ops = {
2445 .start = fib_trie_seq_start,
2446 .next = fib_trie_seq_next,
2447 .stop = fib_trie_seq_stop,
2448 .show = fib_trie_seq_show,
2449 };
2450
2451 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2452 {
2453 return seq_open_net(inode, file, &fib_trie_seq_ops,
2454 sizeof(struct fib_trie_iter));
2455 }
2456
2457 static const struct file_operations fib_trie_fops = {
2458 .owner = THIS_MODULE,
2459 .open = fib_trie_seq_open,
2460 .read = seq_read,
2461 .llseek = seq_lseek,
2462 .release = seq_release_net,
2463 };
2464
2465 struct fib_route_iter {
2466 struct seq_net_private p;
2467 struct trie *main_trie;
2468 loff_t pos;
2469 t_key key;
2470 };
2471
2472 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2473 {
2474 struct leaf *l = NULL;
2475 struct trie *t = iter->main_trie;
2476
2477 /* use cache location of last found key */
2478 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2479 pos -= iter->pos;
2480 else {
2481 iter->pos = 0;
2482 l = trie_firstleaf(t);
2483 }
2484
2485 while (l && pos-- > 0) {
2486 iter->pos++;
2487 l = trie_nextleaf(l);
2488 }
2489
2490 if (l)
2491 iter->key = pos; /* remember it */
2492 else
2493 iter->pos = 0; /* forget it */
2494
2495 return l;
2496 }
2497
2498 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2499 __acquires(RCU)
2500 {
2501 struct fib_route_iter *iter = seq->private;
2502 struct fib_table *tb;
2503
2504 rcu_read_lock();
2505 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2506 if (!tb)
2507 return NULL;
2508
2509 iter->main_trie = (struct trie *) tb->tb_data;
2510 if (*pos == 0)
2511 return SEQ_START_TOKEN;
2512 else
2513 return fib_route_get_idx(iter, *pos - 1);
2514 }
2515
2516 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2517 {
2518 struct fib_route_iter *iter = seq->private;
2519 struct leaf *l = v;
2520
2521 ++*pos;
2522 if (v == SEQ_START_TOKEN) {
2523 iter->pos = 0;
2524 l = trie_firstleaf(iter->main_trie);
2525 } else {
2526 iter->pos++;
2527 l = trie_nextleaf(l);
2528 }
2529
2530 if (l)
2531 iter->key = l->key;
2532 else
2533 iter->pos = 0;
2534 return l;
2535 }
2536
2537 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2538 __releases(RCU)
2539 {
2540 rcu_read_unlock();
2541 }
2542
2543 static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2544 {
2545 static unsigned type2flags[RTN_MAX + 1] = {
2546 [7] = RTF_REJECT, [8] = RTF_REJECT,
2547 };
2548 unsigned flags = type2flags[type];
2549
2550 if (fi && fi->fib_nh->nh_gw)
2551 flags |= RTF_GATEWAY;
2552 if (mask == htonl(0xFFFFFFFF))
2553 flags |= RTF_HOST;
2554 flags |= RTF_UP;
2555 return flags;
2556 }
2557
2558 /*
2559 * This outputs /proc/net/route.
2560 * The format of the file is not supposed to be changed
2561 * and needs to be same as fib_hash output to avoid breaking
2562 * legacy utilities
2563 */
2564 static int fib_route_seq_show(struct seq_file *seq, void *v)
2565 {
2566 struct leaf *l = v;
2567 struct leaf_info *li;
2568 struct hlist_node *node;
2569
2570 if (v == SEQ_START_TOKEN) {
2571 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2572 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2573 "\tWindow\tIRTT");
2574 return 0;
2575 }
2576
2577 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2578 struct fib_alias *fa;
2579 __be32 mask, prefix;
2580
2581 mask = inet_make_mask(li->plen);
2582 prefix = htonl(l->key);
2583
2584 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2585 const struct fib_info *fi = fa->fa_info;
2586 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2587 int len;
2588
2589 if (fa->fa_type == RTN_BROADCAST
2590 || fa->fa_type == RTN_MULTICAST)
2591 continue;
2592
2593 if (fi)
2594 seq_printf(seq,
2595 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2596 "%d\t%08X\t%d\t%u\t%u%n",
2597 fi->fib_dev ? fi->fib_dev->name : "*",
2598 prefix,
2599 fi->fib_nh->nh_gw, flags, 0, 0,
2600 fi->fib_priority,
2601 mask,
2602 (fi->fib_advmss ?
2603 fi->fib_advmss + 40 : 0),
2604 fi->fib_window,
2605 fi->fib_rtt >> 3, &len);
2606 else
2607 seq_printf(seq,
2608 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2609 "%d\t%08X\t%d\t%u\t%u%n",
2610 prefix, 0, flags, 0, 0, 0,
2611 mask, 0, 0, 0, &len);
2612
2613 seq_printf(seq, "%*s\n", 127 - len, "");
2614 }
2615 }
2616
2617 return 0;
2618 }
2619
2620 static const struct seq_operations fib_route_seq_ops = {
2621 .start = fib_route_seq_start,
2622 .next = fib_route_seq_next,
2623 .stop = fib_route_seq_stop,
2624 .show = fib_route_seq_show,
2625 };
2626
2627 static int fib_route_seq_open(struct inode *inode, struct file *file)
2628 {
2629 return seq_open_net(inode, file, &fib_route_seq_ops,
2630 sizeof(struct fib_route_iter));
2631 }
2632
2633 static const struct file_operations fib_route_fops = {
2634 .owner = THIS_MODULE,
2635 .open = fib_route_seq_open,
2636 .read = seq_read,
2637 .llseek = seq_lseek,
2638 .release = seq_release_net,
2639 };
2640
2641 int __net_init fib_proc_init(struct net *net)
2642 {
2643 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2644 goto out1;
2645
2646 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2647 &fib_triestat_fops))
2648 goto out2;
2649
2650 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2651 goto out3;
2652
2653 return 0;
2654
2655 out3:
2656 proc_net_remove(net, "fib_triestat");
2657 out2:
2658 proc_net_remove(net, "fib_trie");
2659 out1:
2660 return -ENOMEM;
2661 }
2662
2663 void __net_exit fib_proc_exit(struct net *net)
2664 {
2665 proc_net_remove(net, "fib_trie");
2666 proc_net_remove(net, "fib_triestat");
2667 proc_net_remove(net, "route");
2668 }
2669
2670 #endif /* CONFIG_PROC_FS */