]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/fib_trie.c
tree wide: use kvfree() than conditional kfree()/vfree()
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally described in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.409"
52
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <linux/vmalloc.h>
76 #include <net/net_namespace.h>
77 #include <net/ip.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
80 #include <net/tcp.h>
81 #include <net/sock.h>
82 #include <net/ip_fib.h>
83 #include <net/switchdev.h>
84 #include <trace/events/fib.h>
85 #include "fib_lookup.h"
86
87 #define MAX_STAT_DEPTH 32
88
89 #define KEYLENGTH (8*sizeof(t_key))
90 #define KEY_MAX ((t_key)~0)
91
92 typedef unsigned int t_key;
93
94 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
95 #define IS_TNODE(n) ((n)->bits)
96 #define IS_LEAF(n) (!(n)->bits)
97
98 struct key_vector {
99 t_key key;
100 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
101 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
102 unsigned char slen;
103 union {
104 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
105 struct hlist_head leaf;
106 /* This array is valid if (pos | bits) > 0 (TNODE) */
107 struct key_vector __rcu *tnode[0];
108 };
109 };
110
111 struct tnode {
112 struct rcu_head rcu;
113 t_key empty_children; /* KEYLENGTH bits needed */
114 t_key full_children; /* KEYLENGTH bits needed */
115 struct key_vector __rcu *parent;
116 struct key_vector kv[1];
117 #define tn_bits kv[0].bits
118 };
119
120 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
121 #define LEAF_SIZE TNODE_SIZE(1)
122
123 #ifdef CONFIG_IP_FIB_TRIE_STATS
124 struct trie_use_stats {
125 unsigned int gets;
126 unsigned int backtrack;
127 unsigned int semantic_match_passed;
128 unsigned int semantic_match_miss;
129 unsigned int null_node_hit;
130 unsigned int resize_node_skipped;
131 };
132 #endif
133
134 struct trie_stat {
135 unsigned int totdepth;
136 unsigned int maxdepth;
137 unsigned int tnodes;
138 unsigned int leaves;
139 unsigned int nullpointers;
140 unsigned int prefixes;
141 unsigned int nodesizes[MAX_STAT_DEPTH];
142 };
143
144 struct trie {
145 struct key_vector kv[1];
146 #ifdef CONFIG_IP_FIB_TRIE_STATS
147 struct trie_use_stats __percpu *stats;
148 #endif
149 };
150
151 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
152 static size_t tnode_free_size;
153
154 /*
155 * synchronize_rcu after call_rcu for that many pages; it should be especially
156 * useful before resizing the root node with PREEMPT_NONE configs; the value was
157 * obtained experimentally, aiming to avoid visible slowdown.
158 */
159 static const int sync_pages = 128;
160
161 static struct kmem_cache *fn_alias_kmem __read_mostly;
162 static struct kmem_cache *trie_leaf_kmem __read_mostly;
163
164 static inline struct tnode *tn_info(struct key_vector *kv)
165 {
166 return container_of(kv, struct tnode, kv[0]);
167 }
168
169 /* caller must hold RTNL */
170 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
171 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
172
173 /* caller must hold RCU read lock or RTNL */
174 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
175 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
176
177 /* wrapper for rcu_assign_pointer */
178 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
179 {
180 if (n)
181 rcu_assign_pointer(tn_info(n)->parent, tp);
182 }
183
184 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
185
186 /* This provides us with the number of children in this node, in the case of a
187 * leaf this will return 0 meaning none of the children are accessible.
188 */
189 static inline unsigned long child_length(const struct key_vector *tn)
190 {
191 return (1ul << tn->bits) & ~(1ul);
192 }
193
194 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
195
196 static inline unsigned long get_index(t_key key, struct key_vector *kv)
197 {
198 unsigned long index = key ^ kv->key;
199
200 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
201 return 0;
202
203 return index >> kv->pos;
204 }
205
206 /* To understand this stuff, an understanding of keys and all their bits is
207 * necessary. Every node in the trie has a key associated with it, but not
208 * all of the bits in that key are significant.
209 *
210 * Consider a node 'n' and its parent 'tp'.
211 *
212 * If n is a leaf, every bit in its key is significant. Its presence is
213 * necessitated by path compression, since during a tree traversal (when
214 * searching for a leaf - unless we are doing an insertion) we will completely
215 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
216 * a potentially successful search, that we have indeed been walking the
217 * correct key path.
218 *
219 * Note that we can never "miss" the correct key in the tree if present by
220 * following the wrong path. Path compression ensures that segments of the key
221 * that are the same for all keys with a given prefix are skipped, but the
222 * skipped part *is* identical for each node in the subtrie below the skipped
223 * bit! trie_insert() in this implementation takes care of that.
224 *
225 * if n is an internal node - a 'tnode' here, the various parts of its key
226 * have many different meanings.
227 *
228 * Example:
229 * _________________________________________________________________
230 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
231 * -----------------------------------------------------------------
232 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
233 *
234 * _________________________________________________________________
235 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
236 * -----------------------------------------------------------------
237 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
238 *
239 * tp->pos = 22
240 * tp->bits = 3
241 * n->pos = 13
242 * n->bits = 4
243 *
244 * First, let's just ignore the bits that come before the parent tp, that is
245 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
246 * point we do not use them for anything.
247 *
248 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
249 * index into the parent's child array. That is, they will be used to find
250 * 'n' among tp's children.
251 *
252 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
253 * for the node n.
254 *
255 * All the bits we have seen so far are significant to the node n. The rest
256 * of the bits are really not needed or indeed known in n->key.
257 *
258 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
259 * n's child array, and will of course be different for each child.
260 *
261 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
262 * at this point.
263 */
264
265 static const int halve_threshold = 25;
266 static const int inflate_threshold = 50;
267 static const int halve_threshold_root = 15;
268 static const int inflate_threshold_root = 30;
269
270 static void __alias_free_mem(struct rcu_head *head)
271 {
272 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
273 kmem_cache_free(fn_alias_kmem, fa);
274 }
275
276 static inline void alias_free_mem_rcu(struct fib_alias *fa)
277 {
278 call_rcu(&fa->rcu, __alias_free_mem);
279 }
280
281 #define TNODE_KMALLOC_MAX \
282 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
283 #define TNODE_VMALLOC_MAX \
284 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
285
286 static void __node_free_rcu(struct rcu_head *head)
287 {
288 struct tnode *n = container_of(head, struct tnode, rcu);
289
290 if (!n->tn_bits)
291 kmem_cache_free(trie_leaf_kmem, n);
292 else
293 kvfree(n);
294 }
295
296 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
297
298 static struct tnode *tnode_alloc(int bits)
299 {
300 size_t size;
301
302 /* verify bits is within bounds */
303 if (bits > TNODE_VMALLOC_MAX)
304 return NULL;
305
306 /* determine size and verify it is non-zero and didn't overflow */
307 size = TNODE_SIZE(1ul << bits);
308
309 if (size <= PAGE_SIZE)
310 return kzalloc(size, GFP_KERNEL);
311 else
312 return vzalloc(size);
313 }
314
315 static inline void empty_child_inc(struct key_vector *n)
316 {
317 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
318 }
319
320 static inline void empty_child_dec(struct key_vector *n)
321 {
322 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
323 }
324
325 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
326 {
327 struct key_vector *l;
328 struct tnode *kv;
329
330 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
331 if (!kv)
332 return NULL;
333
334 /* initialize key vector */
335 l = kv->kv;
336 l->key = key;
337 l->pos = 0;
338 l->bits = 0;
339 l->slen = fa->fa_slen;
340
341 /* link leaf to fib alias */
342 INIT_HLIST_HEAD(&l->leaf);
343 hlist_add_head(&fa->fa_list, &l->leaf);
344
345 return l;
346 }
347
348 static struct key_vector *tnode_new(t_key key, int pos, int bits)
349 {
350 unsigned int shift = pos + bits;
351 struct key_vector *tn;
352 struct tnode *tnode;
353
354 /* verify bits and pos their msb bits clear and values are valid */
355 BUG_ON(!bits || (shift > KEYLENGTH));
356
357 tnode = tnode_alloc(bits);
358 if (!tnode)
359 return NULL;
360
361 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
362 sizeof(struct key_vector *) << bits);
363
364 if (bits == KEYLENGTH)
365 tnode->full_children = 1;
366 else
367 tnode->empty_children = 1ul << bits;
368
369 tn = tnode->kv;
370 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
371 tn->pos = pos;
372 tn->bits = bits;
373 tn->slen = pos;
374
375 return tn;
376 }
377
378 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
379 * and no bits are skipped. See discussion in dyntree paper p. 6
380 */
381 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
382 {
383 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
384 }
385
386 /* Add a child at position i overwriting the old value.
387 * Update the value of full_children and empty_children.
388 */
389 static void put_child(struct key_vector *tn, unsigned long i,
390 struct key_vector *n)
391 {
392 struct key_vector *chi = get_child(tn, i);
393 int isfull, wasfull;
394
395 BUG_ON(i >= child_length(tn));
396
397 /* update emptyChildren, overflow into fullChildren */
398 if (!n && chi)
399 empty_child_inc(tn);
400 if (n && !chi)
401 empty_child_dec(tn);
402
403 /* update fullChildren */
404 wasfull = tnode_full(tn, chi);
405 isfull = tnode_full(tn, n);
406
407 if (wasfull && !isfull)
408 tn_info(tn)->full_children--;
409 else if (!wasfull && isfull)
410 tn_info(tn)->full_children++;
411
412 if (n && (tn->slen < n->slen))
413 tn->slen = n->slen;
414
415 rcu_assign_pointer(tn->tnode[i], n);
416 }
417
418 static void update_children(struct key_vector *tn)
419 {
420 unsigned long i;
421
422 /* update all of the child parent pointers */
423 for (i = child_length(tn); i;) {
424 struct key_vector *inode = get_child(tn, --i);
425
426 if (!inode)
427 continue;
428
429 /* Either update the children of a tnode that
430 * already belongs to us or update the child
431 * to point to ourselves.
432 */
433 if (node_parent(inode) == tn)
434 update_children(inode);
435 else
436 node_set_parent(inode, tn);
437 }
438 }
439
440 static inline void put_child_root(struct key_vector *tp, t_key key,
441 struct key_vector *n)
442 {
443 if (IS_TRIE(tp))
444 rcu_assign_pointer(tp->tnode[0], n);
445 else
446 put_child(tp, get_index(key, tp), n);
447 }
448
449 static inline void tnode_free_init(struct key_vector *tn)
450 {
451 tn_info(tn)->rcu.next = NULL;
452 }
453
454 static inline void tnode_free_append(struct key_vector *tn,
455 struct key_vector *n)
456 {
457 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
458 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
459 }
460
461 static void tnode_free(struct key_vector *tn)
462 {
463 struct callback_head *head = &tn_info(tn)->rcu;
464
465 while (head) {
466 head = head->next;
467 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
468 node_free(tn);
469
470 tn = container_of(head, struct tnode, rcu)->kv;
471 }
472
473 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
474 tnode_free_size = 0;
475 synchronize_rcu();
476 }
477 }
478
479 static struct key_vector *replace(struct trie *t,
480 struct key_vector *oldtnode,
481 struct key_vector *tn)
482 {
483 struct key_vector *tp = node_parent(oldtnode);
484 unsigned long i;
485
486 /* setup the parent pointer out of and back into this node */
487 NODE_INIT_PARENT(tn, tp);
488 put_child_root(tp, tn->key, tn);
489
490 /* update all of the child parent pointers */
491 update_children(tn);
492
493 /* all pointers should be clean so we are done */
494 tnode_free(oldtnode);
495
496 /* resize children now that oldtnode is freed */
497 for (i = child_length(tn); i;) {
498 struct key_vector *inode = get_child(tn, --i);
499
500 /* resize child node */
501 if (tnode_full(tn, inode))
502 tn = resize(t, inode);
503 }
504
505 return tp;
506 }
507
508 static struct key_vector *inflate(struct trie *t,
509 struct key_vector *oldtnode)
510 {
511 struct key_vector *tn;
512 unsigned long i;
513 t_key m;
514
515 pr_debug("In inflate\n");
516
517 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
518 if (!tn)
519 goto notnode;
520
521 /* prepare oldtnode to be freed */
522 tnode_free_init(oldtnode);
523
524 /* Assemble all of the pointers in our cluster, in this case that
525 * represents all of the pointers out of our allocated nodes that
526 * point to existing tnodes and the links between our allocated
527 * nodes.
528 */
529 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
530 struct key_vector *inode = get_child(oldtnode, --i);
531 struct key_vector *node0, *node1;
532 unsigned long j, k;
533
534 /* An empty child */
535 if (!inode)
536 continue;
537
538 /* A leaf or an internal node with skipped bits */
539 if (!tnode_full(oldtnode, inode)) {
540 put_child(tn, get_index(inode->key, tn), inode);
541 continue;
542 }
543
544 /* drop the node in the old tnode free list */
545 tnode_free_append(oldtnode, inode);
546
547 /* An internal node with two children */
548 if (inode->bits == 1) {
549 put_child(tn, 2 * i + 1, get_child(inode, 1));
550 put_child(tn, 2 * i, get_child(inode, 0));
551 continue;
552 }
553
554 /* We will replace this node 'inode' with two new
555 * ones, 'node0' and 'node1', each with half of the
556 * original children. The two new nodes will have
557 * a position one bit further down the key and this
558 * means that the "significant" part of their keys
559 * (see the discussion near the top of this file)
560 * will differ by one bit, which will be "0" in
561 * node0's key and "1" in node1's key. Since we are
562 * moving the key position by one step, the bit that
563 * we are moving away from - the bit at position
564 * (tn->pos) - is the one that will differ between
565 * node0 and node1. So... we synthesize that bit in the
566 * two new keys.
567 */
568 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
569 if (!node1)
570 goto nomem;
571 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
572
573 tnode_free_append(tn, node1);
574 if (!node0)
575 goto nomem;
576 tnode_free_append(tn, node0);
577
578 /* populate child pointers in new nodes */
579 for (k = child_length(inode), j = k / 2; j;) {
580 put_child(node1, --j, get_child(inode, --k));
581 put_child(node0, j, get_child(inode, j));
582 put_child(node1, --j, get_child(inode, --k));
583 put_child(node0, j, get_child(inode, j));
584 }
585
586 /* link new nodes to parent */
587 NODE_INIT_PARENT(node1, tn);
588 NODE_INIT_PARENT(node0, tn);
589
590 /* link parent to nodes */
591 put_child(tn, 2 * i + 1, node1);
592 put_child(tn, 2 * i, node0);
593 }
594
595 /* setup the parent pointers into and out of this node */
596 return replace(t, oldtnode, tn);
597 nomem:
598 /* all pointers should be clean so we are done */
599 tnode_free(tn);
600 notnode:
601 return NULL;
602 }
603
604 static struct key_vector *halve(struct trie *t,
605 struct key_vector *oldtnode)
606 {
607 struct key_vector *tn;
608 unsigned long i;
609
610 pr_debug("In halve\n");
611
612 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
613 if (!tn)
614 goto notnode;
615
616 /* prepare oldtnode to be freed */
617 tnode_free_init(oldtnode);
618
619 /* Assemble all of the pointers in our cluster, in this case that
620 * represents all of the pointers out of our allocated nodes that
621 * point to existing tnodes and the links between our allocated
622 * nodes.
623 */
624 for (i = child_length(oldtnode); i;) {
625 struct key_vector *node1 = get_child(oldtnode, --i);
626 struct key_vector *node0 = get_child(oldtnode, --i);
627 struct key_vector *inode;
628
629 /* At least one of the children is empty */
630 if (!node1 || !node0) {
631 put_child(tn, i / 2, node1 ? : node0);
632 continue;
633 }
634
635 /* Two nonempty children */
636 inode = tnode_new(node0->key, oldtnode->pos, 1);
637 if (!inode)
638 goto nomem;
639 tnode_free_append(tn, inode);
640
641 /* initialize pointers out of node */
642 put_child(inode, 1, node1);
643 put_child(inode, 0, node0);
644 NODE_INIT_PARENT(inode, tn);
645
646 /* link parent to node */
647 put_child(tn, i / 2, inode);
648 }
649
650 /* setup the parent pointers into and out of this node */
651 return replace(t, oldtnode, tn);
652 nomem:
653 /* all pointers should be clean so we are done */
654 tnode_free(tn);
655 notnode:
656 return NULL;
657 }
658
659 static struct key_vector *collapse(struct trie *t,
660 struct key_vector *oldtnode)
661 {
662 struct key_vector *n, *tp;
663 unsigned long i;
664
665 /* scan the tnode looking for that one child that might still exist */
666 for (n = NULL, i = child_length(oldtnode); !n && i;)
667 n = get_child(oldtnode, --i);
668
669 /* compress one level */
670 tp = node_parent(oldtnode);
671 put_child_root(tp, oldtnode->key, n);
672 node_set_parent(n, tp);
673
674 /* drop dead node */
675 node_free(oldtnode);
676
677 return tp;
678 }
679
680 static unsigned char update_suffix(struct key_vector *tn)
681 {
682 unsigned char slen = tn->pos;
683 unsigned long stride, i;
684
685 /* search though the list of children looking for nodes that might
686 * have a suffix greater than the one we currently have. This is
687 * why we start with a stride of 2 since a stride of 1 would
688 * represent the nodes with suffix length equal to tn->pos
689 */
690 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
691 struct key_vector *n = get_child(tn, i);
692
693 if (!n || (n->slen <= slen))
694 continue;
695
696 /* update stride and slen based on new value */
697 stride <<= (n->slen - slen);
698 slen = n->slen;
699 i &= ~(stride - 1);
700
701 /* if slen covers all but the last bit we can stop here
702 * there will be nothing longer than that since only node
703 * 0 and 1 << (bits - 1) could have that as their suffix
704 * length.
705 */
706 if ((slen + 1) >= (tn->pos + tn->bits))
707 break;
708 }
709
710 tn->slen = slen;
711
712 return slen;
713 }
714
715 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
716 * the Helsinki University of Technology and Matti Tikkanen of Nokia
717 * Telecommunications, page 6:
718 * "A node is doubled if the ratio of non-empty children to all
719 * children in the *doubled* node is at least 'high'."
720 *
721 * 'high' in this instance is the variable 'inflate_threshold'. It
722 * is expressed as a percentage, so we multiply it with
723 * child_length() and instead of multiplying by 2 (since the
724 * child array will be doubled by inflate()) and multiplying
725 * the left-hand side by 100 (to handle the percentage thing) we
726 * multiply the left-hand side by 50.
727 *
728 * The left-hand side may look a bit weird: child_length(tn)
729 * - tn->empty_children is of course the number of non-null children
730 * in the current node. tn->full_children is the number of "full"
731 * children, that is non-null tnodes with a skip value of 0.
732 * All of those will be doubled in the resulting inflated tnode, so
733 * we just count them one extra time here.
734 *
735 * A clearer way to write this would be:
736 *
737 * to_be_doubled = tn->full_children;
738 * not_to_be_doubled = child_length(tn) - tn->empty_children -
739 * tn->full_children;
740 *
741 * new_child_length = child_length(tn) * 2;
742 *
743 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
744 * new_child_length;
745 * if (new_fill_factor >= inflate_threshold)
746 *
747 * ...and so on, tho it would mess up the while () loop.
748 *
749 * anyway,
750 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
751 * inflate_threshold
752 *
753 * avoid a division:
754 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
755 * inflate_threshold * new_child_length
756 *
757 * expand not_to_be_doubled and to_be_doubled, and shorten:
758 * 100 * (child_length(tn) - tn->empty_children +
759 * tn->full_children) >= inflate_threshold * new_child_length
760 *
761 * expand new_child_length:
762 * 100 * (child_length(tn) - tn->empty_children +
763 * tn->full_children) >=
764 * inflate_threshold * child_length(tn) * 2
765 *
766 * shorten again:
767 * 50 * (tn->full_children + child_length(tn) -
768 * tn->empty_children) >= inflate_threshold *
769 * child_length(tn)
770 *
771 */
772 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
773 {
774 unsigned long used = child_length(tn);
775 unsigned long threshold = used;
776
777 /* Keep root node larger */
778 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
779 used -= tn_info(tn)->empty_children;
780 used += tn_info(tn)->full_children;
781
782 /* if bits == KEYLENGTH then pos = 0, and will fail below */
783
784 return (used > 1) && tn->pos && ((50 * used) >= threshold);
785 }
786
787 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
788 {
789 unsigned long used = child_length(tn);
790 unsigned long threshold = used;
791
792 /* Keep root node larger */
793 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
794 used -= tn_info(tn)->empty_children;
795
796 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
797
798 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
799 }
800
801 static inline bool should_collapse(struct key_vector *tn)
802 {
803 unsigned long used = child_length(tn);
804
805 used -= tn_info(tn)->empty_children;
806
807 /* account for bits == KEYLENGTH case */
808 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
809 used -= KEY_MAX;
810
811 /* One child or none, time to drop us from the trie */
812 return used < 2;
813 }
814
815 #define MAX_WORK 10
816 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
817 {
818 #ifdef CONFIG_IP_FIB_TRIE_STATS
819 struct trie_use_stats __percpu *stats = t->stats;
820 #endif
821 struct key_vector *tp = node_parent(tn);
822 unsigned long cindex = get_index(tn->key, tp);
823 int max_work = MAX_WORK;
824
825 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
826 tn, inflate_threshold, halve_threshold);
827
828 /* track the tnode via the pointer from the parent instead of
829 * doing it ourselves. This way we can let RCU fully do its
830 * thing without us interfering
831 */
832 BUG_ON(tn != get_child(tp, cindex));
833
834 /* Double as long as the resulting node has a number of
835 * nonempty nodes that are above the threshold.
836 */
837 while (should_inflate(tp, tn) && max_work) {
838 tp = inflate(t, tn);
839 if (!tp) {
840 #ifdef CONFIG_IP_FIB_TRIE_STATS
841 this_cpu_inc(stats->resize_node_skipped);
842 #endif
843 break;
844 }
845
846 max_work--;
847 tn = get_child(tp, cindex);
848 }
849
850 /* update parent in case inflate failed */
851 tp = node_parent(tn);
852
853 /* Return if at least one inflate is run */
854 if (max_work != MAX_WORK)
855 return tp;
856
857 /* Halve as long as the number of empty children in this
858 * node is above threshold.
859 */
860 while (should_halve(tp, tn) && max_work) {
861 tp = halve(t, tn);
862 if (!tp) {
863 #ifdef CONFIG_IP_FIB_TRIE_STATS
864 this_cpu_inc(stats->resize_node_skipped);
865 #endif
866 break;
867 }
868
869 max_work--;
870 tn = get_child(tp, cindex);
871 }
872
873 /* Only one child remains */
874 if (should_collapse(tn))
875 return collapse(t, tn);
876
877 /* update parent in case halve failed */
878 tp = node_parent(tn);
879
880 /* Return if at least one deflate was run */
881 if (max_work != MAX_WORK)
882 return tp;
883
884 /* push the suffix length to the parent node */
885 if (tn->slen > tn->pos) {
886 unsigned char slen = update_suffix(tn);
887
888 if (slen > tp->slen)
889 tp->slen = slen;
890 }
891
892 return tp;
893 }
894
895 static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
896 {
897 while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
898 if (update_suffix(tp) > l->slen)
899 break;
900 tp = node_parent(tp);
901 }
902 }
903
904 static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
905 {
906 /* if this is a new leaf then tn will be NULL and we can sort
907 * out parent suffix lengths as a part of trie_rebalance
908 */
909 while (tn->slen < l->slen) {
910 tn->slen = l->slen;
911 tn = node_parent(tn);
912 }
913 }
914
915 /* rcu_read_lock needs to be hold by caller from readside */
916 static struct key_vector *fib_find_node(struct trie *t,
917 struct key_vector **tp, u32 key)
918 {
919 struct key_vector *pn, *n = t->kv;
920 unsigned long index = 0;
921
922 do {
923 pn = n;
924 n = get_child_rcu(n, index);
925
926 if (!n)
927 break;
928
929 index = get_cindex(key, n);
930
931 /* This bit of code is a bit tricky but it combines multiple
932 * checks into a single check. The prefix consists of the
933 * prefix plus zeros for the bits in the cindex. The index
934 * is the difference between the key and this value. From
935 * this we can actually derive several pieces of data.
936 * if (index >= (1ul << bits))
937 * we have a mismatch in skip bits and failed
938 * else
939 * we know the value is cindex
940 *
941 * This check is safe even if bits == KEYLENGTH due to the
942 * fact that we can only allocate a node with 32 bits if a
943 * long is greater than 32 bits.
944 */
945 if (index >= (1ul << n->bits)) {
946 n = NULL;
947 break;
948 }
949
950 /* keep searching until we find a perfect match leaf or NULL */
951 } while (IS_TNODE(n));
952
953 *tp = pn;
954
955 return n;
956 }
957
958 /* Return the first fib alias matching TOS with
959 * priority less than or equal to PRIO.
960 */
961 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
962 u8 tos, u32 prio, u32 tb_id)
963 {
964 struct fib_alias *fa;
965
966 if (!fah)
967 return NULL;
968
969 hlist_for_each_entry(fa, fah, fa_list) {
970 if (fa->fa_slen < slen)
971 continue;
972 if (fa->fa_slen != slen)
973 break;
974 if (fa->tb_id > tb_id)
975 continue;
976 if (fa->tb_id != tb_id)
977 break;
978 if (fa->fa_tos > tos)
979 continue;
980 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
981 return fa;
982 }
983
984 return NULL;
985 }
986
987 static void trie_rebalance(struct trie *t, struct key_vector *tn)
988 {
989 while (!IS_TRIE(tn))
990 tn = resize(t, tn);
991 }
992
993 static int fib_insert_node(struct trie *t, struct key_vector *tp,
994 struct fib_alias *new, t_key key)
995 {
996 struct key_vector *n, *l;
997
998 l = leaf_new(key, new);
999 if (!l)
1000 goto noleaf;
1001
1002 /* retrieve child from parent node */
1003 n = get_child(tp, get_index(key, tp));
1004
1005 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1006 *
1007 * Add a new tnode here
1008 * first tnode need some special handling
1009 * leaves us in position for handling as case 3
1010 */
1011 if (n) {
1012 struct key_vector *tn;
1013
1014 tn = tnode_new(key, __fls(key ^ n->key), 1);
1015 if (!tn)
1016 goto notnode;
1017
1018 /* initialize routes out of node */
1019 NODE_INIT_PARENT(tn, tp);
1020 put_child(tn, get_index(key, tn) ^ 1, n);
1021
1022 /* start adding routes into the node */
1023 put_child_root(tp, key, tn);
1024 node_set_parent(n, tn);
1025
1026 /* parent now has a NULL spot where the leaf can go */
1027 tp = tn;
1028 }
1029
1030 /* Case 3: n is NULL, and will just insert a new leaf */
1031 NODE_INIT_PARENT(l, tp);
1032 put_child_root(tp, key, l);
1033 trie_rebalance(t, tp);
1034
1035 return 0;
1036 notnode:
1037 node_free(l);
1038 noleaf:
1039 return -ENOMEM;
1040 }
1041
1042 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1043 struct key_vector *l, struct fib_alias *new,
1044 struct fib_alias *fa, t_key key)
1045 {
1046 if (!l)
1047 return fib_insert_node(t, tp, new, key);
1048
1049 if (fa) {
1050 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1051 } else {
1052 struct fib_alias *last;
1053
1054 hlist_for_each_entry(last, &l->leaf, fa_list) {
1055 if (new->fa_slen < last->fa_slen)
1056 break;
1057 if ((new->fa_slen == last->fa_slen) &&
1058 (new->tb_id > last->tb_id))
1059 break;
1060 fa = last;
1061 }
1062
1063 if (fa)
1064 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1065 else
1066 hlist_add_head_rcu(&new->fa_list, &l->leaf);
1067 }
1068
1069 /* if we added to the tail node then we need to update slen */
1070 if (l->slen < new->fa_slen) {
1071 l->slen = new->fa_slen;
1072 leaf_push_suffix(tp, l);
1073 }
1074
1075 return 0;
1076 }
1077
1078 /* Caller must hold RTNL. */
1079 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1080 {
1081 struct trie *t = (struct trie *)tb->tb_data;
1082 struct fib_alias *fa, *new_fa;
1083 struct key_vector *l, *tp;
1084 unsigned int nlflags = 0;
1085 struct fib_info *fi;
1086 u8 plen = cfg->fc_dst_len;
1087 u8 slen = KEYLENGTH - plen;
1088 u8 tos = cfg->fc_tos;
1089 u32 key;
1090 int err;
1091
1092 if (plen > KEYLENGTH)
1093 return -EINVAL;
1094
1095 key = ntohl(cfg->fc_dst);
1096
1097 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1098
1099 if ((plen < KEYLENGTH) && (key << plen))
1100 return -EINVAL;
1101
1102 fi = fib_create_info(cfg);
1103 if (IS_ERR(fi)) {
1104 err = PTR_ERR(fi);
1105 goto err;
1106 }
1107
1108 l = fib_find_node(t, &tp, key);
1109 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1110 tb->tb_id) : NULL;
1111
1112 /* Now fa, if non-NULL, points to the first fib alias
1113 * with the same keys [prefix,tos,priority], if such key already
1114 * exists or to the node before which we will insert new one.
1115 *
1116 * If fa is NULL, we will need to allocate a new one and
1117 * insert to the tail of the section matching the suffix length
1118 * of the new alias.
1119 */
1120
1121 if (fa && fa->fa_tos == tos &&
1122 fa->fa_info->fib_priority == fi->fib_priority) {
1123 struct fib_alias *fa_first, *fa_match;
1124
1125 err = -EEXIST;
1126 if (cfg->fc_nlflags & NLM_F_EXCL)
1127 goto out;
1128
1129 /* We have 2 goals:
1130 * 1. Find exact match for type, scope, fib_info to avoid
1131 * duplicate routes
1132 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1133 */
1134 fa_match = NULL;
1135 fa_first = fa;
1136 hlist_for_each_entry_from(fa, fa_list) {
1137 if ((fa->fa_slen != slen) ||
1138 (fa->tb_id != tb->tb_id) ||
1139 (fa->fa_tos != tos))
1140 break;
1141 if (fa->fa_info->fib_priority != fi->fib_priority)
1142 break;
1143 if (fa->fa_type == cfg->fc_type &&
1144 fa->fa_info == fi) {
1145 fa_match = fa;
1146 break;
1147 }
1148 }
1149
1150 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1151 struct fib_info *fi_drop;
1152 u8 state;
1153
1154 fa = fa_first;
1155 if (fa_match) {
1156 if (fa == fa_match)
1157 err = 0;
1158 goto out;
1159 }
1160 err = -ENOBUFS;
1161 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1162 if (!new_fa)
1163 goto out;
1164
1165 fi_drop = fa->fa_info;
1166 new_fa->fa_tos = fa->fa_tos;
1167 new_fa->fa_info = fi;
1168 new_fa->fa_type = cfg->fc_type;
1169 state = fa->fa_state;
1170 new_fa->fa_state = state & ~FA_S_ACCESSED;
1171 new_fa->fa_slen = fa->fa_slen;
1172 new_fa->tb_id = tb->tb_id;
1173 new_fa->fa_default = -1;
1174
1175 err = switchdev_fib_ipv4_add(key, plen, fi,
1176 new_fa->fa_tos,
1177 cfg->fc_type,
1178 cfg->fc_nlflags,
1179 tb->tb_id);
1180 if (err) {
1181 switchdev_fib_ipv4_abort(fi);
1182 kmem_cache_free(fn_alias_kmem, new_fa);
1183 goto out;
1184 }
1185
1186 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1187
1188 alias_free_mem_rcu(fa);
1189
1190 fib_release_info(fi_drop);
1191 if (state & FA_S_ACCESSED)
1192 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1193 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1194 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1195
1196 goto succeeded;
1197 }
1198 /* Error if we find a perfect match which
1199 * uses the same scope, type, and nexthop
1200 * information.
1201 */
1202 if (fa_match)
1203 goto out;
1204
1205 if (cfg->fc_nlflags & NLM_F_APPEND)
1206 nlflags = NLM_F_APPEND;
1207 else
1208 fa = fa_first;
1209 }
1210 err = -ENOENT;
1211 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1212 goto out;
1213
1214 err = -ENOBUFS;
1215 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1216 if (!new_fa)
1217 goto out;
1218
1219 new_fa->fa_info = fi;
1220 new_fa->fa_tos = tos;
1221 new_fa->fa_type = cfg->fc_type;
1222 new_fa->fa_state = 0;
1223 new_fa->fa_slen = slen;
1224 new_fa->tb_id = tb->tb_id;
1225 new_fa->fa_default = -1;
1226
1227 /* (Optionally) offload fib entry to switch hardware. */
1228 err = switchdev_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type,
1229 cfg->fc_nlflags, tb->tb_id);
1230 if (err) {
1231 switchdev_fib_ipv4_abort(fi);
1232 goto out_free_new_fa;
1233 }
1234
1235 /* Insert new entry to the list. */
1236 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1237 if (err)
1238 goto out_sw_fib_del;
1239
1240 if (!plen)
1241 tb->tb_num_default++;
1242
1243 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1244 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1245 &cfg->fc_nlinfo, nlflags);
1246 succeeded:
1247 return 0;
1248
1249 out_sw_fib_del:
1250 switchdev_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1251 out_free_new_fa:
1252 kmem_cache_free(fn_alias_kmem, new_fa);
1253 out:
1254 fib_release_info(fi);
1255 err:
1256 return err;
1257 }
1258
1259 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1260 {
1261 t_key prefix = n->key;
1262
1263 return (key ^ prefix) & (prefix | -prefix);
1264 }
1265
1266 /* should be called with rcu_read_lock */
1267 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1268 struct fib_result *res, int fib_flags)
1269 {
1270 struct trie *t = (struct trie *) tb->tb_data;
1271 #ifdef CONFIG_IP_FIB_TRIE_STATS
1272 struct trie_use_stats __percpu *stats = t->stats;
1273 #endif
1274 const t_key key = ntohl(flp->daddr);
1275 struct key_vector *n, *pn;
1276 struct fib_alias *fa;
1277 unsigned long index;
1278 t_key cindex;
1279
1280 trace_fib_table_lookup(tb->tb_id, flp);
1281
1282 pn = t->kv;
1283 cindex = 0;
1284
1285 n = get_child_rcu(pn, cindex);
1286 if (!n)
1287 return -EAGAIN;
1288
1289 #ifdef CONFIG_IP_FIB_TRIE_STATS
1290 this_cpu_inc(stats->gets);
1291 #endif
1292
1293 /* Step 1: Travel to the longest prefix match in the trie */
1294 for (;;) {
1295 index = get_cindex(key, n);
1296
1297 /* This bit of code is a bit tricky but it combines multiple
1298 * checks into a single check. The prefix consists of the
1299 * prefix plus zeros for the "bits" in the prefix. The index
1300 * is the difference between the key and this value. From
1301 * this we can actually derive several pieces of data.
1302 * if (index >= (1ul << bits))
1303 * we have a mismatch in skip bits and failed
1304 * else
1305 * we know the value is cindex
1306 *
1307 * This check is safe even if bits == KEYLENGTH due to the
1308 * fact that we can only allocate a node with 32 bits if a
1309 * long is greater than 32 bits.
1310 */
1311 if (index >= (1ul << n->bits))
1312 break;
1313
1314 /* we have found a leaf. Prefixes have already been compared */
1315 if (IS_LEAF(n))
1316 goto found;
1317
1318 /* only record pn and cindex if we are going to be chopping
1319 * bits later. Otherwise we are just wasting cycles.
1320 */
1321 if (n->slen > n->pos) {
1322 pn = n;
1323 cindex = index;
1324 }
1325
1326 n = get_child_rcu(n, index);
1327 if (unlikely(!n))
1328 goto backtrace;
1329 }
1330
1331 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1332 for (;;) {
1333 /* record the pointer where our next node pointer is stored */
1334 struct key_vector __rcu **cptr = n->tnode;
1335
1336 /* This test verifies that none of the bits that differ
1337 * between the key and the prefix exist in the region of
1338 * the lsb and higher in the prefix.
1339 */
1340 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1341 goto backtrace;
1342
1343 /* exit out and process leaf */
1344 if (unlikely(IS_LEAF(n)))
1345 break;
1346
1347 /* Don't bother recording parent info. Since we are in
1348 * prefix match mode we will have to come back to wherever
1349 * we started this traversal anyway
1350 */
1351
1352 while ((n = rcu_dereference(*cptr)) == NULL) {
1353 backtrace:
1354 #ifdef CONFIG_IP_FIB_TRIE_STATS
1355 if (!n)
1356 this_cpu_inc(stats->null_node_hit);
1357 #endif
1358 /* If we are at cindex 0 there are no more bits for
1359 * us to strip at this level so we must ascend back
1360 * up one level to see if there are any more bits to
1361 * be stripped there.
1362 */
1363 while (!cindex) {
1364 t_key pkey = pn->key;
1365
1366 /* If we don't have a parent then there is
1367 * nothing for us to do as we do not have any
1368 * further nodes to parse.
1369 */
1370 if (IS_TRIE(pn))
1371 return -EAGAIN;
1372 #ifdef CONFIG_IP_FIB_TRIE_STATS
1373 this_cpu_inc(stats->backtrack);
1374 #endif
1375 /* Get Child's index */
1376 pn = node_parent_rcu(pn);
1377 cindex = get_index(pkey, pn);
1378 }
1379
1380 /* strip the least significant bit from the cindex */
1381 cindex &= cindex - 1;
1382
1383 /* grab pointer for next child node */
1384 cptr = &pn->tnode[cindex];
1385 }
1386 }
1387
1388 found:
1389 /* this line carries forward the xor from earlier in the function */
1390 index = key ^ n->key;
1391
1392 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1393 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1394 struct fib_info *fi = fa->fa_info;
1395 int nhsel, err;
1396
1397 if ((index >= (1ul << fa->fa_slen)) &&
1398 ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1399 continue;
1400 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1401 continue;
1402 if (fi->fib_dead)
1403 continue;
1404 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1405 continue;
1406 fib_alias_accessed(fa);
1407 err = fib_props[fa->fa_type].error;
1408 if (unlikely(err < 0)) {
1409 #ifdef CONFIG_IP_FIB_TRIE_STATS
1410 this_cpu_inc(stats->semantic_match_passed);
1411 #endif
1412 return err;
1413 }
1414 if (fi->fib_flags & RTNH_F_DEAD)
1415 continue;
1416 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1417 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1418 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1419
1420 if (nh->nh_flags & RTNH_F_DEAD)
1421 continue;
1422 if (in_dev &&
1423 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1424 nh->nh_flags & RTNH_F_LINKDOWN &&
1425 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1426 continue;
1427 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1428 if (flp->flowi4_oif &&
1429 flp->flowi4_oif != nh->nh_oif)
1430 continue;
1431 }
1432
1433 if (!(fib_flags & FIB_LOOKUP_NOREF))
1434 atomic_inc(&fi->fib_clntref);
1435
1436 res->prefixlen = KEYLENGTH - fa->fa_slen;
1437 res->nh_sel = nhsel;
1438 res->type = fa->fa_type;
1439 res->scope = fi->fib_scope;
1440 res->fi = fi;
1441 res->table = tb;
1442 res->fa_head = &n->leaf;
1443 #ifdef CONFIG_IP_FIB_TRIE_STATS
1444 this_cpu_inc(stats->semantic_match_passed);
1445 #endif
1446 trace_fib_table_lookup_nh(nh);
1447
1448 return err;
1449 }
1450 }
1451 #ifdef CONFIG_IP_FIB_TRIE_STATS
1452 this_cpu_inc(stats->semantic_match_miss);
1453 #endif
1454 goto backtrace;
1455 }
1456 EXPORT_SYMBOL_GPL(fib_table_lookup);
1457
1458 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1459 struct key_vector *l, struct fib_alias *old)
1460 {
1461 /* record the location of the previous list_info entry */
1462 struct hlist_node **pprev = old->fa_list.pprev;
1463 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1464
1465 /* remove the fib_alias from the list */
1466 hlist_del_rcu(&old->fa_list);
1467
1468 /* if we emptied the list this leaf will be freed and we can sort
1469 * out parent suffix lengths as a part of trie_rebalance
1470 */
1471 if (hlist_empty(&l->leaf)) {
1472 put_child_root(tp, l->key, NULL);
1473 node_free(l);
1474 trie_rebalance(t, tp);
1475 return;
1476 }
1477
1478 /* only access fa if it is pointing at the last valid hlist_node */
1479 if (*pprev)
1480 return;
1481
1482 /* update the trie with the latest suffix length */
1483 l->slen = fa->fa_slen;
1484 leaf_pull_suffix(tp, l);
1485 }
1486
1487 /* Caller must hold RTNL. */
1488 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1489 {
1490 struct trie *t = (struct trie *) tb->tb_data;
1491 struct fib_alias *fa, *fa_to_delete;
1492 struct key_vector *l, *tp;
1493 u8 plen = cfg->fc_dst_len;
1494 u8 slen = KEYLENGTH - plen;
1495 u8 tos = cfg->fc_tos;
1496 u32 key;
1497
1498 if (plen > KEYLENGTH)
1499 return -EINVAL;
1500
1501 key = ntohl(cfg->fc_dst);
1502
1503 if ((plen < KEYLENGTH) && (key << plen))
1504 return -EINVAL;
1505
1506 l = fib_find_node(t, &tp, key);
1507 if (!l)
1508 return -ESRCH;
1509
1510 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1511 if (!fa)
1512 return -ESRCH;
1513
1514 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1515
1516 fa_to_delete = NULL;
1517 hlist_for_each_entry_from(fa, fa_list) {
1518 struct fib_info *fi = fa->fa_info;
1519
1520 if ((fa->fa_slen != slen) ||
1521 (fa->tb_id != tb->tb_id) ||
1522 (fa->fa_tos != tos))
1523 break;
1524
1525 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1526 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1527 fa->fa_info->fib_scope == cfg->fc_scope) &&
1528 (!cfg->fc_prefsrc ||
1529 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1530 (!cfg->fc_protocol ||
1531 fi->fib_protocol == cfg->fc_protocol) &&
1532 fib_nh_match(cfg, fi) == 0) {
1533 fa_to_delete = fa;
1534 break;
1535 }
1536 }
1537
1538 if (!fa_to_delete)
1539 return -ESRCH;
1540
1541 switchdev_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1542 cfg->fc_type, tb->tb_id);
1543
1544 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1545 &cfg->fc_nlinfo, 0);
1546
1547 if (!plen)
1548 tb->tb_num_default--;
1549
1550 fib_remove_alias(t, tp, l, fa_to_delete);
1551
1552 if (fa_to_delete->fa_state & FA_S_ACCESSED)
1553 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1554
1555 fib_release_info(fa_to_delete->fa_info);
1556 alias_free_mem_rcu(fa_to_delete);
1557 return 0;
1558 }
1559
1560 /* Scan for the next leaf starting at the provided key value */
1561 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1562 {
1563 struct key_vector *pn, *n = *tn;
1564 unsigned long cindex;
1565
1566 /* this loop is meant to try and find the key in the trie */
1567 do {
1568 /* record parent and next child index */
1569 pn = n;
1570 cindex = (key > pn->key) ? get_index(key, pn) : 0;
1571
1572 if (cindex >> pn->bits)
1573 break;
1574
1575 /* descend into the next child */
1576 n = get_child_rcu(pn, cindex++);
1577 if (!n)
1578 break;
1579
1580 /* guarantee forward progress on the keys */
1581 if (IS_LEAF(n) && (n->key >= key))
1582 goto found;
1583 } while (IS_TNODE(n));
1584
1585 /* this loop will search for the next leaf with a greater key */
1586 while (!IS_TRIE(pn)) {
1587 /* if we exhausted the parent node we will need to climb */
1588 if (cindex >= (1ul << pn->bits)) {
1589 t_key pkey = pn->key;
1590
1591 pn = node_parent_rcu(pn);
1592 cindex = get_index(pkey, pn) + 1;
1593 continue;
1594 }
1595
1596 /* grab the next available node */
1597 n = get_child_rcu(pn, cindex++);
1598 if (!n)
1599 continue;
1600
1601 /* no need to compare keys since we bumped the index */
1602 if (IS_LEAF(n))
1603 goto found;
1604
1605 /* Rescan start scanning in new node */
1606 pn = n;
1607 cindex = 0;
1608 }
1609
1610 *tn = pn;
1611 return NULL; /* Root of trie */
1612 found:
1613 /* if we are at the limit for keys just return NULL for the tnode */
1614 *tn = pn;
1615 return n;
1616 }
1617
1618 static void fib_trie_free(struct fib_table *tb)
1619 {
1620 struct trie *t = (struct trie *)tb->tb_data;
1621 struct key_vector *pn = t->kv;
1622 unsigned long cindex = 1;
1623 struct hlist_node *tmp;
1624 struct fib_alias *fa;
1625
1626 /* walk trie in reverse order and free everything */
1627 for (;;) {
1628 struct key_vector *n;
1629
1630 if (!(cindex--)) {
1631 t_key pkey = pn->key;
1632
1633 if (IS_TRIE(pn))
1634 break;
1635
1636 n = pn;
1637 pn = node_parent(pn);
1638
1639 /* drop emptied tnode */
1640 put_child_root(pn, n->key, NULL);
1641 node_free(n);
1642
1643 cindex = get_index(pkey, pn);
1644
1645 continue;
1646 }
1647
1648 /* grab the next available node */
1649 n = get_child(pn, cindex);
1650 if (!n)
1651 continue;
1652
1653 if (IS_TNODE(n)) {
1654 /* record pn and cindex for leaf walking */
1655 pn = n;
1656 cindex = 1ul << n->bits;
1657
1658 continue;
1659 }
1660
1661 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1662 hlist_del_rcu(&fa->fa_list);
1663 alias_free_mem_rcu(fa);
1664 }
1665
1666 put_child_root(pn, n->key, NULL);
1667 node_free(n);
1668 }
1669
1670 #ifdef CONFIG_IP_FIB_TRIE_STATS
1671 free_percpu(t->stats);
1672 #endif
1673 kfree(tb);
1674 }
1675
1676 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1677 {
1678 struct trie *ot = (struct trie *)oldtb->tb_data;
1679 struct key_vector *l, *tp = ot->kv;
1680 struct fib_table *local_tb;
1681 struct fib_alias *fa;
1682 struct trie *lt;
1683 t_key key = 0;
1684
1685 if (oldtb->tb_data == oldtb->__data)
1686 return oldtb;
1687
1688 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1689 if (!local_tb)
1690 return NULL;
1691
1692 lt = (struct trie *)local_tb->tb_data;
1693
1694 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1695 struct key_vector *local_l = NULL, *local_tp;
1696
1697 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1698 struct fib_alias *new_fa;
1699
1700 if (local_tb->tb_id != fa->tb_id)
1701 continue;
1702
1703 /* clone fa for new local table */
1704 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1705 if (!new_fa)
1706 goto out;
1707
1708 memcpy(new_fa, fa, sizeof(*fa));
1709
1710 /* insert clone into table */
1711 if (!local_l)
1712 local_l = fib_find_node(lt, &local_tp, l->key);
1713
1714 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1715 NULL, l->key))
1716 goto out;
1717 }
1718
1719 /* stop loop if key wrapped back to 0 */
1720 key = l->key + 1;
1721 if (key < l->key)
1722 break;
1723 }
1724
1725 return local_tb;
1726 out:
1727 fib_trie_free(local_tb);
1728
1729 return NULL;
1730 }
1731
1732 /* Caller must hold RTNL */
1733 void fib_table_flush_external(struct fib_table *tb)
1734 {
1735 struct trie *t = (struct trie *)tb->tb_data;
1736 struct key_vector *pn = t->kv;
1737 unsigned long cindex = 1;
1738 struct hlist_node *tmp;
1739 struct fib_alias *fa;
1740
1741 /* walk trie in reverse order */
1742 for (;;) {
1743 unsigned char slen = 0;
1744 struct key_vector *n;
1745
1746 if (!(cindex--)) {
1747 t_key pkey = pn->key;
1748
1749 /* cannot resize the trie vector */
1750 if (IS_TRIE(pn))
1751 break;
1752
1753 /* resize completed node */
1754 pn = resize(t, pn);
1755 cindex = get_index(pkey, pn);
1756
1757 continue;
1758 }
1759
1760 /* grab the next available node */
1761 n = get_child(pn, cindex);
1762 if (!n)
1763 continue;
1764
1765 if (IS_TNODE(n)) {
1766 /* record pn and cindex for leaf walking */
1767 pn = n;
1768 cindex = 1ul << n->bits;
1769
1770 continue;
1771 }
1772
1773 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1774 struct fib_info *fi = fa->fa_info;
1775
1776 /* if alias was cloned to local then we just
1777 * need to remove the local copy from main
1778 */
1779 if (tb->tb_id != fa->tb_id) {
1780 hlist_del_rcu(&fa->fa_list);
1781 alias_free_mem_rcu(fa);
1782 continue;
1783 }
1784
1785 /* record local slen */
1786 slen = fa->fa_slen;
1787
1788 if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
1789 continue;
1790
1791 switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
1792 fi, fa->fa_tos, fa->fa_type,
1793 tb->tb_id);
1794 }
1795
1796 /* update leaf slen */
1797 n->slen = slen;
1798
1799 if (hlist_empty(&n->leaf)) {
1800 put_child_root(pn, n->key, NULL);
1801 node_free(n);
1802 }
1803 }
1804 }
1805
1806 /* Caller must hold RTNL. */
1807 int fib_table_flush(struct fib_table *tb)
1808 {
1809 struct trie *t = (struct trie *)tb->tb_data;
1810 struct key_vector *pn = t->kv;
1811 unsigned long cindex = 1;
1812 struct hlist_node *tmp;
1813 struct fib_alias *fa;
1814 int found = 0;
1815
1816 /* walk trie in reverse order */
1817 for (;;) {
1818 unsigned char slen = 0;
1819 struct key_vector *n;
1820
1821 if (!(cindex--)) {
1822 t_key pkey = pn->key;
1823
1824 /* cannot resize the trie vector */
1825 if (IS_TRIE(pn))
1826 break;
1827
1828 /* resize completed node */
1829 pn = resize(t, pn);
1830 cindex = get_index(pkey, pn);
1831
1832 continue;
1833 }
1834
1835 /* grab the next available node */
1836 n = get_child(pn, cindex);
1837 if (!n)
1838 continue;
1839
1840 if (IS_TNODE(n)) {
1841 /* record pn and cindex for leaf walking */
1842 pn = n;
1843 cindex = 1ul << n->bits;
1844
1845 continue;
1846 }
1847
1848 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1849 struct fib_info *fi = fa->fa_info;
1850
1851 if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1852 slen = fa->fa_slen;
1853 continue;
1854 }
1855
1856 switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
1857 fi, fa->fa_tos, fa->fa_type,
1858 tb->tb_id);
1859 hlist_del_rcu(&fa->fa_list);
1860 fib_release_info(fa->fa_info);
1861 alias_free_mem_rcu(fa);
1862 found++;
1863 }
1864
1865 /* update leaf slen */
1866 n->slen = slen;
1867
1868 if (hlist_empty(&n->leaf)) {
1869 put_child_root(pn, n->key, NULL);
1870 node_free(n);
1871 }
1872 }
1873
1874 pr_debug("trie_flush found=%d\n", found);
1875 return found;
1876 }
1877
1878 static void __trie_free_rcu(struct rcu_head *head)
1879 {
1880 struct fib_table *tb = container_of(head, struct fib_table, rcu);
1881 #ifdef CONFIG_IP_FIB_TRIE_STATS
1882 struct trie *t = (struct trie *)tb->tb_data;
1883
1884 if (tb->tb_data == tb->__data)
1885 free_percpu(t->stats);
1886 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1887 kfree(tb);
1888 }
1889
1890 void fib_free_table(struct fib_table *tb)
1891 {
1892 call_rcu(&tb->rcu, __trie_free_rcu);
1893 }
1894
1895 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
1896 struct sk_buff *skb, struct netlink_callback *cb)
1897 {
1898 __be32 xkey = htonl(l->key);
1899 struct fib_alias *fa;
1900 int i, s_i;
1901
1902 s_i = cb->args[4];
1903 i = 0;
1904
1905 /* rcu_read_lock is hold by caller */
1906 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1907 if (i < s_i) {
1908 i++;
1909 continue;
1910 }
1911
1912 if (tb->tb_id != fa->tb_id) {
1913 i++;
1914 continue;
1915 }
1916
1917 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1918 cb->nlh->nlmsg_seq,
1919 RTM_NEWROUTE,
1920 tb->tb_id,
1921 fa->fa_type,
1922 xkey,
1923 KEYLENGTH - fa->fa_slen,
1924 fa->fa_tos,
1925 fa->fa_info, NLM_F_MULTI) < 0) {
1926 cb->args[4] = i;
1927 return -1;
1928 }
1929 i++;
1930 }
1931
1932 cb->args[4] = i;
1933 return skb->len;
1934 }
1935
1936 /* rcu_read_lock needs to be hold by caller from readside */
1937 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1938 struct netlink_callback *cb)
1939 {
1940 struct trie *t = (struct trie *)tb->tb_data;
1941 struct key_vector *l, *tp = t->kv;
1942 /* Dump starting at last key.
1943 * Note: 0.0.0.0/0 (ie default) is first key.
1944 */
1945 int count = cb->args[2];
1946 t_key key = cb->args[3];
1947
1948 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1949 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1950 cb->args[3] = key;
1951 cb->args[2] = count;
1952 return -1;
1953 }
1954
1955 ++count;
1956 key = l->key + 1;
1957
1958 memset(&cb->args[4], 0,
1959 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1960
1961 /* stop loop if key wrapped back to 0 */
1962 if (key < l->key)
1963 break;
1964 }
1965
1966 cb->args[3] = key;
1967 cb->args[2] = count;
1968
1969 return skb->len;
1970 }
1971
1972 void __init fib_trie_init(void)
1973 {
1974 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1975 sizeof(struct fib_alias),
1976 0, SLAB_PANIC, NULL);
1977
1978 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1979 LEAF_SIZE,
1980 0, SLAB_PANIC, NULL);
1981 }
1982
1983 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
1984 {
1985 struct fib_table *tb;
1986 struct trie *t;
1987 size_t sz = sizeof(*tb);
1988
1989 if (!alias)
1990 sz += sizeof(struct trie);
1991
1992 tb = kzalloc(sz, GFP_KERNEL);
1993 if (!tb)
1994 return NULL;
1995
1996 tb->tb_id = id;
1997 tb->tb_num_default = 0;
1998 tb->tb_data = (alias ? alias->__data : tb->__data);
1999
2000 if (alias)
2001 return tb;
2002
2003 t = (struct trie *) tb->tb_data;
2004 t->kv[0].pos = KEYLENGTH;
2005 t->kv[0].slen = KEYLENGTH;
2006 #ifdef CONFIG_IP_FIB_TRIE_STATS
2007 t->stats = alloc_percpu(struct trie_use_stats);
2008 if (!t->stats) {
2009 kfree(tb);
2010 tb = NULL;
2011 }
2012 #endif
2013
2014 return tb;
2015 }
2016
2017 #ifdef CONFIG_PROC_FS
2018 /* Depth first Trie walk iterator */
2019 struct fib_trie_iter {
2020 struct seq_net_private p;
2021 struct fib_table *tb;
2022 struct key_vector *tnode;
2023 unsigned int index;
2024 unsigned int depth;
2025 };
2026
2027 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2028 {
2029 unsigned long cindex = iter->index;
2030 struct key_vector *pn = iter->tnode;
2031 t_key pkey;
2032
2033 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2034 iter->tnode, iter->index, iter->depth);
2035
2036 while (!IS_TRIE(pn)) {
2037 while (cindex < child_length(pn)) {
2038 struct key_vector *n = get_child_rcu(pn, cindex++);
2039
2040 if (!n)
2041 continue;
2042
2043 if (IS_LEAF(n)) {
2044 iter->tnode = pn;
2045 iter->index = cindex;
2046 } else {
2047 /* push down one level */
2048 iter->tnode = n;
2049 iter->index = 0;
2050 ++iter->depth;
2051 }
2052
2053 return n;
2054 }
2055
2056 /* Current node exhausted, pop back up */
2057 pkey = pn->key;
2058 pn = node_parent_rcu(pn);
2059 cindex = get_index(pkey, pn) + 1;
2060 --iter->depth;
2061 }
2062
2063 /* record root node so further searches know we are done */
2064 iter->tnode = pn;
2065 iter->index = 0;
2066
2067 return NULL;
2068 }
2069
2070 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2071 struct trie *t)
2072 {
2073 struct key_vector *n, *pn;
2074
2075 if (!t)
2076 return NULL;
2077
2078 pn = t->kv;
2079 n = rcu_dereference(pn->tnode[0]);
2080 if (!n)
2081 return NULL;
2082
2083 if (IS_TNODE(n)) {
2084 iter->tnode = n;
2085 iter->index = 0;
2086 iter->depth = 1;
2087 } else {
2088 iter->tnode = pn;
2089 iter->index = 0;
2090 iter->depth = 0;
2091 }
2092
2093 return n;
2094 }
2095
2096 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2097 {
2098 struct key_vector *n;
2099 struct fib_trie_iter iter;
2100
2101 memset(s, 0, sizeof(*s));
2102
2103 rcu_read_lock();
2104 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2105 if (IS_LEAF(n)) {
2106 struct fib_alias *fa;
2107
2108 s->leaves++;
2109 s->totdepth += iter.depth;
2110 if (iter.depth > s->maxdepth)
2111 s->maxdepth = iter.depth;
2112
2113 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2114 ++s->prefixes;
2115 } else {
2116 s->tnodes++;
2117 if (n->bits < MAX_STAT_DEPTH)
2118 s->nodesizes[n->bits]++;
2119 s->nullpointers += tn_info(n)->empty_children;
2120 }
2121 }
2122 rcu_read_unlock();
2123 }
2124
2125 /*
2126 * This outputs /proc/net/fib_triestats
2127 */
2128 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2129 {
2130 unsigned int i, max, pointers, bytes, avdepth;
2131
2132 if (stat->leaves)
2133 avdepth = stat->totdepth*100 / stat->leaves;
2134 else
2135 avdepth = 0;
2136
2137 seq_printf(seq, "\tAver depth: %u.%02d\n",
2138 avdepth / 100, avdepth % 100);
2139 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2140
2141 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2142 bytes = LEAF_SIZE * stat->leaves;
2143
2144 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2145 bytes += sizeof(struct fib_alias) * stat->prefixes;
2146
2147 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2148 bytes += TNODE_SIZE(0) * stat->tnodes;
2149
2150 max = MAX_STAT_DEPTH;
2151 while (max > 0 && stat->nodesizes[max-1] == 0)
2152 max--;
2153
2154 pointers = 0;
2155 for (i = 1; i < max; i++)
2156 if (stat->nodesizes[i] != 0) {
2157 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2158 pointers += (1<<i) * stat->nodesizes[i];
2159 }
2160 seq_putc(seq, '\n');
2161 seq_printf(seq, "\tPointers: %u\n", pointers);
2162
2163 bytes += sizeof(struct key_vector *) * pointers;
2164 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2165 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2166 }
2167
2168 #ifdef CONFIG_IP_FIB_TRIE_STATS
2169 static void trie_show_usage(struct seq_file *seq,
2170 const struct trie_use_stats __percpu *stats)
2171 {
2172 struct trie_use_stats s = { 0 };
2173 int cpu;
2174
2175 /* loop through all of the CPUs and gather up the stats */
2176 for_each_possible_cpu(cpu) {
2177 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2178
2179 s.gets += pcpu->gets;
2180 s.backtrack += pcpu->backtrack;
2181 s.semantic_match_passed += pcpu->semantic_match_passed;
2182 s.semantic_match_miss += pcpu->semantic_match_miss;
2183 s.null_node_hit += pcpu->null_node_hit;
2184 s.resize_node_skipped += pcpu->resize_node_skipped;
2185 }
2186
2187 seq_printf(seq, "\nCounters:\n---------\n");
2188 seq_printf(seq, "gets = %u\n", s.gets);
2189 seq_printf(seq, "backtracks = %u\n", s.backtrack);
2190 seq_printf(seq, "semantic match passed = %u\n",
2191 s.semantic_match_passed);
2192 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2193 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2194 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2195 }
2196 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2197
2198 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2199 {
2200 if (tb->tb_id == RT_TABLE_LOCAL)
2201 seq_puts(seq, "Local:\n");
2202 else if (tb->tb_id == RT_TABLE_MAIN)
2203 seq_puts(seq, "Main:\n");
2204 else
2205 seq_printf(seq, "Id %d:\n", tb->tb_id);
2206 }
2207
2208
2209 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2210 {
2211 struct net *net = (struct net *)seq->private;
2212 unsigned int h;
2213
2214 seq_printf(seq,
2215 "Basic info: size of leaf:"
2216 " %Zd bytes, size of tnode: %Zd bytes.\n",
2217 LEAF_SIZE, TNODE_SIZE(0));
2218
2219 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2220 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2221 struct fib_table *tb;
2222
2223 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2224 struct trie *t = (struct trie *) tb->tb_data;
2225 struct trie_stat stat;
2226
2227 if (!t)
2228 continue;
2229
2230 fib_table_print(seq, tb);
2231
2232 trie_collect_stats(t, &stat);
2233 trie_show_stats(seq, &stat);
2234 #ifdef CONFIG_IP_FIB_TRIE_STATS
2235 trie_show_usage(seq, t->stats);
2236 #endif
2237 }
2238 }
2239
2240 return 0;
2241 }
2242
2243 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2244 {
2245 return single_open_net(inode, file, fib_triestat_seq_show);
2246 }
2247
2248 static const struct file_operations fib_triestat_fops = {
2249 .owner = THIS_MODULE,
2250 .open = fib_triestat_seq_open,
2251 .read = seq_read,
2252 .llseek = seq_lseek,
2253 .release = single_release_net,
2254 };
2255
2256 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2257 {
2258 struct fib_trie_iter *iter = seq->private;
2259 struct net *net = seq_file_net(seq);
2260 loff_t idx = 0;
2261 unsigned int h;
2262
2263 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2264 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2265 struct fib_table *tb;
2266
2267 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2268 struct key_vector *n;
2269
2270 for (n = fib_trie_get_first(iter,
2271 (struct trie *) tb->tb_data);
2272 n; n = fib_trie_get_next(iter))
2273 if (pos == idx++) {
2274 iter->tb = tb;
2275 return n;
2276 }
2277 }
2278 }
2279
2280 return NULL;
2281 }
2282
2283 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2284 __acquires(RCU)
2285 {
2286 rcu_read_lock();
2287 return fib_trie_get_idx(seq, *pos);
2288 }
2289
2290 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2291 {
2292 struct fib_trie_iter *iter = seq->private;
2293 struct net *net = seq_file_net(seq);
2294 struct fib_table *tb = iter->tb;
2295 struct hlist_node *tb_node;
2296 unsigned int h;
2297 struct key_vector *n;
2298
2299 ++*pos;
2300 /* next node in same table */
2301 n = fib_trie_get_next(iter);
2302 if (n)
2303 return n;
2304
2305 /* walk rest of this hash chain */
2306 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2307 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2308 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2309 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2310 if (n)
2311 goto found;
2312 }
2313
2314 /* new hash chain */
2315 while (++h < FIB_TABLE_HASHSZ) {
2316 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2317 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2318 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2319 if (n)
2320 goto found;
2321 }
2322 }
2323 return NULL;
2324
2325 found:
2326 iter->tb = tb;
2327 return n;
2328 }
2329
2330 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2331 __releases(RCU)
2332 {
2333 rcu_read_unlock();
2334 }
2335
2336 static void seq_indent(struct seq_file *seq, int n)
2337 {
2338 while (n-- > 0)
2339 seq_puts(seq, " ");
2340 }
2341
2342 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2343 {
2344 switch (s) {
2345 case RT_SCOPE_UNIVERSE: return "universe";
2346 case RT_SCOPE_SITE: return "site";
2347 case RT_SCOPE_LINK: return "link";
2348 case RT_SCOPE_HOST: return "host";
2349 case RT_SCOPE_NOWHERE: return "nowhere";
2350 default:
2351 snprintf(buf, len, "scope=%d", s);
2352 return buf;
2353 }
2354 }
2355
2356 static const char *const rtn_type_names[__RTN_MAX] = {
2357 [RTN_UNSPEC] = "UNSPEC",
2358 [RTN_UNICAST] = "UNICAST",
2359 [RTN_LOCAL] = "LOCAL",
2360 [RTN_BROADCAST] = "BROADCAST",
2361 [RTN_ANYCAST] = "ANYCAST",
2362 [RTN_MULTICAST] = "MULTICAST",
2363 [RTN_BLACKHOLE] = "BLACKHOLE",
2364 [RTN_UNREACHABLE] = "UNREACHABLE",
2365 [RTN_PROHIBIT] = "PROHIBIT",
2366 [RTN_THROW] = "THROW",
2367 [RTN_NAT] = "NAT",
2368 [RTN_XRESOLVE] = "XRESOLVE",
2369 };
2370
2371 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2372 {
2373 if (t < __RTN_MAX && rtn_type_names[t])
2374 return rtn_type_names[t];
2375 snprintf(buf, len, "type %u", t);
2376 return buf;
2377 }
2378
2379 /* Pretty print the trie */
2380 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2381 {
2382 const struct fib_trie_iter *iter = seq->private;
2383 struct key_vector *n = v;
2384
2385 if (IS_TRIE(node_parent_rcu(n)))
2386 fib_table_print(seq, iter->tb);
2387
2388 if (IS_TNODE(n)) {
2389 __be32 prf = htonl(n->key);
2390
2391 seq_indent(seq, iter->depth-1);
2392 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2393 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2394 tn_info(n)->full_children,
2395 tn_info(n)->empty_children);
2396 } else {
2397 __be32 val = htonl(n->key);
2398 struct fib_alias *fa;
2399
2400 seq_indent(seq, iter->depth);
2401 seq_printf(seq, " |-- %pI4\n", &val);
2402
2403 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2404 char buf1[32], buf2[32];
2405
2406 seq_indent(seq, iter->depth + 1);
2407 seq_printf(seq, " /%zu %s %s",
2408 KEYLENGTH - fa->fa_slen,
2409 rtn_scope(buf1, sizeof(buf1),
2410 fa->fa_info->fib_scope),
2411 rtn_type(buf2, sizeof(buf2),
2412 fa->fa_type));
2413 if (fa->fa_tos)
2414 seq_printf(seq, " tos=%d", fa->fa_tos);
2415 seq_putc(seq, '\n');
2416 }
2417 }
2418
2419 return 0;
2420 }
2421
2422 static const struct seq_operations fib_trie_seq_ops = {
2423 .start = fib_trie_seq_start,
2424 .next = fib_trie_seq_next,
2425 .stop = fib_trie_seq_stop,
2426 .show = fib_trie_seq_show,
2427 };
2428
2429 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2430 {
2431 return seq_open_net(inode, file, &fib_trie_seq_ops,
2432 sizeof(struct fib_trie_iter));
2433 }
2434
2435 static const struct file_operations fib_trie_fops = {
2436 .owner = THIS_MODULE,
2437 .open = fib_trie_seq_open,
2438 .read = seq_read,
2439 .llseek = seq_lseek,
2440 .release = seq_release_net,
2441 };
2442
2443 struct fib_route_iter {
2444 struct seq_net_private p;
2445 struct fib_table *main_tb;
2446 struct key_vector *tnode;
2447 loff_t pos;
2448 t_key key;
2449 };
2450
2451 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2452 loff_t pos)
2453 {
2454 struct fib_table *tb = iter->main_tb;
2455 struct key_vector *l, **tp = &iter->tnode;
2456 struct trie *t;
2457 t_key key;
2458
2459 /* use cache location of next-to-find key */
2460 if (iter->pos > 0 && pos >= iter->pos) {
2461 pos -= iter->pos;
2462 key = iter->key;
2463 } else {
2464 t = (struct trie *)tb->tb_data;
2465 iter->tnode = t->kv;
2466 iter->pos = 0;
2467 key = 0;
2468 }
2469
2470 while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2471 key = l->key + 1;
2472 iter->pos++;
2473
2474 if (--pos <= 0)
2475 break;
2476
2477 l = NULL;
2478
2479 /* handle unlikely case of a key wrap */
2480 if (!key)
2481 break;
2482 }
2483
2484 if (l)
2485 iter->key = key; /* remember it */
2486 else
2487 iter->pos = 0; /* forget it */
2488
2489 return l;
2490 }
2491
2492 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2493 __acquires(RCU)
2494 {
2495 struct fib_route_iter *iter = seq->private;
2496 struct fib_table *tb;
2497 struct trie *t;
2498
2499 rcu_read_lock();
2500
2501 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2502 if (!tb)
2503 return NULL;
2504
2505 iter->main_tb = tb;
2506
2507 if (*pos != 0)
2508 return fib_route_get_idx(iter, *pos);
2509
2510 t = (struct trie *)tb->tb_data;
2511 iter->tnode = t->kv;
2512 iter->pos = 0;
2513 iter->key = 0;
2514
2515 return SEQ_START_TOKEN;
2516 }
2517
2518 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2519 {
2520 struct fib_route_iter *iter = seq->private;
2521 struct key_vector *l = NULL;
2522 t_key key = iter->key;
2523
2524 ++*pos;
2525
2526 /* only allow key of 0 for start of sequence */
2527 if ((v == SEQ_START_TOKEN) || key)
2528 l = leaf_walk_rcu(&iter->tnode, key);
2529
2530 if (l) {
2531 iter->key = l->key + 1;
2532 iter->pos++;
2533 } else {
2534 iter->pos = 0;
2535 }
2536
2537 return l;
2538 }
2539
2540 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2541 __releases(RCU)
2542 {
2543 rcu_read_unlock();
2544 }
2545
2546 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2547 {
2548 unsigned int flags = 0;
2549
2550 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2551 flags = RTF_REJECT;
2552 if (fi && fi->fib_nh->nh_gw)
2553 flags |= RTF_GATEWAY;
2554 if (mask == htonl(0xFFFFFFFF))
2555 flags |= RTF_HOST;
2556 flags |= RTF_UP;
2557 return flags;
2558 }
2559
2560 /*
2561 * This outputs /proc/net/route.
2562 * The format of the file is not supposed to be changed
2563 * and needs to be same as fib_hash output to avoid breaking
2564 * legacy utilities
2565 */
2566 static int fib_route_seq_show(struct seq_file *seq, void *v)
2567 {
2568 struct fib_route_iter *iter = seq->private;
2569 struct fib_table *tb = iter->main_tb;
2570 struct fib_alias *fa;
2571 struct key_vector *l = v;
2572 __be32 prefix;
2573
2574 if (v == SEQ_START_TOKEN) {
2575 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2576 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2577 "\tWindow\tIRTT");
2578 return 0;
2579 }
2580
2581 prefix = htonl(l->key);
2582
2583 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2584 const struct fib_info *fi = fa->fa_info;
2585 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2586 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2587
2588 if ((fa->fa_type == RTN_BROADCAST) ||
2589 (fa->fa_type == RTN_MULTICAST))
2590 continue;
2591
2592 if (fa->tb_id != tb->tb_id)
2593 continue;
2594
2595 seq_setwidth(seq, 127);
2596
2597 if (fi)
2598 seq_printf(seq,
2599 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2600 "%d\t%08X\t%d\t%u\t%u",
2601 fi->fib_dev ? fi->fib_dev->name : "*",
2602 prefix,
2603 fi->fib_nh->nh_gw, flags, 0, 0,
2604 fi->fib_priority,
2605 mask,
2606 (fi->fib_advmss ?
2607 fi->fib_advmss + 40 : 0),
2608 fi->fib_window,
2609 fi->fib_rtt >> 3);
2610 else
2611 seq_printf(seq,
2612 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2613 "%d\t%08X\t%d\t%u\t%u",
2614 prefix, 0, flags, 0, 0, 0,
2615 mask, 0, 0, 0);
2616
2617 seq_pad(seq, '\n');
2618 }
2619
2620 return 0;
2621 }
2622
2623 static const struct seq_operations fib_route_seq_ops = {
2624 .start = fib_route_seq_start,
2625 .next = fib_route_seq_next,
2626 .stop = fib_route_seq_stop,
2627 .show = fib_route_seq_show,
2628 };
2629
2630 static int fib_route_seq_open(struct inode *inode, struct file *file)
2631 {
2632 return seq_open_net(inode, file, &fib_route_seq_ops,
2633 sizeof(struct fib_route_iter));
2634 }
2635
2636 static const struct file_operations fib_route_fops = {
2637 .owner = THIS_MODULE,
2638 .open = fib_route_seq_open,
2639 .read = seq_read,
2640 .llseek = seq_lseek,
2641 .release = seq_release_net,
2642 };
2643
2644 int __net_init fib_proc_init(struct net *net)
2645 {
2646 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2647 goto out1;
2648
2649 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2650 &fib_triestat_fops))
2651 goto out2;
2652
2653 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2654 goto out3;
2655
2656 return 0;
2657
2658 out3:
2659 remove_proc_entry("fib_triestat", net->proc_net);
2660 out2:
2661 remove_proc_entry("fib_trie", net->proc_net);
2662 out1:
2663 return -ENOMEM;
2664 }
2665
2666 void __net_exit fib_proc_exit(struct net *net)
2667 {
2668 remove_proc_entry("fib_trie", net->proc_net);
2669 remove_proc_entry("fib_triestat", net->proc_net);
2670 remove_proc_entry("route", net->proc_net);
2671 }
2672
2673 #endif /* CONFIG_PROC_FS */